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Prizes and Productivity:  
How Winning the Fields Medal Affects Scientific Output 

 

George J. Borjas and Kirk B. Doran* 
 

 

I look forward to proving more theorems. I hope the weight of this prize doesn't 

slow me down. 

     —Stanislav Smirnov, Fields Medalist, 2010 

 

 

I. Introduction 

 The production of knowledge is central to long-term economic growth. Yet little is 

known about how knowledge is produced, making it difficult to predict which types of incentives 

are most effective in eliciting effort from knowledge producers. Prizes are a common incentive 

for knowledge production; hundreds of scientific prizes are awarded throughout the world and 

across all scientific disciplines. Although these prizes are frequently awarded with the explicit 

goal of inspiring more and better scientific work (Scotchmer, 2006), a question remains: are they 

effective? 

A voluminous theoretical and empirical literature examines how the presence of potential 

future rewards (whether a promotion to CEO or winning a golf tournament) elicits optimal 

efforts from the tournament participants in their effort to win the contest.1 This literature 

emphasizes the incentive effects of the prize prior to the completion of the tournament. But what 

                                                        

* George J. Borjas is the Robert W. Scrivner Professor of Economics and Social Policy at the Harvard 
Kennedy School; gborjas@harvard.edu. Kirk B. Doran is an Assistant Professor of Economics at the University 
of Notre Dame; kdoran@nd.edu.  We are grateful to Noam Elkies, William Evans, Richard Freeman, David 

Galenson, Daniel Hamermesh, David Harbater, Larry Katz, Curtis McMullen, Kannan Soundararajan, Wilfried 

Schmid, Bruce A. Weinberg, Yoram Weiss, and Trevor Wooley for comments and suggestions on earlier drafts of 

this paper, and to Brian Brinig for excellent research assistance. 

1 Lazear and Rosen (1981) and Rosen (1986) give the classic presentations of the tournament model. 

Empirical evidence on the productivity effects includes Ehrenberg and Bognanno (1990), Knoeber and Thurman 

(1994), and Main, O’Reilly, and Wade (1993). 
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happens to the productivity of tournament winners after they win the prize?2 Standard models of 

labor supply suggest that the post-prize impact of a big win could be significant, especially when 

the award is granted at a young age. 

 This paper examines the impact of winning the Fields Medal on the post-medal 

productivity and research choices of mathematicians.3 The Fields Medal is the most prestigious 

award in all of mathematics, awarded every four years to mathematicians under the age of 40. 

Established by the Canadian mathematician John Charles Fields, the medal is often thought of as 

the “Nobel Prize of Mathematics.”4 Inspired by the desire to promote mathematical cooperation 

and research around the world, Fields used his position as Chairman of the Organization 

Committee of the International Mathematical Congress to bring his idea to fruition. In a memo 

dated January 12, 1932, Fields described his vision: 

It is proposed to found two gold medals to be awarded at successive International 

Mathematical Congresses for outstanding achievements in mathematics. Because 

of the multiplicity of the branches of mathematics and taking into account the fact 

that the interval between such congresses is four years it is felt that at least two 

medals should be available. 

 

 In the same document, Fields explained the motivation for the award: “while [the medal] 

was in recognition of work already done it was at the same time intended to be an 

                                                        
2 Some recent studies address this question in the context of job promotions. Lazear (2004) offers an 

important discussion of the statistical problems introduced by mean reversion in the transitory component of 

productivity when measuring post-promotion productivity effects; see also the related empirical work in Anderson, 

Dubinsky, and Mehta (1999), and Barmby, Eberth, and Ma (2012). 

3 Zuckerman (1996) documents that the research output of Nobel Prize winners declines after winning the 

prize. Her descriptive evidence, however, is likely contaminated by the late age of the winners and the possibility of 

mean reversion because the comparison group is less productive prior to the awarding of the prize. Chan et al. 

(2013) and Bricongne (2014) present related studies of the impact of the John Bates Clark Medal on the productivity 

of economists and reach conflicting results. The productivity impact of the Clark medal is discussed in more detail 

below. Finally, Azoulay, Graff-Zivin, and Manso. (2011) explore the impact of funding at the start of a scientist's 

career on subsequent productivity. 

4 Partly due to jealousy and conflict between Alfred Nobel and the Swedish mathematician Magnus Gotha 

Mittag-Leffler, Nobel famously left mathematics out of his list of recognized disciplines when he founded the prize 

that bears his name (Tropp, 1976). Ironically, Fields and Mittag-Leffler were close friends. 
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encouragement for further achievement on the part of the recipients and a stimulus to renewed 

effort on the part of others” [emphasis added]. In other words, not only would the existence of 

the prize solicit effort from the participants in this elite tournament, it would also encourage 

additional (i.e., post-medal) effort on the part of the winners. 

Using administrative data from the American Mathematical Society (AMS) and the 

Mathematics Genealogy Project (MGP), we examine the shape of the age-productivity profile of 

these exceptional mathematicians along a number of dimensions, including the number of papers 

published, citations received, and students mentored. Our empirical analysis exploits the fact that 

only a subset of the great mathematical contributions in the past 80 years resulted in Fields 

medals, and that this subset was partly determined by arbitrary factors such as the quadrennial 

timing of the award, the age restriction, and subject-level biases. 

Our main set of results uses the set of winners from a broader set of prizes for great 

mathematical achievement (awards which are themselves good predictors of winning the Fields 

Medal) to construct a representative group of brilliant mathematicians who can be thought of as 

“contenders” for the medal. Our analysis compares the research output of the medalists with that 

of the losing contenders. The age-productivity profile of the two groups is similar until a 

particular mathematician wins the Fields Medal (or does not win it). Remarkably, the 

productivity of the Fields medalists declines noticeably relative to that of the contenders in the 

post-medal period, regardless of whether we measure productivity in terms of papers published, 

citations received, or students mentored. 

 The award of a Fields Medal enhances a mathematician’s professional reputation far 

more than any other potential event in the mathematics profession. Although the prize money is 

itself negligible, the medal can certainly lead to a substantial increase in “wealth” (both in terms 
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of dollars and in intangible measures of academic prestige) if the mathematician chooses to 

leverage the award in the marketplace. The neoclassical labor-leisure model predicts that the 

expansion in the opportunity set should induce the medalists to consume more leisure in the post-

medal period. Moreover, the wealth effect can also lead to a shift in the research strategy pursued 

by the Fields medalists: they are now free to “play the field” and pursue topics in different areas 

of mathematics (or even outside mathematics) that they may find interesting or worthwhile and 

have a high consumption value. 

We employ the notion of “cognitive mobility” (Borjas and Doran, 2014) to capture the 

transition in the space of ideas as knowledge producers move from one research topic to another 

over the course of a career. The AMS data classifies each published paper into one of 73 specific 

and narrow mathematical fields. It turns out that there is a crucial link between a 

mathematician’s propensity for cognitive mobility across mathematical fields and the awarding 

of a Fields Medal. Specifically, while medalists and contenders have similar cognitive mobility 

rates initially, the medalists exhibit a far greater rate of mobility in the post-medal period. 

Because cognitive mobility is costly (e.g., additional time is required to prepare a paper in an 

unfamiliar field), the increased rate of cognitive mobility reduces the medalists’ rate of output in 

the post-medal period. The data suggest that about half of the decreased rate of output is due to 

the increased propensity for “trying out” unfamiliar fields, often outside pure mathematics. 

 Every four years, the greatest mathematicians in the world gather to select and honor new 

medalists and to remind them that the Fields Medal is meant to encourage their future 

achievement. In fact, the medal reduces the rate of publication and the likelihood that its winners 

produce great achievements in pure mathematics. At least in this context, it seems that the net 

productivity impact of selecting winners on the basis of a tournament depends crucially on what 
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happens as the winners adjust their behavior to take advantage of the post-prize expansion in the 

opportunity set. 

II. Historical Background 

 The first Fields Medals were awarded soon after Fields’ 1932 memo. The medals are 

traditionally awarded during the opening ceremony of the quadrennial International Congress of 

Mathematicians (ICM). In 1936, the medals were awarded to two mathematicians. Because of 

World War II, the medals were not awarded again until 1950, when they were again given to two 

mathematicians. Since 1950, the Fields Medal has been awarded quadrennially, to two, three, or 

four mathematicians in each cycle. 

The initial moneys available to fund the medals were the result of an accidental surplus of 

funds left over after the 1924 ICM. These funds, accompanied by the bequest of Fields himself, 

allowed for the granting of two medals. In 1966, an anonymous donor made additional funds 

available allowing four medals to be awarded in each of the next two cycles (ICM, 1966). As a 

result, the number of Fields Medals awarded in any given 4-year cycle was not mainly 

determined by how many mathematicians had made fundamental advances in the relevant time 

period. Instead, the number often depended on how much income had accumulated in the Fields 

Medal account, on the availability of private anonymous donors, and on an upper limit of 

(initially) two or (later) four medals to be awarded by any particular Congress (ICM, 2006). 

As noted earlier, the Fields Medals were designed partly to promote future mathematical 

achievement on the part of the recipients. This goal is sufficiently important that it has been 

repeated verbatim and expounded upon at nearly every award ceremony. For example, in the 

1954 Congress, eminent mathematician Hermann Weyl spoke movingly to the winners: “The 
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mathematical community is proud of the work you both have done. It shows that the old gnarled 

tree of mathematics is still full of sap and life. Carry on as you began!” 

