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Abstract. Regulating bidder participation in auctions can potentially increase efficiency compared to standard

auction formats with free entry. We show that the relative performance of two such mechanisms, a standard

first-price auction with free entry and an entry rights auction, depends non-monotonically on the precision of

information that bidders have about their costs prior to deciding whether to participate in a mechanism. As

an empirical application, we estimate parameters from first-price auctions with free entry for bridge-building

contracts in Oklahoma and Texas and predict that an entry rights auction increases efficiency and reduces

procurement costs significantly.
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1. INTRODUCTION

Given the importance of public procurement for many economies around the world (e.g., 12% of GDP for

OECD countries1) there has been a great deal of interest in, and research on, the mechanisms by which

governments award projects.2 Even small improvements in a procurement mechanism’s design offer the

Contact. bhattacv@mit.edu, j.roberts@duke.edu, atsweet@duke.edu. We are grateful to Dakshina De Silva, Timothy
Dunne, Anuraddha Kankanamge, and Georgia Kosmopoulou for sharing their data with us. We would also like to acknowledge
helpful discussions with and feedback from Ali Hortaçsu, Tim Hubbard, Jon Levin, Rob Porter, Paulo Somaini, and Steve
Tadelis. Bhattacharya would like to thank the Davies Fellowship from the Duke University Department of Economics for
financial support. Any errors are our own.

1See OECD (2011).
2See, for example, Bajari and Tadelis (2001) and the cites therein.
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possibility of large absolute gains in efficiency or reductions in procurement costs. An important issue

that has only recently been considered3 is the fact that in many cases the firms competing for an award

must engage in costly due diligence or other types of research activity in order to learn how much it will

cost them to complete the job before they can submit a bid. In these cases, the procurement design may

affect the set of firms making offers as well as the bids they submit.

Currently, standard first-price auctions are predominantly used for public procurement,4 and this can

be partly justified on economic efficiency grounds. Existing theoretical work (Levin and Smith (1994),

Gentry and Li (2012a)) has shown that when participation in auctions is costly bidders’ privately optimal

entry strategies into standard auction formats will be the same as would be chosen by a social planner

with the same information, assuming that the planner wants to minimize the cost of completing the

contract plus total entry costs.5

However, these results that show that entry decisions are efficient given the way that standard auctions

work do not imply that changing the way that potential bidders enter the auction cannot raise efficiency.

For example, Milgrom (2004) shows that when potential bidders have no private information about their

values prior to performing due diligence (entry), efficiency is increased when the auctioneer chooses a

fixed number of firms to submit bids. The intuition is quite simple: with free entry and no private

information, potential bidders will mix over whether to enter (assuming moderate entry costs), resulting

in a stochastic number of entrants. However, because social surplus is concave in the realized number of

entrants, efficiency would be increased by fixing the number of entrants.

We compare the performance of standard auctions with free entry and “entry rights” auctions, in

which potential bidders first bid, without performing due diligence, for a fixed and pre-announced number

of rights to undertake due diligence and compete in a second-round auction for the contract itself. We do

so under the assumption that potential bidders start with some private information (a signal) about their

likely costs of completing the contract. As a result, the free-entry process will be selective in the sense that

firms with lower costs will be more likely to enter a standard auction. Under this assumption it is natural

for the seller, who wants to choose a fixed number of bidders, to auction off entry rights in order to select

the firms that are likely to have the lowest costs. With selection, whether a standard auction with free

3See, for example, Li and Zheng (2009) or Krasnokutskaya and Seim (2011).
4See Bajari, McMillan, and Tadelis (2009).
5The typical Mankiw and Whinston (1986) result that free entry results in excess entry in a homogenous goods market does
not hold because an entrant only takes business from other firms when it is socially optimal for it to do so.
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entry or an entry rights auction is more efficient depends on the relative importance of two factors. First,

as in Milgrom’s result, it is desirable to coordinate the entry decisions of different bidders, which happens

in the entry rights auction but not with free entry. Second, it is desirable that the amount of entry be

conditioned on the private information of the bidders, which happens with free entry since a potential

bidder’s entry strategy is a function of its signal, but not in the entry rights auction where the number of

entrants is set by the seller in advance.6 We illustrate using an example that the trade-off between these

factors depends in a non-monotonic way on the precision of the information that potential bidders have.

When the information is either very precise (so that bidders know their completion costs prior to bidding)

or very imprecise, the entry rights auction dominates. In the latter case, this reflects Milgrom’s result. In

the former case, the firm with the best signal is almost certainly the one with the lowest cost, and the

entry rights auction with one entry slot can select this firm as the only entrant. However, when bidders’

initial information is only moderately precise, a standard auction with free entry can dominate.

