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1 Introduction

Health insurance markets almost everywhere are subject to a variety of regulations designed to en-

courage the effi cient provision of insurance. In the United States, the Affordable Care Act (ACA),

passed in 2010, defines a class of regulated state-by-state markets, called exchanges, in which insurers

must offer annual policies that comply with specific federal rules related to insurance contract design

and pricing. Relative to the private individual insurance markets that existed prior to the Affordable

Care Act, the exchanges remove almost entirely the ability of insurers to price based on consumers’

health conditions, heavily regulate both financial and non-financial contract dimensions, require all in-

dividuals to have insurance, and organize and present information with the intent to facilitate informed

consumer decision-making.1 While state exchange regulators will have some flexibility to implement

their own market designs, all exchanges will share these common characteristics when they begin, or

continue to, insure consumers in 2014. While there has certainly been a great deal of public discussion

concerning the desirability of this reform, there has been surprisingly little formal analysis of the likely

outcomes in these exchanges and the welfare impacts of alternative designs that were considered but

not implemented.

This paper sets up and empirically investigates a model of insurer competition in a regulated

marketplace, motivated by these exchanges. We focus on the issue of premium regulation and ask

how different insurer pricing restrictions would impact consumer welfare. Specifically, we start with

pure community rating as a default, and then investigate a range of alternative regulations that allow

insurers greater flexibility in pricing individual-specific characteristics such as pre-existing medical

conditions.2 Relative to these alternative regulations, the ACA prohibition on pricing nearly all pre-

existing conditions can directly impact two distinct determinants of consumer welfare: adverse selection

and re-classification risk.3 Adverse selection is present when there is individual-specific information

that can’t be priced, and sicker individuals tend to select greater coverage.4 Reclassification risk,

on the other hand, arises when insurance contracts are of limited duration and changes in health

status lead to changes in premiums. In our setting, reductions in the extent to which premiums can

be based on pre-existing conditions are likely to increase the extent of adverse selection, but reduce

the reclassification risk that insured individuals face. For example, when pricing based on pre-existing

conditions is completely prohibited (which is close to the case in the current regulation), reclassification

1For example, in all states, insurers must offer the same premium to different indivduals of the same age (subject

to some minor caveats), and premiums to individuals of different ages cannot differ by more than a 3:1 ratio. Federal

regulations govern the minimum actuarial standards for contracts nationwide, while states have some leeway both to

further restrict these financial standards and to determine what medical procedures insurers must cover. As we discuss

below, the ACA also bans pricing based on nearly all pre-existing conditions.
2See, e.g., Bhattacharya et al. (2013) or Capretta and Miller (2010) for policy-oriented discussions that advocate

relaxing the pricing restrictions present in the ACA (subject to some complementary market design changes).
3Each of these phenomena is often cited as a key reason why market regulation is so prevalent in this sector in the

first place.
4See Akerlof (1970) and Rothschild and Stiglitz (1976) for seminal theoretical work.
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risk is eliminated but adverse selection is likely to be present. At the other extreme, were unrestricted

pricing based on health status allowed, adverse selection would be completely eliminated. We would

then expect effi cient insurance provision conditional on the set of available contracts, although at a

very high price for sick consumers.5 Thus, in determining the degree to which pricing of pre-existing

conditions should be allowed, a regulator needs to consider the potential trade-off between adverse

selection and re-classification risk.

To study the impact of the ACA and alternative regulations we develop a stylized model of an

insurance exchange that builds on work by Rothschild and Stiglitz (1976), Wilson (1977), Miyazaki

(1977), Riley (1985) and Engers and Fernandez (1987) who all modeled competitive markets with

asymmetric information. In the model, the population is characterized by a joint distribution of risk

preferences and health risk and there is free entry of insurers. We assume that individuals are forced

to buy insurance in the marketplace, as a result of a fully-enforced individual mandate (we relax this

in an extension). Throughout the analysis, we fix two classes of insurance contracts that each insurer

can offer.6 The more comprehensive contract has 90% actuarial value and mimics the most generous

coverage allowed under the ACA, while the less comprehensive contract has 60% actuarial value and

mimics the least generous coverage allowed under the ACA.7 These contracts are required to be annual,

as in the current legislation. The model abstracts away from horizontal insurer differentiation from,

e.g., different access to medical providers and treatments.8

The challenges in conducting this analysis are both theoretical and empirical. From the theoretical

perspective, the analysis of competitive markets under asymmetric information, specifically insurance

markets, is delicate. Equilibria are diffi cult to characterize, can be sensitive to the contracting assump-

tions, and are often fraught with non-existence. On the empirical side, any prediction of exchange

outcomes must naturally depend on the extent of information asymmetries, that is, on the distribution

of risks and the information in the hands of insurees. Thus, a key empirical challenge is identifying

these distributions.

To deal with the Nash equilibrium existence problems highlighted by Rothschild and Stiglitz (1976)

we focus on another concept developed in the theoretical literature: Riley equilibria [Riley (1979)].

Under the Riley notion, firms consider competitors’reactions so that deviations rendered unprofitable

by subsequent reactions are not undertaken. The main roles of the theoretical analysis are (i) to prove

the existence and uniqueness of Riley equilibrium in our context and (ii) develop algorithms to find

5This abstracts away from liquidity concerns that could be present in reality, especially for low income populations.
6 Importantly, our model allows insurers to offer both kinds of insurance contracts simultaneously. In the ACA,

insurers are required to offer at least two policies, in the 80% (gold) and 70% (silver) actuarial equivalence classes [see,

e.g., Fernandez and Mach (2012)].
7Actuarial value reflects the proportion of total expenses that an insurance contract would cover if the entire population

were enrolled. In addition to the contracts we study, the ACA permits insurers to offer two classes of intermediate contracts

with 70% and 80% actuarial value respectively. In the legislation, 90% is referred to as “platinum”, 80% “gold”, 70%

“silver”, and 60% “bronze.”
8While such horizontal differentiation could be important for choice / pricing in practice, here we focus on the financial

role of insurance in risk protection and the subsequent trade-off between adverse selection and reclassification risk.
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both the Riley equilibrium and any Nash equilibria, should they exist.9 As an extension in Section 6,

we study an alternative equilibrium notion, Wilson equilibrium [Wilson (1977)], which places different

restrictions on possible equilibrium deviations.

We use the outputs of this equilibrium market analysis (premiums and consumers’plan choices)

as inputs into a long-run welfare model that integrates year-to-year premium risk, conditional on

the pricing regulation and underlying health transition process. This model evaluates welfare from

the perspective of an ex-ante unborn individual, and follows an individual through many consecutive

one-year markets characterized by the static model. We evaluate lifetime welfare under two different

scenarios. On the one hand, we consider fixed income over time, which is a reasonable assumption when

borrowing is feasible. Alternatively, to capture potential borrowing frictions, we also evaluate welfare

under the observed income profile. One benefit of pricing health conditions is that the population is

healthier at younger ages, when their income is lower. Pricing pre-existing conditions, which results in

lower premiums early in life, can therefore be beneficial for steep enough income profiles.

To simulate the market we need a population of potential insureds for whom we know the joint

distribution of ex ante health status and risk preferences. We obtain this information using individual-

level health plan choice and health claims data for the employees of a large firm and their dependents.

We leverage several unique features of the data to cleanly identify risk preferences including (i) a year

where all employees made active, non-default choices, due to a menu change and (ii) the fact that

the plans available differ financially, but not in terms of provider availability. We develop a structural

choice model, that generalizes Handel (2013), to quantify risk preferences.10 In particular, we estimate

a distribution of heterogeneous risk preferences that is allowed to depend on an individual’s ex ante

health status since prior work on insurance markets [see e.g. Finkelstein and McGarry (2006) or Cohen

and Einav (2007)] reveals that correlation between health risk and risk preferences can have important

implications for market outcomes (e.g., the extent of adverse selection).

To model health risk perceived by employees at the time of plan choice, we use the methodology

developed in Handel (2013), which characterizes both total cost health risk and plan-specific out-of-

pocket expenditure risk. The model incorporates past diagnostic and cost information into individual-

level and plan-specific expense projections using both (i) sophisticated predictive software developed

at Johns Hopkins Medical School and (ii) a detailed model of how different types of medical claims

translate into out-of-pocket expenditures in each plan. This cost model outputs an individual-plan-

time specific distribution of predicted out-of-pocket expenditures that we incorporate into the choice

model under the assumption that consumer beliefs about future health expenditures conform to our

cost model estimates.

We use the estimates to study market equilibria and long-run welfare in counterfactual market

9We study Nash equilbria for two cases: (i) when insurers can offer both policies at once and (ii) when insurers are

restricted to offering only one policy.
10While we incorporate consumer inertia in estimation to correctly estimate risk preferences, as in Handel (2013), our

subsequent exchange equilibrium analysis studies a static marketplace where consumers make active non-inertial choices.

4



environments. While we realize that our sample, coming from one large firm, is not an externally

valid sample on which to base a policy conclusion, the depth and scale of the data present an excellent

opportunity to illustrate our methodology. In Section 6, we re-run our main analyses with a re-weighted

sample that matches our population to that in the nationally representative Medical Expenditure Panel

Survey (MEPS) on key demographic dimensions. This analysis yields, in general, similar results to those

from our primary sample.

For the static market with pure community rating (no price discrimination) our results show sub-

stantial within-market adverse selection. The Riley equilibrium results in full unravelling, with all

consumers purchasing a 60% plan at a premium equal to plan average cost for the entire population.

There is still full unravelling in each age cohort once we allow for age-based pricing, though the premi-

ums for each age group reflect the plan average costs conditional on age. High-risk consumers have

large price externalities on healthier ones, leading to extremely expensive, and essentially unavailable,

90% plans. This suggests that the Minimum Creditable Coverage in terms of actuarial value, regulated

to 60% in the ACA, could be a pivotal determinant of consumer welfare in the exchanges.11

We study alternative policies where insurers can price pre-existing conditions to some extent. For

illustrative purposes, we consider the case where insurers can price based on ex ante health status

quartiles: here the Riley equilibria across quartiles result in less adverse selection in the sense that

both the 60% and 90% plans have positive market share (though for some quartiles the market still

fully unravels). We then study pricing based on finer partitions of health-status, all the way up to the

case of full risk-rating, where insurers can use all available information to price policies. As insurers

can price on more and more health-relevant information the market share of consumers enrolled in the

90% policy increases, implying reduced adverse selection. In all cases, Nash equilibria coincide with

the Riley outcomes if firms offer only one policy [as in Rothschild and Stiglitz (1976)], while for most

cases Nash equilibria fail to exist when firms can offer multiple policies.

Though greater ability to price health-status information reduces adverse selection, our long-run

welfare results illustrate the extent to which such policies exacerbate reclassification risk. Under the

case of fixed income from age 25 to 65, welfare is highest when health-status pricing is banned. For

example, from an ex ante perspective an individual with median risk aversion would be willing to pay

$3,082 each year from 25-65 to be in a market with pure community rating relative to the case of

pricing based on health-status quartiles, though the latter yields greater within-year coverage. This is

approximately five times the $619 welfare loss that occurs from adverse selection under pure community

rating (conditional on the restricted set of available contracts), and roughly half of the average annual

medical expenses in the population. Thus, the welfare losses due to reclassification risk, even for

fairly limited pricing of health status, can be quantitatively large. Moreover, as the ability to price

on health-status becomes greater, the welfare loss becomes larger. Finally, when we change the fixed

11 Interestingly, the market unravelling we find under community rating (with or without age-based pricing) is somewhat

consistent with experience in the Massachusetts exchange, where most buyers opted for the Bronze (60%) plan in the

early years of this ACA-like exchange [see, e.g., Ericson and Starc (2013)].
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lifetime income assumption and allow for increasing income profiles the losses from reclassification risk

are attenuated because health-status based pricing decreases premiums earlier in life when income is

lower (and thus serves the purpose of smoothing income over time). This effect is eliminated, however,

if age-based pricing is allowed (as in the ACA).

We study several extensions to address issues of particular interest under the ACA. In addition to

investigating age-based pricing, discussed above, we use our framework and estimates to quantify the

subsidies necessary to guarantee different levels of participation in the exchange. This links directly to

the issue of whether individuals will adversely select into the exchange based on health status. We find

that, absent subsidies or penalties, approximately 26% of the population would opt out of the exchange

when the pricing of pre-existing conditions is prohibited. Those who opt out are mostly younger and

healthier individuals: about half of the 30 to 35 year old population would prefer to opt out. As the

healthier types opt out premiums increase, leading to further desertions. With no subsidies or penalties,

premiums in the market are approximately 30% higher than in the case of full participation. A subsidy

of over $3,000 per person/year is required to decrease the percentage opting out to 10%.12

We also study an extension that allows for risk-adjustment transfers between insurers, as stipu-

lated in the ACA. These transfers are designed to subsidize insurers who take on higher risks and,

consequently, ameliorate adverse selection. We use the model to evaluate the impact of the adjustment

formula proposed by the Federal government [see, e.g., Dept. of Health and Human Services (2012a) or

Dept. of Health and Human Services (2012b)]. While in practice risk adjustment can lead to a number

of problems, such as insurers up-coding enrollees to qualify for larger transfers, we abstract from such

issues and assume that the government can perfectly observe the health status of each enrollee. The

Riley equilibrium with this insurer risk-adjustment has 49% of the population in the 90% policy, as a

result of reduced adverse selection.

This paper builds on related work that studies the welfare consequences of adverse selection in

insurance markets by adding in a long-term dimension whereby price regulation induces a potential

trade-off with re-classification risk. Relevant work that focuses primarily on adverse selection includes

Cutler and Reber (1998), Cardon and Hendel (2001), Carlin and Town (2009), Lustig (2010), Einav

et al. (2010c), and Bundorf et al. (2012). Handel (2013) and Einav et al. (2013) study the welfare

consequences of adverse selection in the contexts of inertia and moral hazard respectively. Ericson and

Starc (2013) and Kolstad and Kowalski (2012) study plan selection and regulation in the Massachusetts

Connector health insurance exchange. These papers all focus on welfare in the context of a short-

run marketplace. There is more limited work studying reclassification risk and long-run welfare in

insurance markets. Cochrane (1995) studies dynamic insurance from a purely theoretical perspective

in an environment where fully contingent long-run contracts are possible. Herring and Pauly (2006)

studies guaranteed renewable premiums and the extent to which they effectively protect consumers

12Age-based pricing increases voluntary participation, as younger individuals do not have to subsidize older ones, but on

average participation does not increase by much. Only 77% of the population would voluntary participate with age-based

pricing without a mandate.
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from reclassification risk. Hendel and Lizzeri (2003) and Finkelstein at al. (2005) study dynamic

insurance contracts with one-sided commitment, while Koch (2010) studies pricing regulations based

on age from an effi ciency perspective. Bundorf et al. (2012), while focusing on a static marketplace,

also analyze reclassification risk in an employer setting using a two-year time horizon and subsidy and

pricing regulations relevant to their large employer context. To our knowledge, there is no similar work

that empirically studies the long-run welfare consequences of reclassification risk and adverse selection

in an equilibrium setting as a function of price regulation.

The rest of the paper proceeds as follows: In Section 2 we present our model of insurance exchanges

and characterize Riley and Nash equilibria in the context of our model. Section 3 describes our data

and estimation. In Section 4 we analyze exchange equilibria for a range of regulations on health status-

based pricing. Section 5 analyzes the long-run welfare properties of these equilibria, while Section 6

discusses extensions of our main analysis. Section 7 concludes.

2 Model of Health Exchanges

In this section, we describe our health exchange model and provide a set of characterization results.

These results provide the algorithm for identifying equilibria using our data, which we do in Section 4.

Throughout the paper, we focus on a model of health exchanges in which two prescribed policies

are traded. In our basic specification, these policies will cover roughly 90% and 60% respectively of an

insured individual’s costs. As such, we refer to these as the “90 policy”and the “60 policy.”Within

each exchange, the policies offered by different companies are regarded as perfectly homogeneous by

consumers; only their premiums may differ. There is a set of consumers, who differ in their likelihood

of needing medical procedures and in their preferences (e.g., their risk aversion). We denote by θ ∈
[θ, θ] ⊆ R+ a consumer’s “type,”which we take to be the price difference at which he is indifferent

between the 90 policy and the 60 policy. That is, if P90 and P60 are the premiums (prices) of the two

policies, then a consumer whose θ is below P90 − P60 prefers the 60 policy, a consumer with θ above

P90 − P60 prefers the 90 policy, and one with θ = P90 − P60 is indifferent.

Note that consumers with a given θ may have different underlying medical risks and/or preferences,

but will make identical choices between policies for any prices. Hence, there is no reason to distinguish

among them in the model. Keep in mind, as we define below the costs of insuring type θ buyers, that

those costs represent the expected costs of insuring all of the – possibly heterogeneous – individuals

characterized by a specific θ.

Throughout our main specification, we assume that there is an individual mandate that requires

that individuals purchase one of the two policies. (But see Section 6.2 for an analysis of participation.)

The costs of insuring an individual of type θ under policy k are Ck(θ) for k = 90, 60. Recall that if

the price difference is ∆P = P90−P60, those consumers with θ < ∆P prefer policy 60, while those with

θ > ∆P prefer policy 90. Given this fact, we can define the average costs of serving the populations

7



who choose each policy for a given ∆P to be

AC90(∆P ) ≡ E[C90(θ)|θ ≥ ∆P ]

and

AC60(∆P ) ≡ E[C60(θ)|θ ≤ ∆P ].

We also define the difference in average costs between the two policies, conditional on a price difference

∆P ∈ [θ, θ], to be ∆AC(∆P ) ≡ AC90(∆P )−AC60(∆P ).

We make the following two assumptions:

Assumption 1: C90(θ) and C60(θ) are continuous increasing functions, with C90(θ) > C60(θ) for

all θ.

Assumption 2: θ has a continuous distribution function F .

The assumption that C90(θ) > C60(θ) for all θ simply says that the 90 policy covers more of a

consumer’s expenses (in expectation) than does the 60 policy.13 The first part of Assumption 1, on the

other hand, is an adverse selection assumption: those consumers who are willing to pay more for the

greater coverage in the 90 policy are also the most costly to insure. Since the consumers who choose

the 90 policy are those in the set {θ : θ ≥ ∆P}, the assumption implies that

AC90(∆P ) > C90(∆P ) > C60(∆P ) > AC60(∆P )

at any ∆P at which both policies are chosen; i.e., at any ∆P ∈ (θ, θ), and that ACk(∆P ) is increasing

in ∆P for k = 60, 90. It will also be convenient to define for each policy k = 60, 90 the largest and

smallest possible average costs: ACk ≡ ACk(θ) and ACk ≡ ACk(θ). Assumption 2 ensures that the

function ACk(·) is continuous for k = 90, 60.

In summary, with these assumptions we have the following Adverse Selection Property upon which

our results will hinge:

Adverse Selection Property AC90(θ) and AC60(θ) are continuous monotone functions that are

strictly increasing at all ∆P ∈ (θ, θ), with AC90(θ) > AC60(θ) for all θ.

We refer to the lowest prices offered for the 90 and 60 policies as a price configuration. We next

define the profits earned by the firms offering those prices. Specifically, for any price configuration

(P90, P60) define

Π90(P90, P60) ≡

 [P90 −AC90(∆P )][1− F (∆P )] if ∆P ≤ θ
0 if ∆P > θ


13 In our empirical work, the 90 policy will in fact dominate the 60 policy in its coverage levels.
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and

Π60(P90, P60) ≡

 [P60 −AC60(∆P )]F (∆P ) if ∆P ≥ θ
0 if ∆P < θ

 .

as the aggregate profit from consumers who choose each of the two policies. Let

Π(P90, P60) ≡ Π90(P90, P60) + Π60(P90, P60)

be aggregate profit from the entire population. The set of break-even price configurations, which lead

each policy to earn zero profits, is P ≡ {(P90, P60) : Π90(P90, P60) = Π60(P90, P60) = 0}. We also let
∆PBE denote the lowest break-even ∆P with positive sales of the 60 policy. This is the lowest price

difference among all break-even price configurations with positive sales of the 60 policy, defined formally

as:

∆PBE ≡ min{∆P : there is a (P90, P60) ∈ P with ∆P = P90 − P60 > θ}. (1)

Note that the price configuration (P90, P60) = (AC60 + θ,AC60), which results in all consumers pur-

chasing the 60 policy, is a break-even price configuration (i.e., it is in set P), as is the “all-in-90”price
configuration (P90, P60) = (AC90, AC90 − θ). There may also be “interior”break-even price configur-
ations, at which both policies have a positive market share. The price difference ∆PBE will play a

significant role in our equilibrium characterizations below.

2.1 Equilibrium Notions and Characterizations

The literature on equilibria in insurance markets with adverse selection started with Rothschild and

Stiglitz (1976). Motivated by the possibility of non-existence of equilibrium in their model, follow-on

work by Riley (1979) [see also Engers and Fernandez (1987)] and Wilson (1977) proposed alternative

notions of equilibrium in which existence was assured in the Rothschild-Stiglitz model. These alternative

equilibrium notions each incorporated some kind of dynamic reaction to deviations [introduction of

additional profitable policies in Riley (1979), and dropping of unprofitable policies in Wilson (1977)],

in contrast to the Nash assumption made by Rothschild and Stiglitz. In addition, follow-on work also

allowed for multi-policy firms [Miyazaki (1977)], in contrast to Rothschild and Stiglitz’s assumption

that each firm offers at most one policy.

Our model differs from the Rothschild-Stiglitz setting in three basic ways. First, the prescription

of health exchanges limits the set of allowed policies. Figure 1, for example, shows the set of feasible

policies in the Rothschild-Stiglitz model (in which each consumer faces just two health states: “healthy”

and “sick”) with two exchanges, one for a 90% policy and the other for a 60% policy. These lie on

lines with slope equal to 1 since a decrease of $1 in a policy’s premium increases consumption by $1

in each state. Second, in our model consumers face many possible health states. Third, while the

Rothschild-Stiglitz model contemplated just two consumer types, we assume there is a continuum of

types of consumers.14

14To our knowledge, no existing work analyzes equilibria in insurance markets with these features. Einav and Finkelstein
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Full insurance line

90% policies

60% policies

endowment

Chealthy

Csick

Figure 1: The solid lines with slope equal to 1 indicate the possible consumptions arising with 90% and

60% policies in a two-state (Rothschild-Stiglitz) model of insurance

In our main analysis we focus on the Riley equilibrium (“RE”) notion, which we show always exists

and is unique in our model.15 We also discuss how these compare to Nash equilibria (“NE”), which

need not exist. (In addition, we consider Wilson equilibria in Section 6.6.) In what follows, the phrase

equilibrium outcome refers to the equilibrium price configuration and the shares of the two policies.

Finally, to simplify the statement of the results, we restrict attention to equilibria with a price difference

∆P ∈ [θ, θ]. Equilibria with ∆P < θ (resp. ∆P > θ ) exist if and only if one exists with ∆P = θ (resp.

∆P = θ), and yield identical market shares, utilities, and profits.