From its inception, the committees have interpreted Fields' desire for future 

encouragement to mean that the medal should be awarded to mathematicians who are “young” 

(ICM, 1936), and the word “young” has consistently been interpreted to mean that the medal 

may only be awarded to mathematicians under the age of 40 (ICM, various issues).5 Most 

recently, the 2006 committee explicitly stated its requirement that a mathematician qualifies for 

the Fields Medal only if he has not yet turned 40 as of January 1 of the year in which the 

Congress meets (ICM, 2006). 

The restrictions on the number and age distribution of the Fields medalists introduce 

arbitrary variation in which subset of great mathematicians of the past eighty years received the 

award and which did not. As a result, many mathematicians who are widely perceived as “great 

architects of twentieth-century mathematics,” even for work done at an early age, did not receive 

the Fields Medal (Tropp, 1976). There are numerous such examples. The American 

Mathematical Society said of mathematician George Lusztig: “[His work] has entirely reshaped 

representation theory and in the process changed much of mathematics” (AMS, 2008, p. 489). 

Although “Lusztig's exceptional mathematical ability became evident at an early stage of his 

career,” and "it can be no exaggeration to say that George Lusztig is one of the great 

mathematicians of our time," he did not receive the Fields Medal (Carter, 2006, pp. 2, 42). 

Similarly, the Norwegian Academy of Science and Letters (Solholm, 2010) cited John 

Tate for “his vast and lasting impact on the theory of numbers,” claiming that “many of the 

                                                        
5 The age restriction has been applied consistently over time. For example, the 1998 ICM stated: "As all 

the Committees before us, we agreed, . . . to follow the established tradition and to interpret the word 'young' as 'at 

most forty in the year of the Congress’" [emphasis added]. 
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major lines of research in algebraic number theory and arithmetic geometry are only possible 

because of [his] incisive contributions and illuminating insights.” Nevertheless, Tate also did not 

receive a Fields Medal.  

In fact, considering the number of mathematicians who are regularly lauded by the 

various National Academies of Sciences and Mathematical Societies for (re)inventing new 

subfields of mathematics, it is clear that the 52 Fields Medals that have been awarded (as of 

2013) are insufficient to cover even half of all the great achievements that have made modern 

mathematics possible. Hence it should not be particularly surprising that Robert Langlands, a 

mathematician whose work specifically inspired and made possible the contributions of at least 

two Fields Medalists (Laurent Lafforgue and Ngô Bảo Châu), and who founded the most 

influential program connecting number theory and representation theory, did not receive the 

Fields Medal himself. 

Historians of the Fields Medal have also documented the “bias” that causes some fields 

and styles of mathematics to be better represented among winners (Monastyrsky, 2001). For 

example, Langlands (1985, p. 212) wrote of mathematician Harish-Chandra: “He was considered 

for the Fields Medal in 1958, but a forceful member of the selection committee in whose eyes 

Thom [one of the two Fields medalists that year] was a Bourbakist was determined not to have 

two. So Harish-Chandra, whom he also placed on the Bourbaki camp, was set aside."6 

Similarly, the arbitrary age cut-off and the four-year periodicity of the award work 

together to exclude mathematicians who obviously should have received the medal. The New 

                                                        
6 The goal of the French Bourbaki group was to write down all of mathematics as a linear development 

from general axioms. The arbitrariness of the decision to exclude Harish-Chandra is doubly ironic: “Harish-Chandra 

would have been as astonished as we are to see himself lumped with Thom and accused of being tarred with the 

Bourbaki brush, but whether he would have been so amused is doubtful, for it had not been easy for him to maintain 

confidence in his own very different mathematical style in face of the overwhelming popular success of the French 

school in the 1950s” (Langlands, 1985, p. 212).  
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York Times obituary of Oded Schramm states: “If Dr. Schramm had been born three weeks and a 

day later, he would almost certainly have been one of the winners of the Fields Medal…But the 

Fields Medals, which honor groundbreaking work by young mathematicians, are awarded only 

once every four years and only to mathematicians who are 40 or under. Dr. Schramm was born 

on Dec. 10, 1961; the cutoff birth date for the 2002 Fields was Jan. 1, 1962. Wendelin Werner, a 

younger mathematician who collaborated with Dr. Schramm on follow-up research, won a Fields 

in 2006” (Chang, 2008). 

In short, while it is tempting to claim that the 52 Fields medalists are in a class by 

themselves, and that there are no losing contenders with equivalent or better early achievements, 

this view does not correspond with what mathematicians themselves have written. As the ICM 

noted: “we must bear in mind how clearly hindsight shows that past recipients of the Fields’ 

medal were only a selection from a much larger group of mathematicians whose impact on 

mathematics was at least as great as that of the chosen” (ICM, 1994). The arbitrariness in the 

number, timing, and field distribution of Fields medalists means that a similarly great group of 

“contenders” should exist that can be contrasted with the winners in a difference-in-differences 

strategy to determine how winning the medal influences productivity and research choices. 

III. Data 

To measure the life cycle productivity of elite mathematicians, we use the comprehensive 

data contained in the AMS MathSciNet archives. The AMS provided us with a database that 

reports the number of papers published by every mathematician in the world, by field and year, 

since 1939. The AMS professional staff assigns each publication in mathematics to one of the 

many fields that make up the discipline (and this information will prove useful below). Our 

database contains the author-year-field information at the two-digit field level, classifying every 
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publication over the 1939-2011 period into one of 73 different fields. The database also contains 

information on the number of citations received by the papers. It is important to note, however, 

that the AMS citation data is incomplete. In particular, it only counts citations in a limited 

number of journals (which include the most important journals in mathematics), and only reports 

the post-2000 citations received by a paper (regardless of when the paper was published). 

We wish to determine what the post-medal career path of Fields medalists would have 

looked like had they not been awarded the medal. Because of the capricious events affecting the 

selection of the subset of great mathematicians who received the medal, we conjecture that there 

should exist a comparison group of mathematicians who did similarly path-breaking work before 

the age of 40, but who did not receive the medal and can serve as a control group.7 

We use a systematic and easily replicable method for constructing the set of 

“contenders.”8 Specifically, our construction of the control group starts out by including the 

winners of six other major mathematical awards with roughly similar goals as the Fields Medal. 

It turns out that winning any one of these prizes is a good predictor for receiving a Fields Medal. 

                                                        
7 An alternative to the difference-in-differences approach would be the use of instrumental variables. The 

obvious choice of an instrument for winning the Fields Medal is given by the combination of the quadrennial timing 

of the award and the age cut-off: some mathematicians have almost four more years to compete for the Fields Medal 

than others. While the resulting variation in the maximum number of “eligible work years” is positively related with 

winning the Fields Medal in the sample of contenders constructed below, the Angrist-Pischke multivariate F-tests of 

excluded instruments show that the relationship is not sufficiently strong to make it a useful instrument by itself. 

8  An alternative empirical strategy would be to rely on statistical matching based on papers per year or 

citations per paper to construct a sample of contenders from the universe of all mathematicians. We did not pursue 

this alternative approach for two reasons. First, it would be difficult to operationalize because a key variable in the 

matching algorithm would be year of birth (which determines eligibility for the Fields Medal). The birth year would 

need to be uncovered one at a time through archival research or one-on-one contact for the universe of potential 

matches in the AMS data. It turns out that approximating year of birth by year of first publication leads to a very 

poor approximation of the end of the eligibility period. Second, we prefer the approach of actually constructing a 

relevant group of contenders with “real” people because it uses the valuable information embedded in the 

profession’s willingness to publicly acclaim a particular person’s contributions with a scarce award (or, as discussed 

below, with an invitation to present a prestigious lecture). This type of construction likely leads to a better 

approximation of the “short list” of contenders considered by the prize committee.  
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First, we consider the two most prestigious general mathematics prizes (after the Fields 

Medal), which tend to be given closer to the end of a mathematician’s career. Both the Abel 

Prize and the Wolf Prize cover the entire breadth of the mathematics discipline and are only 

given to mathematicians who have made extraordinary contributions. The Abel Prize, which has 

a significantly higher monetary value than the Fields Medal (nearly $1 million versus $15,000), 

began to be awarded in 2003 to one or two mathematicians a year.9 The Wolf Prize has been 

awarded annually since 1978, typically to two mathematicians (although no prize has been 

awarded in some years). Any mathematician who won either of these prestigious awards (and did 

not win the Fields Medal) is clearly a key formulator of modern mathematics and automatically 

becomes part of our group of potential contenders. 

In addition to these two general prizes, there are a number of prestigious area-specific 

prizes in mathematics. Specifically, we consider the four most prestigious area-specific awards 

for: algebra (the Cole Prize of the AMS); analysis (the Bôcher Prize of the AMS); geometry (the 

Veblen Prize of the AMS), and the study of Fourier series (the Salem Prize). We add into our 

group of potential contenders any mathematicians who won one of these four area prizes before 

the age of 40 (and did not win the Fields Medal).10 

This algorithm yields the names of 92 potential contenders who contributed significantly 

to at least one of the key subject areas of mathematics or to mathematics as a whole, but who did 

not receive the Fields Medal. There is a very strong correlation between winning any of these 

                                                        
9 The Abel Prize creates a multi-stage tournament for mathematicians. As in Rosen (1986), Fields 

medalists may wish to keep participating in the tournament in order to receive the sizable monetary award associated 

with the Abel Prize. The changed incentives, however, are unlikely to affect our results because the Abel Prize 

began late in the sample period. 