As relative performance depends on parameters, including the precision of bidders’ pre-entry information,

we estimate our model using data on a sample of bridge-building contracts, which were let by the Oklahoma

and Texas Departments of Transportation using first-price, low-bid auctions with free entry. These types

of contracts, and other forms of contracts for road construction and maintenance, are usually procured by

auction. We find that entry is partially selective and that entry is costly so that, under free entry, there is

substantial variation across auctions in the proportion of potential entrants that decide to enter. One

of the contributions of our paper is to provide a methodology for solving and estimating first-price and

entry rights auctions with endogenous and partially selective entry. We solve for bid functions and entry

strategies jointly using the mathematical programming with equilibrium constraints (MPEC) approach

(Su and Judd (2012)).7 We estimate our model using a simulated method of moments estimator where

expectations are computed using importance sampling as suggested by Ackerberg (2009). This approach

enables us to allow for rich observed and unobserved heterogeneity across auctions, unlike the one previous

attempt to estimate this type of model of which we are aware (Marmer, Shneyerov, and Xu (2011)).8

6Of course, the entry decisions are conditioned on signals instead of actual costs. It is possible for a high-cost bidder to
enter the auction because he received a low signal.

7Hubbard and Paarsch (2009) use this approach to solve first-price auction models with perfectly selective entry. We extend
their method to allow for imperfect selection.

8Some earlier work, such as Krasnokutskaya and Seim (2011), estimates models of endogenous entry into first-price auctions
with no selection. Without selection, estimation is more straightforward because the entrants into the auction can be
assumed to have a random sample of values or costs.



Bhattacharya, Roberts, and Sweeting 4

Based on our estimates, we compute that, even though entry is only partially selective, there would be

substantial efficiency gains to using entry rights auctions. For example, for the representative average

auction in our sample, the expected sum of contract completion costs and entry costs would be 2.14%

lower in the entry rights auction format. At the same time, the entry rights auction would lower the

total procurement costs of the seller by 3.57%, which is much larger than the effect of the types of design

changes usually considered in the literature, such as setting an optimal reserve price.

We are not aware of any previous attempts in the literature to quantify the impact of using an entry

rights scheme based on estimated real-world parameters. A related theoretical literature has considered

so-called “indicative bidding” schemes where potential bidders submit non-binding bids before the seller

selects some of them to compete in an auction for the contract. In contrast, in an entry rights auction

first-round bids are binding, and selected bidders make payments based on these bids even if they ultimately

do not win the contract. Indicative schemes are often used by banks and as part of the complicated

processes by which defense equipment is purchased (Hendricks and Quint (2013), Foley (2003), Welch

and Fremond (1998)). Ye (2007) argued that only entry rights auctions, like the one we consider, should

induce informative first-stage bids in equilibrium and so guarantee the selection of the bidders that are

most likely to have the highest values in the second stage. Recently Hendricks and Quint (2013) have

shown that this is not necessarily true if bidders are only allowed to choose from a discrete set of possible

first-stage bids, and they provide some numerical examples comparing the performance of indicative

bidding schemes and free entry auctions under this assumption.9 We consider possible explanations for

why entry rights auctions are not more frequently used in practice, given our results, at the end of the

paper. The paper is also related to some of our earlier work on selective entry auction models (Roberts

and Sweeting (2013a), Roberts and Sweeting (2013b)). In those papers we consider selective entry into

second-price auctions, where the simpler form of equilibrium bidding strategies simplifies computation

and estimation relative to the first-price, low-bid auctions considered in this paper which are actually the

auction format that is most widely used in practice. In Roberts and Sweeting (2013b) we compare the

performance of the free entry auction with a sequential bidding process which is more efficient, and can

improve the seller’s revenues for a wide range of parameters, even though it allows early bidders to deter

entry. Here we consider a quite different type of design change which retains the simultaneous bidding

9Kagel, Pevnitskaya, and Ye (2008) use lab experiments to compare different types of indicative bidding procedures.
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feature of most standardly used auctions.10

Two comments are in order about the nature of our results. First, we focus on numerical results

based on estimated parameters rather than providing general theoretical results about efficiency or cost

comparisons in the way that Milgrom (2004) does when there is no selection. This reflects the fact that

models with selection are much less tractable, with comparisons often being parameter-dependent. We do

consider how our results change when we vary the parameters of our model one at a time. A benefit of our

approach is that we are able to give a clear guide to the magnitude of efficiency differences, rather than

just being able to sign them. Second, we consider a specific form of entry rights auction rather than trying

to consider the optimal entry rights auction. Given that the disadvantage of the entry rights auction that

we consider, where the number of bidders to be selected is fixed in advance and is not conditioned on

potential bidders’ signals, the optimal design would likely involve making the chosen number of bidders

a function of first-stage bids. We do not try to consider the optimal auction for three reasons. First,

designing the optimal entry rights auction with partial selection is a very hard problem, and second,

unlike the plain vanilla entry rights auction that we consider, it is likely to involve complicated procedures

that neither sellers nor bidders are likely to want in practice.11 Third, our bottom-line result, given our

parameters, is that the entry rights auction dominates the free entry auction. This conclusion would only

be strengthened by considering the optimal entry rights auction.