2.1.1 Nash Equilibria

We consider Nash equilibria with both single-policy and multi-policy firms (“sp-NE” and “mp-NE”,

respectively). The following result characterizes these equilibria in our model (all proofs are contained

in the Appendix):

Proposition 1. With either single-policy or multi-policy firms, any NE price configuration (P ∗90, P
∗
60)

must have firms break even on all policies that are sold in equilibrium. If Π60(AC90, P60) ≤ 0 for

(2011) analyze a model with the latter two characteristics but just one policy type using a graphical price-theoretic

approach.
15The Riley notion is also known as a “reactive equilibrium.”
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Figure 2: The figure shows ∆PBE , the lowest price difference in any break-even price configuration

that has positive sales of the 60 policy. It also shows a situation in which all-in-90 is not an equilibrium

outcome, because ∆AC(θ) > θ.

all P60 (i.e., if there is no profitable entry into the 60 policy given that the 90 policy is priced to break

even), then the unique NE outcome has all consumers buying the 90 policy at price P ∗90 = AC90. If

this condition does not hold [which necessarily is the case when ∆AC(θ) > θ], then any NE price

configuration (P ∗90, P
∗
60) must have price difference ∆P ∗ = ∆PBE, the lowest break-even ∆P with

positive sales of the 60 policy. Such a price configuration (P ∗90, P
∗
60) is a NE for:

(i) single-policy firms if there is no profitable entry opportunity in the 90 policy; i.e., if Π90(P̂90, P
∗
60) ≤

0 for all P̂90 ≤ P ∗90;

(ii) multi-policy firms if there is no profitable entry opportunity that slightly undercuts P ∗60 and under-

cuts P ∗90: i.e., if maxP̂90≤P∗90
Π(P̂90, P

∗
60) = 0.

The result says that all consumers buying the 90 policy can be a NE only if that outcome is immune

from deviations that “cream skim,”lowering P60 to attract the healthiest consumers to the 60 policy.

If a cream-skimming deviation does break the all-in-90 outcome, then any NE must involve the price

difference ∆PBE . That price difference is illustrated in Figure 2, which plots ∆AC(∆P ). The price

differences at interior break-even price configurations are the ∆P ∈ (θ, θ) at which the ∆AC(∆P )

curve crosses the ∆P line. The figure also illustrates a situation in which ∆AC(θ) > θ, implying that

all-in-90 is not a Nash equilibrium.

The difference noted between single-policy and multi-policy deviations in parts (i) and (ii) of Pro-

position 1 arises because a price cut in P90 makes the 60 policy earn positive profits by attracting away
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its highest cost consumers. Thus, when an entrant can offer multiple policies it will want to slightly

undercut P ∗60 in order to retain the consumers who still buy the 60 policy.

2.1.2 Riley Equilibria

We use (a slightly modified version of) the definition provided in Engers and Fernandez (1987):

Definition 1. A Riley equilibrium (RE) is a profitable market offering S, such that for any non-

empty set S′ (the deviation), where S ∪ S′ is closed and S ∩ S′ = ∅, if S′ is strictly profitable when
S ∪ S′ is offered then there exists a set S′′ (the reaction), disjoint from S ∪ S′ with S ∪ S′ ∪ S′′ closed,
such that:

(i) S′ incurs losses when S ∪ S′ ∪ S′′ is tendered;

(ii) S′′ does not incur losses when any market offering Ŝ containing S ∪ S′ ∪ S′′ is tendered (we then
say S′′ is “safe”or a “safe reaction”).

A deviation S′ that is strictly profitable when S∪S′ is offered, and for which there is no safe reaction
S′′ that makes S′ incur losses (with market offering S ∪ S′ ∪ S′′), is a profitable Riley deviation.

In our setting, a market offering is simply a collection of prices offered for the two policies. Definition

1 says that a set of offered prices is a Riley equilibrium if no firm, including potential entrants, has

a profitable deviation that also never leads it to incur losses should other firms introduce additional

“safe”price offers (where a “safe”price offer is one that would never incur losses were any further price

offers introduced).16

Our result for Riley equilibria is the following:

Proposition 2. There is a unique Riley equilibrium. Moreover:

(i) If Π60(AC90, P60) ≤ 0 for all P60 (i.e., if there is no profitable entry into the 60 policy given that the

90 policy is priced to break even), it involves everyone buying the 90 policy at price P ∗90 = AC90.

(ii) Otherwise, it involves the break-even price configuration (P ∗90, P
∗
60) with price difference ∆P ∗ =

∆PBE, the lowest break-even ∆P with positive sales of the 60 policy.

Propositions 1 and 2 imply that all consumers buying the 90 policy is the unique equilibrium

outcome at price P ∗90 = AC90 under the exact same circumstances with both the NE and RE concepts.

Where they differ is in what happens when this is not true. In both NE and RE any equilibrium must

then involve price difference ∆PBE , the lowest break-even ∆P with positive sales of the 60 policy.17

However, under RE, this is always an equilibrium when all-in-90 is not an equilibrium. Under the two

16 In fact, it suffi ces to restrict attention to deviations by potential entrants.
17Observe also that the outcome associated with ∆PBE then Pareto dominates the outcome associated with any other

break-even price configuration that has positive sales of the 60 policy, as average costs, and hence prices, are lower.
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NE concepts, however, an equilibrium may fail to exist, with the exact conditions for this depending on

whether there are single-policy or multi-policy firms. The break-even price configuration with price

difference ∆PBE can be a RE when it fails to be a NE because under the RE concept a profitable

Nash deviation can be rendered unprofitable by additional profitable (and “safe”) entry once the initial

deviation occurs.

Recall that there are always break-even price differences that result in all consumers buying the 90

policy or all buying the 60 policy, while there may be (several) interior break-even price differences as

well. Proposition 2 identifies the relevant one.

3 Data and Estimation

To simulate equilibria in health insurance exchanges we need a population of insurees, their preferences,

and health status measures. This section describes the data that we use to obtain these ingredients,

our empirical model, and the estimates. While the estimation is based on Handel (2013) we expand on

that empirical model in several ways. Most importantly, we model consumer risk preference heterogen-

eity more flexibly by allowing for correlations with health risk, and include additional dimensions of

observable heterogeneity, such as income and job type. These additional features are motivated by the

empirical literature on adverse selection and insurance plan choice, which illustrates that correlations

between risk preferences and risk can have important implications for equilibrium outcomes [see, e.g.,

Finkelstein and McGarry (2006), Cohen and Einav (2007), and Einav et al. (2013)].

3.1 Data

Our analysis uses detailed administrative data on the health insurance choices and medical utilization

of employees (and their dependents) at a large U.S.-based firm over the time period from 2004 to 2009.

These proprietary panel data include the health insurance options available in each year, employee

plan choices, and detailed, claim-level employee (and dependent) medical expenditure and utilization

information. While the employees at the firm are not ‘representative’of any specific policy-relevant

exchange population, the data are well-suited to estimate the ingredients necessary to illustrate equi-

librium in exchanges. Later in the paper (Section 6) we perform an analysis that matches our sample

to the nationally representative MEPS data, which we find is similar to our sample on a variety of

dimensions and leads to similar results. We describe the data at a high-level in this section: for a more

in-depth description of different dimensions see Handel (2013).

The first column of Table 1 describes the demographic profile of the 11,253 employees who work

at the firm for some period of time within 2004-2009 (the firm employs approximately 9,000 at one

time). These employees cover 9,710 dependents, implying a total of 20,963 covered lives. 46.7% of

the employees are male and the mean employee age is 40.1 (median of 37). The table also presents

statistics on sample income, family composition, and employment characteristics.
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Sample Demographics

All Employees PPO Ever Final Sample

N - Employee Only 11,253 5,667 2,023

N - All Family Members 20,963 10,713 4,544

Mean Employee Age (Median) 40.1 40.0 42.3
(37) (37) (44)

Gender (Male %) 46.7% 46.3% 46.7%

Income

Tier 1 ( < $41K) 33.9% 31.9% 19.0%

Tier 2 ($41K-$72K) 39.5% 39.7% 40.5%

Tier 3 ($72K-$124K) 17.9% 18.6% 25.0%

Tier 4 ($124K-$176K) 5.2% 5.4% 7.8%

Tier 5 ( > $176K) 3.5% 4.4% 7.7%

Family Size

1 58.0 % 56.1 % 41.3 %

2 16.9 % 18.8 % 22.3 %

3 11.0 % 11.0 % 14.1 %

4+ 14.1 % 14.1 % 22.3 %

Staff Grouping

Manager (%) 23.2% 25.1% 37.5%

White-Collar (%) 47.9% 47.5% 41.3%

Blue-Collar (%) 28.9% 27.3% 21.1%

Additional Demographics

Quantitative Manager 12.8% 13.3% 20.7%

Job Tenure Mean Years (Median) 7.2 7.1 10.1
(4) (3) (6)

Table 1: This table presents summary demographic statistics for the population we study. The first column

describes demographics for the entire sample whether or not they ever enroll in insurance with the firm. The

second column summarizes these variables for the sample of individuals who ever enroll in a PPO option, the

choices we focus on in the empirical analysis. The third column describes our final estimation sample, which

includes those employees who (i) are enrolled in PPO−1 at t−1 and (ii) remain enrolled in any plan at the firm

through at least t1.
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Our analysis focuses on a three-year period in the data beginning with a year we denote t0. For

t0, which is in the middle of our observational period, the firm substantially changed the menu of

health plans that it offered to employees. At the time of this change, the firm forced all employees to

leave their prior plan and actively re-enroll in one of five options from the new menu, with no default

option. These five options were comprised of three PPO options, which shared the same broad provider

network, and two HMO options, which led to some cost savings through different, narrower, provider

networks. Our analysis focuses on choice among the three PPO options, which approximately 60%

of health plan enrollees chose. We focus on this subset of the overall option set because (i) we have

detailed claims data for PPO enrollees but not for HMO enrollees and (ii) the PPO options share the

same doctors / cover the same treatments, eliminating a dimension of heterogeneity that would have

to be identified separately from risk preferences. Analysis in Handel (2013) reveals, reassuringly, that

while there is substitution across options within the set of PPO options, and across the set of HMO

options, there is little substitution between these two subsets of plans, implying there is little loss of

internal validity when considering choice between just the set of PPO options.

Within the nest of PPO options, consumers chose between three non-linear insurance contracts

that differed on financial dimensions only. We denote the plans by their individual level deductibles:

PPO250, PPO500, and PPO1200. Post-deductible, the plans have coinsurance rates ranging from 10%

to 20%, and out-of-pocket maximums after which the family spends no more out-of-pocket as total

medical expenditures increase. PPO250 is the most comprehensive plan (i.e., provides the most finan-

cial protection) and thus has the lowest deductible, coinsurance, and out-of-pocket maximums (which

depend on income as well as the number of dependents covered). PPO1200 is the least comprehensive

plan on all financial dimensions. In terms of actuarial equivalence value (the proportion of expenditures

covered for a representative population), PPO250 is approximately a 90% actuarial equivalence value

plan while PPO1200 is approximately a 73% actuarial equivalence value plan (PPO500 is about halfway

between PPO250 and PPO1200). The plans have (subsidized) up-front premiums that are highest for

PPO250, lowest for PPO1200, and depend on both income and the family members covered.18 Over

the three-year period that we study, t0 to t2, there is substantial variation in the premiums for these

plans; this variation is helpful for identifying risk preferences separately from consumer inertia. For

more details on the respective plan designs, and the evolution of premiums, see Handel (2013).

We restrict the final sample used in choice model estimation to those individuals / families that (i)

enroll in one of the three PPO options and (ii) are present in all years from t−1, the year before the

menu change, through at least to t1, one year before the end of our study period.19 The reasons for the

18PPO1200 also has a linked Health Savings Account (HSA) option that allows consumers to deposit funds that can

be used for medical expenditures on a pre-tax basis. This bundled account may be attractive due to tax-savings but

unattractive because of increased hassle costs. We account for this feature in the estimated choice model. See Handel

(2013) for a further discussion.
19We model plan choice in a given year based on the number of family members enrolled at the beginning of the

year. We don’t model changes to the number of dependents during a given year (or potential resulting changes to plan

enrollment), since this occurs rarely and would complicate the analysis. For new dependents with no past health data
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first restriction are discussed above. The second restriction, to more permanent employees, is made to

leverage the panel nature of the data, especially the temporal variation in premiums and health risk, to

more precisely identify risk preferences. Moreover, this more permanent population is simpler to model

in the sense that their choices are always for the full year in advance and we always observe full past

years of medical histories. Column 2 in Table 1 presents the summary statistics for the families that

choose one of the PPO options, while Column 3 presents the summary statistics for the final estimation

sample, incorporating the additional restriction of being present from t−1 to at least t1. Comparing

the second column to the first column reveals little selection on demographic dimensions into the PPO

options, while comparing the third column to the others reveals some selection based on family size

and age into the final sample, as expected given the restriction to longer tenure.

3.2 Health Status

We use detailed medical and demographic information together with the “ACG” software developed

at Johns Hopkins Medical School to create individual-level measures of predicted expected medical

expenses for the upcoming year at each point in time.20 We denote these ex ante predictions of the

next year’s expected medical expenditures by λ and compute these measures for each individual in our

observed sample (including dependents as well as employees). We refer to λit as individual i’s “health

status”at time t. We use these health status measures as inputs into our cost model, described in the

next section and in Appendix B, to model uncertainty in health expenses for the upcoming year at the

time of plan choice.

Health Status Descriptives

Figure 3 presents the distribution of λ for individuals in the data, as predicted for year t1, for

individuals (including dependents) present at both t0 and t1. The figure presents predicted health

status (i.e., expected expenses) normalized by average predicted yearly expenditures of $4,878 for these

individuals for t1. As is typical in the health care literature, the distribution is skewed with a large right

tail (the chart truncates this right tail at 5 times the mean, though this is not done in our analysis).

As we show later in Section 6, the distribution of expenditures in our population, both conditional and

unconditional on age, is similar to that in the nationally representative MEPS survey data.

Table 2 describes health status transitions in the population over one and two year time horizons.

This illustrates, from a short-run perspective, the potential for reclassification risk if premiums are

allowed to depend, at least to some extent, on health status. The table studies transitions from year to

year for quartiles of λ in the population: thus we see whether an individual transitions from one quartile

of the health status distribution to another.21 For this table, an observation for a one-year transition

we take the typical health expenditure distribution for someone of that age and gender.
20The program, known as the Johns Hopkins ACG (Adjusted Clinical Groups) Case-Mix System, is one of the most

widely used and respected risk adjustment and predictive modeling packages in the health care sector. It was specifically

designed to use diagnostic claims data to predict future medical expenditures.
21Note that this case of quartile transitions is directly relevant to the pricing case we study in the next sections, where
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Figure 3: This figure presents the distribution of λ predicted for t1, for all individuals in the data

(including dependents) present during both t0 and t1. Predicted expected expenses are normalized by

the average in the population of $4,878 (thus equal to 1 in this chart). The distribution presented is

truncated at 5 times for this chart, but not in estimation / analysis.

is an individual in our data present over a given two-year time period (for the two-year transitions,

it is any individual present over any given three-year period). Thus an individual present over four

consecutive years will count as three observations in the one-year transition table.

The table reveals that there are real transition risks even for the fairly short one and two year time

horizons: for example, 32% of the individuals in the healthiest quartile in year t−1 transition to one of

the other three quartiles at year t (42% transition away from this quartile over a two-year period). To

illustrate the potential for premium reclassification, the bottom section of the table presents average

and median ex post cost by quartile grouping, indicating an increase in expected expenditures from

$1,812 for quartile 1 to $15,199 for quartile 4. Note that since the table studies an aging population

(not a steady state population) there is a trend towards higher health expenditures in these transitions.

3.3 Cost Model

The health status measure λ measures expected total health expenses. However, to evaluate the expec-

ted utility for consumers from different coverage options we need to estimate an ex ante distribution

of out-of-pocket expenses for each family j choosing a given health plan k, not just their mean out-of-

pocket expense. We utilize the cost model developed in Handel (2013) to estimate these distributions,

insurers are allowed to price based on health status quartile.
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1 Year Transition

t-1 / t λ Quartile 1 λ Q2 λ Q3 λ Q4

λ Quartile 1 0.68 0.18 0.08 0.06

λ Quartile 2 0.12 0.46 0.25 0.17

λ Quartile 3 0.05 0.15 0.39 0.41

λ Quartile 4 0.03 0.05 0.17 0.75

2 Year Transition

t-2 / t λ Quartile 1 λ Q2 λ Q3 λ Q4

λ Quartile 1 0.58 0.22 0.09 0.11

λ Quatile 2 0.10 0.35 0.29 0.26

λ Quartile 3 0.03 0.14 0.28 0.56

λ Quartile 4 0.03 0.05 0.10 0.82

Cost Profile ($)

Quartile Avg. Cost Median Cost

λ Q1 1,812 302

λ Q2 3,544 1,107

λ Q3 5,543 2,542

λ Q4 15,199 6,831

Table 2: This table describes health status transitions in the population over one and two year time

horizons. For the table, we group employees into ex ante health quartiles using λ. The top two sections

describe these transitions, while the final section describes costs as a function of quartile.
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denoted Hk(Xjt|λjt,Zjt).22 Here, λjt is the vector of λit for all i in family j, Zjt are family demo-

graphics, and Xjt are out-of-pocket medical expenditure realizations for family j in plan k at time

t. The model offers a parsimonious method to non-parametrically link health risk to expected future

expenditures by combining the ACG software’s predictive health risk measures with observed cost data.

We describe the details of the cost model in Appendix B; here we provide a broad overview of the

methodology. The model has the following primary components:

1. For each individual and time period, we generate predictive mean expenditure measures for four

categories of medical expenditures: (i) hospital/inpatient (ii) physician offi ce visits (iii) mental

health and (iv) pharmacy.

2. We next group individuals into cells based on mean predicted future utilization. For each ex-

penditure type and risk cell, we estimate an expenditure distribution for the upcoming year

based on ex post observed cost realizations. Then we combine the marginal distributions across

expenditure categories into joint distributions using empirical correlations and copula methods.

3. Finally, we construct the detailed mappings from the vector of category-specific medical expendit-

ures to plan out-of-pocket costs for each plan k. This includes plans in the actual data, to generate

the distributions for choice model estimation, as well as candidate plans for the counterfactual

simulations in Sections 4-6. For the plans in the observed data that we use for choice model estim-

ation, this mapping inputs individual total expense projections and outputs family out-of-pocket

expense projections taking into account family-level plan characteristics.

The output from this process, Hk(Xjt|λjt,Zjt), represents the distribution of out-of-pocket expenses
associated with plan k used to compute expected utility in the choice model (and counterfactuals).

The cost model assumes both that there is no individual-level private information and no moral

hazard (total expenditures do not vary with k). While both of these phenomena have the potential

to be important in health care markets, and are studied extensively in other research, we believe that

these assumptions do not materially impact our estimates. Because our cost model combines detailed

individual-level prior medical utilization data with sophisticated medical diagnostic software there is

less room for private information (and selection based on that information) than in prior work that

uses coarser information to measure health risk.23 For moral hazard, Chandra (2010) presents a recent

review of the experimental and quasi-experimental literature, where the price elasticity for medical

22We note that the cost model leverages a multi-dimensional vector of health status measures, corresponding to risk for

different types of medical expenditures (e.g., pharmacy, mental health, hospital). This allows for a richer / more precise

model of Hjkt, and is described in detail in Appendix B.
23Pregnancies, genetic pre-dispositions, and non-coded disease severity are possible examples of private information

that could still exist. Cardon and Hendel (2001) find no evidence of selection based on private information with coarser

data while Carlin and Town (2009) use claims data that are similarly detailed to ours and also argue that significant

residual selection is unlikely.
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care generally falls in the range -0.1 to -0.4.24 Online Appendix C in Handel (2013) illustrates that

incorporating projected price elasticities for medical spending larger than these found in the literature

has only a minor impact on the estimates of a choice model similar to ours.

3.4 Risk Preferences: Choice Model

We estimate risk preferences with a panel discrete choice model where choices are made by each house-

hold j at time t, conditional on their household-plan specific ex ante out-of-pocket cost distributions

Hk(Xjt|λjt,Zjt). Specifically, the utility of plan k for household j at time t is:

Ujkt =

∫ ∞
0

uj(Wj , Xjt, Pjkt,1jk,t−1,Zjt)Hk(Xjt|λjt,Zjt)dXjt (2)

Here, uj is the v-NM or “Bernoulli” expected utility index that measures utility conditional on a

given ex post realized state Xjt from the expenditure distribution Hk. Wj denotes income and Pjkt is

the premium contribution for plan k at time t, which as described earlier depends both on how many

dependents are covered and on employee income. 1jk,t−1 is an indicator that equals one if plan k is the

household’s incumbent plan (default option) at choice year t. We use this variable to model consumer

inertia, which is present for years with a default option (t1 and t2). Given that inertia is an important

determinant of choices in those years, as shown in Handel (2013), we include this here to ensure that

we appropriately identify risk preferences separately from this inertia. Zjt are other individual-level

observables (described shortly).

We assume that households have constant absolute risk aversion (CARA) preferences, leading to

the utility index:

uj(Mjkt) = − 1

γj(Z
A
j ,λj)

e−γj(Z
A
j ,λj)Mjkt (3)

Here, Mjkt is the effective consumption for a household given their ex post realization of health

expenditures Xjt from distribution Hk and equals:

Mjkt = Wj − Pjkt −Xjt + η(ZBj )1jk,t−1 + δj(Aj)11200 + αHTCj,t−11250 + εjkt(Aj) (4)

Thus, consumption for a given health state realization equals household wealth, minus the up-front

premium for plan k at time t, minus the out-of-pocket health expenditures Xjt. In addition, we model

inertia, as a function of observable heterogeneity in demographics ZBj , similarly to a tangible switching

cost: consumption for every ex post state Xjt is the equivalent of $η lower if the plan chosen is not

the same as the default option (i.e., the consumer has to incur cost η to switch).25 δj(Aj) is a random

coeffi cient, with distribution estimated conditional on family status Aj (single or covering dependents),

24Recent work by Einav et al. (2013), with data from a large employer, finds an implied elasticity of -0.14. The

well-known RAND experiment has an oft-cited elasticity estimate of -0.18.
25See Handel (2013) for an extended discussion of this model for inertia, and how it relates to other potential micro-

foundations for inertia (i.e., other than a tangible switching cost / transaction cost).
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that captures permanent horizontal preferences for PPO1200 arising from the Health Savings Account

linked to this plan option. α captures preferences for very high-expenditure consumers, who almost

exclusively choose PPO250 even when that option is not attractive financially (HTCj,t−1 = 1 for the

top 10% of the distribution of expected total costs).26 The utility of each option k for family j at t

is also affected by a mean zero idiosyncratic preference shock εjkt known to the decision-maker, with

variance σε to be estimated conditional on Aj .

γj is a household-specific CARA risk preference parameter unobserved by the econometrician that

depends on observed demographics ZAj and expected household expenditures (the sum of λi over λj).

γj determines the curvature of uj(Mjkt) and, consequently, household risk aversion with respect to the

lottery over consumption Mjkt induced by the distribution of out-of-pocket health expenditures Hk.