10 There are many other mathematical prizes around the world, but they are far less prestigious or worse 

predictors of winning the Fields Medal. For example, none of the winners of the AMS Cole Prize for Number 

Theory has ever gone on to win the Fields Medal. 



 11 

prizes and winning the Fields Medal: 52 percent of the Fields medalists also won at least one of 

these prestigious awards. The predictive power of each prize is as follows: 5 out of the 13 Abel 

Prize winners also won the Fields; as did 13 out of the 54 Wolf Prize winners; 3 out of the 26 

Cole Prize winners; 4 out of the 32 Bôcher Prize winners; 4 out of the 29 Veblen Prize winners; 

and 7 out of the 48 Salem Prize winners. 

Our empirical strategy requires us to determine if a mathematician is eligible for the 

Fields Medal in any particular cycle, so that we need to observe the mathematician’s date of birth. 

Although the AMS data does not provide this information, we ascertained the birth date (through 

internet searches for each mathematician’s curriculum vitae or personal contact) for all Fields 

medalists and for almost all of the potential contenders. The systematic archival of publications 

by MathSciNet started in 1939, and some mathematicians in our sample published in their 

teenage years, so we restrict the study to those born in or after 1920. Further, we exclude the 6 

potential contenders for whom we could not confirm a date of birth. This leaves us with a sample 

of 47 medalists and 86 potential contenders. The Appendix Table presents the combined list of 

all winners, a list that includes all the mathematicians mentioned in our historical survey. 

There is obviously a great deal of variation in the mathematical significance and timing 

of the work of the potential contenders. For example, the narrowness of the area prizes suggests 

that the contribution of some of these winners, although very important in that particular area, 

may not have the “breadth” required to generate sufficient interest in the broader community of 

mathematicians. Similarly, some of the contenders (who perhaps went on to win one of the 

general prizes) may have produced their best work after their eligibility for the Fields Medal 

ended. Hence we whittle down the list of 86 potential contenders by examining how often other 
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mathematicians cite the work that the contenders produced during the years they were eligible 

for the Fields Medal. 

A recipient of the Fields Medal cannot have turned 40 after January 1 of the year in 

which the medal is awarded. For example, the 2010 medal cycle would have been the last cycle 

for a person born anytime between January 1, 1970 and December 31, 1973. Even though the 

contenders born in this time frame did not win in their last shot at the medal, the incentives for 

“impressing” the Fields Medal committee ended in 2010. Hence we assign the year 2010 as the 

“medal year” for these contenders to separate the pre- and post-medal periods. We used a similar 

exercise to ascertain the medal year for all the contenders in our sample. A mathematician’s 

eligibility period is then given by the years between the mathematician’s first publication and the 

medal year. 

We calculate the annual rate of citations generated by a potential contender during his 

eligibility period by dividing the total number of citations received by papers published in this 

period (cumulative as of October 2011) by the number of years in the eligibility period. We then 

define the final set of contenders as the 43 mathematicians in this group whose annual eligibility-

period citation rate is above the median. In other words, our final group of contenders represents 

“la crème de la crème” of mathematicians who did widely recognized work during the eligibility 

period and who did not win the Fields Medal.11 

                                                        
11 An alternative way of defining the final set of contenders would be to calculate the annual rate of papers 

published during the eligibility period, and select the 43 mathematicians whose annual rate of output is above the 

median. The evidence reported below is similar if we used this alternative definition. We also accounted for the fact 

that the nature of the AMS citation data could imply that the number of citations received by more recent 

mathematicians may be greater than the number received by mathematicians active in the 1950s and 1960s. We 

defined the final set of contenders based on the above-median ranking of the residual from a regression of the per-

year number of citations in the eligibility period on the calendar year of first publication, and the results are very 

similar to those reported in the next two sections. 
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Table 1 reports summary statistics for the sample of Fields medalists as well as for the 

control group (using both the final list of contenders with above-median citations, as well as the 

group of all 86 prize winners).12 The table also reports comparable statistics (when available) for 

a sample of “professional mathematicians,” which we define as the group of mathematicians in 

the AMS archive whose first and last published papers span at least a 20-year period. 

Obviously, both the Fields medalists and the contenders publish much more and receive 

many more citations than the average mathematician. There is, however, relatively little 

difference in measured productivity between the final group of contenders and the Fields 

medalists. The medalists published 3.1 papers per year during their career, as compared to 3.6 

papers for the contenders. The typical paper published by a medalist received 21.0 citations, as 

compared to 17.5 citations for the contenders. The average mathematician in both groups was 

born around 1950, and they each published their first paper at the early age of 23 or 24. 

The table also summarizes the rate of output by age, calculating the average number of 

papers published annually by the medalists and the contenders between the ages of 20-39 and 40-

59. The data reveal suggestive differences. The medalists and the contenders published 

essentially the same number of papers per year in the early part of the career (3.4 papers), but the 

medalists published 1.2 fewer papers per year after age 40. This striking pattern presages the 

nature of the empirical evidence that will be documented in subsequent sections. 

IV. The Fields Medal and the Age-Productivity Profile 

As noted earlier, despite the plethora of important prizes that a brilliant mathematician 

can potentially receive, the prestige of the Fields Medal is substantially greater than that of any 

other prize. In fact, the ICM Fields Medal announcement emphasizes that the prestige effect is 

                                                        
12 We ignore the posthumous publications of the Fields medalists and contenders. 
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far greater than the accompanying monetary award: “The Fields Medals carry the highest 

prestige of all awards in mathematics. This prestige does not derive from the value of the cash 

award, but from the superb mathematical qualities of the previous Fields Medal awardees” (ICM, 

2010). 

Nevertheless, it is obvious that the financial impact of the Fields Medal on a 

mathematician’s lifetime wealth is not limited to the $15,000 monetary prize. Fields medalists 

are likely to see a substantial expansion in their opportunity set, in terms of high-quality job 

offers, additional research funding, and many other career opportunities. It is conceivable, 

therefore, that the wealth effect (which includes money as well as the additional opportunities 

allowed by the substantial increase in professional prestige) could be sizable and could alter the 

medalist’s post-medal behavior.13 

The neoclassical labor-leisure model suggests that the wealth effect should increase the 

consumption of leisure by the Fields medalists relative to that of the contenders. As a result, we 

should not be surprised if the “weight of the prize” does indeed slow the Fields medalists down. 

Moreover, the wealth effect might influence the mathematician’s choice of research topics, either 

because the mathematician can now afford to explore topics that are essentially “consumption 

                                                        
13 Data on the impact of the Fields medal on a winner’s financial wealth are obviously very limited. 

Nevertheless, there is some evidence suggesting that the effect may be quite large. In particular, it is possible 
to examine the salary history of Fields medalists employed at a few public universities (where the salary 
information is publicly released). Our examination of the salary history of one such winner, employed at a 
large public university in the western United States, indicates that the medalist experienced a $120,000 salary 
increase (equivalent to a 67 percent raise) between the academic years preceding and subsequent to the 
award. The medalist’s salary, in fact, continued to increase rapidly in subsequent years and was five standard 
deviations above the mean salary of full professors in the department six years after the award. This episode 
suggests that the impact of the Fields medal on the present value of lifetime wealth (even when income is 
restricted only to academic earnings) can be substantial, totaling in the millions of dollars. 
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goods” or because the medalist feels that he can pursue “riskier” topics. These shifts in research 

interests, discussed in more detail below, also have productivity consequences.14 

We initially measure the productivity of the elite mathematicians by the number of papers 

published in each year. Figure 1 illustrates the life cycle trend in the average number of papers 

published by both the medalists and the control group (i.e., the subset of contenders who have 

above-median citations in the eligibility period). Specifically, the figure plots the average 

number of papers published per year by the medalists and the contenders at the prime of their 

career, relative to the medal year. The Fields medalists are plotted relative to the year they 

actually received the medal (a zero on the x-axis represents the year of the prize); the contenders 

are plotted relative to the last year of their eligibility for the medal (a zero on the x-axis 

represents the last year of their eligibility).  

It is evident that the medalists and the contenders had very similar age-productivity 

profiles during the eligibility period, publishing around 3 to 4 papers per year. The figure also 

shows, however, a dramatic drop in the annual rate of output for the medalists that coincides with 

their receipt of the Fields Medal. A decade or two after the Fields medal, the average medalist 

published around 1.5 fewer papers per year than the average contender.15 

                                                        
14 There are two additional types of productivity effect that may be important, though hard to 

measure. First, winning the Fields medal “raises the bar” in terms of what a medalist perceives to be 
publishable output (and also in terms of what the mathematical community expects from him). In particular, 
the medalist may feel that he has a brand name to protect and is unwilling to devote his time or effort to 
smaller topics that could well lead to publishable, but not seminal, papers. Second, the medalist is likely to be 
distracted by competing offers for advice, speeches, etc. As Cédric Villani, a Fields medalist in 2010, puts it, 
“Every Fields Medal winner knows how much the productivity decreases after the award. . . Just because you 
are so much invited and wanted by everybody—for juries, ceremonies, public speeches, TV, radio, 
newspapers” (Sparshott, 2014). 