The paper proceeds as follows. Section 2 presents the model of imperfectly selective entry into first-price

auctions and entry rights auctions and discusses our numerical methodology for solving these models.

Section 3 discusses the data. Section 4 discusses our estimation method. Section 5.1 presents and discusses

the estimates of the model’s parameters. The impact of employing an entry rights auction is analyzed in

Section 5.2. Section 6 concludes. The Appendices contain more details of the numerical methods used to

solve the first-price auctions, details of how we constructed our data sample, and Monte Carlo analysis of

our estimation method.

10The percentage cost reductions from moving to an entry rights auction we estimate for the representative auction in our
data are larger than the percentage revenue gains from moving to a sequential mechanism that Roberts and Sweeting
(2013b) predict in their empirical setting.

11Lu and Ye (2013) characterize the optimal entry rights auction format in a setting with no selection but where potential
bidders have heterogenous entry (due-diligence) costs, showing that it can be implemented through an all-pay auction but
not, more standard, uniform or discriminatory-price auctions.
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2. A MODEL OF ENDOGENOUS BIDDER PARTICIPATION IN AUCTIONS

We first introduce the general structure of costs and information in our model of procurement and then

describe the standard and entry rights auctions. We conclude the section with a numerical example

illustrating the intuition as to why efficiency depends on the degree of selection in the entry process and

why it may be lowered by fixing the number of bidders.

A procurement agency wishes to select one of Na risk neutral bidders to complete a project a, such as

constructing a bridge. The agency may require that it pay no more than a reserve price r to complete the

project, and if no firm submits a bid below this amount, the agency incurs a cost c0 of procuring the work

elsewhere. Potential bidders can fulfill the contract at a cost distributed FCa(·) with compact support

[c, c] that admits a continuous density fCa(·). We assume that bidders are ex ante symmetric and have

independent private costs. To participate in the actual bidding stage of any mechanism, a potential bidder

must pay an entry cost Ka. Upon paying Ka, the bidder learns its private cost for constructing the bridge,

and so the entry cost is best interpreted as including the firm’s cost of the research necessary to learn the

cost of completing the bridge as well as participation and bidding costs. We make the assumption that

firms cannot compete without paying Ka. However, prior to paying the entry cost, each firm observes a

signal Si that is correlated with its true cost Ci and that is not correlated with any other bidder’s cost.

Signals are affiliated with costs in the standard sense: the cost distribution conditional on a signal s

first-order stochastically dominates the cost distribution conditional on a signal s̃ < s.

The two extreme cases of the Levin and Smith (1994) and Samuelson (1985) models (henceforth LS and

S, respectively) are of course embedded in this setup. If Si = Ci, then signals are perfectly informative of

costs and the setup reduces to the S model. When Si is independent of Ci, signals contain no information

about costs and the setup reduces to the LS model. For many empirical settings, it seems plausible that

buyers will have some, but imperfect, information about their costs prior to conducting costly research,

consistent with a distribution of Si that is not independent of Ci but not perfectly correlated either.

2.1. Selective Entry into First-Price Auctions

The first model of procurement that we introduce describes the procedure used in our data: a sealed-bid,

first-price auction in which the project is awarded to the bidder that submits the lowest bid, and that

bidder is paid his bid. We model this auction, which we will refer to from now on as the FPA, as having
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two stages. In the first stage, potential bidders observe their imperfectly informative signals of their costs.

Based on these private signals, they take independent, simultaneous entry decisions (decide to pay Ka).

In the second stage, all firms that paid Ka compete in a low-bid, first-price auction with reserve price ra.

We assume that firms that do not pay Ka cannot participate in the auction and that agents bid without

knowing how many of their competitors actually entered the auction, as is done in Li and Zheng (2009).

Note that it is possible that an agent who enters the auction by paying the entry cost will learn that his

true cost exceeds the reserve price, in which case he will not bid.