We estimate a random-coeffi cient distribution of γj that is assumed to have mean µγ(ZAj ,λj) and be

normally distributed variance σ2
γ . Note that observable heterogeneity impacts risk preference estimates

through a shift in µγ , while the level of unobserved heterogeneity measured by σ
2
γ is assumed constant

for the entire population. We use the following specification for µγ(ZAj ,λj):

µγ(ZAj ,λj) = β0+β1 log(Σiεjλi)+β2agej+β3 log(Σiεjλi)∗agej+β41mj+β51mj υ̂mj+β61nmj ν̂nmj (5)

In addition to expected household health expenditures (Σiεjλi), risk preferences depend on max-

imum household age, denoted agej , and the interaction between health risk and age. 1mj is an indicator

variable that denotes whether the employee associated with the household is a “manager”(i.e., a high-

level employee) at the firm. 1nmj is the complement of 1mj . υ̂mj is a measure of ability, and is computed

as the residual to the following regression, run only on the sample of managers in the population:

Incomejt = α0 + α1agejt + α2age
2
jt + υjt (6)

The residual υ̂nmj is computed from the corresponding regression for non-managers.

Regarding identification, risk preferences are identified separately from inertia by leveraging the

firm’s insurance menu re-design for year t0. Households in that year chose plans from a new menu of

options with no default option, while in subsequent years they did have their previously chosen option

as a default option. Conditional on this choice environment, changing prices and health status over time

separately identify inertia from risk preference levels and risk preference heterogeneity. The different

components of risk preference heterogeneity are identified by using exogenous price differences across

both income tiers and coverage tiers (number of family members covered) and over time, as well as

26See Handel (2013) for a further discussion of both the Health Savings Account feature, linked only to PPO1200 (a

“high-deductible”health plan), as well as the choice patterns of high-cost consumers. That paper discusses the potential

for horizontal differentiation caused by the Health Savings account, and illustrates the importance of modeling this given

observed choices and costs. In addition, it shows that, even in cases where PPO250 is dominated by the other two plan

options, very high-cost consumers choose that plan with high frequency, perhaps because of a heuristic to choose the

most comprehensive plan available. We abstract from this effect in our counterfactual simulations.
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changes to household expenditure distributions over time. Prices change substantially across income

tiers and family tiers, while across these tiers households can have similar expenditure risk distributions.

Changes over time in health status and premiums, assuming risk preferences are constant over time,

also provide identifying variation for risk preferences. Finally, consumer preference heterogeneity for

the high-deductible plan option with the linked health savings account (HSA) is distinguished from risk

preference heterogeneity by comparing choices between the two other plans to those between either of

those plans and the high-deductible plan.

We estimate the choice model using a random coeffi cients simulated maximum likelihood approach

similar both to that summarized in Train (2009) and to that used in Handel (2013). The likelihood

function at the household level is computed for a sequence of choices from t0 to t2, since inertia implies

that the likelihood of a choice made in the current period depends on the previous choice. Since

the estimation algorithm is similar to a standard approach, we describe the remainder of the details,

including the specification for heterogeneity in inertia, in Appendix C.

3.5 Preference Estimates

Table 3 presents our choice model estimates. The first column presents the estimates of our primary

specification while the second through fourth columns present robustness analyses to assess the impact

of linking different types of observable heterogeneity to risk preferences. The table presents detailed risk

preference estimates, including the links to observable and unobservable heterogeneity. Since we don’t

use any other estimated parameters in the upcoming exchange equilibrium analyses (except for σε),

for simplicity we present and discuss the rest of the estimated parameters in Appendix C (e.g., inertia

estimates, PPO1200 random coeffi cients, εjkt standard deviations, and income regressions). Parameter

standard errors, which are generally quite small, are also presented in Appendix C.

For the primary specification, the population mean for µγ , the household mean risk-aversion level

given unobserved heterogeneity, is 4.39∗10−4. The standard deviation for µγ (or the standard deviation

in risk preferences based on observable heterogeneity) equals 6.63∗10−5. σγ (the standard deviation of

unobservable heterogeneity in risk preferences) equals 1.24∗10−4. In terms of observable heterogeneity,

risk preferences are negatively correlated with health risk: a one point increase in log(λ) reduces µγ

by 8.10 ∗ 10−5 for a 30-year old.27 This suggests that there should be less adverse selection in the

simulated markets that we study relative to the case in which risk preferences are independent of

health risk. Managers and those with higher ability are slightly more risk averse. With a log expected

total health spending value of 9 (around the median for a household) risk aversion is increasing in age

by 4.69 ∗ 10−6 per year. The specifications in the second through fourth columns in the table, which

investigate robustness with respect to the inclusion of and specification for health status / income

27The coeffi cient on health risk is more negative than this, while the interaction between age and risk preferences has

a positive coeffi cient, indicating some reduction in the negative relationship between risk preferences and health risk as

one becomes older.
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Empircal Model Results

(1) (2) (3) (4)

Parameter / Model Primary Model Robustness 1 Robustness 2 Robustness 3

Risk Preference Estimates

µγ - Intercept, β0 1.21 ∗ 10−3 1.63 ∗ 10−4 1.06 ∗ 10−3 2.54 ∗ 10−4

µγ - log(Σiεjλi), β1 −1.14 ∗ 10−4 - -1.21 ∗ 10−4 -

µγ - age, β2 −5.21 ∗ 10−6 3.60 ∗ 10−6 -4.69 ∗ 10−6 3.99 ∗ 10−6

µγ - log(Σiεjλi)∗age, β3 1.10 ∗ 10−6 - 1.01 ∗ 10−6 -

µγ - Manager, β4 4.3 ∗ 10−5 7.45 ∗ 10−5 5.3 ∗ 10−5 5.4 ∗ 10−5

µγ - Manager ability, β5 1.4 ∗ 10−5 4.49 ∗ 10−5 − -

µγ - Non-manager ability , β6 7.5 ∗ 10−6 3.24 ∗ 10−5 − -

µγ - Nominal Income, β7 - - 3.0 ∗ 10−5 -

µγ - Population Mean 4.39 ∗ 10−4 3.71 ∗ 10−4 4.33 ∗ 10−4 4.73 ∗ 10−4

µγ - Population σ 6.63 ∗ 10−5 7.45 ∗ 10−5 8.27 ∗ 10−5 6.30 ∗ 10−5

σγ - γ standard deviation 1.24 ∗ 10−4 1.14 ∗ 10−4 1.40 ∗ 10−4 1.20 ∗ 10−4

Gamble Interp.:

µγ Mean 693 728 696 676

µγ Mean + 25th Quantile σγ 736 772 748 717

µγ Mean + 75th Quantile σγ 653 688 651 640

µγ Mean + 95th Quantile σγ 604 638 596 593

Table 3: This table presents the our choice model estimates. The first column presents the results from our

primary specification described in Section 3. The second through fourth columns present robustness analyses

that assess the impact of linking preferences to health status and our measure of income earning ability. For

each model, we present the detailed risk preference estimates, including the links to observable and unobservable

heterogeneity. The rest of the parameters (inertia estimates, PPO1200 random coeffi cients, and εjkt standard

errors) are provided in Appendix C. The bottom of the table interprets the population mean risk preference

estimates: it provides the value X that would make someone indifferent about accepting a 50-50 gamble where

you win $1000 and lose X versus a status quo where nothing happens. The population distributions of risk

preferences are similar across the specifications, even though the additional links between health risk / income

and risk preferences add richness.
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in risk preferences, estimate similar means and variances for risk preferences relative to our primary

specification.

The bottom rows in Table 3 interpret the mean of the average estimated risk aversion µγ , as

well as several quantiles surrounding that average µγ . We present the value X that would make

a household with our candidate risk aversion estimate indifferent between inaction and accepting a

simple hypothetical gamble with a 50% chance of gaining $1000 and a 50% chance of losing $X. Thus,

a risk neutral individual will have X = $1000 while an infinitely risk averse individual will have X

close to zero. For the population mean of µγ from the primary model we have X = $693 while for the

25th, 75th, and 95th quantiles of unobserved heterogeneity around that mean X is $736, $653 and $604

respectively (these values are decreasing because they decrease as γ increases). While the estimates

in the literature span a wide range, and should be interpreted differently depending on the different

contexts being studied, our estimates generally fall in the middle of the range of prior work on insurance

choice, while the extent of heterogeneity we estimate is somewhat lower in magnitude [see, e.g., Cohen

and Einav (2007)]. Interestingly, the negative estimated correlation between expected health risk and

risk preferences is consistent with that association in Finkelstein and McGarry (2006) but the opposite

sign of the effect found in Cohen and Einav (2007).

3.6 Simulation Sample

For the choice model we estimate, it is necessary to estimate choice at the family level because that is the

unit that actually makes choices in the data. For our counterfactual insurance exchange simulations, we

focus on individuals to simplify exposition. In actual insurance exchanges this could be an appropriate

model if family costs and premiums are aggregated from the individual level and family members are

not required to enroll in the same plan. We note that the framework could easily be extended to allow

for separate markets for individuals and families covering dependents, as is typical in practice.

The sample used in the simulations contains individuals between the ages of 25 and 65 who are

present in our data. Thus, our simulations include both individuals with single coverage in the data,

and individuals who are members of families with family coverage in our data. For the purposes of our

simulation, individuals with family coverage in the data choose any individual coverage plan. Since

we simulate static equilibria, but observe multiple years of health status and demographic variable

realizations for individuals in our data, we include a given individual in our data multiple times in our

simulation sample, based on their tenure in the actual data. For example, if an individual is present

in our data for three full years, for example from ages 26 to 28, they are included as three separate

individuals for the purposes of our simulation: a 26 year old individual, a 27 year old individual, and

a 28 year old individual. Each of these simulated individuals has potentially different predicted health

status, income, etc. based on their actual data for the relevant year in question. To ensure that the data

for a given individual are complete, we require a given simulated individual to be present for at least
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eight months in each of two consecutive years.28 The data from the first year are used to predict health

status while the presence in the second year is used to ensure the individual was a relevant potential

participant in the firm’s benefit program for that year. This ensures that the simulation sample reflects

to some extent the presence / longevity of the choice model estimation sample. For risk preferences,

some of the variables used in estimation are defined at the family level rather than the individual level

(e.g., income, manager status of the employee in the family). Every individual that comes from a given

family is assigned the relevant family value for these variables when simulating risk preferences for that

individual in the exchange counterfactuals.

Table 4 describes some key descriptive numbers for this pseudo-sample of 10,372 individuals used

for the insurance exchange simulations. Importantly, the distribution of risk preferences in this sample

is very similar to that in the estimation sample, implying it is not highly selected on this dimension.

Similarly, the distributions of income and health expenditures are similar to those of the main estimation

sample and the population overall. The proportion female is also similar. Finally, as shown below,

the simulation sample covers the range of ages from 25-65 fairly evenly, which is reflective of this

characteristic in our data in general. This is relevant to our upcoming welfare analysis, which assumes

that the population is in a steady state.

Quantile 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Age 26 28 33 37 41 45 49 52 56 60 62

We now turn to our primary analysis of insurance exchange market equilibrium and welfare as a

function of different underlying regulations.

4 Results: Equilibria

We use the estimates from our choice and cost models to study the effects of regulations that restrict

the information insurers can use to price their policies.29 As noted in Section 2, we mimic the exchange

structure set forth in the ACA (see, e.g., Kaiser (2010)) and study a market in which insurers can offer

one of two policies that cover either 90% or 60% of expenditures in the population, on average (recall,

this is a simplification of the four classes of policies allowed under the ACA of 60%, 70%, 80%, and 90%

average coverage). While there are a variety of potential non-linear contract designs that would imply

these coverage levels, here we follow the discussion of such policies in Consumers Union (2009) and

28For individuals whose past year of cost data is less than one year (between eight months and one year) we assume

that this past data represents one full year of health claims for the purposes of constructing their health status λ. We

assume in all of the simulations that individuals buy a plan expecting to be in that plan for the full year (this is not an

issue in choice model estimation, where the sample is restricted to those present for full years). The cost model estimation

is done only for individuals with full years of cost data and these full-year distributions are the ones used in our analysis.
29We could also use our framework to investigate trade-offs the regulator faces when choosing the permissible contract

space (in terms of plan cost-sharing features). One advantage of studying pricing regulation is that the contracts we

observe in our data are similar to those used in our equilibrium simulations, which might not generally be the case if

studying a wide range of contract design options.
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Simulation Sample

Simulation Sample

N - Families -

N - Individuals 25-65 10,372

Mean Age 44.5

Median Age 45

Gender (Male %) 45

Income

Tier 1 ( < $41K) 20%

Tier 2 ($41K-$72K) 40%

Tier 3 ($72K-$124K) 24%

Tier 4 ($124K-$176K) 8%

Tier 5 ( > $176K) 8%

Predicted Mean Total Expenditures

Mean $6,559

25th quantile $1,673

Median $3,675

75th quantile $8,354

90th quantile $13,937

95th quantile $18,638

99th quantile $33,835

Risk Preferences

Mean µγ 4.28 ∗ 10−4

Standard Deviation µγ 7.50 ∗ 10−5

Table 4: This table presents descriptive statistics for the pseudo-sample of individuals used in our insurance

exchange simulations. The sample has risk preference means and standard deviations that are similar to those

of the choice model estimation sample. Moreover, the distributions of income and health status are similar to

those in the estimation sample and general population.
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assume that the 90% policy has no deductible, a 20% coinsurance rate post-deductible, and a $1500

out-of-pocket maximum (all at the individual level we study here) while the 60% policy has a $3,000

deductible, a 20% coinsurance rate post-deductible, and a $5,950 out-of-pocket maximum. These two

plans cover 91% and 62% of expenditures for our entire simulation population on average, suggesting

that these are appropriate plans for our analysis and that our population is similar on average to the

representative population considered in this policy document.30

The estimated model contains three sources of heterogeneity that we use in this analysis: risk

type, risk aversion, and an idiosyncratic preference shock. For each individual in the population we

compute, based on their demographics and prior diagnostics, the risk type λ discussed in the previous

section. Given that λ, we take 100 draws from the estimated distribution of γ conditional on λ and

the other demographics modeled in equation (5), creating 100 “pseudo-individuals” for each actual

individual in our sample. Doing so for each individual in the sample generates a joint distribution

of risk preferences and risk type. For each of the two plan designs we study, we adapt the cost

model described in Section 3 to estimate the person-plan specific distribution of out-of-pocket expenses

Hk(·|λit, Zit) where individuals are indexed by i and the two plans by k.31 With these objects, we
compute the expected utility of each (pseudo) individual for each plan, and use them to find CE90 and

CE60 (gross of premiums), as described in Section 2. Willingness to pay for the extra coverage of the

90% plan is θ = CE90 − CE60 + ε, where ε is distributed N(0, σ2
ε). Thus, as in equation (4), there

is a random shock to a consumer’s preference between the two plans. For the simulations that follow

we use σε = 525, which is the estimated standard deviation of ε for the single population for PPO1200

relative to PPO250.32 As we report below, our results are robust to medium-sized changes in σε.

The sample population and the estimated distributions determine F (θ). Costs to each plan k, Ck(θ)

for k = 90 and 60, are computed using expected plan costs λit − E[Hk(·|λit, Zit)], aggregating over all
individuals associated with each θ, while AC90(θ) and AC60(θ) are determined by aggregating these

costs over the θ that select a given plan.

The Adverse Selection Property introduced in Section 2, upon which our theoretical results hinge,

can be verified in our sample: Figure 4 shows that AC90 and AC60 are increasing in ∆P for each policy,

and that AC90 exceeds AC60 at all ∆P .

30We also note that states can regulate the space of permissible non-linear contract designs for a given actuarially

equivalence value (e.g., 90%). In practice, many states have chosen to allow insurers only a very restricted space of

contracts within each class, making our assumption of one contract not very restrictive relative to reality. See, e.g.,

Ericson and Starc (2013) for a discussion of this regulation in Massachusetts.
31Recall, as described in Section 3, for these analyses we use individuals, not families, hence the notation i for individual

rather than j for family as in the choice model.
32We choose these two plans because they are closest in our observed plan set to the 90% and 60% plans we study in

our exchange analysis.
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Figure 4: Plot of average costs vs. the price difference ∆P . Average costs are increasing in this price

difference, and are larger for the 90 policy at each ∆P , consistent with the assumption maintained to

derive our theoretical results.

4.1 No Pricing of Pre-Existing Conditions

We start by considering the case of pure community rating, where insurers must price everyone in the

whole population identically. We follow the theoretical results of Section 2 as a roadmap to finding

equilibria.

The first step towards finding equilibria involves checking whether all consumers pooling in the 90

plan, the highest level of coverage, is an equilibrium. For a 90 policy to break even covering all of the

population, the premium P90 must equal AC90. Such a policy is an equilibrium if Π60(AC90, P60) ≤ 0

for all P60. If that inequality holds, Propositions 1 and 2 guarantee that all-in-90 is both a Nash and

a Riley equilibrium, and that equilibrium is unique.

Figure 5, which plots∆AC(∆P ), shows that∆AC(θ) > θ which guarantees that there is a profitable

60 deviation from all-in-90 by targeting the healthiest customers. Thus, in our population all-in-90 is

not an equilibrium and the equilibrium must involve purchases of the 60 policy.

The second step towards finding either Riley or Nash equilibria involves finding the lowest break-

even ∆P , ∆PBE ; i.e., the lowest interior ∆P at which ∆P = AC90(∆P )−AC60(∆P ), if any exist, or

∆P = θ otherwise. This is then the RE ∆P , and is the only candidate for NE, should a NE exist.

Figure 5 shows that, for the case of pure community rating, there is no interior equilibrium. Namely,

there is no pair of premiums at which both policies have positive market shares and both break even:

for any premium gap between 60 and 90 coverage, the gap in costs due to adverse selection into 90 is

larger than the gap in premiums. The market must fully unravel.
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Figure 5: Plot of plan average costs as a function of their price differences.

The third, and final, step involves checking whether all-in-60 is an NE (Proposition 2 guarantees

the existence of an RE, so having ruled out all candidates with positive 90 sales we know all-in-60 must

be the RE). Unlike RE, the existence of an NE is not guaranteed.

Figure 6 shows the profits from both single-policy and multi-policy deviations starting with all

consumers buying the 60 policy at the price P60 = AC60, namely, Π90(AC60+∆P,AC60) and Π(AC60+

∆P,AC60 − ε) for ∆P ≤ θ. As the lower curve shows, Π90(AC60 + ∆P,AC60) is never positive. The

worst risks, attracted into the 90 plan, are more costly than the premium they pay. Thus, pooling in

the 60 plan is an sp-NE as well as an RE.

The higher total profits curve shows that a multi-policy deviation from all-in-60 is profitable. For

such a deviation, while the 90 customers are not profitable by themselves, the pool left in the 60 plan,

which can be attracted with P60 = AC60 − ε, more than compensates for the losses on consumers

shifting to the 90 plan.

The top section of Table 5 summarizes these findings for the case of a pure community rating pricing

regulation.

4.2 Pricing Pre-existing Conditions

We now investigate the effects of allowing pricing of some health status information. Specifically, we

consider the case in which consumers are classified into quartiles based on their ex ante predicted total

expenditures λ : e.g., the first quartile contains all of the healthiest consumers, while the last contains

all of the sickest consumers. Insurers can target each quartile with different prices as they see fit. We

later present results that vary the fineness of information insurers can price on, ranging from pure
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Figure 6: Investigation of pricing deviations from "All-In 60" candidate equilibrium.

Equilibria without Pre-existing Conditions

Equilirium Type P60 Sh60 AC60 P90 Sh90 AC90

Riley 4,051 100.0 4,051 — 0 —

Single-policy Nash 4,051 100.0 4,051 — 0 —

Multiple-policy Nash Does not exist

Equilibria with Health Status-based Pricing

Market Equilibrium Type P60 Sh60 AC60 P90 Sh90 AC90

Quartile 1 RE/sp-NE/mp-NE 289 64.8 289 1,550 35.2 1,550

Quartile 2 RE/sp-NE 1,467 100.0 1,467 - 0 -

Quartile 3 RE/sp-NE 4,577 100.0 4,577 - 0 -

Quartile 4 RE/sp-NE 9,802 100.0 9,802 - 0 -

Table 5: The top section of this table presents the equilibrium results for the case of pure community rating

(no pricing of pre-existing conditions). The bottom section presents the equilibrium results for the case where

insurers can price based on health status information in the form of health status quartiles. The equilibrium

results are presented for each health status quartile, which act as separate markets under this regulation.
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Figure 7: Potential deviations from candidate equilibrium where all consumers pool in the 90 plan.

community rating all the way up to the case of unrestricted risk rating / price discrimination. These

alternative regulations are meant to be illustrative of potentially more subtle regulations seen in real-

world insurance markets that increase the ability of insurers to price discriminate (e.g., pricing based

on specific pre-existing medical conditions). We follow the same steps as in the previous subsection to

find equilibria, but now for each market segment separately.

The implications of this pricing regulation for adverse selection are seen directly when examining

the pricing equilibrium for quartile 1, the healthiest quartile of consumers. For quartile 1, there is an

interior NE that survives multi-policy deviations and, thus, coincides with the RE. The first step, as

described above, is to check whether all-in-90 is an equilibrium. Figure 7 shows that, as in the pure

community rating case, ∆AC(θ) > θ, implying that all-in-90 is not an equilibrium.

The second step is to look for interior equilibrium candidates. Figure 7 shows two interior break-

even ∆P s. By Propositions 1 and 2 only the lowest ∆P, the one with the largest share of customers in

the 90 plan is the RE and is the only candidate for a NE. Figure 8 displays the profitability of single

and double deviations for the equilibrium associated with the lower break-even ∆P . As neither single-

policy nor multi-policy deviations from this candidate ∆P are profitable, this ∆P is both a single- and

multiple-policy NE.

In contrast, equilibria in quartiles 2, 3 and 4 are qualitatively identical to the equilibrium under pure

community rating. The sp-NE is all-in-60 and coincides with the RE. An mp-NE does not exist. We

omit the graphs, which look similar to Figures 5 and 6. The bottom section of Table 5 summarizes the

findings for the four quartiles under health status-based pricing. The table also highlights the potential

for reclassification risk when moving from the static equilibrium analysis to the analysis of long-run

consumer welfare: if insurers can price based on health status quartiles, buyers will find themselves
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Figure 8: Profitability of deviations from interior equilibrium candidate with health status pricing.

paying premiums as low as $289 or as high as $9,802, corresponding to the different quartiles, as their

health evolves over time. However, under these pricing regulations, many of the healthiest consumers

in the population obtain a greater level of insurance coverage, and thus are less impacted by adverse

selection.

To more completely analyze the trade-offbetween adverse selection and re-classification risk, we next

consider a range of pricing regulations that allow insurers to price based on health status information

with varying degrees of specificity. The second column in Table 6 describes the RE/sp-NE share in the

60 policy when insurers instead can price based on 2, 4, 6, 8, 10, 20, or 50 health status partitions, as

well as the case of full risk-rating (labeled ∞). Adverse selection is reduced as the insurers are able to
price on finer information: with 4, 10, and 50 partitions the 60 plan has 90%, 83%, and 63% market

shares respectively, while with full risk-rating 73% of consumers choose to enroll in the 90 plan.33 (The

welfare numbers in columns 3-5 of Table 6 will be discussed in Section 5.)

5 Results: Welfare

Our aim in this section is to evaluate the expected utility of an individual starting at age 25 from

an ex-ante (“unborn”) perspective; that is, before he knows the evolution of his health. The unborn

individual faces uncertainty about how his health status will transition from one year to the next, and

thus what policies he will purchase and what premiums he will pay. Since individuals differ in their

risk aversion, we will calculate this expected utility separately for different risk aversion levels.