15 Figure 1 seems to show a small decline in productivity among the Fields Medalists for a few years 
prior to the receipt of the medal. This decline is partly an artifact of the three-year moving average used in the 
figure. In fact, the only unusually low year of output actually occurs exactly one year before receipt of the 
Fields Medal. The number of papers published two years before receipt of the Fields Medal and during the 
year of the medal itself is either on or above the trend. We further examined the pre-trend issue by estimating 
a regression specification that included a variable “years-since-medal” (both before and after) and interacted 
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Of course, these differences could be due to factors that cannot be controlled for by the 

graphical analysis, including individual fixed effects, calendar-year effects, and age differences. 

We stack the annual data in our panel of medalists and contenders, and estimate the regression 

model:  

 

(1)  yit = i + t + Ti + (Ti × Fi) + Zi  + , 

 

where yit gives the number of papers published by mathematician i in calendar year t; i and t 

are vectors of individual and calendar-year fixed effects, respectively; T is a dummy variable 

indicating if the observation refers to the post-medal period; F is a dummy variable indicating if 

mathematician i won the Fields medal; and Z is a set of background characteristics that includes 

the mathematician’s age (introduced as a fourth-order polynomial). The data panel contains one 

observation for each mathematician for each year between the year of the first publication and 

the most recent year of “potential activity” (if alive) or the year of death. The coefficient  

measures the difference in the annual rate of publication between the post- and pre-medal periods 

for the contenders, while the coefficient  measures the relative change in this gap for the Fields 

medalists. 

Table 2 reports the estimated coefficients using a variety of alternative specifications. 

The first two columns report coefficients when the control group is formed by the sample of 

                                                                                                                                                                                   
this variable with the indicator of whether the mathematician won the Fields medal. We aggregated the 
years-since-medal variable into three-year intervals to obtain a sufficient sample size for each interaction. 
The regression revealed that only one of the pre-medal interactions was significant (and it was the one 
indicating the period at the beginning of the career), and none of the others were even marginally significant. 
In contrast, three of the post-medal interactions are significant, with four more being marginally significant. 
The data, therefore, strongly suggest that the small decline in productivity observed just before the awarding 
of the Fields medal is not part of a consistent pre-treatment trend of low output for the treated group. 
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contenders with above-median citations in the eligibility period. Row 1 reports the simplest 

regression model. The estimate of  is small, suggesting no substantial difference in the average 

annual product of the contenders in the pre- and post-medal periods (after controlling for age and 

period effects). The estimate of  is negative and around -1.4, indicating a (relative) drop of 

more than one paper per year in the post-medal period for the Fields medalists. In other words, 

even after controlling for individual-specific productivity differences and aging effects, there is a 

sharp decline in the productivity of the medalists after they were awarded the medal. 

The specification changes reported in the remaining rows of Table 1 corroborate this 

finding. Row 2 uses the log number of papers per year as the dependent variable, but excludes 

from the regression those (relatively few) years where the elite mathematicians did not publish at 

all. The log papers regression shows a 24 percent decline in productivity in the post-medal period. 

Row 3 reports the coefficient from a quantile regression where the dependent variable is the 

median number of papers per year (using bootstrapped standard errors clustered at the 

mathematician level). The regression shows a decline of -0.7 papers per year in the post-medal 

period. Finally, the last two rows of the table use alternative methods for ascertaining the “medal 

year” in the sample of contenders: either at age 36 (the median age at which Fields medalists 

actually receive their medal) or age 40 (the maximum age of eligibility). The estimate of the 

coefficient  is robust to these alternative definitions. 

The last two columns of the table report the estimated coefficients when the control group 

includes all 86 members of the sample of contenders (i.e., all the prize winners without any 

quality cutoff). Regardless of the method used to define the sample of contenders, the regression 

coefficients are similar. The data reveals that the Fields medalists produce between 0.9 and 1.4 

fewer papers per year in the post-medal period (or roughly a 20 percent decline in productivity) 
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than would be predicted either from their previous output or from the output of other great 

mathematicians who did not win the highly coveted prize.16 

The observed decline in the annual number of publications cannot be attributed to either 

the effect of mechanical mean reversion or to an “expectation bias” among the members of the 

award committee. Suppose that a mathematician’s observed productivity at a point in time has a 

transitory component. As Lazear (2004) notes, the population of mathematicians whose 

productivity is above some bar at time t will always show an average decline in productivity after 

time t due to mean reversion in the transitory component of output. To avoid this type of 

contamination, we restricted our analysis to contenders who had reached similarly high 

productivity levels in the Fields Medal eligibility period. As a result, any mean reversion should 

operate equally on both groups. 

Second, the award committee members, containing some of the best mathematicians in 

the world, surely observe future predictors of productivity among the contenders that we cannot 

measure in a publication database, and they may be swayed by this private information in their 

discussions. Given the future expectations bias, therefore, it would not be surprising if the 

tournament winners do better in the post-tournament period. This bias would imply that our 

regression coefficients understate the true post-medal productivity decline. 

We suspect, however, that this bias is less likely to be important in the context of the 

Fields Medal than in comparable tournaments in “softer” sciences, such as the John Bates Clark 

Medal in economics. First, publication lags for ground-breaking papers in pure mathematics can 

be considerably shorter than they are in economics. Second, many competing groups of 

                                                        
16 We also examined the robustness of our results to the use of the Abel and Wolf prizes in the construction 

of the sample of contenders in two alternative ways: by excluding from the sample of contenders those 

mathematicians who won the Abel or Wolf prizes (yielding a sample of 35 contenders) or by only including in the 

sample of contenders those mathematicians who did win the Abel or Wolf prizes (8 contenders). The interaction 

coefficient β is -0.908 (0.458) in the first case and -2.553 (2.015) in the second. 



 19 

mathematicians are often working on the next great unsolved problems at once. Not surprisingly, 

they often wait until the proof is sufficiently complete before discussing their techniques openly. 

Finally, even the private information that a mathematician is out to prove Hilbert's Eighth 

Problem is unlikely to influence the Fields Medal committee, as the resulting proof will either be 

correct or not and the committee cannot determine the validity of the proof in advance. In 

contrast, an interesting and fertile research agenda in applied economics can often produce 

exciting papers regardless of the direction in which the data points.17  

The AMS data also allows us to examine other output effects of the Fields Medal. Table 

3 re-estimates the basic regression model using alternative dependent variables. The dependent 

variable in row 1 is the probability that a mathematician publishes at least one paper in a given 

year. The relative probability of publishing a paper falls by about 11.8 percentage points for the 

medalists in the post-medal period. Row 2 uses the number of citations generated by papers 

written in year t as the dependent variable. Although the AMS data only reports the post-2000 

citations for a paper regardless of when the paper was published, the calendar year fixed effects 

included in the regression model should control for the variation in citations between older and 

newer papers.18 The coefficient  is again negative and significant, suggesting a decline of about 

44 citations annually for papers produced in the post-medal period. 

                                                        
17 During the two-year period in which we prepared this study, two related working papers 

examining the productivity effect of the Clark medal were also produced. The evidence in these studies, 
however, is mixed. Chan et al. (2013) use a statistical matching approach and find a favorable productivity 
effect, while Brincogne (2014) constructs a control group composed of prominent economists and finds that 
the favorable productivity effect disappears once the regression controls for individual-specific fixed effects 
in productivity, suggesting that the net productivity effect of the medal may be slightly negative. Even if the 
evidence were less ambiguous, there are a number of issues that complicate the interpretation of the results 
from the Clark medal studies. In particular, the Clark medal is not the last stage of the tournament; there may 
be well be “forward expectation bias” influencing the choice of the next Clark medalist; and the additional 
grant funding that a Clark medalist will likely generate will be an input in the production function for 
subsequent research (grant funding is a much less important input in the production of pure mathematics). 

18 The fact that our citation data only includes citations made after 2000 (regardless of when the 
paper was published) prevents us from addressing the possibility that receipt of the Fields medal may itself 
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Part of the decline in citations is attributable to the fact that the medalists are less likely to 

publish (and publish fewer papers when they do publish). Row 3 uses the number of citations per 

paper published in a given year as the dependent variable (excluding years when the 

mathematician did not publish at all). The material published by the medalists in the post-medal 

period is, on average, less citation-worthy than the material published by the contenders. Even if 

the typical post-medal paper written by a medalist generates fewer citations, the medalists may 

be just as likely to hit a “home run.” We calculated a vintage-specific citation cutoff for papers 

published each year using the universe of publications in the AMS database. By definition, a 

mathematician hits a “home run” if the number of citations per paper published that year was 

above the 99.5
th

 percentile for all mathematicians in the AMS database. Row 4 shows that the 

(relative) probability that a medalist hits a home run in the post-medal period declines by 15.6 

percentage points. At the other extreme, a mathematician may “strike out” and write papers that 

are never cited. Row 5 shows that the medalist’s (relative) probability of striking out rises by 5.3 

percentage points in the post-medal period. 

Finally, many of these elite mathematicians devote considerable time and effort to 

training the next generation of mathematicians. In fact, biographies and laudations of their 

achievements emphasize the training and mentoring of students as evidence of their long-lasting 

impact on mathematics. We therefore also examine the impact of the Fields Medal on the 

medalists’ mentoring activities. 