We solve for entry decisions and bid functions that define the unique symmetric Bayesian Nash

equilibrium with monotone bidding behavior. Potential bidders enter using a cutoff strategy; that is,

a bidder enters if and only if he observes a signal si < s′∗a for some critical value of s′∗a (Gentry and Li

(2012b)). Define Ha(c) to be the probability that a given bidder either (1) enters the auction and has a

cost no smaller than c or (2) does not enter the auction; thus, Ha(·) depends on the signal cutoff value.

Then, the equilibrium bid functions β∗a(·) are given by the solutions to the optimization problem

β∗a(c) ≡ arg max
b

(b− c)
[
Ha

(
β∗a
−1(b)

)]Na−1
. (1)

The first order condition associated with this optimization problem gives the differential equation

1 + β∗a
−1′(b)

(
b− β∗a

−1(b)
)

(Na − 1)

H ′a
(
β∗a
−1′(b)

)
Ha

(
β∗a
−1′(b)

)
 = 0, (2)

with the upper boundary condition

β∗a(ra) = ra. (3)

The equilibrium critical cutoff values s′∗a are determined by the indifference condition that any potential

bidder who receives a signal of s′∗a must be indifferent between entering the auction or not paying the

entry cost at all. This zero-profit condition is thus written

∫ ra

ba

(
b− β∗a

−1(b)
)
fCa

(
β∗a
−1(b)|s′∗a

) [
Ha

(
β∗a
−1(b)

)]Na−1
db = Ka, (4)

where ba ≡ βa(c), and fCa(·|s) is the conditional density of a bidder’s costs, computed using Bayes’ Rule,



Bhattacharya, Roberts, and Sweeting 8

given he receives a signal s.

To solve for the bid functions, we adopt the MPEC approach presented by Su and Judd (2012). In

a manner similar to that outlined by Hubbard and Paarsch (2009), we express the inverse bid function

as a linear combination of the first P Chebyshev polynomials, scaled to the interval [ba, ra]. The choice

variables in our programming problem are, therefore, P Chebyshev coefficients, the signal cutoff, and

the value of the low bid. We pick a fine grid {xj}Ji=1 on the interval [ba, ra]. Then, we solve for the bid

functions (more precisely, the Chebyshev coefficients) and the signal cutoff using

arg min
{ba,β

∗−1
a ,s′∗a }

J∑
j=1

ga
(
β∗−1a (xj)

)2
s.t. (3) and (4), (5)

where ga
(
β∗a
−1(b)

)
is defined to be the left-hand side of equation (2). This nonlinear programming problem

is solved using the SNOPT solver interfaced with the AMPL programming language. We give more details

about the numerical methods in Appendix A.

We note that while we assume ex ante bidder symmetry, this method can also be used to solve for

equilibria in auctions with multiple asymmetric potential entrants, although in this case type-symmetric

equilibria may not be unique. The topic of solving for all equilibria in asymmetric first-price auction

models is one of ongoing research.

2.2. Entry Rights Auctions

When entry is regulated, a straightforward way to identify the firms that are allowed to compete for a

contract is to hold an auction. The entry rights auction, or ERA, that we consider, which is based on

one proposed by Ye (2007), does just this. In the first stage of the ERA, each of the N potential bidders

learns his signal. Upon receiving this signal si, each bidder submits a first-round bid a(si) for the right to

participate in a second-stage auction. This bid need not be positive; if a(si) ≤ 0, then the bidder bids for

a subsidy from the procurer. The fact that a(·) can be negative ensures that all bidders have an incentive

to participate in the first stage of the mechanism. The n bidders who submit the highest first-round bids

are required to participate in the second-round bidding scheme. At this time, the (n+ 1)st highest bid is

revealed, and all entrants pay the procurer this bid (or receive the appropriate subsidy, if the (n+ 1)st

highest bid is negative). The entrants then must spend K to learn their true costs, and they subsequently
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compete in a first-price, low-bid auction with reserve r that is known at the beginning of the auction.12 In

the scheme we consider in this section, the first-stage bids are binding; Ye (2007) shows in his Proposition

2 that if the bids were non-binding (i.e., if the first-stage bids were merely “indicative” of the bidders’

interest), no symmetric increasing equilibrium exists. In a recent paper, Hendricks and Quint (2013) show

that there can be partial separation of bidder types when first-stage bids are non-binding, provided that

the indicative bid space is discrete.