33With no ε preference shock, with full risk-rating all consumers would enroll in the 90% plan. Here, with the estimated

ε standard deviaiton incorporated, the first-best allocation has 73% of consumers in the 90% plan, since some prefer the

60% plan due to this preference shock.
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Equilibria Welfare Loss from Health Status-based Pricing: Varying Regulation

yx,no−pre yx,no−pre yx,no−pre

# of ACG Groups Sh60 Fixed Income Non-Manager Income path Manager Income Path

2 100.0 1,920 710 -102

4 90.0 3,082 1,821 -886

6 82.0 3,951 2,377 -232

8 85.1 4,649 2,084 -1,510

10 83.2 5,357 2,269 -1,364

20 81.4 8.590 4,621 -393

50 63.2 11,578 7,302 2,359

∞ 27.0 14,733 9,944 2,399

Table 6: Equilibria and long-run welfare comparison between the pricing regulations that allow some

pricing based on health status and the case where no pricing on health status is allowed. The table

shows the share of consumers choosing the 60 policy for each pricing regime. It also presents the values

for yx,no−pre, the annual payment required under regime x to make consumers indifferent between x

and no risk-rating. The regimes x listed in column 1 correspond to how targeted pricing can be over

the range of health status: e.g., 4 corresponds to the case of quartile pricing while ∞ is full risk rating.

The results presented are for Riley Equilibria and γ = 0.0004.

To be more specific, suppose we have pricing rule x (e.g., no pre-existing conditions) and equilibrium

concept e (e.g., Riley equilibrium). The analysis in the previous section tells us what policy each

individual will choose as a function of their health status (λ) and risk aversion (γ), and the premium

they will pay. Given this information, we can compute the certainty equivalent CEx,e(λ, γ) of the

uncertain consumption that this individual of type (λ, γ) will face within a year because of uncertainty

over his health realization.

To compute expected utility starting at age 25 from an ex ante perspective, we need to know how

health status will transition over time for an individual with a given risk aversion γ at age 25. To do

so, we assume that our sample represents a steady state population in which the distribution of health

types at each age corresponds to the ex-ante distribution that any (unborn) individual faces. before

learning his risk preferences and health outcomes.34 Recall that our estimates imply that health and

risk aversion are correlated, with more risk averse individuals being healthier on average. We assume

that this correlation reflects differing stochastic processes for health conditional on an individual’s

innate risk aversion at age 25. To identify the stochastic health outcomes a 25-year old with a given

risk aversion γ foresees at any given future age t, we isolate those individuals in our simulation sample

(comprised of the 100 pseudo-individual versions of each person) of age t whose risk-aversion γt falls

34Recall that the age distribution in our sample is close to uniform, as it should be in a steady state population.
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Average Costs at Various Ages

Conditional on Age 25 Risk Aversion

γ 30-35 45-50 55-60

0.0002 5,586 7,196 10,857

0.0003 4,212 6,390 10,319

0.0004 3,100 5,687 9,767

0.0005 2,328 4,911 9,271

0.0006 1,775 4,373 8,813

Table 7: Average costs as a function of age 25 risk preferences. Following the choice model estimates,

costs are negatively related to risk aversion conditional on age.

into a band around the level expected based on our estimates of equation (5), for individuals with risk

aversion level γ at age 25.35 Table 7 shows for various risk aversion levels γ the average costs of the

individuals selected in this manner at ages 25-30, 45-50, and 60-65. The pattern of costs reflects the

positive correlation between health status and risk aversion, as well as the attenuation of this positive

relationship with increases in age.

To measure the welfare difference for an individual with age-25 risk aversion level γ between any

two regimes x and x′ (under a given equilibrium concept e), we define the fixed yearly payment yx,x′(γ)

added to income in regime x that makes the individual have the same expected utility starting at age

25 under regime x and as under regime x′:

65∑
t=25

δtE[−e−γ{It−CEx(λt,γ)+yx,x′ (γ)}] =
65∑
t=25

δtE[−e−γ{It−CEx′ (λt,γ)}],

or

yx,x′(γ) = − 1

γ
ln

(∑65
t=25 δ

tE[−e−γ{It−CEx′ (λt,γ)}]∑65
t=25 δ

tE[−e−γ{It−CEx(λt,γ)}]

)
. (7)

For a given discount factor δ ≤ 1 and regime x, we calculate
∑
t δ
tE[−e−γ{It−CEx(acgt,γ)}] as follows:

first, we first generate the value of e−γ{It−CEx(λt,γ)} that each individual of age t in the band associated

with γ would have if he chose between the 60 and 90 policies facing the equilibrium prices in regime

x and having risk aversion parameter γ.36 The income level It is either held fixed (in which case,

with CARA preferences, its level doesn’t matter) or comes from the regression in equation (6) and is

estimated separately for managers and non-managers.37 We then derive Ext [−e−γ{It−CEx(λt,γ)}] by

35We use a band radius of 0.00005.
36Thus, we evaluate the welfare of an individual who at age 25 does not foresee his risk aversion changing.
37For managers, the mean income level It starts near income tier 1 at age 25 ($0-$40,000) and is near tier 4 at age 65

($124,000-$176,000). Maximum income for managers occurs at age 66. For non-managers, mean income also starts near

income tier 1 at age 25 and is halfway between tiers 2 ($40,000-$80,000) and 3 ($80,000-$124,000) at age 65. Income

peaks at age 56 for non-managers, with an average near income tier 3. See the discussion of the estimates of equation

(6) in Appendix C for more details.

34



Welfare Loss from Health Status—based Pricing in RE/sp-NE ($/year)

yλ4,no−pre(γ) yλ4,no−pre(γ) yλ4,no−pre(γ)

γ Fixed Income Non-Manager Income path Manager Income Path

0.0002 2,220 1,499 -384

0.0003 2,693 1,688 -613

0.0004 3,082 1,821 -886

0.0005 3,399 1,764 -973

0.0006 3,626 2,115 -891

Table 8: Long-run welfare comparison between the two pricing regulations of (i) pricing based on

health status quartiles (x = “λ4”) and (ii) pure community rating / no pre-existing conditions (x′ =

“no−pre”). The table presents the values for yx,x′(γ), the annual payment required under regime x to

make consumers indifferent between x and x′. The results presented are based on the RE and sp-NE

equilibria outcomes presented in Table 5. We present results for the differing cases of (i) “fixed income”

(ii) “income path”for non-managers and (iii) “income path”for managers. The assumed discount rate

is δ = 0.975.

calculating the sample mean of those values for age t individuals in the γ band. We then discount and

add these values over t to get
∑
t δ
tExt [−e−γ{It−CEx(λt,γ)}]. We proceed similarly for regime x′.

We first compare two regimes: ACG-quartile pricing and pure community rating. The latter elim-

inates reclassification risk but exacerbates adverse selection. Health status-based pricing also involves

some inter-temporal redistribution, as the young tend to face lower premiums. To the extent that

this regime smooths consumption over time when borrowing is not possible (given the fact that income

generally rises with age), this creates some welfare gain as well if agents cannot otherwise borrow to

smooth their consumption over time.

Table 8 shows the values of yx,x′(γ) under the RE (and sp-NE) equilibrium notion comparing

pricing based on ACG-quartiles (x = “λ4”) and no pre-existing conditions (x′ = “no − pre”). We

take δ = 0.975. Since we do not know the extent to which agents are able to borrow to smooth their

consumption, we compute welfare both assuming that income is fixed over time (perfect smoothing)

and assuming they cannot borrow at all.38 In the latter case we provide a calculation separately for

managers and non-managers, whose expected incomes differ at each age.

With a fixed income, the welfare gains from eliminating reclassification when pricing pre-existing

conditions is prohibited greatly exceed any losses this rule introduces due to adverse selection. The

loss from health-based pricing on quartiles ranges from $2,220 to $3,626 per year depending on risk

aversion level. Losses are larger for those with greater risk aversion. The annual loss with health status

quartile pricing at a risk aversion level of 0.0004, approximately the mean in our sample, is $3,082,

which is about 47% of the size of the $6,559 annual average total expenses in the population (see Table

38Our calculations do not, however, consider any gains from self-insurance through precautionary saving.
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4 in Section 3). As a direct comparison point, we can compare this to the welfare implications of just

adverse selection: with fixed income and risk aversion 0.0004 a consumer would be willing to pay $619

per year to face a regime in which everyone receives the 90 policy at price P90 = AC90 rather than

the community rating regime in which pre-existing conditions cannot be priced and everyone ends up

buying the 60 policy at price P60 = AC60. Thus, the welfare loss from reclassification risk induced

by this pricing regulation change is at least 5 times as large as the welfare loss from adverse selection

under pure community rating.

When individuals cannot borrow, health-based pricing confers an additional benefit by moving

consumption forward in life. For non-managers the losses from health-based pricing now range from

$1,499 to $2,115 per year. For managers, however, whose income is higher and rises more steeply with

age (see footnote 37), and therefore benefit more from moving consumption forward in time, health-

based pricing is actually preferred to community rating. For this group, the benefits of smoothing

income over time outweigh the costs of reclassification risk.

We revisit Table 6 to examine the welfare implications of varying the extent to which insurers

can price health status information. Columns 3-5 illustrate the impact of finer pricing on long-run

welfare. With fixed income (column 3), and for non-managers’income paths (column 4), the welfare

loss from increased reclassification risk swamps the welfare gain from less adverse selection: the welfare

loss from pricing 20 health status categories is almost 3 times that from pricing on quartiles. For

managers’income paths the effect is not monotone, because of the benefits of income smoothing, but

fine enough pricing does lead to a welfare loss relative to community rating (e.g., with 50 health status

groups). Overall, the results highlight the trade-off between adverse selection and reclassification risk,

and suggest that reclassification risk is likely to be more important from a welfare perspective.39 ,40

We now turn to several extensions that examine policy-relevant modifications to our framework, e.g.,

age-based pricing, insurer risk-adjustment transfers designed to mitigate adverse selection, and the

consequences of an unenforceable mandate.

6 Extensions

6.1 Age-Based Pricing

Age-based pricing is one of the few exceptions to pure community rating allowed in the Affordable

Care Act. The legislation stipulates that insurers offering plans in any state-based exchange can vary

prices on the basis of age by up to a 3:1 ratio: that is, older cohorts cannot be charged more than

39 In addition to considering the fixed income case here, in the next section we consider the same comparison between

community rating and pricing based on health status when there is also age-based pricing which eliminates the inter-

temporal consumption-shifting effect of health status-based pricing. When we do so, managers also prefer community

rating.
40One caveat to these results is that they rely on our estimated risk preferences being apprpropriate for evaluating

reclassification risk; see the discussion in Section 6.5.
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three times the premiums of younger buyers. States may further restrict this ratio to be lower (but

cannot raise it) making this an important available policy tool. In this section, we use our framework

to study market equilibrium and consumer welfare when insurers are allowed to vary prices with age

and comment on (i) whether the 3:1 ratio is expected to bind, (ii) whether age-based pricing reduces

adverse selection, and (iii) how the presence of age-based pricing affects the welfare impact of allowing

pricing of pre-existing conditions. For a further investigation of age-based pricing regulation see e.g.

Ericson and Starc (2013).

For this analysis, we group consumers into five-year age bins and use that categorization as the

basis for differential pricing by insurers. Ericson and Starc (2013) shows that, in practice, insurers in

Massachusetts price to five-year age bands, though this may or may not be the same in other states.

Table 9 describes each age bucket and the equilibrium results. The first column shows mean total

medical expenses by age in our sample: those age 30-35 have a mean of $3,357 while those age 60-65

have a mean of $9,413. Thus, just comparing average costs, the 3:1 age ratio appears to be non-binding

in our sample judging by either ex-post or projected expenses captured by our health status measure

(our upcoming analysis with MEPS data shows a similar pattern). If we include those age 25-30, whose

mean expense is $2,756, the age restriction is binding: however, in both the Affordable Care Act and

Massachusetts legislation individuals in that age group can buy into a special catastrophic insurance

pool that is separately regulated. As many of the healthiest individuals sign up for the catastrophic plan

in Massachusetts, the 3:1 age restriction might not be binding in practice.41 However, since policies

typically include a deductible (e.g., our 60 policy involves a $3,000 deductible) the relation between

expected costs and the actuarial cost to the insurer is non-linear. The column on the right, labelled

“Premium,”reflects the actuarial cost of insuring each age group in the 60 plan given our plan designs.

The deductible impacts the younger group the most, thus making the 3:1 ratio binding for the 30-35

population.

The second question we address is whether age-based pricing ameliorates the extent of adverse

selection. As we saw in the previous section, by allowing some health status based pricing, additional

trade was generated for the healthiest quartile of the population. Age – as shown in column 1 – is a

proxy for health type, and may also enable more trade in equilibrium.

The final columns in Table 9 present equilibrium results with age-based pricing. Surprisingly

perhaps, allowing for age-based pricing does not prevent full unraveling. For each age group, the RE/sp-

NE involves all-in-60. Age-based pricing undoes some of the transfers from the younger, healthier age

groups to the older groups that occur in pure community rating. However, the distributions of health

risk still have substantial enough tails even for the younger age group that full unraveling occurs in

equilibrium.42

41 In Massachusetts, the age rating restriction is more restrictive than in the ACA, and doesn’t allow age-based pricing

at higher than a 2:1 ratio.
42We note that these results are robust to medium-sized changes in σε, even though this shock to preferences introduces

a source of willingness to pay for coverage unrelated to risk type. As we increase standard deviation of this shock, equilibria
by age and for the whole population still involve unravelling to all-in-60. A σε over 2,000 is required for some sub-markets
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Age-based Pricing Regulation: Costs and Equilibrium Results

Expenses ACG Sh60

Ages Mean S.D. Mean S.D. RE/sp-NE Premium

All 5,582 6,495 1.08 1.42 100.0 4,051

25-30 2,756 4,657 0.56 0.79 100.0 1,784

30-35 3,357 5,189 0.71 1.23 100.0 2,215

35-40 3,762 5,029 0.78 1.05 100.0 2,540

40-45 4,560 5,642 0.87 1.04 100.0 3,237

45-50 5,778 6,575 1.06 1.32 100.0 4,098

50-55 6,722 6,831 1.32 1.82 100.0 5,038

55-60 8,394 7,134 1.53 1.58 100.0 6,304

60-65 9,413 7,268 1.77 1.73 100.0 7,259

Table 9: Average costs, health status, and Riley /sp-NE equilibrium results for age-based rating policy.

Finally, we consider the simultaneous pricing of pre-existing conditions as well as age. Insurers

will be allowed to price age in the exchanges, so it is natural to consider the effect of allowing pricing

based on health status when age is priced as well. The exercise is interesting for at least two reasons.

First, pricing based on health status may have a different impact on equilibrium in a more homogenous

population, grouped by age, than it has in the whole population. Second, when evaluating the welfare

impact of health status-based pricing, age-based pricing may neutralize the benefits associated with

consumption smoothing, by reducing the transfer from young to old that health status-based pricing

otherwise induces.

Table 10 shows the equilibrium when insurers can separate each age group into health status quart-

iles. Unlike pure age-based pricing which involved full unraveling to all-in-60 for every age group, we

now have a positive share in 90 for all of the healthiest quartiles except in the oldest cohort, as well as

for the second quartile for the younger groups. The interaction of age and health status-based pricing

thus reduces adverse selection. Table 11 shows the compensation required to make an individual indif-

ferent between a regime with health status quartile pricing for each age group, and another in which

all individuals in each age band receive the 60 policy at its average cost for their age band. Once age

is priced, health status-based pricing, which appealed to consumers with steeply increasing income, is

no longer preferred by those consumers. The benefit of health status-based pricing is the reduction in

adverse selection, and the postponement of premiums until later in life. With age-based pricing, the

latter benefit is eliminated. The cost associated with reclassification risk then dominates the benefits

of reducing adverse selection.

to not fully unravel.
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Joint Health Status Quartile and Age Pricing Regulation: Equilibrium Results

Q1 (Healthy) Q2 Q3 Q4 (Sick) Avg.

Ages Sh90 P60 P90 Sh90 P60 P90 Sh90 P60 Sh90 P60 Sh90

25-30 63 126 616 25 375 1,935 0 930 0 5,520 22

30-35 63 156 676 42 337 1,597 0 1,411 0 6,855 26

35-40 52 189 966 50 608 2,028 0 1,867 0 7,246 25

40-45 38 299 1,489 0 1,257 - 0 3,180 0 8,141 10

45-50 63 492 1,592 18 1,574 4,044 0 3,891 0 10,138 20

50-55 27 946 2,936 0 2,304 - 0 5,847 0 10,858 7

55-60 33 1,477 3,617 0 5,159 - 0 6,733 0 11,702 8

60-65 0 2,200 8,700 0 5,824 - 0 7,666 0 13,321 0

Table 10: RE /sp-NE equilibrium results for pricing regulations that allows insurers to price based on

health status quartiles, conditional on age.

Welfare Loss from Health Status-quartile pricing, per age group, in RE/sp-NE ($/year)

yλ4+age,age(γ) yλ4+age,age(γ) yλ4+age,age(γ)

γ Fixed Income Non-Manager Income path Manager Income Path

0.0002 2,111 2,129 1,100

0.0003 2,911 2,028 920

0.0004 3,707 1,842 778

0.0005 4,510 1,646 1,353

0.0006 5,137 1,612 1,876

Table 11: Long-run welfare comparison between the two pricing regulations of (i) pricing based on

health status quartiles by age (x = “λ4 + age”)and (ii) pricing based on just age (x′ = “age”). The

results presented are based on the RE/sp-NE equilibria outcomes for each of the two pricing regulations.

As before, the assumed discount rate is δ = 0.975.
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6.2 Participation and Subsidies

While the individual mandate will be a component of all exchanges to be implemented under the

Affordable Care Act, in reality the mandate is a tax that is paid to the IRS when someone who can

afford insurance remains uninsured. It is plausible that certain individuals, especially healthy ones,

will decide to pay the mandated penalty and opt out. In Massachusetts, where an individual mandate

has been in place since 2006, the penalty has been 50% of the cost of the least generous (Bronze)

plan available through the exchange (Commonwealth Connector).43 This is on average larger than the

initial penalty under the Affordable Care Act, which is the maximum of $695 per household member

(up to three) and 2.5% of household income. In Massachusetts, only 3% of the population failed to

comply with the individual mandate in 2008, with many of those people receiving exemptions from the

penalty due to low income [Kolstad and Kowalski (2012)].

We simulate the role of the mandate. To do so we allow individuals to opt out of the exchanges

should their expected utility from being uninsured be higher than joining their favorite insurance plan

in the market. Uninsured means that the consumer pays zero premium and pays for the total cost of

their health expenses.44

We present two exercises. First, we ask how the market would work absent the mandate. To answer

that question we find equilibria allowing individuals to opt out without penalty. Second, we introduce

opting out penalties, and determine equilibrium participation at different penalty levels.

Recall that equilibria without age-based pricing unravelled to all-in-60. The column “Better-off In”

in the “Community Rating” section of Table 12 shows the percentage of each age group (and of the

population as a whole) that is better off insured at the equilibrium premium of $4,068 than remaining

uninsured. For example, 44.2% (= 100−55.8) of 25 to 30 year old individuals prefer to opt out as their

expected utility from non-insurance is higher than being pooled with the whole population.

Naturally, those that prefer to opt out are younger, healthier and less risk averse. The expected

costs of insuring consumers who prefer to decline coverage is $3,107 versus $5,107 for those that prefer

to participate. The average risk aversion coeffi cient of those that prefer to participate is 4.26 ∗ 10−4

versus 4.03 ∗ 10−4 for those that prefer to decline coverage.

Allowing healthier individuals to opt out increases the cost of covering the remaining pool, which

in turn draws more people out of the pool. The process stops at a premium of $5,339 when no more

individuals want to drop out. At that premium there are no profitable single-policy Nash deviations

in 60 or 90 to draw buyers back in. Thus, a P60 = $5,339 is a sp-NE of the exchange without a

mandate.45 The equilibrium without the mandate involves full unravelling to 60, with 74.3% of the

43 In 2010, in the 02138 zip code in Cambridge, MA, this penalty would have been $5,500 for a family with two 40 year

old parents, $3,300 for a couple with two 35 year olds, and $1,434 for a single 31 year old [Kolstad and Kowalski (2012)].
44This approach may overstate particpation for two reasons. First, as we discuss in Section 6.5, our estimated risk

preferences may overstate aversion to the large risks involved with having no insurance. Second, as noted by Mahoney

(2012), the choice to have no insurance may not mean that the individual pays for al of their medical expenses. On the

other hand, other behavioral factors (social norms, etc.) may push individuals toward particpation.
45We have not examined whether these outcomes are RE or mp-NE.
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Implications of Individual Mandate

Community Rating Age-Based Pricing

Mandate: No Mandate: Mandate: No Mandate:

Ages Better-Off In Participation Premium Better-Off In Premium Participation

All 78.3% 74.3% - 80.7% - 77.0%

25-30 55.8% 50.6% 1,786 70.1% 2,732 63.1%

30-35 59.6% 54.1% 2,215 70.0% 3,409 62.5%

35-40 68.7% 62.2% 2,542 75.9% 3,476 70.8%

40-45 75.1% 70.9% 3,242 77.7% 4,233 74.5%

45-50 82.5% 79.3% 4,103 82.9% 4,976 80.6%

50-55 90.6% 87.2% 5,038 88.6% 5,714 86.9%

55-60 94.7% 92.5% 6,304 92.1% 6,927 89.9%

60-65 95.8% 93.9% 7,259 91.6% 7,959 90.2%

Table 12: Implications of the individual mandate for equilibrium prices and market participation.

population voluntarily covered. The column “No Mandate: Participation”under “Community Rating”

shows participation by age in the non-mandate equilibrium.

We can also compute the welfare impact of removing the mandate. Those individuals that remain

covered, 74.3% of the population, suffer a loss equal to the premium increase $1,271 (= 5, 339−4, 068).

Comparing the certainty equivalent of remaining uninsured versus participation in the exchange for the

25.7% of the population that opts out, we find that they are better off by $1,972, on average. Thus,

removing the mandate entails a welfare loss of $434.3 [= 0.743(1, 271)− 0.257(1, 972)] per person.

On the right side of Table 12 we show the corresponding numbers for age-based pricing. As we

saw in Section 6.1, all the equilibria under the mandate (with no opting out) for the different age

groups involve unravelling to 60. At the equilibrium premium, reported in the “Mandate: Premium”

column, only a proportion of the population would voluntarily participate in the exchange. Column

“Mandate: Better-off In,”shows that the share that prefers to participate is an increasing share in age.

Older individuals are more likely to benefit from participation, but the differences across ages are less

pronounced once age is priced.

For each age, as individuals opt out, the cost of coverage increases. The column “No Mandate:

Premium” reports the equilibrium premia for each age group absent a mandate. It is substantially

higher than under the mandate, especially so for younger cohorts for whom the mandate is binding for

a larger proportion of individuals.