We obtained access to the data in the Mathematics Genealogy Project (MGP), and we 

merged the genealogy data with the AMS publication data. The MGP data identifies the 

                                                                                                                                                                                   
cause the medalists' pre-medal work to become more highly cited in the post-2000 period than it otherwise 
would have been. A detailed analysis of this issue would require much more detailed (and contemporaneous) 
citation data. 
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intellectual progeny of the renowned mathematicians in our sample, as well as the year in which 

those students received their doctoral degree. We were able to match 104 of the 133 

mathematicians using an MGP-AMS match provided by the administrators of the MGP. For 28 

of the remaining 29 unmatched mathematicians, we were able to obtain information about the 

graduation years and names of their students from name-based searches of their curriculum vitae, 

obituaries, or unmatched online MGP entries. The merged data also provides information on the 

research output of the students in their post-doctoral career.19 The merged data, therefore, allows 

us to examine not only the impact of the Fields Medal on the number of students produced in the 

post-medal period, but also the impact on the quality of the students.  

 We are interested in the relation between the timing of the year in which a student 

becomes an elite mathematician’s mentee and the year in which the mathematician receives (or 

does not receive) the Fields Medal. The mentoring agreement typically occurs two to four years 

before the student obtains his or her doctoral degree. We lag the MGP degree date by three years 

to approximate the year in which the mentoring relationship began.20 

It turns out that Fields medalists are not only publishing fewer papers in the post-medal 

period, and that those papers are relatively less important, but they are also accepting fewer 

mentees under their wing. Row 6 of Table 3 reports the relevant coefficients when we estimate 

the regression model using the number of mentees as the dependent variable. The regression 

shows a (marginally significant) relative decline in the number of mentees accepted by the Fields 

medalists of about 0.1 students per year. The last two rows estimate the regression model using 

                                                        
19 For students whose AMS identification numbers are listed in the MGP database, we use the AMS data to 

calculate their career papers and citations. Many mathematics doctorates, however, do not publish a single paper in 

their career (and the mode for those who do is a single publication with zero citations; see Borjas and Doran, 2012). 

The absence of a publication implies that the student will never appear in the MathSciNet database. We assume that 

the students who do not have an AMS identification number have zero lifetime publications and citations. 

20 The results are similar as long as we lag the degree date by two or more years. 
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the mentee’s total number of publications and citations over their career to date as dependent 

variables. The results show a pronounced decline in the quality-adjusted student output of Fields 

medalists in the post-medal period. 

An Alternative Control Group 

It is important to establish that the evidence reported in Tables 2 and 3 cannot be 

attributed to idiosyncratic properties of the method we used to construct the control group of 

contenders. In fact, it is easy to show that the results are almost identical if we pursued a 

drastically different method for constructing the sample of contenders. In addition to the various 

prizes discussed above, the mathematics profession honors a select number of elite 

mathematicians with invitations to be “plenary speakers” at the quadrennial International 

Congress of Mathematicians. The qualifications required for receiving such an invitation are 

clearly stated in the memo detailing the program committee’s responsibilities (ICM, 2007): 

Plenary lectures are invited one-hour lectures to be held without other parallel 

activities…The lectures should be broad surveys of recent major developments, 

aimed at the entire mathematical community. Plenary speakers should be 

outstanding mathematicians and good lecturers. It is the privilege of the PC 

[Program Committee] to select the plenary speakers. 

 

The program committees in charge of organizing the plenary lectures have typically 

scheduled around 20 plenary lectures at each ICM in recent decades. There have been 269 

plenary speakers since the 1950 ICM, and these speakers include 34 of the 50 mathematicians 

awarded the Fields medals during this period. We again obtained the lifetime publication record 

for each of the invited plenary speakers from the AMS archives, and were able to determine the 

year of birth for all but eight of the speakers. We then re-estimated the basic regression model in 
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equation (1) using the group of plenary speakers (who did not win the Fields medal) as the 

control group.21  

Table 4 summarizes the key results from our replication of the analysis. We illustrate the 

robustness of the evidence by estimating alternative specifications of the regression model, 

including using the group of all plenary speakers as contenders or only the group of plenary 

speakers who received an invitation to present a lecture by age 44.22 In addition, the table 

illustrates the robustness of the results when these samples are further restricted to only include 

mathematicians whose citation rate during the eligibility period placed them in the top half of the 

group. Regardless of the exact definition of the control group, the evidence summarized in Table 

4 is similar to that discussed earlier (both qualitatively and quantitatively). Fields medalists 

publish around one fewer paper annually after they receive the medal; the papers they do publish 

get cited less often; and they have a lower probability of hitting a home run and a higher 

probability of striking out. Because the evidence is robust to the definition of the control group, 

the analysis presented in the remainder of this paper reverts to the simpler definition of a control 

group that uses the sample of mathematicians who have received one of the six prestigious 

awards noted earlier. 

V. Cognitive Mobility 

The post-medal productivity of Fields medalists, in terms of the number of papers 

published, citations generated, or students mentored, is lower than would have been expected. A 

                                                        
21 It is interesting to note that 39 of the 86 contenders produced by the method based on receipt of 

mathematical prizes have also given a plenary lecture, as have 21 of the 43 “final” contenders with an above-
median citation rate in the eligibility period. 

22 By restricting the sample to plenary speakers who gave their lecture before age 44, we are 
indirectly attempting to construct a sample of outstanding mathematicians that includes those who “just 
missed” their chance for a Fields medal because of the interaction between the age restriction and the 
quadrennial timing of the award.  
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question immediately arises: what exactly are the medalists doing with their time in the post-

medal period? 

One obvious possibility is that the expansion in a mathematician’s opportunity set 

implied by the Fields Medal introduces incentives to consume more leisure—along the lines of 

the wealth effect in the neoclassical labor-leisure model. As long as leisure is a normal good, the 

increase in the opportunity set associated with the Fields medal (which includes the value of the 

additional prestige, job offers, grant opportunities, etc.) could lead to the medalists behaving in 

the predicted fashion and increasing their consumption of leisure. The increased leisure leaves 

less time for writing papers and supervising students. 

In fact, the neoclassical labor-leisure model has a second implication: the Fields Medal 

should increase his consumption of all normal goods. A medalist could respond by increasing his 

consumption of “enjoyable research” in fields outside of pure mathematics, and perhaps begin to 

dabble in such disciplines as biology and economics.23 Moreover, the medalist may now 

perceive a freedom to pursue research topics that lead to riskier outcomes than he would have 

pursued otherwise.24 These shifts in research interests may also affect productivity. 

We apply the concept of “cognitive mobility” to analyze the choice of post-medal 

research topics by the elite mathematicians in our sample. As noted in Borjas and Doran (2014), 

knowledge producers who are conducting research on a particular set of questions may respond 

to changed opportunities by shifting their time, effort, and other resources to a different set of 

                                                        
23 Levin and Stephan (1991) and Stern (2004) suggest that some scientists, particularly theoretical ones, 

derive consumption value from doing research they enjoy. 

24 Since Arrow (1965) and Stiglitz (1969), it is well known that a wealth increase may prompt a utility-

maximizing agent to undertake riskier investments. Levhari and Weiss (1974) extended this insight to the human 

capital framework. Stanislav Smirnov, a 2010 Fields medalist, notes that “the prize also lends a certain prestige 
that allows recipients to pursue high-risk projects. That may mean fewer publications in the short term but 
perhaps 'doing something very important in the end'" (Sparshott, 2014). 
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questions. Cognitive mobility then measures the transition from one location to another in idea 

space. 

We compare the cognitive mobility rates of the medalists and contenders in the post-

medal period. As noted earlier, the AMS data provides information not only on the annual output 

(as measured by papers and citations) of mathematicians, but also categorizes each paper into 

one of the 73 fields that make up the discipline of mathematics and related subjects. Because of 

the large number of fields, it is obvious that we need to reduce the dimensionality of the space of 

ideas in order to operationalize the concept of cognitive mobility in the current context. 

Assume that a mathematician’s career begins the year he publishes his first paper. We 

can then examine the distribution of a mathematician’s research topics in, say, the first x years of 

his career. The AMS data allows us to determine the modal field of the papers published in those 

years, as the mathematician was getting his career started and signaling his “quality” to the rest 

of the profession.  

Although mathematics is composed of 73 fields, some of these fields are intellectually 

close to the modal field, while others are unrelated. The notion of cognitive mobility, therefore, 

should incorporate the fact that a move between the modal field and any other field may be 

“cognitively close” or “cognitively far.” To determine the cognitive distance between any two 

fields, we calculated a matrix with elements [fij] showing the fraction of references made by 

papers published in field i to papers published in field j.25 To illustrate, suppose that the modal 

field was Partial Differential Equations. The three most closely related fields (with the three 

largest values of fij) are Partial Differential Equations itself, Global Analysis, and Fluid 

                                                        
25 It is not possible to estimate this matrix with the data that the AMS provided us. We instead purchased 

citation data from the ISI Web of Science to calculate these distance measures (see the Data Appendix to Borjas and 

Doran, 2012, for details). The calculation of the matrix uses all publications in the 1979-2009 period. 
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Mechanics. These three fields account for 72 percent of all references made by papers published 

in Partial Differential Equations. At the other extreme, papers published in Partial Differential 

Equations never referenced papers published in either General Algebraic Systems or K-Theory.  