We are interested in a symmetric Bayesian Nash equilibrium where the first-round bidding strategy

a(·) is monotone in the signal and the second-round bid function β(·) is monotone in the cost for every

value of the revealed first-round bid. Note that in such an equilibrium, revealing the (n+ 1)st largest bid

is equivalent to revealing the (n+ 1)st lowest signal; we will denote the random variable corresponding to

this signal by S and refer to particular realizations of it by s. Thus, entrants in the second round use

Bayes’ Rule to compute the distribution of the costs of any one of their opponents as FC|S≤s(·), with

density fC|S≤s(·).13 Then, the second-stage bid function β(·; s) solves the differential equation

β′(c; s) = (n− 1) (β(c; s)− c)
[

fC|S≤s(c)

1− FC|S≤s(c)

]
, (6)

with the boundary condition β(r; s) = r. To solve for the bid function a(·), note that the profit of a bidder

with cost c who is invited to enter the auction, when the (n+ 1)st signal is s, is

Π(c; s) = (β(c; s)− c)
[
1− FC|S≤s(c)

]n−1
. (7)

Given that the first-round bidding takes the form of an (n+ 1)st price auction for n goods, agents bid the

expected profit from entering. That is,

a(s) =

∫∫
Π(c; s) dFC|S=s(c) dFS|S≥s(s), (8)

which depends on n and where FC|S=s(·) is the conditional distribution of the cost given a signal of s, and

12To save on notation, we will drop the subscripts a from the previous subsection that index auction-specific parameters.
13As Ye (2007) notes, it is important to reveal the (n+ 1)st highest bid, but not winning bids, in order for bidders to enter

the second stage with symmetric beliefs about their opponents. (Of course, other losing bids can be revealed as well.) If
no bids were revealed before the second stage, then an entrant with signal si would believe that the cost distribution of his
opponents is the original cost distribution conditioned on the signal being among the lowest n signals, given that si is also
among the n lowest signals. This distribution depends on si.
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FS|S≥s(·) is the conditional distribution of the (n+ 1)st lowest signal S given that it is at least s. Note

that if the minimum bid in the second round is w and the (n + 1)st highest bid in the first round is a,

then the cost to the procurer is w − na.

The number n of firms that are allowed to enter the second stage of the ERA is a parameter that is

selected by the procurer, and in most settings, the procurer would be restricted to 1 ≤ n ≤ N .14 Note

that the two extreme values n = N and n = 1 reduce to simpler mechanisms. For instance, if n = N ,

the first round of the ERA would be trivial, as all N bidders would be required to pay −K; the setup

would be equivalent to a standard FPA (in which all bidders know their true costs) with the procurer

incurring an extra cost of N ·K to subsidize all entry costs. At the other extreme, an ERA with n = 1 is

simply a one-stage auction where bidders submit bids based entirely on their signals rather than their

actual costs. As long as entrants are required to pay the entry cost K upon entering the second stage,

this case is theoretically no different from any other. As such, throughout the remainder of this section,

we will allow n = 1 to be an admissible choice. We recognize, however, that there are practical issues

with the case n = 1. Taken literally, it corresponds to a situation where the first stage consists of the

bidders bidding for the right to accept the contract at the reserve price. In such a setup, there would be

no incentive for the entrant to spend K to learn his own cost, and this introduces a complication into the

interpretation of the entry cost in the model. As such, when we apply the model to an empirical setting

in Section 5.2, we will restrict to 2 ≤ n ≤ N .

2.3. Efficiency of Bidder Entry

We assume that the social planner in this setting would wish to minimize the winner’s cost of completing

the project (or c0 if the project is not assigned through the auction) plus the total entry costs paid by the

bidders. Levin and Smith (1994) (their Proposition 6 and its corollary) and Gentry and Li (2012a) (their

Proposition 4) show that in either the LS model or the affiliated signal model, symmetric equilibrium

entry strategies in the FPA are socially optimal when the reserve price equals c0.
15 However, the fact

that entry strategies are socially optimal in an FPA with free entry does not imply that an alternative

14It is in principle possible to set n = 0, of course, but doing so gives the uninteresting case in which the procurer ignores
the bidders entirely and simply buys the contract from his outside option.

15In the LS model, this reserve price is optimal for the seller, although this is not true when there is selection as a higher
reserve price allows the seller to extract some of the bidders’ expected surplus. In our empirical setting, as we discuss
below, there is no clearly specified reserve price (De Silva, Jeitschko, and Kosmopoulou (2009)).
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mechanism that regulates or coordinates entry, such as an ERA, cannot be more efficient. As an example,

Milgrom (2004) shows that, in the case of the LS model, efficiency is improved if the seller chooses a fixed

number of entrants (as happens in the ERA).16 Milgrom’s result holds because in the symmetric free

entry equilibrium of the LS model bidders randomize over entry, so that the realized number of entrants is

stochastic, and the sum of the expected completion cost plus entry costs is convex in the realized number

of entrants.17

A similar result holds in the opposite extreme of the S model as long as the probability that no

potential bidder has a completion cost plus entry cost larger than the seller’s outside option (c0) is small.