We now turn to the second question: how do penalties impact the equilibrium? We now allow

individuals to opt out if their expected utility from opting out and paying the penalty is higher than

the utility from buying insurance at the equilibrium premium. (A participation subsidy plays the same
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Market Participation as Function of Penalty

Penalty Participation % Premium

0 74.3% 5,339

1000 78.2% 5,096

2000 82.7% 4,974

3000 88.4% 4,848

4000 96.7% 4,712

Free ins. 97.7% 4,144

Table 13: Market participation as a function of the penalty assessed for nonparticipation.

Age-based Pricing Regulation: Market Participation

30-35 40-45 50-55 60-65

Penalty Partic. Prem. Partic. Prem. Partic. Prem. Partic. Prem.

0 63.1% 3,409 74.5% 4,232 86.9% 5,714 90.2% 7,959

1000 71.1% 3,047 79.3% 4,013 89.5% 5,570 91.8% 7,840

2000 87.6% 2,517 85.5% 3,755 92.5% 5,410 93.5% 7,717

3000 99.5% 2,225 94.9% 3,406 95.7% 5,252 95.3% 7,592

Table 14: Impact of individual mandate on participation and premiums by age group under age-based

pricing.

role as the penalty.)

Table 13 shows participation for different penalty levels with community rating, and the correspond-

ing equilibrium premium. While the penalty increases participation, it requires a very steep penalty

(high subsidy) to even approach full participation. Good health draws are hard to persuade to remain

in the pool. The last row presents participation under free insurance. Participation is not full, due to

the preference shock.

Naturally, under age-based pricing the required penalty to achieve a specific participation level may

be smaller. First, participation under age-based pricing is higher, but also healthier individuals who

are on average younger might be easier to persuade to remain in a younger and healthier pool. Table 14

shows that a given subsidy/penalty is more effective in affecting participation when there is age-based

pricing.

6.3 Risk Adjustment

In practice, the implementation of the ACA will involve risk adjustment transfers whose aim is to

ameliorate adverse selection. States are free to propose their own risk adjustment rules, provided

they receive Federal approval, or can instead default into the risk adjustment formula proposed by the
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Federal government [see, e.g., Dept. of Health and Human Services (2012a) or Dept. of Health and

Human Services (2012b)]. In this section, we use our model to evaluate the impact of the Federal

formula. While in practice risk adjustment can lead to a number of problems, such as insurers up-

coding enrollees to qualify for larger transfers, we will abstract from such issues and assume that the

government can perfectly observe the health status of each enrollee.

It is tempting to think that risk adjustment can solve the adverse selection problem entirely, by

simply providing a transfer to each firm that gives that firm an expected cost from each enrollee

equal to the average cost if there was no selection, thereby “eliminating the impact of selection on

cost.” Unfortunately, doing so can result in the government running a deficit. As a result, the formula

proposed by the HHS is designed to always break even. It provides a transfer payment per member

to each plan i equal to

Ti =

{(
Ri∑
i siRi

)
−
(

AVi∑
i siAVi

)}
P , (8)

where Ri is plan i’s “risk score”(equal to plan i’s average cost divided by the average cost of all plans

in the market), AVi is plan i’s actuarial value (i.e., 60 or 90 in our model), si is plan i’s market share,

and P is the average premium in the market. (Note that
∑
i Ti = 0 , so the transfers are balanced.)

These transfers alter insurers’average costs, which are now AC90 − T90 and AC60 − T60 in the 90 and

60 policy, respectively.

We will examine Riley equilibria. Since in equilibrium all policies break even and the transfers are

balanced, the market average premium must equal the market average cost:46

P = AC(∆P ) ≡ s90(∆P )AC90(∆P ) + s60(∆P )AC60(∆P ).

Plan i’s risk score is Ri = AC90(∆P )/AC(∆P ).

Substituting into (8), we get

T90(∆P ) =

{(
AC90(∆P )

AC(∆P )

)
−
(

0.9

AV (∆P )

)}
AC(∆P )

= AC90(∆P )−AC(∆P )

(
0.9

AV (∆P )

)
where

AV (∆P ) ≡ s90(∆P )(0.9) + s60(∆P )(0.6).

46Formally, in equilibrium each policy will break even given its post-transfer average cost. Thus, recalling that Ti is a

per member transfer, we have

P90 = AC90(∆P )− T90(∆P )

and

P60 = AC60(∆P ) + T90(∆P )

(
s90(∆P )

s60(∆P )

)
.

The market average premium is therefore

P = s90(∆P )P90 + s60(∆P )P60 = AC(∆P ).
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Welfare Benefit of Risk-Adjusted Transfers: RE/sp-NE ($/year)

yno−pre,risk−adj(γ) yno−pre,risk−adj(γ) yno−pre,risk−adj(γ)

γ Fixed Income Non-Manager Income path Manager Income Path

0.0001 316 261 106

0.0002 327 202 27

0.0003 336 139 18

0.0004 349 84 0

0.0005 368 36 38

0.0006 386 23 72

Table 15: Long-run welfare implications of insurer risk adjustment regulation (transfers based on risk

mixture of the population enrolled).

Observe that the transfers depend on the market prices (through ∆P ), while the market prices

depend on the transfer rule. Thus, the equilibrium prices are determined as a fixed point. Specifically,

the prices will be

P90(∆P ) = AC90(∆P )− T90(∆P )

= AC(∆P )

(
0.9

AV (∆P )

)
and

P60(∆P ) = AC(∆P )

(
0.6

AV (∆P )

)
.

This leads to a fixed point condition for ∆P :

∆P = AC(∆P )

(
0.3

AV (∆P )

)
. (9)

Applying formula (9) to our data, we find that when health status-based pricing is not allowed the

equilibrium with risk adjustment has prices P90 = 6, 189 and P60 = 4, 139, and the 90 policy capturing

a 49% market share for the whole population.

To study the welfare implications we compare the long-run implications of equilibrium outcomes with

and without insurer risk adjustment, for the case of pure community rating. Table 15 shows the yearly

amount yno−pre,risk−adj an individual would be willing to pay to implement insurer risk adjustment

relative to the case of pure community rating with no insurer transfers. The risk adjustment outcome

is preferred, reflecting the reduction in adverse selection compared to the case with no insurer transfers.
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6.4 Rebalancing of the Population

The analysis to this point has relied on health choice and utilization data from a large firm with approx-

imately 10,000 employees and 20,000 covered lives. While these data have a lot of depth on dimensions

that are essential to model health risk and risk preferences, they represent a specific population working

for a specific large employer. Our results thus represent the case of exchange design as if this population

were the population of interest. In this section we extend the analysis by applying our framework to a

more externally relevant sample from the Medical Expenditures Panel Survey (MEPS), a survey that

was specifically created to study medical care decisions for a nationally representative population. This

analysis serves two purposes: (i) to study whether our broad conclusions are robust to changes in the

population composition and (ii) to apply our analysis to a nationally representative sample.

We study individuals in the MEPS data from 2004 to 2008. The data are structured as overlapping

two-year panels where each individual is in the panel for two consecutive years, and a new panel of

individuals enters in each year. Table D.0 in Appendix D shows the number of individuals present in

each year, which ranges from 33,066 to 34,403 over the five-year span. Note that because of the panel

structure, an individual “counts”twice, once in each year they appear.

We base our analysis on two distinct samples that may be of interest to an exchange regulator,

described in Table D.1 in Appendix D along with statistics for the full MEPS sample. Column 1

contains the summary statistics for the entire sample, with no sample cuts. Column 2 contains summary

statistics for the sample of individuals between ages 25-65. In this table and in the analysis we split

individuals within the same family into distinct individuals and run our simulations as if the entire

market is an individual market.47 Column 3 describes the sample of individuals between 25-65 who

are uninsured, unemployed, or work for an employer that does not offer coverage (implying that if the

individual has coverage, it is from the individual market). We run our exchange market analysis for

the samples in Column 2 and Column 3. Column 2 is of interest if all individuals 25-65 participate in

an exchange (e.g., the exchange insurers everybody). This sample is about half of the overall MEPS

sample. Column 3 is of interest because it covers the population that will enter exchanges immediately

when they are set up (uninsured and insured on individual market). This latter sample is about 15%

of the overall MEPS sample, similar in age, lower in income, and more likely to come from the South.

We note that this table presents the data “as is”while we use MEPS sample weights (which they use

to make their own data representative) in our final analysis.

Table D.2 in Appendix D describes the insurance coverage for each of the three samples described

in Table D.1. For individuals in Column 2 (age 25-65), 64% have some form of private insurance, 12%

are on Medicaid, and 22% are uninsured. 76% of families have employer insurance offered at some

point, while 62% always have an offer of employer insurance. Column 3, by design, has 83% of people

47Once the structure of family based premium setting is clear, we could run an additional analysis taking that into

account, to the extent that it differs from aggregating up individual premiums into family premiums, which our current

approach is essentially equivalent to.
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uninsured and 17% of people insured on the individual market (with no employer insurance offer).

Our analysis matches individuals in the employer data used throughout our analysis to the two

MEPS populations of interest (Columns 2 and 3) and creates two new simulation samples with demo-

graphic weights similar to the MEPS samples, but with detailed health and risk preference data from

our estimates.48 We match individuals in our data to those in the MEPS data based on three demo-

graphics: age, income, and gender. To do this, we probabilistically model cells of age, gender, and

income in the MEPS samples, and then draw randomly from individuals in those bins in our data

with weights proportional to the MEPS cell weights. We note that, before we construct the MEPS

cell weights, we incorporate the sample weights in the MEPS data, which are intended to correct for

sampling and response issues. Table D.3 in Appendix D describes the age, income, and gender cell

multivariate cell weights for each of the two MEPS samples. We model the multivariate distribution

of age and income fully non-parametrically, and assume that the probability of gender conditional on

income is the same for all ages. We note that in this analysis, we do not match our sample to MEPS

using health expenditure data (conditional on the other demographics) since our sample has more de-

tailed medical information on consumers. However, the analysis below and the tables in Appendix D

show that average costs conditional on demographics bins are similar in our data and in the MEPS

data. Table D.4 provides more detail on the health risk for both MEPS samples.

Given this population weighting procedure, we study market equilibrium as in Section 4 for each

weighted sample and each equilibrium concept. We study the pricing regimes of (i) pure community

rating and (ii) health status quartile pricing, to compare to the results from our data. Table 16

presents the equilibrium simulation results for the sample re-weighted for all MEPS individuals from

25-65, while Table 17 presents the results for the sample re-weighted according to the MEPS uninsured

/ individual market population. These can be directly compared to Table 5. The comparison yields

several important insights. First, the equilibrium premia and market shares are quite similar in the

MEPS re-weighted samples to those from our main sample. For all samples the market fully unravels to

all-in-60 for the case of pure community rating. For all samples, the healthiest quartile has substantial

market share in both 60 and 90 under health status-based pricing: in our main analysis 64.8% in

quartile 1 choose 60, for the re-weighted full MEPS analysis this value is 60.2%, while for the re-

weighted uninsured / individual market MEPS sample it is 57.5%. Interestingly, there is also 30.4% of

consumers enrolled in 90 for quartile 2 of the uninsured re-weighted sample, though for the other two

samples this share is 0. This suggests that if the exchanges are comprised of only uninsured individuals

and those that would have been on the individual market, there will be higher insurance rates for

the within-exchange population. For the two sickest quartiles, everyone enrolls in 60 in equilibrium.

Finally, and importantly, we note that the population expense levels are very similar between our main

sample and the full re-weighted MEPS sample: if all enroll in 60, the average costs in the former are

$3,852 while in the latter they are $4,051. For the uninsured re-weighted sample this value is $3,901,

48We bring in the cost data from our data set because it is more detailed on the health risk dimension and our setting

provides more precise plan characterizations, with which it is possible to estimate risk preferences.
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MEPS Weighted: Equilibria without Pre-existing Conditions

Equilirium Type P60 Sh60 AC60 P90 Sh90 AC90

Riley / sp-NE 3,852 100.0 4,051 — 0 —

Multiple-policy Nash Does not exist

Wilson 3,774 78.5 2,112 6,674 21.5 12,760

MEPS Weighted: Equilibria with Health Status-based Pricing (Quartiles)

Market Equilibrium Type P60 Sh60 AC60 P90 Sh90 AC90

Quartile 1 RE/sp-NE/mp-NE 321 60.2 321 1,521 39.8 1,521

Quartile 2 RE/sp-NE 1,445 100.0 1,445 - 0 -

Quartile 3 RE/sp-NE 4,239 100.0 4,239 - 0 -

Quartile 4 RE/sp-NE 9,347 100.0 9,347 - 0 -

Table 16: This table presents the analogous table to Table 5 on equilibrium outcomes, applied to the sample

reweighted by characteristics of the MEPS full population, as described in the text. The top presents the

equilibrium results for the case of pure community rating (no pricing of pre-existing conditions) and the bottom

for the case where insurers can price based on health status quartiles.

but the distribution is more heavily skewed, with larger masses of both very healthy and very sick

consumers. Overall, the analysis of MEPS data in this section suggests that, at a first pass, our main

results are robust to different weighting of demographics to reflect a more nationally representative

sample.

6.5 Lower Aversion toward Reclassification Risk

The welfare calculations above used the estimates of risk aversion from Section 3. Those estimates,

however, were derived from situations in which individuals faced risks that were significantly smaller

than the risks arising from reclassification, especially in the limit case where health status can be fully

priced by insurers. Families choosing between the firm’s PPO policies faced a maximum out-of-pocket

cost of between $6,000 and $10,000, depending on their income, while reclassification risk can measure

in the tens or even hundreds of thousands of dollars, depending on how much information insurers can

use in pricing. The range of CARA risk aversion levels we estimated can imply implausible levels of

risk aversion as the risks consumers consider are scaled up to higher monetary amounts [see, e.g., Rabin

(2000)].

To address this issue we compute long-run welfare under a range of CRRA coeffi cients. The mac-
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MEPS Unins. Weighted: Equilibria without Pre-existing Conditions

Equilirium Type P60 Sh60 AC60 P90 Sh90 AC90

Riley / sp-NE 3,901 100.0 3,901 — 0 —

Multiple-policy Nash Does not exist

Wilson 3,834 81.2 2,269 6,834 18.8 13,602

MEPS Unins. Weighted: Equilibria with Health Status-based Pricing (Quartiles)

Market Equilibrium Type P60 Sh60 AC60 P90 Sh90 AC90

Quartile 1 RE/sp-NE/mp-NE 311 57.5 311 1,476 42.5 1,476

Quartile 2 RE/sp-NE 1,128 69.6 1,128 3,228 30.4 3,228

Quartile 3 RE/sp-NE 4,121 100.0 4,121 - 0 -

Quartile 4 RE/sp-NE 9,751 100.0 9,751 - 0 -

Table 17: This table presents the analogous table to Table 5 on equilibrium outcomes, applied to the sample

reweighted by characteristics of the uninsured / individual coverage MEPS, described in the text. The top

presents the equilibrium results for the case of pure community rating (no pricing of pre-existing conditions)

and the bottom for the case where insurers can price based on health status quartiles.

Distributions of Certainty Equivalents of One-Year Risks

Community Rating Health Status Quartile Pricing

Age Mean S.D. Mean S.D.

30 5,840 1,037 3,455 3,581

45 6,622 1,067 5,659 4,034

60 7,580 1,030 9,389 4,111

Table 18: Distributions of certainty equivalents for one-year risk at different ages, from ex ante per-

spective.
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roeconomics literature has considered a range of CRRA coeffi cients from 1 up to 10. Many authors

concur that 1 to 4 are appropriate for the risks addressed in the finance and macro literature [see e.g.

Barsky et al. (1997)]. However, the reclassification risk we model is substantially smaller than the risks

considered in that literature. Table 18, for example, shows the mean and standard deviation of the dis-

tribution of certainty equivalents of the one-year risk faced under community rating and health status

quartile pricing at the ages of 30, 45, and 60 for an individual whose CARA coeffi cient is 0.0004.49

Under health status quartile pricing, the standard deviation of those certainty equivalents is roughly

$4,000 at each age. That is $3,000 higher than with community rating.

Since we do not have a clear guidance on what risk parameter to use, we study the sensitivity of

our findings to risk tolerance. As a reference, it is helpful to consider how an individual with CRRA

preferences would respond to a bet with expected return of $1,000 (roughly the expected premium

difference for a 40 year old), and a standard deviation of $4,000. An individual making $40,000 is

indifferent between taking the bet and not taking it if their CRRA coeffi cient of risk aversion is 5. For

$80,000 income, a coeffi cient of 10.1 is needed, and 15.2 if income is $120,000.

We can ask a similar question comparing the community rating and health status quartile regimes:

at what level of CRRA would an individual be indifferent between them? For a fixed $75,000 income

this would be a CRRA coeffi cient of 6.5, for an individual facing the non-manager income path it would

be a coeffi cient of 9.5, and for someone with a manager’s income path even a coeffi cient of 15 would

lead them to prefer the health-status based pricing.50

6.6 Wilson Equilibria and Welfare

For robustness we also consider Wilson equilibria (WE). Wilson equilibria, as in the Rothschild-Stiglitz

framework, may but need not coincide with the Riley and Nash equilibria. Indeed, we actually know

that since the RE/sp-NE premiums we found do not survive a multi-policy Nash deviation, they are

not a WE (since double deviations are unaffected by existing policies being dropped).

Wilson policies break even in total, but they do so allowing the 60 policy to cross-subsidize the 90

policy. We rely on the following result to identify WE in our data:

Proposition 3. Let (PBE90 , PBE60 ) be the break-even price configuration associated with ∆PBE, and

let ∆Pw = Argmax∆P∈[θ,∆PBE ] Π(PBE60 + ∆P, PBE60 ). If ∆AC(θ) > θ, then the break-even price

configuration (Pw90, P
w
60) associated with price difference ∆Pw is a Wilson equilibrium.

Thus, when ∆AC(θ) > θ (which is the case in our data), the price difference that maximizes the

49More precisely, for each age t = 30, 45, and 60, these are the distributions of the certainty equivalents of the one-year

risk CEx(λt, γ) among those individuals in the year t band for age-25 risk aversion level γ = 0.0004. (These are the

distributions we used in the welfare calculations in Section 5.)Thus, they reflect the uncertainty individuals face from an

ex ante perspective.
50We do this calculation by using a 0.0004 CARA coeffi cient to derive the within-year certainty equivalents, and then

apply the CRRA coeffi cient to the ex ante long-run utility calculation using those certainty equivalents.
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Wilson Equilibria: Community Rating and Health Status-based Pricing (Quartiles)

Market P60 Sh60 AC60 P90 Sh90 AC90

Full Population 4,006 83.7 2,477 7,105 16.3 14,961

Quartile 1 302 60.2 290 1,502 39.8 1,519

Quartile 2 1,307 64.7 1,155 3,307 35.3 3,586

Quartile 3 4,443 70.0 3,337 7,193 30.0 9,648

Quartile 4 9,704 73.6 7,259 13,204 26.4 20,007

Table 19: Equilibrium results for Wilson solution concept for (i) pure community rating (no pre-existing

conditions) and (ii) health status-based pricing with quartiles.

Welfare Loss from Health-Status-based Pricing (Quartiles) in Wilson Equilibrium ($/year)

yλ4,no−pre(γ) yλ4,no−pre(γ) yλ4,no−pre(γ)

γ Fixed Income Non-Manager Income path Manager Income Path

0.0002 2,101 1,390 -468

0.0003 2,577 1,592 -682

0.0004 2,964 1,711 -950

0.0005 3,277 1,628 -1,076

0.0006 3,506 1,923 -1,050

Table 20: Long-run welfare based on the Wilson Equilibrium results. Compares the two pricing regu-

lations of (i) pricing based on health status quartiles (x = “λ4”) and (ii) pure community rating / no

pre-existing conditions (x′ = “no− pre”).

profit from a multi-policy deviation from (PBE90 , PBE60 ), the break-even price configuration associated

with ∆PBE , is a WE.51

Table 19 shows the equilibria with community rating and with health status quartile pricing. The

cross-subsidization can be seen by comparing the prices to the average costs for each policy. We see

that in every population the WE has a positive share of consumers purchasing the 90 policy, in contrast

to the RE/sp-NE of Section 4.

Table 20 shows welfare results for WE. Here the welfare gains from prohibiting pricing based on pre-

existing conditions with a fixed income are even larger, as the adverse selection losses from prohibiting

pricing based on health status are smaller under the Wilson concept than under the Riley concept.

51 In the Appendix, we also show that this is the unique Wilson equilibrium when ∆Pw ∈ (θ,∆PBE). We conjecture,

but have not proven that the same is true if ∆Pw ∈ {θ,∆PBE}. We show as well that ∆Pw is also the price difference

that leads to the lowest break-even P60 among all price differences at or below ∆PBE .
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7 Conclusion

In this paper we develop a model to study equilibrium and welfare for a class of regulated health

insurance markets known as exchanges. We build on the theory of insurer competition under asymmetric

information to develop a series of results characterizing equilibria in a stylized insurance exchange

market, motivated by the exchanges proposed in the Affordable Care Act. We study several equilibrium

concepts, including Riley equilibrium, Nash equilibrium, and Wilson equilibrium and prove results

establishing the existence and uniqueness of Riley equilibrium in our environment, and provide an

algorithm for identifying equilibria in our data. We estimate consumer micro-foundations, including

ex ante health risk and risk preferences, using detailed health insurance choice and medical claims data

from a large firm and use these estimates to simulate equilibria and long-run welfare using our data for

a variety of possible pricing regulations.

The results reveal full unraveling in equilibrium with pure community rating, leading to all con-

sumers being enrolled in the least comprehensive insurance available. As the health status information

insurers can use to price their policies becomes finer and finer, the market share of the more com-

prehensive policy increases (less adverse selection) but consumers face greater year-to-year premium

reclassification risk. We find that if consumers can borrow freely or if pricing based on age is also

allowed (eliminating any consumption smoothing benefit of health-based pricing), the welfare loss from

reclassification risk far outweighs the welfare gain from reduced adverse selection. Finally, we study

a range of other market policies, including age-based pricing regulation, the implications of an unen-

forceable mandate, and insurer risk-adjustment. We also perform an analysis that matches our data

to nationally representative MEPS data to illustrate that (i) this population is not that different from

our own and (ii) the results are similar when we weight our data to reflect nationally representative

demographic characteristics.

There are a number of dimensions on which our stylized model could be extended to more closely

model most exchange environments. In our setting, products are differentiated only on financial dimen-

sions. While in some settings (e.g., the Netherlands and Germany) this is essentially true in reality,

in the U.S. context exchanges include insurers that offer products that are differentiated in terms of

medical care and the network of available physicians. Accounting for this fact could enrich our equilib-

rium predictions and understanding of long-run welfare. In addition, it would be interesting to model

more subtle consumer micro-foundations such as inertia or decision-making in complex product envir-

onments. With specific observed market regulations to guide us, it would be interesting to analyze

markets where consumers can cover families as well as themselves (e.g., what are the implications of

bundling individuals together into a contract). While these advances are exciting opportunities for

future work, they require further developments of the model we develop which are beyond the scope of

this paper.

More broadly, while our analysis has largely focused on the pricing restrictions in the Affordable

Care Act in 2010, we have constructed a flexible framework that can be used to study a variety of
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counterfactual regulations. Besides the pricing regulations we study, important potential regulations

to investigate include Minimum Creditable Coverage (the least comprehensive financial plans that can

be offered) and contract regulation in general, which is a defining feature of exchange design. It would

be particularly interesting to study dynamic, or long-run, insurance contracts that are more complex

than the year-to-year contracts that we study but have the potential to reduce reclassification risk.