It turns out that we typically do not need to expand the definition of “cognitively close” 

beyond 15 fields to capture almost all the references made by papers published in field i. For 

example, 77.6 percent of all references made in Partial Differential Equations are to the top 5 

fields, 87.4 percent are to the top 10, and 92.5 percent are to the top 15. This clustering around a 

very small number of fields is quite representative of the discipline of mathematics. In particular, 

93.1 percent of the references in papers published in the median field of mathematics are made to 

papers published in only 15 other fields (the respective statistics for the 10
th

 and 90
th

 percentile 

fields are 87.6 and 97.5 percent). 

Of course, it is not uncommon for elite mathematicians to move within a small (and often 

related) set of fields in the early part of their career. To capture this oscillation, we expand the 

definition of the “modal field” to include either the most common or the second most common 

field in the early part of a mathematician’s career. For each of these two modes, we then 

constructed the set of the 15 most related fields. Our cognitive mobility variable then indicates if 

the mathematician moved outside the two modal fields and all related fields (in other words, if 

the mathematician moved out of the potential maximum of 30 fields that broadly define his 

initial research interests or “comfort zone”). 

To easily illustrate the trends in cognitive mobility, we first define the “early career 

period” as the eligibility period for the Fields Medal (i.e., the years before the Fields medalist 

won the medal or the years in which contenders were eligible for the medal). We then calculate 

the probability that papers published in each year of a mathematician’s career are outside the 
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comfort zone (or in a different field than the two modal and related fields). Figure 2 plots this 

measure of cognitive mobility. As before, Fields medalists are plotted relative to the year they 

actually received the medal, and the contenders are plotted relative to the last year of eligibility. 

The probability that either the medalists or contenders strayed from their comfort zone 

prior to the medal year is small, around 5 percent a year for mathematicians in either group. This 

similarity, however, breaks down dramatically in the post-medal period. The rate of cognitive 

mobility doubled to 10 percent for the contenders, but rose dramatically for the medalists, 

quintupling to 25 percent. In short, the data reveal that the awarding of the Fields Medal is 

associated with a strong increase in the likelihood that a mathematician tries out fields that are 

very distant from those fields that established his reputation. 

To determine if this correlation persists after controlling for individual and period fixed 

effects, we use the AMS data to construct a panel where an observation represents a paper 

published by each mathematician. In particular, let pint be an indicator variable set to unity if the 

field of the n
th

 paper published by mathematician i (and published in year t) differs from that of 

the modal and related papers in the baseline period. We then estimate the regression model: 

 

(2)  pint = i + t + Ti + (Ti × Fi) + Zi  + . 

 

Table 5 reports the relevant coefficients (, ) using several alternative specifications. As 

with the illustration in Figure 2, the first row of the table uses the publications in the eligibility 

period to define the set of fields that make up the mathematician’s comfort zone. We illustrate 

the robustness of our results by using either the two modal fields (and up to 30 related fields), or 

just simply the modal field (and its 15 related fields). Regardless of the specification, the 
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awarding of a Fields medal substantially increases the rate of cognitive mobility. Even after 

controlling for individual-specific fixed effects, the awarding of the Fields Medal increases the 

probability of a move by between 16 and 21 percentage points. 

The next two rows of the top panel conduct sensitivity tests by using alternative 

definitions of the “early career” period used to construct the mathematician’s comfort zone. Row 

2 uses the first 3 years of the career, while row 3 uses the first 5 years. Similarly, the regressions 

in Panel B use the entire sample of contenders (without any quality cutoff) to estimate the model. 

Regardless of the specification, the awarding of the Fields Medal has a positive and significant 

impact on the probability that a mathematician engages in cognitive mobility.26 

 The freedom to try out new things, however, does not come cheap. Cognitive mobility, 

like any other type of move, can be costly. The mathematician is exiting a field where he has 

remarkable technical skills and attempting to prove theorems in areas where his intuition may not 

be as strong and where the proofs may require a new set of tools. It would not be surprising, 

therefore, it if takes longer to produce a paper after the mathematician has engaged in cognitive 

mobility. 

 Define the duration of a “preparation spell” as the length of time elapsed (in years) 

between any two consecutive papers in a mathematician’s career. We estimated a regression 

model to measure the relation between the length of the preparation spell for paper n (n > 1) and 

cognitive mobility: 

 

                                                        
26 We also examined the probability that a mathematician conducts research outside pure mathematics. 

Specifically, we constructed a variable indicating if a paper was in any of the following “applied” areas: “History 

and biography,” “Statistics,” “Computer science,” “Geophysics,” “Game theory, economics, social and behavioral 

sciences,” “Biology and other natural sciences,” “Information and communication, circuits,” or “Mathematics 

education.” The estimated regression coefficient suggests that the (relative) probability of a Fields medalist 

publishing in one of these applied areas in the post-medal period rose by 75 percent. 
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(3)  int = i + t + F(Fi × pint) + C(Ci × pint) + Zi  + , 

 

where πint gives the length of the preparation spell required to write paper n; pint is the indicator 

variable set to unity if paper n involved a cognitive move, and Ci is a variable indicating if 

mathematician i is a contender (Ci = 1 – Fi). Table 6 summarizes the estimates of the vector (F, 

C) using alternative specifications of the model. It is evident that cognitive mobility is 

associated with a longer preparation spell for both the medalists and the contenders, and the 

effect is numerically important. A cognitive move increases the length of the preparation spell by 

between 0.16 and 0.23 years. 

In sum, the data indicate that the Fields medalists engaged in more cognitive mobility in 

the post-medal period and that cognitive mobility imposes a cost; it takes longer to produce a 

paper. This behavior, therefore, will inevitably result in a reduced rate of publication for the 

medalists in the post-medal period. 

The regression coefficients can be used to conduct a back-of-the-envelope calculation 

that determines how much of the observed decline in productivity was due to cognitive mobility. 

The results in Table 5 indicate that the awarding of the Fields Medal increased the probability of 

cognitive mobility for a paper published in the post-medal period by around 15 percent. Both the 

medalists and the contenders published 4 papers per year at the time the medal was awarded (see 

Figure 1). Using this rate of output as the baseline, the regression coefficient in Table 5 indicates 

that the awarding of the medal led to a 0.6 increase (or 0.15  4) in the number of papers 

published annually in an unfamiliar field. 

At the same time, Table 6 shows that cognitive mobility increases the length of a 

preparation spell by about 0.2 years. Putting these results together implies that the increased 
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incentive for cognitive mobility in the post-medal period and the longer preparation spell reduces 

the amount of “effective” time available in a given year by about 0.12 years (or the 0.6 papers 

published in an unfamiliar field times the 0.2 longer years it takes to produce such a paper). In 

rough terms, therefore, we expect a 12 percent decline in the number of papers that a medalist 

published annually in the post-medal period simply because cognitive mobility diverts 12 percent 

of his time to other uses (e.g., learning new skills). As we saw in Table 2, there was a 24 percent 

decline in annual output. The increased experimentation exhibited by Fields medalists in the 

post-medal period can account for about half of the decline in productivity. 

It is important to emphasize that the decline in productivity resulting from the wealth 

effect that increases leisure is conceptually different from the decline induced by the increased 

experimentation. Although the cognitive mover publishes fewer papers, those papers may 

provide a social benefit. The medalist is applying his talents to unfamiliar questions, and may 

generate important insights in areas that were previously under-served by exceptional 

mathematical talent. 

In fact, among the great architects of late twentieth century mathematics in our sample, 

there are three well-known examples in which a Fields medalist who made extraordinary 

contributions to a specific area of pure mathematics went on to mathematize a distant applied 

subject later in their career. René Thom (and his development of singularity/catastrophe theory), 

David Mumford (and the mathematics of vision and pattern theory), and Stephen Smale. 

Smale’s experience is particularly illuminating. Gleick (1987, p. 45) recounts what 

happened soon after Smale proved a pure mathematics result (the Generalized Poincaré 

conjecture) that helped earn him the Fields Medal. 

Smale [was]. . . already famous for unraveling the most esoteric problems of 

many-dimensional topology. A young physicist, making small talk, asked what 
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Smale was working on. The answer stunned him: “Oscillators.” It was absurd. 

Oscillators—pendulums, springs, or electrical circuits—were the sort of problem 

that a physicist finished off early in his training. They were easy. Why would a 

great mathematician be studying elementary physics? 

 

Even if a young physicist considered Smale’s new choice of topic simplistic and absurd, the 

enormity of the mathematician’s previous achievements insulated him from any real loss of 

prestige. Smale’s post-medal experimentation built the mathematical foundation of chaos theory. 

In fact, Smale went on to make important contributions in biology, astronomy, and even in 

theoretical economics. 

VI. Summary 

 A vast literature explores the impact of tournaments, contests, and prizes on the 

productivity of tournament participants, analyzing the implications of pre-award productivity 

effects for the efficient design of incentive mechanisms. A working assumption in this literature 

is that the labor supply consequences of actually winning a tournament are minimal. This paper 

studies the impact of winning a tournament on the productivity and effort choices of tournament 

participants in the post-tournament period. 