Since bidders know their costs perfectly even before paying the entry cost, it is efficient to have at most

the potential bidder with the best signal enter the second-stage auction in order to reduce entry costs.

This potential bidder can be selected using an ERA where only one participant is chosen. In contrast, in

an FPA with free entry no firms or more than one firm may enter.18

When there is imperfect selection, however, the FPA with free entry can outperform the ERA. This

reflects the fact the amount of entry into the FPA is a function of bidders’ private information about

their costs (even though they make decisions independently and so the information of different potential

bidders is not combined in an optimal way), which is desirable from an efficiency perspective. This is not

true in the ERA since the number of entrants is fixed in advance.

To illustrate that cases with intermediate selection can be quite different, consider a simple example,

in which costs are distributed lognormally with location parameter µC = −0.09 and scale parameter

16This result holds as long as entry costs are not so high that, in the free entry equilibrium, no bidder enters the auction
with positive probability, and not so low that all bidders enter with probability one.

17Recall that in the LS model entrants are ex ante symmetric because they have no information about their costs when
entering in the FPA or when being chosen by the seller. This makes it straightforward to analyze the shape of this social
inefficiency function. This is not the case in models with selection for the following reason. The efficiency of the FPA
when there are n realized entrants is

E [min {C1, . . . Cn}|Si ≤ s′ for all i ∈ {1, 2, . . . , n}] + nK.

The efficiency function for the ERA that lets in n entrants is

E [min {C1, . . . Cn}| {S1, . . . , Sn} are the lowest n of N signals] + nK.

In general, these two expressions are not identical, so even if we knew that the efficiency function for the FPA were
convex, this would not guarantee that fixing entry via the ERA will improve efficiency. In the LS case, of course, the two
expressions are equal since Ci is uncorrelated with Si, and the logic from Milgrom (2004) is applicable.

18Note that the ERA will admit one entrant even if all bidders have costs larger than c0, but as long as r ≤ c0, the FPA
will not. In such a situation, the efficiency of the ERA will be lower than that of the FPA. The caveat about requiring
the probability that all potential bidders have a cost plus entry cost larger than the seller’s outside option to be small
essentially ensures that this happens infrequently.
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σC = 0.2 (implying an average cost of 0.93 with standard deviation 0.19) and truncated to the interval

[0, 4.75]. The cost of entry is 0.02, there are four potential bidders, and Si = Ci · exp (εi), where εi is

distributed normally with mean 0 and standard deviation σε, with εi independent across bidders. We

assume that c0 and the reserve in the FPA are equal to 0.85. With this setup, σ2
ε controls how much

potential buyers know about their costs before deciding whether to enter the mechanism, and in this

way it controls the amount of selection in the entry process. Holding σ2
C fixed, as σ2

ε → ∞, the model

will tend towards the informational assumptions of the LS model, and as σ2
ε → 0, it tends towards the

informational assumptions of the S model. Define α ≡ σ2
ε/ (σ2

ε + σ2
C).19 This is a useful measure of the

informational content of the signal and consequently the degree of selection in the entry process: a value

of α near 1 implies that the the signal provides very little information, and the posterior distribution of

the cost given the signal will be close to FC .

[Figure 1 about here.]

Figure 1 plots both the percent difference in efficiency between the FPA and the ERA (a positive

number means that the ERA is more efficient) as well as the (expected) number of entrants and the

expected completion cost in each mechanism as a function of the degree of selection (α). Note that the

completion cost is the winner’s cost if the object is awarded to a bidder and is c0 otherwise. Efficiency is

the sum of the cost of completion and the entry costs paid, so that lower numbers are more efficient, and

for any choice of parameters in the ERA, n is set to minimize this quantity. When α is 0 or 1, the ERA is

more efficient, as expected based on the arguments above. However, for intermediate levels of selection,

the unregulated entry process of the FPA yields a more efficient outcome.

For example, when α = 0.5, the ERA tends to award the contract to a higher cost firm, so despite

the fact that it admits slightly fewer firms to the second stage than tend to enter the FPA (thus saving

on entry costs paid), it is the less efficient mechanism. When α = 0.6, the reason that the ERA is less

efficient than the FPA is reversed. Now the ERA awards the contract to a lower cost firm on average,

but to do so, the mechanism admits more firms to the second stage than choose to enter the FPA. While

these extra entrants do help to lower cost of completion in the ERA, thus improving efficiency, the entry

into the ERA can be considered excessive relative to that in the FPA in the following sense: there are

19The definition of α comes from a property of the lognormal distribution. If the support of the lognormal distribution
were not truncated, then the conditional distribution of the cost given a signal S is lognormal with location parameter
αµC + (1− α) logS and scale parameter σC ·

√
α.
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more firms that enter the ERA and do not win that would not enter the FPA under free entry (0.492)

than vice versa (0.164). We now turn to introducing the data which we will use to estimate the above

model of firm behavior to determine the relevant amount of selection in a particular empirical setting,

which, by these arguments, will directly impact the potential benefits of employing an ERA there.