While these kinds of contracts have been discussed to some extent [Cochrane (1995); Herring and

Pauly (2006)], there has been little to no empirical analysis of such contracts, in part because they are

complicated to analyze, both for researchers and consumers, and are observed infrequently in reality.
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A Appendix: Proofs

In what follows, we refer to the lowest offered prices (P90, P60) for the two policies as a “price configur-

ation.”An “outcome”refers to the market shares of the two policies and the lowest offered prices for

any policies that are purchased by a strictly positive share of consumers.

A.1 Nash Equilibria

We first discuss Nash equilibria (NE), both with single-policy and multi-policy firms. Note that we can

without loss of generality restrict attention to Nash equilibria in which more than one firm offers each

of the prices in an equilibrium price configuration. To see this, suppose we have a Nash equilibrium,

with equilibrium price configuration (P ∗90, P
∗
60), in which this is not true. Introducing additional firms

that offer these prices makes the profit earned by any active firm through a deviation identical to the

profit earned by an entrant making the same deviation. Since no entrant wanted to deviate in the

initial Nash equilibrium despite having zero profits (which is weakly less than the profit of any active

firm in the equilibrium), no active firm will want to deviate at this new set of price offers. Moreover,

no entrant will want to deviate either (an entrant’s deviation profit hasn’t changed), so the new set of

price offers is a Nash equilibrium and results in an identical price configuration and outcome as in the

initial equilibrium. Finally, note that we can therefore test whether a price configuration arises in a

Nash equilibrium by examining solely the profitability of entrant deviations.

The discussion that follows establishes Proposition 1.

A.1.1 Single-policy firms

Lemma 1. Suppose that (P ∗90, P
∗
60) is a NE price configuration. Then both policies must break even:

i.e., Π90(P ∗90, P
∗
60) = Π60(P ∗90, P

∗
60) = 0.

Proof. Suppose policy k is profitable. A new firm could enter and offer price Pk − ε, where ε > 0,

for that contract and make a positive profit: This deviation attracts all consumers who are purchasing

policy k, and earns a positive profit on them, and for small ε, attracts very few others. Taking ε→ 0

yields the result.

Lemma 2. Among all price configurations (P90, P60) at which both policies break even and there are

positive sales of the 60 policy (∆P > θ), only the one with the lowest sales of the 60 policy (i.e., having

∆P = ∆PBE) can be NE.52

Proof. Suppose that at price configurations P ′ = (P ′90, P
′
60) and P ′′ = (P ′′90, P

′′
60) both policies break

even, min{∆P ′,∆P ′′} > θ, and there is a larger share for the 60 policy in P ′′ than in P ′. Then ∆P ′ <

∆P ′′ and there are positive sales of the 90 policy at P ′.53 In addition, P ′60 = AC60(∆P ′) < AC60(∆P ′′) =

52Such a policy configuration may have all consumers buying the 60 policy.
53Note that we may have ∆P ′′ = θ.
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P ′′60. Starting at price configuration P ′′, consider a deviation in which an entrant offers price P̂90 ≡
P ′′60 + ∆P ′ < P ′′60 + ∆P ′′ = P ′′90. Since P̂90 − P ′′60 = ∆P ′, after the deviation the share of the 90 policy

is the same (positive) share as at P ′. Moreover,

P̂90 −AC90(P̂90 − P ′′60) = (P ′′60 + ∆P ′)−AC90(∆P ′)

> (P ′60 + ∆P ′)−AC90(∆P ′)

= P ′90 −AC90(∆P ′)

= 0.

Thus, the deviation is profitable, implying that P ′′ is not a Nash equilibrium price configuration.

Lemma 2 tells us that we can narrow down the possible equilibria to two: (i) everyone in the 90

policy with P90 = AC90 and ∆P = θ, and (ii) ∆P = ∆PBE (the lowest break-even ∆P ∈ (θ, θ], at

which there are positive sales of the 60 policy). The former (“all-in-90”) is an equilibrium only if there

is no profitable deviation to a P60 < AC90 − θ. Moreover, observe the following:

Lemma 3. If there is a NE outcome in which all consumers buy the 90 policy, then this is the unique

NE outcome.

Proof. By Lemma 1, the equilibrium price of the 90 policy in this NE price configuration, say P ∗ =

(P ∗90, P
∗
60), has P ∗90 = AC90. Suppose as well that there is a NE price configuration P

∗∗ = (P ∗∗90 , P
∗∗
60 ) in

which policy 60 is purchased by a positive measure of consumers. By Lemma 1, we must therefore have

P ∗∗60 > AC60. If AC90 − θ ≥ P ∗∗60 , then starting from the all-in-90 price configuration P ∗, a deviation

to P ∗∗60 would attract all consumers to the 60 policy and be strictly profitable (since P ∗∗60 > AC60),

breaking the all-in-90 equilibrium. So, it must be that AC90−θ < P ∗∗60 . But in that case, starting from

the price configuration P ∗∗, an entrant could earn a strictly positive profit by offering the 90 policy at

price P̂90 ≡ P ∗∗60 + θ. This deviation attracts all of the consumers, and earns a positive profit since

P̂90 −AC90(P̂90 − P ∗∗60 ) = (P ∗∗60 + θ)−AC90 > 0.

Thus, P ∗∗ cannot be an equilibrium price configuration —a contradiction.

These results suggest the following procedure: First, see if all consumers buying the 90 policy is a

NE by checking if there is profitable deviation in P60. If it is a NE, then it is the unique NE. If it is

not a NE, then identify the price difference ∆PBE (the lowest break-even ∆P with positive sales of

the 60 policy) and check if the price configuration associated with ∆PBE is a NE. In applying this

procedure, two useful results are the following:

Lemma 4. If ∆AC(θ) > θ, then there cannot be a NE outcome in which all consumers buy the 90

policy.
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Proof. In an all-in-90 equilibrium, we must have P90 = AC90. A deviation in P60 to P̂60 = AC90−θ−ε
for suffi ciently small ε > 0 attracts a positive measure of consumers with types close to θ and earns

strictly positive profits since P̂60 −AC60 = (AC90 − θ)−AC60 = ∆AC(θ)− θ > 0.

Lemma 5. Suppose that at price configuration (P90, P60) we have Π90(P90, P60) = Π60(P90, P60) = 0

and positive sales of the 60 policy. Then no single-policy deviation by an entrant in P60 is profitable.

Proof. An entrant’s deviation P̂60 must be below P60 to attract any consumers. But any such deviation

makes losses, since

P̂60 −AC60(P90 − P̂60) < P60 −AC60(P90 − P60) = 0.

Lemma 4 provides a simple suffi cient condition for all-in-90 to fail to be an equilibrium, while

Lemma 5 tells us that we can restrict attention to deviations in P90 when checking if ∆PBE arises in

a NE.

A.1.2 Multi-policy firms (with multi-policy deviations)54

Clearly, Lemmas 1-5 still hold (note that all of the deviations used in the proofs of those results are

still feasible). The new result is as follows:

Lemma 6. If P ∗ = (P ∗90, P
∗
60) is a NE price configuration with multi-policy firms, then

(i) if all consumers are buying the 90 policy, P ∗ is a NE price configuration if there is no profitable

single policy deviation by an entrant in P60;

Proposition 4.

(ii) if some consumers are buying the 60 policy, P ∗ is a NE price configuration iff Π(P ∗90, P
∗
60) = 0 =

maxP̂90≤P∗90
Π(P̂90, P

∗
60), that is, if there is no profitable multi-policy deviation by an entrant that

reduces P90 and lowers P60 slightly to capture all consumers.

Proof. For part (i), let (P ∗90, P
∗
60) be the candidate equilibrium in which only the 90 policy is purchased

(at price P ∗90 = AC90). Consider any entrant multi-policy deviation (P̂90, P̂60) ≤ (P ∗90, P
∗
60). To be

profitable, some consumers must buy policy 60 in the deviation, so P̂60 < P ∗60 and ∆P̂ > ∆P ∗. But

the most profitable such deviation must have P̂90 equal to or arbitrarily close to P ∗90. (Otherwise, both

P̂90 and P̂60 could be raised by a small and equal amount.) But, since the reduction in P60 makes the

90 policy at price P ∗90 unprofitable, this deviation is less profitable for the entrant than a single-policy

deviation to P̂60.

54Note that when firms can offer multiple policies but can deviate in only one policy at a time there is no change from

the analysis of the previous subsection.
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For part (ii), we already know that an entrant’s single-policy deviation in P60 is unprofitable (Lemma

5). A single-policy deviation offering the 90 policy at price P̂90 < P ∗90, since it makes the 60 policy at

price P ∗60 earn strictly positive profits, is less profitable than the multi-policy deviation (P̂90, P
∗
60 − ε)

for suffi ciently small ε > 0, as this captures the entire market. As ε → 0, this deviation has profits

equal to maxP̂90≤P∗90
Π(P̂90, P

∗
60).

Although it will not pay a role in our analysis, we note the following result:

Lemma 7. If θ > C90(θ)−C60(θ) for all θ ∈ [θ, θ], then some consumers must be buying the 90 policy

in any NE with multi-policy firms.

Proof. Suppose all consumers were purchasing the 60 policy. Then, by Lemma 1, P ∗60 = AC60 and

P ∗90 = P ∗60 + θ. Now consider a deviation to (P ∗90− ε, P ∗60). We will show that for small ε > 0, aggregate

profits are strictly positive. Aggregate profits equal

ψ(ε) ≡ Π(P ∗90 − ε, P ∗60) =

∫ θ

θ−ε
[P ∗90 − ε− C90(θ)]f(θ)dθ +

∫ θ−ε

θ

[P ∗60 − C60(θ)]f(θ)dθ.

Now

ψ′(ε) = [P ∗90 − ε− C90(θ − ε)]f(θ − ε)− [P ∗60 − C60(θ − ε)]f(θ − ε)− [1− F (θ − ε)],

so

ψ′(0) = [P ∗90 − C90(θ)]f(θ)− [P ∗60 − C60(θ)]f(θ)

= f(θ){θ − [C90(θ)− C60(θ)]} > 0.

Since, by Lemma 1, ψ(0) = Π(P ∗90, P
∗
60) = 0, this implies that for small ε > 0 aggregate profit is strictly

positive. As a result, there is a δ > 0 such that (P ∗90 − ε, P ∗60 − δ) is a profitable deviation.

The assumption that θ > C90(θ) − C60(θ) for all θ ∈ [θ, θ] is an implication of risk aversion; it

says that all consumers prefer the greater coverage of the 90 policy if it is priced at fair odds (for that

consumer). However, in our analysis the presence of a (behavioral) idiosyncratic preference shock for

each policy could mean that consumers do not satisfy this condition.

A.2 Riley Equilibria

A.2.1 Safe price offers

We begin by considering which price offers are “safe”in the sense that they do not incur losses regardless

of any additional offers being introduced.

Lemma 8. Given price configuration (P90, P60), single-policy offer P ′′60 < P60 is safe if and only if

Π60(P90, P
′′
60) ≥ 0.
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Proof. If Π60(P90, P
′′
60) < 0, then P ′60 makes losses absent any reaction, and hence is not safe. So

suppose that Π60(P90, P
′′
60) ≥ 0. Any price offers P̂ = (P̂90, P̂60) with a P̂60 < P ′′60 gives the firm

offering P ′′60 a profit of zero. Any price offers P̂ with P̂90 ≥ P90 and P̂60 ≥ P ′′60 cannot make the firm

offering P ′′60 incur losses. Finally, any price offers P̂ with P̂90 < P90 and P̂60 ≥ P ′′60 weakly lowers the

sales of the firm offering P ′′60. If that firm makes no sales at (P̂90, P
′′
60), then its profit is zero. If it has

positive sales at (P̂90, P
′′
60), then it must also at (P90, P

′′
60). This implies that Π60(P̂90, P

′′
60) ≥ 0 since

then AC60(P̂90 − P ′′60) ≤ AC60(P90 − P ′′60) ≤ P ′′60.

Definition 2. The lowest safe 60 price given P90 is P 60(P90) ≡ min{P ′′60 : Π60(P90, P
′′
60) ≥ 0}.

Remark 1. Define the price P̃60(P90) ≡ { P̃60 : P̃60 = AC60(P90− P̃60)}. Note that this equality has a
unique solution, which is continuous and weakly increasing in P90 and strictly increasing at any P90 at

which P90− P̃60(P90) ∈ (θ, θ) (so that there are sales of both policies). Since P̃60(AC60 +θ) = AC60 and

P̃60(AC60 + θ) = AC60, this occurs when P90 ∈ (AC60 + θ,AC60 + θ). See Figure 1. Moreover, one

can see in the figure that AC60(P90 − P̃60(P90)) is strictly increasing for this range of P90, which also

means that P90 − P̃60(P90) is strictly increasing, and these are weakly increasing at all P90. Moreover,

observe that the lowest safe 60 price given P90 is given by the continuous function:

P 60(P90) =


P90 − θ if P90 ≤ AC60 + θ

P̃60(P90) if P90 ∈ (AC60 + θ,AC60 + θ)

AC60 if P90 ≥ AC60 + θ

 .

When P90 ≤ AC60 + θ, all consumers buy the 90 policy at prices (P90, P 60(P90)); when P90 ∈ (AC60 +

θ,AC60 +θ) there are positive sales of both policies at prices (P90, P 60(P90)); and when P90 ≥ AC60 +θ

all consumers buy the 60 policy at prices (P90, P 60(P90)).

Remark 2. Observe that if a two-policy reaction (P ′′90, P
′′
60) is safe and causes the profitable single-

policy deviation P ′90 to instead make losses, then the single-policy reaction P
′′
60 is also safe and causes

the single-policy deviation P ′90 to make losses. To see why, note first that it cannot be that P
′′
90 < P ′90

(otherwise the deviator’s profit would not be strictly negative). The result is immediate if P ′′90 > P ′90.

So suppose that P ′′90 = P ′90. Since the firms make losses on the 90 policy and the reaction is safe, we

must have Π60(P ′90, P
′′
60) > 0. But then Lemma 8 implies that the single-policy reaction P ′′60 is safe and

clearly also causes the deviating firm to make losses. Hence, in looking at safe reactions to single-policy

deviations in P90, we can restrict attention to single-policy safe reactions in P60.

Lemma 9. If at (P90, P 60(P90)) we have positive sales of the 90 policy and Π90(P90, P 60(P90)) ≥ 0,

then Π90(P90, P60) ≥ 0 at all P60 > P 60(P90).

Proof. Since there are positive sales of the 90 policy, it follows that P90 ≥ AC90(P90 − P 60(P90)) ≥
AC90(P90 − P60) for any P60 > P 60(P90), where the second inequality follows from that fact that

increases in P60 weakly lower AC90.
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Figure A1: Graphical Description of the Lowest Safe P60 given P90.

Remark 3. In light of Remark 2, Lemma 9 implies that a profitable single-policy deviation to P ′90 can

be rendered unprofitable by a safe reaction if and only if it is rendered unprofitable by a single-policy

reaction to P 60(P ′90).

A.2.2 Characterization of Riley Equilibria

Just as with Nash equilibria, we can restrict attention to Riley equilibria (RE) in which each price

in the equilibrium price configuration is offered by more than one firm. We establish Proposition 2

through a series of lemmas.

Lemma 10. If (P ∗90, P
∗
60) is a RE, then Π90(P ∗90, P

∗
60) = Π60(P ∗90, P

∗
60) = 0.

Proof. We first show that Π60(P ∗90, P
∗
60) ≤ 0. Suppose otherwise, so that Π60(P ∗90, P

∗
60) > 0. Then for

small ε > 0 we would have Π60(P ∗90, P
∗
60 − ε) > 0. By Lemma 8, a single-policy deviation that offers

P ∗60− ε would then be safe, and there would therefore be no reaction that could render it unprofitable.
But then (P ∗90, P

∗
60) would not be a Riley equilibrium, a contradiction.

We next show that Π90(P ∗90, P
∗
60) ≤ 0. The result is immediate if ∆P ∗ ≡ P ∗90 − P ∗60 = θ so that

the 90 policy makes no sales at (P ∗90, P
∗
60). So suppose that ∆P ∗ < θ (implying that the 90 policy has

positive sales) and that contrary to the claim (P ∗90, P
∗
60) is a Riley equilibrium with Π90(P ∗90, P

∗
60) > 0.

If P 60(P ∗90) > P ∗60, then a single-policy deviation to P
∗
90−ε for small enough ε > 0 would be a profitable

Riley deviation as no safe reaction in P60 could render it unprofitable. So we must have P 60(P ∗90) ≤ P ∗60.
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Now if P 60(P ∗90) < P ∗60, then there can be no 60 sales at (P ∗90, P
′
60) for any P ′60 ∈ [P 60(P ∗90), P ∗60), since

otherwise a single-policy deviation to P
′

60 + ε for suffi ciently small ε > 0 would be profitable and safe.

Thus, P 60(P ∗90) ≤ P ∗60 implies that Π90(P ∗90, P 60(P ∗90)) = Π90(P ∗90, P
∗
60) > 0. By continuity, we then

have that Π90(P ∗90 − ε, P 60(P ∗90 − ε)) > 0 for small enough ε > 0, so a single-policy deviation to such a

P ∗90 − ε cannot be rendered unprofitable by any safe reaction, yielding a contradiction.
Thus, we have Π60(P ∗90, P

∗
60) ≤ 0 and Π90(P ∗90, P

∗
60) ≤ 0. But if either is strictly negative, then some

firm must be earning strictly negative profits, and would do better by dropping all of its policies. The

result follows.

Lemma 11. There is a Riley equilibrium in which all consumers buy the 90 policy if and only if there

is no P ′60 such that Π60(AC90, P
′
60) > 0.

Proof. By Lemma 10, P ∗90 = AC90. Necessity follows because if there was a P
′
60 such thatΠ60(AC90, P

′
60) >

0, then a single-policy deviation to P ′60 would be profitable and safe (Lemma 8), so could not be rendered

unprofitable by any reaction. For suffi ciency, suppose that there is no P ′60 such that Π60(AC90, P
′
60) > 0

but that P ′ = (P ′90, P
′
60) is a profitable Riley deviation. If the deviator makes no sales of the 90

policy, then its sales would be the same with a single-policy deviation to P ′60, so we would have

Π60(AC90, P
′
60) > 0 —a contradiction. Suppose, instead, that the deviator does make positive sales

of the 90 policy (which requires that P ′90 ≤ AC90). Since it is a profitable deviation it must also

make positive sales of the 60 policy (since P ′90 ≤ AC90, it can’t make a positive profit selling only

the 90 policy). But, in this case P ′90 ≤ AC90 < AC90(∆P ′), so we must have Π60(P ′90, P
′
60) > 0

since it is a profitable deviation. In turn, letting P̂60 ≡ AC90 − ∆P ′ ≥ P ′60, this implies that

Π60(AC90, P̂60) ≥ Π60(P ′90, P
′
60) > 0 —a contradiction.

Lemma 12. Among all price pairs (P90, P60) at which both policies break even and there are positive

sales of the 60 policy, only the one with the lowest sales of the 60 policy (i.e., having ∆P = ∆PBE)

can be a Riley equilibrium.

Proof. Suppose there are two price pairs that are Riley Equilibria P ′ = (P ′90, P
′
60) and P ′′ = (P ′′90, P

′′
60)

with both having positive and differing 60 shares. We have already seen in the proof of Lemma 2 that,

starting at P ′′, a single-policy deviation to P ′90 is profitable. Now, observe that the lowest safe 60 price

given P ′90 is P
′
60; i.e., P 60(P ′90) = P ′60, so Π90(P ′90, P 60(P ′90)) = 0. Hence, there are no safe reactions

that make the deviator incur a loss (Remark 3). This implies that (P ′′90, P
′′
60) is not a Riley equilibrium,

which is a contradiction.

Lemma 13. Suppose that at P ∗ = (P ∗90, P
∗
60) there are positive sales of the 60 policy (so ∆P ∗ ∈ (θ, θ̄])

and both policies break even. Then P ∗ is a Riley equilibrium if and only if there are no single-policy

Riley profitable deviations in P90.

Proof. Consider a multi-policy profitable Riley deviation P ′ = (P ′90, P
′
60). We will show that we

necessarily have Π90(P ′90, P
∗
60) > 0 and Π90(P ′90, P̃60) ≥ 0 for all P̃60 ∈ [P 60(P ′90), P ∗60]. Thus, a
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single-policy deviation to P ′90 would be a profitable Riley deviation. This will imply (see Remark 3)

that in looking for Riley profitable deviations when the 60 policy has positive sales, we can restrict

attention to single-policy deviations in P90.

The claim is immediate if P ′60 > P ∗60 since then dropping offer P
′
60 would affect neither the deviation

profit, nor the deviator’s profit after any reaction. So henceforth we shall assume that P ′60 ≤ P ∗60.

Moreover, we must have P ′90 ≤ P ∗90: otherwise the deviator can sell only the 60 policy at price P
′

60 ≤
P ∗60 = AC60(∆P ∗) ≤ AC60(∆P ′), contradicting P ′ being a profitable Riley deviation. So P ′ ≤ P ∗.
Next, observe that we must have ∆P ′ < ∆P ∗ and an increased share of the 90 policy being

purchased. If not, then since the average costs of both policies would be no lower than they were before

the deviation, and both deviation prices would be weakly lower, the deviation could not generate a

strictly positive profit. Note that this also implies that we must have P ′90 < P ∗90.

Suppose, first, that P 60(P ′90) < P ′60. If Π90(P ′90, P 60(P ′90)) < 0, then the safe single-policy reaction

to P 60(P ′90) makes the deviator incur losses, in contradiction to the assumption that P ′ is a profitable

Riley deviation. So in this case we must have Π90(P ′90, P 60(P ′90)) ≥ 0. Moreover, there must be positive

sales of the 90 policy at prices (P ′90, P 60(P ′90)) because, if not, then (see Remark 1) P 60(P ′90) = AC60 ≥
P ∗60 ≥ P ′60. Thus, Π90(P ′90, P̃60) > 0 for all P̃60 ∈ (P 60(P ′90), P ∗60], implying that the single-policy

deviation to P ′90 is a profitable Riley deviation.

On the other hand, if P 60(P ′90) ≥ P ′60, then Π60(P ′90, P
′
60) ≤ 0, which implies that Π90(P ′90, P

′
60) > 0

(since the deviation to P ′ is profitable). This, in turn, implies that Π90(P ′90, P
∗
60) > 0, which establishes

the result.

Lemma 14. A Riley equilibrium exists.

Proof. Suppose otherwise. It is immediate that if at prices (P90, P60) = (AC90, AC60) all consumers

buy policy 60, then by Lemma 13 this is a Riley equilibrium as there is no single-policy deviation in

P90 that can earn a strictly positive profit, yielding a contradiction. Thus, we henceforth assume that

there are positive sales of the 90 policy at (P90, P60) = (AC90, AC60).

Given Lemma 12, we need to show that either a price configuration leading to all-in-90 or the

break-even price configuration with ∆P = ∆PBE is a Riley Equilibrium.