 We examine how winning the Fields Medal affects the post-medal productivity and 

research choices of mathematicians. The Fields Medal is the most prestigious award in 

mathematics, awarded every four years to mathematicians under the age of 40. Using archival 

data from the American Mathematical Society and the Mathematics Genealogy Project, we 

document the shape of the age-productivity profile of these exceptional mathematicians along a 

number of different dimensions, including the number of papers published, citations received, 

and students mentored. We find that the age-productivity profile of the Fields medalists and of 

the losing contenders is similar until the year in which a particular mathematician wins the Fields 
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Medal (or does not win it). Remarkably, the rate of output of the Fields medalists declines 

noticeably in the post-medal period.  

We also show that the medalists exhibit a far greater rate of cognitive mobility in the 

post-medal period, pursuing topics that are far less likely to be related to their pre-medal work. 

Because cognitive mobility is costly (e.g., additional time is required to prepare a paper in an 

unfamiliar field), the increased rate of mobility reduces the medalists’ rate of output in the post-

medal period. The data suggest that about half of the decreased productivity in the post-medal 

period can be attributed to the increased propensity for experimentation.  

Hundreds of scientific and technical prizes are awarded around the world. Our evidence 

suggests that the post-prize productivity impact of winning a prestigious award can be substantial, 

affecting both the quantity and type of research the winners produce. Although some Fields 

Medalists may have taken Hermann Weyl’s words to heart and “carried on as they began,” this 

was not the typical outcome. The data instead reveal that the increased opportunities provided by 

the Fields Medal, in fact, discouraged the recipients from continuing to produce the pure 

mathematics that the medal was awarded for, while encouraging time-consuming investments in 

ever more distant locations in the space of ideas. 
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Figure 1. Average number of papers published annually  

by the Fields medalists and the contenders (3-year moving average) 

 

 

Notes: The group of “contenders” is composed of persons who were awarded at least one of six other mathematics 

prizes (the Abel, Wolf, Cole Algebra, Bôcher, Veblen, and Salem Prizes) and have above-median per-year citations 

during the eligibility period for the Fields Medal, but were not awarded the Fields Medal. We smooth out the trend 
by using a 3-year moving average centered on the middle year in the interval. 
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Figure 2. The probability of cognitive mobility for the Fields medalists  

and the contenders (3-year moving average) 

 

 

Notes: The group of “contenders” is composed of persons who were awarded at least one of six other mathematics 

prizes (the Abel, Wolf, Cole Algebra, Bôcher, Veblen, and Salem Prizes) and have above-median per-year citations 

during the eligibility period for the Fields Medal, but were not awarded the Fields Medal. Cognitive mobility 

indicates if a paper published at any point during the mathematician’s career differs from the “baseline fields” in the 

eligibility period for the Fields Medal. The “baseline field” is defined by the set of the two modal fields and all 

related fields in which the mathematician published during the eligibility period. We smooth out the trend by 
using a 3-year moving average centered on the middle year in the interval. 
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Table 1. Summary Statistics 

 

 

 

Variable: 

 

All 

mathematicians 

 

Fields 

medalists 

Contenders with 

above-median 

citations 

 

All 

contenders 

Lifetime papers 31.8 116.5 126.4 106.4 

     

Papers per year 0.9 3.1 3.6 2.7 

20-39 years old --- 3.3 3.4 2.7 

40-59 years old --- 2.9 4.1 3.0 

     

Lifetime citations 93.6 2451.9 2213.5 1640.4 

     

Citations per year 2.5 64.0 56.0 39.1 

     

Citations per paper 1.8 21.0 17.5 15.6 

     

Year of birth --- 1949.5 1953.7 1946.2 

     

Year of first publication 1972.6 1972.6 1977.7 1970.8 

     

Age at first publication --- 23.1 24.0 24.6 

     

Deceased (percent) --- 10.6 14.0 20.9 

     

Age at death --- 74.0 60.5 66.3 

     

Number of mathematicians 72,140 47 43 86 

 
Note: The summary statistics for “all mathematicians” are calculated using the group of mathematicians in the AMS 

database who had at least 20 years of experience before ending their publication career; i.e., those whose most recent 

publication is at least 20 years after their first publication. The group of “contenders” is composed of persons who 

were awarded at least one of six other mathematics prizes (the Abel, Wolf, Cole Algebra, Bôcher, Veblen, and 

Salem Prizes), but were not awarded the Fields Medal. The group of contenders with “above-median citations” is 

composed of the contenders who had above-median per-year citations during the eligibility period for the Fields 

Medal. The years included in the "papers per year" calculations across different age groups begin with the year of 

the first publication and end at age 59 or the year of death (whichever comes first). 
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Table 2. Impact of the Fields Medal on the number of papers published per year 

 

 Sample of contenders 

 Contenders with above-

median citations 
  

All contenders 
 

 

Specification: 

 

Post-medal 

period 

Post-medal 

period  

Fields Medal 

  

Post-medal 

period 

Post-medal 

period  

Fields Medal 
1. Number of papers 0.119 -1.378  -0.157 -0.918 
 (0.548) (0.676)  (0.291) (0.435) 
2. Log number of papers -0.074 -0.244  -0.093 -0.173 
 (0.089) (0.105)  (0.065) (0.090) 
3. Papers, quantile regression -0.421 -0.665  -0.314 -0.756 
 (0.283) (0.256)  (0.150) (0.161) 
Number of papers:      
4. Contenders’ post-medal  0.160 -1.395  -0.166 -0.914 

period begins at age 36 (0.494) (0.656)  (0.279) (0.435) 
5. Contenders’ post-medal  0.266 -1.440  0.069 -0.987 

period begins at age 40 (0.545) (0.681)  (0.286) (0.436) 

 
Notes: Standard errors are reported in parentheses and are clustered at the individual level. The regressions using the 

sample of contenders with above-median citations have 3,269 observations (2,719 observations in the log papers 

regressions); the regressions using the sample of all contenders have 5,213 observations (4,109 observations in the 

log papers regressions). In rows 1-3, the contenders’ post-medal period begins the year they are no longer eligible to 

receive the Fields Medal. 
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Table 3. Impact of the Fields Medal on other annual measures of productivity 

 

 Sample of contenders 

 Contenders with above-

median citations 
  

All contenders 
 

 

Dependent variable: 

 

Post-medal 

period 

Post-medal 

period  

Fields Medal 

  

Post-medal 

period 

Post-medal 

period  

Fields Medal 
1. Published at least one paper 0.030 -0.118  -0.002 -0.092 
 (0.041) (0.047)  (0.030) (0.044) 
2. Number of citations -1.146 -44.182  5.448 -44.493 
 (13.480) (14.645)  (8.826) (12.631) 
3. Citations per paper 2.204 -11.000  2.560 -10.716 
 (3.351) (3.145)  (2.739) (2.866) 
4. Probability of a “home run” 0.062 -0.075  0.054 -0.075 
 (0.035) (0.034)  (0.027) (0.031) 
5. Probability of a “strikeout” 0.009 0.053  0.022 0.058 

 (0.024) (0.028)  (0.021) (0.026) 

6. Number of mentees -0.016 -0.126  -0.017 -0.137 
 (0.078) (0.074)  (0.054) (0.058) 

7. Number of papers  1.430 -3.981  0.883 -4.932 
published by mentees (3.194) (2.522)  (2.364) (1.828) 

8. Number of citations  -12.676 -56.309  -17.963 -60.682 

generated by mentees (44.334) (37.395)  (29.630) (29.787) 

 
Notes: Standard errors are reported in parentheses and are clustered at the individual level. The regressions using the 

sample of contenders with above-median citations have 3,269 observations; the regressions using the sample of all 

contenders have 5,213 observations. The sample sizes for the regressions reported in rows 3-5 are 2,719 and 4,109 

observations, respectively; and the sample sizes for the regressions reported in rows 5-7 are 2,999 and 4,797, 

respectively. A “home run” occurs when the number of citations per paper published in a given year is above the 

99.5
th

 percentile for all mathematicians in the AMS database; a “strikeout” occurs when the number of citations per 

paper published in a given year is zero. 
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Table 4. Impacts of the Fields Medal Using ICM Plenary Speakers as Control Group 

 

 Sample of contenders 

  

All plenary speakers 
 Plenary speakers with 

above-median citations 
 

 

Specification: 

 

Post-medal 

period 

Post-medal 

period  

Fields Medal 

  

Post-medal 

period 

Post-medal 

period  

Fields Medal 
A. Contenders invited to be 

plenary speakers at any age 

     

1. Number of papers 0.096 -1.076  -0.091 -0.955 
 (0.189) (0.356)  (0.291) (0.432) 
2. Log number of papers -0.014 -0.239  -0.059 -0.183 
 (0.043) (0.080)  (0.059) (0.088) 
3. Citations 8.998 -50.058  3.749 -47.642 
 (7.305) (9.698)  (11.742) (14.952) 
4. Citations per paper  1.217 -10.950  0.257 -10.012 

 (2.011) (2.709)  (3.035) (4.013) 
5. Probability of a “home run” 0.030 -0.078  0.034 -0.066 
 (0.019) (0.029)  (0.029) (0.032) 
6. Probability of a “strikeout” 0.006 0.073  0.011 0.048 

 (0.152) (0.024)  (0.018) (0.023) 
      

B. Contenders invited to be   
plenary speakers by age 44 

     

1. Number of papers 0.039 -0.906  -0.029 -1.130 

 (0.338) (0.448)  (0.584) (0.685) 