3. DATA

We consider procurement auctions for bridge construction conducted by the Oklahoma and Texas

Departments of Transportation (DoTs) from March 2000 through August 2003. As described in De Silva,

Dunne, Kankanamge, and Kosmopoulou (2008), data is taken from all regions of Oklahoma but only the

North Texas and Panhandle regions of Texas to ensure similar geographic environments (to make projects

comparable in terms of construction materials) and similar economic conditions. Interested bidders are

required to purchase plans from the state (the cost of purchasing a plan is on the order of $100), and the

list of companies who have purchased a plan is publicly available before bidding takes place. These plans

contain basic information about the project and also list an engineer’s estimate.

[Table 1 about here.]

Summary statistics for the sample are presented in Table 1.20 We note that the average number of

potential bidders, defined as plan holders (which is reasonable since non-plan holders cannot participate

in the auction), is larger in Texas than Oklahoma, but the entry rate is roughly the same in both states.

The seasonally adjusted unemployment rate, which may affect bidders’ expected labor costs, is also

systematically higher in Texas than in Oklahoma. The engineer’s estimate for projects is higher in Texas

than in Oklahoma, and the winning bids, normalized by the engineer’s estimates, are also slightly higher

in Texas.

Since we will apply the model presented in Section 2 to these data, we briefly discuss its main

assumptions. The assumption of independent private costs is common in the literature studying highway

procurement auctions; examples of papers using the IPV paradigm in highway procurement auctions

include Krasnokutskaya and Seim (2011), Li and Zheng (2009) and Jofre-Benet and Pesendorfer (2003).

Because our data do not include exogenous bidder characteristics that allow us to group bidders into

20Appendix B gives details of how we constructed our sample from the original data.
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different types, we also make the common (see, for example, Li and Zheng (2009)) assumption that bidders

are a priori symmetric. That only about 65% of those firms who purchase a plan actually submit a bid

provides evidence of costly entry (see Krasnokutskaya and Seim (2011)). Lastly, our model assumes that

there is a publicly observable reserve price in order to avoid the problem that with no reserve price, if

there is some probability that other bidders do not enter, it would be optimal to submit an infinite bid.

However the DoTs did not set an explicit reserve price for the auctions in our sample. We therefore

impose a reserve of 1.5 times the engineer’s estimate for each auction and drop (see Appendix B) the 5

out of the 471 auctions in which the declared winner bid more than this cutoff.21

4. ESTIMATION

In this section, we describe our estimation technique and detail the parametric specification that we take

to the data. Appendix C provides a Monte Carlo study that analyzes the performance of the estimator.

4.1. Model Setup and Specification

We estimate a fully parametric version of the model from Section 2.1. We assume that FCa(·) is a

lognormal distribution with mean parameter µCa and scale parameter σCa, truncated to the interval

[0, c].22,23 Furthermore, we assume Si = Ci · exp (εi), where εi is distributed normally with mean 0 and

standard deviation σεa, with εi independent across bidders. As in the model in the example in Section

2.3, σ2
εa controls the amount of selection in the entry process and a useful measure of the informational

content of the signal is αa. Given σCa, αa is a strictly monotonic function of σεa. Rather than estimating

σεa directly, we choose to estimate αa because as part of the procedure we estimate below, we have to

specify bounds on the structural parameters. In the case of αa, 0 and 1 provide us with natural upper

and lower bounds.

As implicit in the notation, there is auction-specific heterogeneity in the parameters (µCa, σCa, αa, and

Ka), and we model this heterogeneity parametrically. For each auction a, we observe a set of covariates

Xa. The specific parameters for auction a are drawn from truncated normal distributions with a mean

21An alternate approach (e.g., Li and Zheng (2009)) is to assume that the government acts as an additional bidder if only
one firm enters.

22In estimation we will set c = 4.75 to insure that the cumulative distribution (cdf) of the lognormal distribution is very
close to 1 for reasonable values of µC and σC .