Let P ∗∗ = (P ∗∗90 , P
∗∗
60 ) be the break-even price configuration with ∆P ∗∗ = ∆PBE > θ. Note also

that P ∗∗60 = P 60(P ∗∗90 ). [This is immediate if ∆P ∗∗ ≡ P ∗∗90 −P ∗∗60 ∈ (θ, θ). If ∆P ∗∗ = θ, then (by Lemma

10) P ∗∗60 = AC60 and P ∗∗90 = AC60+θ. By Remark 1, the latter equality implies that P 60(P ∗∗90 ) = AC60.]

If P ∗∗ is not a Riley Equilibrium, by Lemma 13 there is a single-policy deviation P ′90 < P ∗∗90 with

Π90(P ′90, P
∗∗
60 ) > 0 that does not incur losses when facing the reaction of the lowest safe price P 60(P ′90) ≤

P 60(P ∗∗90 ) = P ∗∗60 , so that Π90(P ′90, P 60(P ′90)) ≥ 0. Note also that there must be positive sales of the

90 policy at prices P ′ = (P ′90, P 60(P ′90)) since otherwise (by Remark 1) we have P 60(P ′90) = AC60 ≥
P ∗∗60 , which would imply that there are no sales of the 90 policy at prices (P ′90, P

∗∗
60 ), contradicting

Π90(P ′90, P
∗∗
60 ) > 0.
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Now, suppose that everyone-in-90 is not a Riley Equilibrium. Then by Lemma 11 there is a P̂60

such that Π60(AC90, P̂60) > 0, implying that P 60(AC90) < P̂60 and at prices (AC90, P 60(AC90))

there are positive sales of the 60 policy. Moreover, there must also be positive sales of the 90

policy at prices (AC90, P 60(AC90)): if not, by Remark 1 we would have P 60(AC90) = AC60, but

this contradicts (recall the first paragraph of the proof) that there are positive sales of the 90 policy

at (P90, P60) = (AC90, AC60). Because there are positive sales of both policies at prices (P90, P60) =

(AC90, P 60(AC90)), we have Π90(AC90, P 60(AC90)) < 0. Continuity of the function Π90(P90, P 60(P90))

in P90 then implies that there is a P̃90 ∈ (AC90, P
′
90] at which Π90(P̃90, P 60(P̃90)) = 0. Hence, both

policies break even at price pair P̃ = (P̃90, P 60(P̃90)).

Finally, we establish the result by showing that there are positive sales of the 60 policy at prices

P̃ , and that ∆P̃ < ∆P ∗∗, which contradicts P ∗∗ being the price pair with the lowest ∆P among those

with positive sales of the 60 policy. For the first point, note that because there are positive sales of the

60 policy at prices (AC90, P 60(AC90)), Remark 1 tells us that there are positive sales of the 60 policy

at price pair P̃ (and also at prices P ′). For the second point, observe that because there are positive

sales of both policies at prices P ′, by Remark 1 we have ∆P̃ ≤ ∆P ′ < ∆P ∗∗. This establishes the

result.

A.3 Wilson Equilibria

Recall that a price configuration P = (P90, P60) is a Wilson equilibrium (WE) if there is no deviation

by an entrant to a price pair that is strictly profitable once any offers are withdrawn that make losses

after the deviation.55 We will say that a deviation from price configuration P that is strictly profitable

after any such withdrawals is a “profitable Wilson deviation.”Note that no policy 60 offers will ever

be withdrawn after a deviation, because a reduction in P90 can never cause a P60 offer to make losses

(since a reduction in P90 lowers AC60).

We characterize Wilson equilibria (WE) through a series of lemmas that imply Proposition 3. First,

we identify some properties that any WE must satisfy:

Lemma 15. If Pw = (Pw90, P
w
60) is a WE price configuration, then

(a) Π(Pw90, P
w
60) = 0;

(b) Π90(P ′90, P
w
60) ≤ 0 for all P ′90 ≤ Pw90;

(c) ∆Pw = (Pw90 − Pw60) ≤ ∆PBE, the lowest break-even ∆P with positive sales of the 60 policy.

Proof. (a) IfΠ(Pw90, P
w
60) < 0, then some firm would be better offdropping its offers, while ifΠ(Pw90, P

w
60) >

0 then an entrant could profit by offering (Pw90−ε, Pw60−ε) for suffi ciently small ε > 0. (b) If this is viol-

ated at P ′90, then Π90(P ′90−ε, Pw60) > 0 for suffi ciently small ε > 0. A entrants’offering of P ′90−ε would
55Note that since at least one of P90 and P60 is undercut by any profitable entrant deviation, there is no ambiguity

about which polices to withdraw in the event that one of the offers in the price configuration makes losses.
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be a profitable Wilson deviation. (c) This is immediate if ∆PBE = θ. So suppose that ∆PBE < θ

and that ∆Pw > ∆PBE . Since both policies break even at ∆PBE , and Π60(Pw90, P
w
60) ≥ 0 by parts

(a) and (b), it must be that the break-even price configuration associated with ∆PBE , (PBE90 , PBE60 ),

has PBE60 = AC60(∆PBE) < AC60(∆Pw) ≤ Pw60. Since P
BE
60 < Pw60 and ∆PBE < ∆Pw, we also have

PBE90 < Pw90. So an entrant’s offer of (PBE90 + ε, PBE60 + ε) for suffi ciently small ε > 0 is a profitable

Wilson deviation.

Consider the following problem:

min(P90,P60) minP60

s.t. (i) Π(P90, P60) = 0

(ii) Π90(P ′90, P60) ≤ 0 for all P ′90 ≤ P90

(iii) P90 − P60 ∈ [θ,∆PBE ]

(10)

Lemma 16. Any P ∗ = (P ∗90, P
∗
60) that solves problem (10) is a WE price configuration.

Proof. We construct an equilibrium in which all prices P ≥ P ∗ are offered by multiple firms and each

firm has an equal share of sales of both policies. Thus, all active firms earn zero, and we need only

consider deviations by entrants.

To begin, it follows from constraint (ii) of problem (10), and the fact that 60 offers are never

withdrawn, that there is no profitable Wilson deviation in which an entrant makes sales only of the 90

policy (which would require a price P̂90 < P ∗90).

Next, there is no profitable Wilson deviation in which an entrant makes sales only of the 60 policy.

Suppose there were and let the deviation 60 price be P̂60 < P ∗60. If everyone buys the 60 policy at prices

(P ∗90, P̂60) then no 90 policy offers will be withdrawn and P̂60 > AC60. But then prices (P ∗90, AC60)

would be feasible in problem (10) and attain a lower value of P60 than P ∗60, contradicting P
∗ being

a solution. Suppose instead that some consumers still buy the 90 policy at prices (P ∗90, P̂60). Then

Π90(P ∗90, P̂60) < 0, which implies that offer P ∗90 will be withdrawn, as will every P90 up to the lowest

P 90 above P ∗90 such that Π90(P 90, P̂60) = 0. The entrant’s profit will therefore be Π60(P 90, P̂60).

However, it cannot be that Π60(P 90, P̂60) > 0: if so then we have Π(P 90, P̂60) > 0. But this would

imply that there is an ε > 0 such that price pair (P 90 − ε, P̂60 − ε) is feasible in problem (10) and

achieves a lower P60 than P ∗60, a contradiction to P
∗ solving problem (10).56

Finally, suppose that there is a profitable Wilson deviation for an entrant offering P̂ = (P̂90, P̂60), in

which the entrant makes sales of both policies. Then since offers for the 60 policy are never withdrawn,

P̂60 < P ∗60. We first argue that Π90(P90, P̂60) ≤ 0 for all P90 ≤ P̂90. If P̂90 < P ∗90, then this follows

because P ∗ satisfies constraint (ii) and P̂60 < P ∗60. If, instead, P̂90 > P ∗90, then it follows because the

entrant can make sales of the 90 policy only if Π90(P90, P̂60) < 0 for all P90 < P̂90, so that rivals’offers

are withdrawn. Next, observe that if Π90(P̂90, P̂60) ≤ 0 and Π(P̂90, P̂60) > 0, then for some ε > 0 price

56This ε would set Π(P 90−ε, P̂60−ε) = 0, and would satisfy constraint (ii) of problem (10) since Π90(P90, P̂60−ε) ≤ 0

for all P90 ≤ P 90.
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pair (P̂90 − ε, P̂60 − ε) is feasible in problem (10) and achieves a lower P60 than P ∗60, a contradiction to

P ∗ solving problem (10).57

To solve for the Wilson equilibrium, we examine a relaxed version of problem (10). For ∆P ∈ [θ, θ],

we first define PBE60 (∆P ) by

[PBE60 (∆P )−AC60(∆P )]F (∆P ) + [PBE60 (∆P ) + ∆P −AC90(∆P )][1− F (∆P )] = 0,

and PBE90 (∆P ) ≡ PBE60 (∆P ) + ∆P . Note that PBE60 (∆P ) and PBE90 (∆P ) are continuous functions.

Note as well that, for ∆P ∈ [θ, θ], [PBE60 (∆P )−AC60(∆P )] T 0 if and only if ∆AC(∆P ) T ∆P .58

We will consider the relaxed problem

min∆P∈[θ,∆PBE ] PBE60 (∆P ) (11)

Note that in problem (11) the constraint set is closed and bounded, and the objective function is con-

tinuous, so a solution exists. We also note the equivalence of this problem to the problem of finding the

profit-maximizing multi-policy Nash deviation from price configuration (PBE90 (∆PBE), PBE60 (∆PBE)):

max∆P∈[θ,∆PBE ] Π(PBE60 (∆PBE) + ∆P, PBE60 (∆PBE)) (12)

Lemma 17. Argmin∆P∈[θ,∆PBE ] P
BE
60 (∆P ) = Argmax∆P∈[θ,∆PBE ] Π(PBE60 (∆PBE)+∆P, PBE60 (∆PBE)).

Proof. Letting δ(∆P ) ≡ PBE60 (∆PBE)− PBE60 (∆P ), we have

Π(PBE60 (∆PBE) + ∆P, PBE60 (∆PBE)) = Π(PBE60 (∆P ) + ∆P + δ, PBE60 (∆P ) + δ)

= Π(PBE60 (∆P ) + ∆P, PBE60 (∆P )) + δ

= PBE60 (∆PBE)− PBE60 (∆P ),

so for any ∆P and ∆P ′ we have

Π(PBE60 (∆PBE)+∆P, PBE60 (∆PBE))−Π(PBE60 (∆PBE)+∆P ′, PBE60 (∆PBE)) = PBE60 (∆P ′)−PBE60 (∆P ).

Thus, the solution to the relaxed problem (11) is exactly the ∆P ≤ ∆PBE that maximizes the

multi-policy deviation profits from ∆PBE . The usefulness of the relaxed problem stems from the

following result [whose assumption that ∆AC(θ) > θ is satisfied in our data]:

57This ε would set Π(P̂90−ε, P̂60−ε) = 0, and would satisfy constraint (ii) of problem (10) since Π90(P90, P̂60−ε) ≤ 0

for all P90 ≤ P̂90.
58This follows since

∆AC(∆P ) T ∆P ⇔ PBE60 (∆P )−AC60(∆P ) T PBE90 (∆P )−AC90(∆P ).
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Lemma 18. Suppose that ∆AC(θ) > θ and that ∆P ∗ = arg min∆P∈[θ,∆PBE ] P
BE
60 (∆P ). Then the

price configuration (PBE90 (∆P ∗), PBE60 (∆P ∗)) is the unique solution to problem (10).

Proof. By construction (PBE90 (∆P ), PBE60 (∆P ∗)) satisfies constraints (i) and (iii) of problem (10). We

therefore need only show that (PBE90 (∆P ∗), PBE60 (∆P ∗)) satisfies constraint (ii). Observe that when

∆AC(θ) > θ, at any ∆P ∈ [θ,∆PBE ] we have ∆AC(∆P ) > ∆P . This implies that for all ∆P ∈
[θ,∆PBE ]

0 ≥ Π90(PBE90 (∆P ), PBE60 (∆P ))

≥ Π90(PBE90 (∆P ), PBE60 (∆P ∗)),

where the second inequality follows because PBE60 (∆P ∗) ≤ PBE60 (∆P ) for all ∆P ∈ [θ,∆PBE ] by virtue

of ∆P ∗ being the solution to problem (11). Continuity of PBE90 (∆P ) in ∆P then implies that

0 ≥ Π90(P90, P
BE
60 (∆P ∗)) for all P90 ∈ [AC90, P

BE
90 (∆P ∗)].

Since we also have that

0 ≥ Π90(P90, P
BE
60 (∆P ∗)) for all P90 ≤ AC90,

(PBE90 (∆P ∗), PBE60 (∆P ∗)) satisfies constraint (ii) of problem (10).

Finally, we show that the solution P ∗ to problem (10) is the only WE whenever ∆P ∗ ∈ (θ,∆PBE).

Lemma 19. Suppose that there is a unique solution P ∗ of problem (10) and that ∆P ∗ ∈ (θ,∆PBE).

Then P ∗ is the unique WE price configuration.59

Proof. Lemma 15 shows that any WE price configuration must satisfy the constraints of problem (10).

We next argue that any price configuration P̃ = (P̃90, P̃60) that satisfies the constraints but is not a

solution cannot be a WE price configuration. By definition, P ∗60 < P̃60.

If (P ∗90, P
∗
60) << (P̃90, P̃60) then at price configuration (P̃90, P̃60) an entrant has a profitable Wilson

deviation to (P ∗90 + ε, P ∗60 + ε) for small ε > 0. So, for the rest of the proof, suppose instead that

P ∗90 ≥ P̃90, which also implies that ∆P̃ < ∆P ∗ since P ∗60 < P̃60.

Observe, first, that we must then have AC90 − θ > AC60, since P
∗
60 > AC60 [which follows from

there being sales of the 60 policy at P ∗ and Π60(P ∗90, P
∗
60) ≥ 0] and (AC90, AC90 − θ) is feasible in

problem (10). Thus, ∆AC(θ) > θ, which implies that ∆AC(∆P ) > ∆P for all ∆P ∈ (θ,∆PBE) and,

in turn, that Π90(PBE90 (∆P ), PBE60 (∆P )) < 0 for all ∆P ∈ (θ,∆PBE). Moreover, continuity implies

that for each P90 ∈ [P̃90, P
∗
90], there is a ∆P ∈ (θ,∆PBE) such that PBE90 (∆P ) = P90. Thus, since

P ∗60 < PBE60 (∆P ) for all∆P and there are positive sales of the 90 policy at P ∗, we have Π90(P90, P
∗
60) < 0

for all P90 ∈ (P̃90, P
∗
90] and at P̃90 if P̃90 > AC90.

We will consider two cases:
59We conjecture, but have not proven, that the result extends to cases in which ∆P ∗ = ∆PBE .
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(i) P ∗90 = P̃90. In this case, there are sales of the 90 policy at prices P̃ , and we have 0 ≥
Π90(P̃90, P̃60) = Π90(P ∗90, P̃60) > Π90(P ∗90, P

∗
60) = Π90(P̃90, P

∗
60). So at P̃ an entrant has a profitable

Wilson deviation offering prices (P ∗90 + ε, P ∗60 + ε) for ε > 0 such that Π90(P ′90, P
∗
60 + ε) < 0 for all

P ′90 ∈ [P̃90, P
∗
90 + ε] and P ∗60 + ε < P̃60, which results in all 90 policy offers in [P̃90, P

∗
90 + ε] being

withdrawn.

(ii) P ∗90 > P̃90. Note first that if ∆P̃ = θ (so there are no sales of the 60 policy at P̃ ) then

P̃90 = AC90. There must then be positive sales of the 60 policy at (AC90, P
∗
60) for otherwise (AC90, P

∗
60)

would satisfy constraints (i) and (ii) of problem (10), contradicting P ∗ being the unique solution. This

implies that Π90(AC90, P
∗
60) < 0. As well, recall that we have Π90(P90, P

∗
60) < 0 for all P90 ∈ (P̃90, P

∗
90]

and at P̃90 if P̃90 > AC90. Thus, in this case, an entrant again has a profitable Wilson deviation

offering prices (P ∗90 + ε, P ∗60 + ε) for ε > 0 such that Π90(P ′90, P
∗
60 + ε) < 0 for all P ′90 ∈ [P̃90, P

∗
90 + ε]

and P ∗60 + ε < P̃60, which results in all 90 policy offers in in [P̃90, P
∗
90 + ε] being withdrawn.
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B Appendix: Cost Model Setup and Estimation

This appendix describes the details of the cost model, which is summarized at a high-level in section

3, and similar to that used in Handel (2013). The output of this model, Fjkt, is a family-plan-time-

specific distribution of predicted out-of-pocket expenditures for the upcoming year. This distribution

is an important input into the empirical choice model, where it enters as a family’s predictions of its

out-of-pocket expenses at the time of plan choice, for each plan option. We predict this distribution in

a sophisticated manner that incorporates (i) past diagnostic information (ICD-9 codes) (ii) the Johns

Hopkins ACG predictive medical software package (iii) a non-parametric model linking modeled health

risk to total medical expenditures using observed cost data and (iv) a detailed division of medical

claims and health plan characteristics to precisely map total medical expenditures to out-of-pocket

expenses. The level of precision we gain from the cost model leads to more credible estimates of the

choice parameters of primary interest (e.g., risk preferences and health risk). Crucially, the cost model

output is also used to predict consumer expected average costs for the upcoming year, λ, which is used

to determine plan costs (as a function of who selects which plans) in our equilibrium analyses.

In order to predict expenses in a precise manner, we categorize the universe of total medical claims

into four mutually exclusive and exhaustive subdivisions of claims using the claims data. These cat-

egories are (i) hospital and physician services (ii) pharmacy (iii) mental health and (iv) physician offi ce

visits. We divide claims into these four specific categories so that we can accurately characterize the

plan-specific mappings from total claims to out-of-pocket expenditures since each of these categories

maps to out-of-pocket expenditures in a different manner. We denote this four dimensional vector of

claims Cit and any given element of that vector Cd,it where d ∈ D represents one of the four categories

and i denotes an individual (employee or dependent). After describing how we predict this vector of

claims for a given individual, we return to the question of how we determine out-of-pocket expenditures

in plan k given Cit.

Denote an individual’s past year of medical diagnoses and payments by ξit and the demographics

age and sex by ζit. We use the ACG software mapping, denoted A, to map these characteristics into a

predicted mean level of health expenditures for the upcoming year, denoted θ:

A : ξ × ζ → θ

In addition to forecasting a mean level of total expenditures, the software has an application that

predicts future mean pharmacy expenditures. This mapping is analogous to A and outputs a prediction

κ for future pharmacy expenses.

We use the predictions θ and κ to categorize similar groups of individuals across each of four claims

categories in vector in Cit. Then for each group of individuals in each claims category, we use the

actual ex post realized claims for that group to estimate the ex ante distribution for each individual

under the assumption that this distribution is identical for all individuals within the cell. Individuals

are categorized into cells based on different metrics for each of the four elements of C:
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Pharmacy: κit

Hospital / Physician (Non-OV): θit

Physician Offi ce Visit: θit

Mental Health: CMH,i,t−1

For pharmacy claims, individuals are grouped into cells based on the predicted future mean pharmacy

claims measure output by the ACG software, κit. For the categories of hospital / physician services (non

offi ce visit) and physician offi ce visit claims individuals are grouped based on their mean predicted total

future health expenses, θit. Finally, for mental health claims, individuals are grouped into categories

based on their mental health claims from the previous year, CMH,i,t−1 since (i) mental health claims are

very persistent over time in the data and (ii) mental health claims are generally uncorrelated with other

health expenditures in the data. For each category we group individuals into a number of cells between

8 and 10, taking into account the tradeoff between cell size and precision. The minimum number of

individuals in any cell is 73 while almost all cells have over 500 members. Thus, since there are four

categories of claims, each individual can belong to one of approximately 104 or 10,000 combination of

cells.

Denote an arbitrary cell within a given category d by z. Denote the population in a given category-

cell combination (d, z) by Idz. Denote the empirical distribution of ex-post claims in this category for

this population ˆGIdz (·). Then we assume that each individual in this cell has a distribution equal to a
continuous fit of ˆGIdz (·), which we denote Gdz:

$ : ˆGIdz (·)→ Gdz

We model this distribution continuously in order to easily incorporate correlations across d. Otherwise,

it would be appropriate to use GIdz as the distribution for each cell.

The above process generates a distribution of claims for each d and z but does not model correlation

over D. It is important to model correlation across claims categories because it is likely that someone

with a bad expenditure shock in one category (e.g., hospital) will have high expenses in another area

(e.g., pharmacy). We model correlation at the individual level by combining marginal distributions Gidt

∀ d with empirical data on the rank correlations between pairs (d, d′).60 Here, Gidt is the distribution

Gdz where i ∈ Idz at time t. Since correlations are modeled across d we pick the metric θ to group
people into cells for the basis of determining correlations (we use the same cells that we use to determine

group people for hospital and physician offi ce visit claims). Denote these cells based on θ by zθ. Then

for each cell zθ denote the empirical rank correlation between claims of type d and type d′ by ρzθ (d, d
′).

60 It is important to use rank correlations here to properly combine these marginal distribution into a joint distribution.

Linear correlation would not translate empirical correlations to this joint distribution appropriately.
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Then, for a given individual i we determine the joint distribution of claims across D for year t, denoted

Hit(·), by combining i’s marginal distributions for all d at t using ρzθ (d, d
′):

Ψ : GiDt × ρzθit (D,D
′)→ Hit

Here, GiDt refers to the set of marginal distributions Gidt∀d ∈ D and ρzθit (D,D
′) is the set of all

pairwise correlations ρzθit (d, d
′)∀(d, d′2. In estimation we perform Ψ by using a Gaussian copula to

combine the marginal distribution with the rank correlations, a process which we describe momentarily.

The final part of the cost model maps the joint distribution Hit of the vector of total claims C over

the four categories into a distribution of out of pocket expenditures for each plan. For each of the three

plan options we construct a mapping from the vector of claims C to out-of-pocket expenditures Xk:

Ωk : C → Xk

This mapping takes a given draw of claims from Hit and converts it into the out-of-pocket expenditures

an individual would have for those claims in plan k. This mapping accounts for plan-specific features

such as the deductible, co-insurance, co-payments, and out-of-pocket maximums described in the text.

We test the mapping Ωk on the actual realizations of the claims vector C to verify that our mapping

comes close to reconstructing the true mapping. Our mapping is necessarily simpler and omits things

like emergency room co-payments and out of network claims. We constructed our mapping with and

without these omitted categories to insure they did not lead to an incremental increase in precision.

We find that our categorization of claims into the four categories in C passed through our mapping Ωk

closely approximates the true mapping from claims to out-of-pocket expenses. Further, we find that

it is important to model all four categories described above: removing any of the four makes Ωk less

accurate. See Handel (2013) for figures describing this validation exercise with the data used in this

paper.

Once we have a draw of Xikt for each i (claim draw from Hit passed through Ωk) we map individual

out-of-pocket expenditures into family out-of-pocket expenditures. For families with less than two

members this involves adding up all the within family Xikt. For families with more than three members

there are family level restrictions on deductible paid and out-of-pocket maximums that we adjust for.

Define a family j as a collection of individuals ij and the set of families as J . Then for a given family

out-of-pocket expenditures are generated:

Γk : Xij ,kt → Xjkt

To create the final object of interest, the family-plan-time specific distribution of out of pocket ex-

penditures Fjkt(·), we pass the claims distributions Hit through Ωk and combine families through Γk.