2. Log number of papers -0.063 -0.161  -0.092 -0.188 

 (0.067) (0.089)  (0.095) (0.107) 

3. Citations 0.587 -39.978  -8.096 -37.961 

 (10.427) (12.928)  (14.276) (15.344) 

4. Citations per paper  0.386 -8.993  0.672 -9.019 

 (2.756) (2.876)  (3.912) (3.468) 

5. Probability of a “home run” 0.040 -0.065  0.060 -0.072 

 (0.026) (0.038)  (0.035) (0.035) 

6. Probability of a “strikeout” 0.011 0.030  0.023 0.023 

 (0.017) (0.026)  (0.024) (0.025) 

 
Notes: Standard errors are reported in parentheses and are clustered at the individual level. The sample sizes for the 

regressions reported in rows 1 and 3 of Panel A are 9,011 and 5,133 observations, respectively; and the sample sizes 

for the regressions reported in all other rows are 7,505 and 4,396, respectively. The sample sizes for the regressions 

reported in rows 1 and 3 of Panel B are 4,745 and 3,171 observations, respectively; and the sample sizes for the 

regressions reported in all other rows are 3,966 and 2,655, respectively. A “home run” occurs when the number of 

citations per paper published in a given year is above the 99.5
th

 percentile for all mathematicians in the AMS 

database; a “strikeout” occurs when the number of citations per paper published in a given year is zero. 
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Table 5. Impact of the Fields Medal on the probability of cognitive mobility 

 

 Baseline field defined using 

two modes 
 

 
Baseline field defined using 

one mode 
 

 

Sample and specification: 

 

Post-medal 

period 

Post-medal 

period  

Fields Medal 

  

Post-medal 

period 

Post-medal 

period  

Fields Medal 
A, Using sample of contenders 

with above-median citations 
     

1. Baseline = eligibility period -0.049 0.163  -0.065 0.213 
 (0.031) (0.036)  (0.038) (0.039) 
2. Baseline = first 3 years -0.064 0.132  -0.049 0.135 
 (0.038) (0.039)  (0.043) (0.042) 
3. Baseline = first 5 years -0.066 0.158  -0.025 0.147 
 (0.033) (0.036)  (0.036) (0.039) 
      
B. Using sample of all 

contenders 
     

1. Baseline = eligibility period -0.016 0.146  -0.020 0.183 
 (0.025) (0.033)  (0.030) (0.040) 
2. Baseline = first 3 years -0.042 0.121  -0.034 0.134 
 (0.030) (0.036)  (0.033) (0.040) 
3. Baseline = first 5 years -0.029 0.135  -0.010 0.144 
 (0.028) (0.034)  (0.030) (0.038) 

 
Notes: Standard errors are reported in parentheses and are clustered at the individual level. The “baseline field” is 

defined by the set of the (one or two) modal fields and all related fields in which the mathematician published during 

the baseline period (either the entire eligibility period, the first 3 years, or the first 5 years of his career). The 

dependent variable is a cognitive mobility indicator set to unity if the field of publication for each paper during the 

mathematician’s career is not in the baseline field. The regressions in Panel A have 10,911 observations; the 

regressions in Panel B have 14,628 observations. 
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Table 6. Cognitive mobility and the duration of the preparation spell 

 

 Baseline field defined 

using two modes 
 

 
Baseline field defined 

using one mode 
 

Sample and specification: 
Fields 

medalist 
 

Contender 
 Fields 

medalist 
 

Contender 
A, Using sample of contenders 

with above-median citations 
     

1. Baseline = eligibility period 0.213 0.229  0.173 0.212 
 (0.033) (0.038)  (0.043) (0.035) 
2. Baseline = first 3 years 0.202 0.196  0.183 0.164 
 (0.035) (0.039)  (0.036) (0.039) 
3. Baseline = first 5 years 0.193 0.201  0.212 0.183 
 (0.030) (0.034)  (0.036) (0.033) 
      
B. Using sample of all contenders      
1. Baseline = eligibility period 0.211 0.263  0.171 0.214 
 (0.032) (0.035)  (0.040) (0.036) 
2. Baseline = first 3 years 0.200 0.208  0.181 0.192 
 (0.036) (0.039)  (0.037) (0.035) 
3. Baseline = first 5 years 0.193 0.224  0.209 0.194 
 (0.031) (0.033)  (0.036) (0.034) 

 
Notes: Standard errors are reported in parentheses and are clustered at the individual level. The length of the 

preparation is the length of time elapsed (in years) between any two consecutive papers in a mathematician’s career. 

The “baseline field” is defined by the set of the (one or two) modal fields and all related fields in which the 

mathematician published during the baseline period (either the entire eligibility period, the first 3 years, or the first 5 

years of his career). The dependent variable is a cognitive mobility indicator set to unity if the field of publication 

for each paper during the mathematician’s career is not in the baseline field. The regressions in Panel A have 10,821 

observations; the regressions in Panel B have 14,495 observations. 
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Appendix Table. List of Fields medalists and contenders 

 
Anantharaman, Nalini, S Jones, Peter, S Rosenlicht, Maxwell, C 

Arnold, Vladimir, W Journé, Jean-Lin, S Roth, Klaus, F 

Artin, Michael, W Keller, Joseph, W Sato, Mikio, W 

Aschbacher, Michael, W,C Kenig, Carlos, S Schoen, Richard, B 

Astala, Kari, S Kirby, Robion, V Schramm, Oded, S 

Atiyah, Michael, F,A Klartag, Boáz, S Seidel, Paul, V 

Avila, Artur, S Kontsevich, Maxim, F Serre, Jean-Pierre, F,A,W 

Baker, Alan, F Konyagin, Sergei, S Shelah, Saharon, W 

Beckner, William, S Körner, Thomas, S Shishikura, Mitsuhiro, S 

Bombieri, Enrico, F Lacey, Michael, S Simons, James, V 

Borcherds, Richard, F Lafforgue, Laurent, F Sinaĭ, Yakov, W 

Bott, Raoul, W Lang, Serge, C Singer, Isadore, A 

Bourgain, Jean, F,S Langlands, Robert, W Smale, Stephen, F,W,V 

Brown, Morton, V Lax, Peter, A,W Smirnov, Stanislav, F,S 

Caffarelli, Luis, W,B Lindenstrauss, Elon, F,S Soundararajan, Kannan, S 

Calderón, Alberto, W Lions, Pierre-Louis, F Stallings, John, C 

Carleson, Lennart, A,W Lovász, László, W Stein, Elias, W 

Chandra, Harish, C Lusztig, George, C Sullivan, Dennis, W,V 

Cohen, Paul, F,B Margulis, Grigory, F,W Swan, Richard, C 

Connes, Alain, F Mazur, Barry, V Szemerédi, Endre, A 

Dahlberg, Björn, S McMullen, Curtis, F,S Tao, Terence, F,B,S 

David, Guy, S Melrose, Richard, B Tataru, Daniel, B 

de Jong, Aise Johan, C Meyer, Yves, S Tate, John, A,W 

Deligne, Pierre, F,A,W Milnor, John, F,A,W Taubes, Clifford, V 

Donaldson, Simon, F Montgomery, Hugh, S Thiele, Christoph, S 

Drinfeld, Vladimir, F Mori, Shigefumi, F,C Thom, René, F 

Faltings, Gerd, F Moser, Jürgen, W Thompson, John, F,A,W,C 

Fefferman, Charles, F,B,S Mostow, George, W Thurston, William, F,V 

Feit, Walter, C Mumford, David, F,W Tian, Gang, V 

Freedman, Michael, F,V Naor, Assaf, B,S Tits, Jacques, A,W 

Furstenberg, Hillel, W Nazarov, Fedor, S Tolsa, Xavier, S 

Gowers, Timothy, F Ngô, Báo Châu, F Varadhan, S.R., A 

Green, Ben, S Nikishin, Evgeniĭ , S Varopoulos, Nicholas, S 

Griffiths, Phillip, W Nirenberg, Louis, B Venkatesh, Akshay, S 

Gromov, Mikhael, A,W,V Novikov, Sergei, F,W Villani, Cédric, F 

Grothendieck, Alexander, F Okounkov, Andrei, F Voevodsky, Vladimir, F 

Hacon, Chistopher, C Ornstein, Donald, B Volberg, Alexander, S 

Herman, Michael-Robert, S Ozsváth, Peter, V Werner, Wendelin, F 

Hironaka, Heisuke, F Perelman, Grigori, F Wiles, Andrew, W 

Hirzebruch, Friedrich, W Petermichl, Stefanie, S Witten, Edward, F 

Hochster, Melvin, C Piatetski-Shapiro, Ilya, W Wolff, Thomas, S 

Hörmander, Lars, F,W Pichorides, Stylianos, S Wooley, Trevor, S 

Hunt, Richard, S Pisier, Giles, S Yau, Shing-Tung, F,W,V 

Jones, Vaughan, F Quillen, Daniel, F,C Yoccoz, Jean-Christophe, F,S 

  Zelmanov, Efim, F 

 
Notes: The superscripts indicate the prize awarded to the mathematician; F = Fields Medal; A = Abel Prize; W = 

Wolf Prize; C = Cole Algebra Prize; B = Bôcher Prize; V = Veblen Prize; and S = Salem Prize. 

 