Fjkt(·) is then used as an input into the choice model that represents each family’s information set over
future medical expenses at the time of plan choice. Eventually, we also use Hit to calculate total plan

cost when we analyze counterfactual plan pricing based on the average cost of enrollees.
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We note that the decision to do the cost model by grouping individuals into cells, rather then by

specifying a more continuous form, has costs and benefits. The cost is that all individuals within a

given cell for a given type of claims are treated identically. The benefit is that our method produces

local cost estimates for each individual that are not impacted by the combination of functional form

and the health risk of medically different individuals. Also, the method we use allows for flexible mod-

eling across claims categories. Finally, we note that we map the empirical distribution of claims to a

continuous representation because this is convenient for building in correlations in the next step. The

continuous distributions we generate very closely fit the actual empirical distribution of claims across

these four categories.

Cost Model Identification and Estimation. The cost model is identified based on the two as-

sumptions of (i) no moral hazard / selection based on private information and (ii) that individuals

within the same cells for claims d have the same ex ante distribution of total claims in that category.

Once these assumptions are made, the model uses the detailed medical data, the Johns Hopkins pre-

dictive algorithm, and the plan-specific mappings for out of pocket expenditures to generate the final

output Fjkt(·). These assumptions, and corresponding robustness analyses, are discussed at more length
in the main text and in Handel (2013).

Once we group individuals into cells for each of the four claims categories, there are two statistical

components to estimation. First, we need to generate the continuous marginal distribution of claims

for each cell z in claim category d, Gdz. To do this, we fit the empirical distribution of claims GIdz
to a Weibull distribution with a mass of values at 0. We use the Weibull distribution instead of the

lognormal distribution, which is traditionally used to model medical expenditures, because we find

that the lognormal distribution overpredicts large claims in the data while the Weibull does not. For

each d and z the claims greater than zero are estimated with a maximum likelihood fit to the Weibull

distribution:

max
(αdz,βdz)

Πi∈Idz
βdz
αdz

(
cid
αdz

)βdz−1e
−(

cid
αdz

)βdz

Here, α̂dz and ˆβdz are the shape and scale parameters that characterize the Weibull distribution.

Denoting this distributionW (α̂dz, ˆβdz) the estimated distribution Ĝdz is formed by combining this with

the estimated mass at zero claims, which is the empirical likelihood:

ˆGdz(c) =

 GIdz (0) if c = 0

GIdz (0) + W ( ˆαdz, ˆβdz)(c)
1−GIdz (0) if c > 0

Again, we use the notation ˆGiDt to represent the set of marginal distributions for i over the categories

d: the distribution for each d depends on the cell z an individual i is in at t. We combine the distributions
ˆGiDt for a given i and t into the joint distribution Hit using a Gaussian copula method for the mapping

Ψ. Intuitively, this amounts to assuming a parametric form for correlation across ˆGiDt equivalent
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to that from a standard normal distribution with correlations equal to empirical rank correlations

ρzθit
(D,D′) described in the previous section. Let Φi1|2|3|4 denote the standard multivariate normal

distribution with pairwise correlations ρzθit (D,D
′) for all pairings of the four claims categories D. Then

an individual’s joint distribution of non-zero claims is:

ˆHi,t(·) = Φ1|2|3|4(Φ−1
1 ( ˆGid1t),Φ

−1
2 ( ˆGid2t),Φ

−1
3 ( ˆGid3t),Φ

−1
4 ( ˆGid4t))))

Above, Φd is the standard marginal normal distribution for each d. Ĥi,t is the joint distribution of

claims across the four claims categories for each individual in each time period. After this is estimated,

we determine our final object of interest Fjkt(·) by simulating K multivariate draws from Ĥi,t for each

i and t, and passing these values through the plan-specific total claims to out of pocket mapping Ωk

and the individual to family out of pocket mapping Γk. The simulated Fjkt(·) for each j, k, and t is
then used as an input into estimation of the choice model.

Table B1 presents summary results from the cost model estimation for the final choice model

sample, including population statistics on the ACG index θ, the Weibull distribution parameters α̂dz

and ˆβdz for each category d, as well as the across category rank correlations ρzθit (D,D
′). These are the

fundamentals inputs used to generate Fjkt, as described above, and lead to accurate characterizations of

the overall total cost and out-of-pocket cost distributions (validation exercises which are not presented

here).
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Final Sample

Cost Model Output

Overall PPO250 PPO500 PPO1200

Individual Mean (Median)

Unscaled ACG Predictor

Mean 1.42 0.74 0.72

Median 0.83 0.37 0.37

Pharmacy: Model Output

Zero Claim Pr. 0.35 (0.37) 0.31 (0.18) 0.40 (0.37) 0.42 (0.37)

Weibull α 1182 (307) 1490 (462) 718 (307) 596 (307)

Weibull β 0.77 (0.77) 0.77 (0.77) 0.77 (0.77) 0.77 (0.77)

Mental Health

Zero Claim Pr. 0.88 (0.96) 0.87 (0.96) 0.90 (0.96) 0.90 (0.96)

Weibull α 1422 (1295) 1447 (1295) 1374 (1295) 1398 (1295)

Weibull β 0.98 (0.97) 0.99 (0.97) 0.98 (0.97) 0.98 (0.97)

Hospital / Physician

Zero Claim Pr. 0.23 (0.23) 0.21 (0.23) 0.26 (0.23) 0.26 (0.23)

Weibull α 2214 (1599) 2523 (1599) 1717 (1599) 1652 (1599)

Weibull β 0.58 (0.55) 0.59 (0.55) 0.55 (0.55) 0.55 (0.55)

(> $40, 000) Claim Pr. 0.02 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)

Physician OV

Zero Claim Pr. 0.29 (0.20) 0.26 (0.20) 0.33 (0.46) 0.34 (0.46)

Weibull α 605 (553) 653 (553) 517 (410) 529 (410)

Weibull β 1.15 (1.14) 1.15 (1.14) 1.15 (1.14) 1.14 (1.14)

Correlations

Rank Correlation Hospital-Pharm. 0.28 (0.34) 0.26 (0.32) 0.31 (0.34) 0.32 (0.34)

Rank Correlation Hospital-OV 0.73 (0.74) 0.72 (0.74) 0.74 (0.74) 0.74 (0.74)

Rank Correlation Pharm.-OV 0.35 (0.41) 0.33 (0.37) 0.38 (0.41) 0.39 (0.41)

Table B1: This table describes the output of the cost model in terms of the means and medians of individual

level parameters, classified by the plan actually chosen. These parameters are aggregated for these groups but

have more micro-level groupings, which are the primary inputs into our cost projections in the choice model.

Weibull α, Weibull β, and Zero Claim Probability correspond to the cell-specific predicted total individual-level

health expenses as described in more detail in Appendix B.
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C Appendix: Choice Model Estimation Algorithm Details and

Additional Results

This appendix describes the details of the choice model estimation algorithm. The corresponding section

in the text provided a high-level overview of this algorithm and outlined the estimation assumptions

we make regarding choice model fundamentals and their links to observable data. In addition, after

the presentation of the estimation algorithm, we discuss further specification details and results for our

primary choice model.

We estimate the choice model using a random coeffi cients simulated maximum likelihood approach

similar to that summarized in Train (2009). The simulated maximum likelihood estimation approach

has the minimum variance for a consistent and asymptotically normal estimator, while not being too

computationally burdensome in our framework. Since we use panel data, the likelihood function at

the family level is computed for a sequence of choices from t0 to t2, since inertia implies that the

likelihood of a choice made in the current period depends on the choice made in the previous period.

The maximum likelihood estimator selects the parameter values that maximize the similarity between

actual choices and choices simulated with the parameters.

First, the estimator simulates Q draws from the distribution of health expenditures output from

the cost model, Fjkt, for each family, plan, and time period. These draws are used to compute plan

expected utility conditional on all other preference parameters. It then simulates S draws for each

family from the distributions of the random coeffi cients γj and δj , as well as from the distribution of

the preference shocks εk. We define the set of parameters θ as the full set of ex ante model parameters

(before the S draws are taken):

θ ≡ (µ, β, σ2
γ , µδ(Aj), σδ(Aj), α, µεK (Aj), σεK(Aj), η0, η1).

We denote θsj one draw derived from these parameters for each family, including the parameters

constant across draws:

θsj ≡ (γj , δj , α, εKT , η0, η1)

Denote θSj the set of all S simulated draws for family j. For each θsj the estimator then uses all Q

health draws to compute family-plan-time-specific expected utilities Usjkt following the choice model

outlined in earlier in section 3. Given these expected utilities for each θsj , we simulate the probability

of choosing plan k in each period using a smoothed accept-reject function with the form:

Prsjt(k = k∗) =

(
1

−Usjk∗t
(·)

ΣK
1

−Usjkt
(·) )τ

Σk(
1

−Uŝkt
(·)

ΣK
1

−Usjkt
(·) )τ
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This smoothed accept-reject methodology follows that outlined in Train (2009) with some slight modi-

fications to account for the expected utility specification. In theory, conditional on θsj , we would want

to pick the k that maximizes Ujkt for each family, and then average over S to get final choice probabil-

ities. However, doing this leads to a likelihood function with flat regions, because for small changes in

the estimated parameters θ, the discrete choice made does not change. The smoothing function above

mimics this process for CARA utility functions: as the smoothing parameter τ becomes large the

smoothed Accept-Reject simulator becomes almost identical to the true Accept-Reject simulator just

described, where the actual utility-maximizing option is chosen with probability one. By choosing τ to

be large, an individual will always choose k∗ when 1
−Ujk∗t >

1
−Ujkt ∀k 6= k∗. The smoothing function

is modified from the logit smoothing function in Train (2009) for two reasons (i) CARA utilities are

negative, so the choice should correspond to the utility with the lowest absolute value and (ii) the logit

form requires exponentiating the expected utility, which in our case is already the sum of exponential

functions (from CARA). This double exponentiating leads to computational issues that our specifica-

tion overcomes, without any true content change since both models approach the true Accept-Reject

function.

Denote any sequence of three choices made as k3 and the set of such sequences as K3. In the limit as

τ grows large the probability of a given k3 will either approach 1 or 0 for a given simulated draw s and

family j. This is because for a given draw the sequence (k1, k2, k3) will either be the sequential utility

maximizing sequence or not. This implicitly includes the appropriate level of inertia by conditioning

on previous choices within the sequential utility calculation. For example, under θsj a choice in period

two will be made by a family j only if it is optimal conditional on θsj , other preference factors, and the

inertia implied by the period one choice. For all S simulation draws we compute the optimal sequence

of choices for k with the smoothed Accept-Reject simulator, denoted k3
sj . For any set of parameter

values θSj the probability that the model predicts k3 will be chosen by j is:

ˆP k
3

j (θ, Fjkt,Z
A
j ,Z

B
j , Hj , Aj) = Σs∈S1[k3 = k3

sj ]

Let ˆP k
3

j (θ) be shorthand notation for ˆP k
3

j (θ, Fjkt, Z
A
j , Z

B
j , Hk, Aj). Conditional on these probabil-

ities for each j, the simulated log-likelihood value for parameters θ is:

SLL(θ) = Σj∈JΣk3∈K3djk3 ln
ˆP k
3

j

Here djk3 is an indicator function equal to one if the actual sequence of decisions made by family j

was k3. Then the maximum simulated likelihood estimator (MSLE) is the value of θ in the parameter

space Θ that maximizes SLL(θ). In the results presented in the text, we choose Q = 100, S = 50, and

τ = 6, all values large enough such that the estimated parameters vary little in response to changes.
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C.1 Specification for Inertia

In the main text we did not describe the details for our specification for consumer inertia. The model

for inertia, which is similar to that in Handel (2013), specifics an inertial cost η(ZBj ) that is linearly

related to consumer characteristics and linked choices, ZBj :

η(ZBj ) = η0 + η1Z
B
jt

The characteristics in ZBj include family status (e.g., single or covering dependents), income, several

job status measures, linked choice of Flexible Spending Account (FSA), and whether the family has

any members with chronic medical conditions (and, if so, how many chronic conditions total in the

family).

C.2 Additional Results

In the interest of space, the text only presented the risk preference parameter estimates from our primary

specification, since this was the key object of interest recovered there for our equilibrium analysis of

insurance exchange pricing regulations. Here, for completeness, in Tables C1 and C2 we include the

full set of estimates in the primary model for reference, including inertia parameters, PPO1200 random

coeffi cients, and ε standard deviations. Overall, the parameters not discussed in the text have similar

estimates to those in Handel (2013), though the risk preference estimates differ here because they are

linked explicitly to health risk to estimate correlations between those two micro-foundations.
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Empircal Model Results

(1) Paramater

Parameter / Model Primary Model Standard Error

Risk Preference Estimates

µγ - Intercept, β0 1.21 ∗ 10−3 5.0 ∗ 10−5

µγ - log(Σiεjλi), β1 −1.14 ∗ 10−4 9.8 ∗ 10−6

µγ - age, β2 −5.21 ∗ 10−6 1.0 ∗ 10−7

µγ - log(Σiεjλi)∗age, β3 1.10 ∗ 10−6 1.3 ∗ 10−7

µγ - Manager, β4 4.3 ∗ 10−5 5.2 ∗ 10−5

µγ - Manager ability, β5 1.4 ∗ 10−5 1.2 ∗ 10−5

µγ - Non-manager ability , β6 7.5 ∗ 10−6 2.4 ∗ 10−6

µγ - Population Mean 4.39 ∗ 10−4 -

µγ - Population σ 6.63 ∗ 10−5 -

σγ - γ standard deviation 1.24 ∗ 10−4 3.5 ∗ 10−5

Inertia Estimates

η0, Intercept 1,336 76

η1, Family 2,101 52

η1, FSA Enroll -472 44

η1, Income 96 15

η1, Quantitative 6 27

η1, Manager 162 34

η1, Chronic Condition 108 24

Table C1: This table presents the first half of the full set of primary choice model estimates: the set of estimates

relevant for our analysis of exchange pricing regulation is presented and interpreted in much more detail in the

main text. Standard errors are presented in column 2.
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Empircal Model Results

(1) Parameter

Parameter / Model Primary Model Standard Error

PPO1200 Preferences

µδ : Single -2,504 138

σδ : Single 806 47

µδ : Family -2,821 424

σδ : Family 872 48

Other

α, High-Cost, PPO250 -805 79

ε500 , σε, Single 50 340

ε1200 , σε, Single 525 180

ε500 , σε, Family 141 56

ε1200 , σε, Family 615 216

Table C2: This table presents the second half of the full set of primary choice model estimates: the set of

estimates relevant for our analysis of exchange pricing regulation is presented and interpreted in much more

detail in the main text. Standard errors are presented in column 2.
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D Appendix: MEPS Analysis Descriptives

This section presents some extra tables to support the analysis that re-weights our population according

to demographics in the nationally representative MEPS data. See Section 6 in the text for our primary

equilibrium and welfare analysis using these re-weighted data. Table D.0 describes the number of

individuals in MEPS in each year we use (these years overlap exactly with those from our data). Table

D.1 presents detailed characteristics of our population of interests (i) all individuals in MEPS (ii) all

individuals in MEPS 25-65 and (iii) all uninsured / individual market insured individuals in MEPS,

age 25-65. Table D.2 describes the insurance coverage statistics for each of these three sample. Table

D.3 describes the weights used to re-weight our own data for the analysis in the text, while Table D.4

provides a detailed breakdown of health status for these three populations.

Table D.0: MEPS Data Sample Counts

Year Number of Individuals

2004 34,403

2005 33,961

2006 34,145

2007 30,964

2008 33,066
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Entire MEPS All Ind. 25-65 25-65 Unins/Ind
(1) (2) (3)

N - Individual-Year Obs. 166,539 81,733 21,856

N - Individuals in Panel 105,353 51,922 13,804

N - Family-Year Obs. 58,647 - -

N - Families in Panel 36,317 - -

Avg. Family Members 2.90 - -

Age-Individual

Mean 33.82 43.15 42.6

10th Qtile 5 28 27

25th Qtile 14 34 32

Median 32 43 42

75th Qtile 51 52 52

90th Qtile 66 59 60

Gender-Individual

Male % 47.7% 46.6% 50.2%

Total Income-Family-Year* **

Mean 53613 64058 42746

10th Qtile 9240 12733 8000

25th Qtile 19000 26000 17068

Median 39080 50000 31114

75th Qtile 72375 85584 54995

90th Qtile 115086 131080 89600

Wage Income-Family-Year**

Mean 44583 59945 38882

10th Qtile 0 7348 300

25th Qtile 8000 24000 14280

Median 32000 48300 30000

75th Qtile 65000 83753 52000

90th Qtile 104438 124996 82680

Region-Individual

Northeast 14.5% 15.0% 10.1%

Midwest 19.2% 19.6% 15.0%

South 38.3% 38.7% 46.3%

West 26.9% 26.8% 28.7%

Table D1: This table describes demographic data for key samples of interest in the MEPS data, for the pooled

data from 2004-2008. A more detailed description of each column’s sample is contained in the text.

*In individual samples, a given family’s income may count twice since two individuals can be from same family.
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Entire MEPS All Ind. 25-65 25-65 Unins/Ind
(1) (2) (3)

Family-Year: Coverage Type*

Private (Employer or Ind.) 66.3% 73.3% 41.0%

Medicaid (someone) 30.7% 33.4% 45.4%

Medicare (someone) 29.01% 14.0% 16.4%

Uninsured** (someone) 26.7% 35.0% 84.7%

Only Public in Fam 22.5 % 15.1% 0%

Always Offered Employer (someone) 48.8 % 62.1% —

Offered Employer Sometimes (someone) 62.0% 76.1% —

Family Member Emp. Always 69.7% 84.7% 76.2%

Family Member Emp. Once 77.5% 92.3% 87.4%

Individual-Year: Coverage Type*

Private (Employer or Ind.) 54.5% 64.0% 16.8%

Medicaid 25.4% 12.4% 0.72%

Medicare 13.4% 3.9% 1 .25%

Uninsured** 16.6% 22.3% 83.2%

Only Public 27.6% 12.7% 0%

Always Offered Employer 21.3 % 38.9% —

Offered Employer Sometimes 32.5% 55.0% —

Individual Emp. Always 37% 65.4% 37.5%

Individual Emp. Once 48% 78.3% 48.0%

Table D2: This table describes insurance coverage, expenditures, and other statistics in the MEPS data for

the pooled data from 2004-2008. A more detailed description of each column’s sample is contained in the text.

*Coverage type reflects whether a family ever had this kind of coverage (for any member) throughout the year,

so these numbers add to more than 100%.

**Uninsured variable occurs when none of other coverage types are held, and the family is uninsured for whole

year.
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MEPS Weights Incorporated

All 25-65 Sample

Age Bucket / Fam. Wages 0-$35,000 $35,000-$70,000 $70,000-$105,000 ≥ 105,000 Total

25-29 4.1% 4.5 2.7 1.9 13.1%

30-34 3.3% 4.4 2.6 1.9 12.3%

35-39 3.5% 4.2 2.8 2.3 12.9%

40-44 3.6% 4.5 3.0 2.8 13.9%

45-49 3.5% 4.2 3.0 3.1 13.9%

50-54 3.5% 3.8 2.8 2.9 13.1%

55-59 3.8% 3.2 2.3 2.3 11.7%

60-64 4.4% 2.3 1.3 1.2 9.2%

Total 29.7% 31.1% 20.5% 18.4% 100%

% Male by Income* 45.6% 49.9% 50.3% 51.4%

25-65 Unins./ Private

Age Bucket / Fam. Wages 0-$35,000 $35,000-$70,000 $70,000-$105,000 ≥ 105,000 Total

25-29 7.4% 5.0 1.9 1.6 15.9%

30-34 6.0% 4.4 1.3 0.7 12.4%

35-39 6.4% 3.5 1.1 0.6 11.6%

40-44 6.1% 4.0 1.4 0.8 12.2%

45-49 6.2% 3.1 1.6 0.9 10.8%

50-54 5.9% 2.9 1.1 0.9 10.8%

55-59 7.0% 2.5 1.1 0.8 11.4%

60-64 10.1% 2.3 0.8 0.8 14.0%

Total 55.1% 27.7% 10.3% 7.1% 100%

% Male by Income* 51.4% 56.2% 55.4% 56.8%

Table D3: This table describes the discrete age probabiliities for different age / gender / income categories for

(i) all individuals in MEPS, age 25-65, and (ii) all uninsured / individual market insured individuals in MEPS,

age 25-65. These weights incoporate MEPS sample weights as well, as an additional weighting factor.

*Percentages of gender across age are essentially constant conditional on income, which is why those figures are

not presented here.

82



MEPS Weights Incl.

All 25-65 Sample

Age Bucket / Quantile 10th 25th 50th 75th 90th 95th Mean

25-29 0 (0) 0 (203) 125 (843) 620 (2833) 2109 (7638) 4155 (12007) 997 (2820)

30-34 0 (0) 0 (241) 224 (940) 922 (3179) 2815 (9040) 5582 (13122) 1376 (3146)

35-39 0 (0) 0 (239) 331 (925) 1314 (2928) 3499 (8158) 6333 (13595) 1696 (3126)

40-44 0 (0) 25 (258) 450 (967) 1669 (2955) 4513 (7844) 9099 (13843) 2235 (3544)

45-49 0 (0) 115 (365) 703 (1342) 2425 (3827) 6423 (9143) 12125 (15505) 3016 (3838)

50-54 0 (90) 221 (563) 1114 (1860) 3385 (4744) 8562 (10683) 16271 (17135) 4187 (4551)

55-59 0 (102) 410 (781) 1837 (2437) 4953 (5820) 11929 (13615) 21069 (22741) 5315 (6129)

60-64 71 (255) 707 (1109) 2337 (2906) 5916 (6771) 15261 (14493) 27033 (24997) 6790 (6666)

25-65 Unins./ Private

Age Bucket / Quantile 10th 25th 50th 75th 90th 95th Mean

25-29 0 (0) 0 (0) 0 (166) 173 (758) 819 (2959) 1824 (5502) 391 (952)

30-34 0 (0) 0 (0) 0 (180) 254 (852) 1062 (3234) 2024 (6095) 608 (1322)

35-39 0 (0) 0 (0) 0 (174) 328 (1024) 1650 (3187) 3164 (5748) 744 (1223)

40-44 0 (0) 0 (0) 50 (308) 750 (1459) 2929 (3966) 4500 (6908) 1381 (2449)

45-49 0 (0) 0 (0) 120 (425) 857 (1846) 3108 (4566) 6719 (9658) 2089 (1967)

50-54 0 (0) 0 (144) 340 (798) 1576 (2866) 5590 (7462) 11851 (12952) 2474 (3085)

55-59 0 (0) 24 (176) 1076 (1312) 3565 (3996) 9290 (9990) 16419 (19459) 3898 (4941)

60-64 0 (60) 449 (732) 1966 (2398) 5166 (5730) 13749 (12017) 24157 (21839) 6003 (6043)

Table D4: This table describes the expenditure quantiles for (i) all individuals in MEPS age 25-65 (top panel)

and (iii) all uninsured / individual market insured individuals in MEPS, age 25-65 (bottom panel). Female

numbers presented in parantheses, male numbers are not.
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