23Like Krasnokutskaya and Seim (2011), our parametric assumptions are motivated by the previous literature (e.g., Porter
and Zona (1993), Hong and Shum (2002), etc.).
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parameter that depends on Xa. Let TRN(µ, σ2, c, c) denote a normal distribution with mean µ and

variance σ2 truncated to the interval [c, c]. We then assume that

µCa ∼ TRN
(
XaβµC , ω

2
µC
, cµC , cµC

)
σCa ∼ TRN

(
XaβσC , ω

2
σC
, cσC , cσC

)
αa ∼ TRN

(
Xaβα, ω

2
α, cα, cα

)
Ka ∼ TRN

(
XaβK , ω

2
K , cK , cK

)
.

(9)

The truncation points are known to the econometrician. In this setting, the parameters of interest

are Γ ≡
{
βµC , βσC , βα, βK , ω

2
µC
, ω2

σC
, ω2

α, ω
2
K

}
. This specification allows for observed and unobserved

heterogeneity across auctions in the structural parameters. Previous research (e.g. Krasnokutskaya (2011)

and Bajari, Hong, and Ryan (2010)) have found significant unobserved heterogeneity in completion costs

for road construction contracts.

In our setting, Xa is a vector consisting of a constant, a dummy variable that is 1 if the state is Texas,

and the county-level unemployment in the county of the project in the month of bidding. We denote

the coefficients for these covariates as β0,×, β1,×, and β2,×, respectively, where × can be any of µC , σC ,

α, or K. We only allow unemployment to affect the location parameter of the cost distribution, setting

β1,σC = β1,α = β1,K ≡ 0. The Texas dummy variable captures differences in the cost distributions of

bidders, or in the procurement processes, across state lines. For estimation, we express completion costs

and entry costs in terms of the engineer’s estimate (so that a cost of 0.9 represents 90% of the engineer’s

estimate).

4.2. Importance Sampling

We estimate the model using a simulated method-of-moments approach with importance sampling (see

Ackerberg (2009) for more on using importance sampling in estimation). The motivation behind this

method is that our numerical procedure of solving auctions is relatively computationally expensive, and

repeatedly solving auctions as part of a parameter optimization routine is infeasible, especially given

across-auction heterogeneity and the fact that we need to solve for equilibrium bid functions in the

first-price auctions. Intuitively, importance sampling allows us to estimate the parameters by first solving

a large number of auctions with parameters drawn from an initial sampling distribution. Solving these
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initial auctions can be easily parallelized, and no further auctions need to be solved during the entire

estimation procedure. The relevant moments from these games are then appropriately reweighted, which

is computationally cheap, as the guess for the parameter of interest is changed during the estimation

procedure.

To apply importance sampling to a method-of-moments approach, let ya = f(Xa, θa) be an outcome from

particular auction t with observed characteristics Xa and unobserved parameters θa = {µCa, σCa, αa, Ka}

whose distribution depends on Xa. In this setup, we will assume that the distribution of θ conditional on

X is characterized by a finite-dimensional parameter vector Γ, as given in equation (9). This distribution

must have compact support that is known to the econometrician and does not depend on the parameters

to be estimated. The sample value of the moment in A data observations, conditioned on the observable

covariates Xa, is then

y(Xa) =
1

A

A∑
a=1

ya(Xa). (10)

For a particular parameter choice Γ, the expected value of the moment is

∫
f(Xa, θa)φ(θa|Xa,Γ) dθ, (11)

where φ(θa|Xa,Γ) is the pdf of θa given the observed characteristics and the parameter vector. In general,

one could use a simulation-based method to compute the integral in equation (11) by drawing S samples

of θ from the distribution φ(θ|Xa,Γ) and computing f(Xa, θsa) for each draw θsa so that

∫
f(Xa, θa)φ(θa|Xa,Γ)dθ ≈ 1

S

S∑
s=1

f(Xa, θsa). (12)

In a method-of-moments estimator, Γ is chosen to minimize the distance between the data moment in

equation (10) and the simulated moments in equation (12).

Since taking new draws and solving the game for each draw for each choice of Γ used in the optimization

routine is computationally prohibitive, we can instead draw simulations from a different distribution

ψ(θa|Xa) of our choosing that has the same supports and modify equation (11) as

∫
f(Xa, θa)

φ(θa|Xa,Γ)

ψ(θa|Xa)
ψ(θa|Xa) dθ. (13)
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Since ψ(θa|Xa) is a known density that does not depend on parameters that we seek to estimate, we can

simulate this integral by taking S draws of θ, now from ψ(θa|Xa), and computing

1

S

S∑
s=1

f(Xa, θa)
φ(θsa|Xa,Γ)

ψ(θsa|Xa)
. (14)

Computing the pdf φ(θa|Xa,Γ) is an inexpensive operation, so given a set of simulations drawn from ψ(·),

it is computationally easy to calculate the weights on each of these draws. Equation (14) can thus be

used to choose Γ to minimize the distance between data and the simulated moments.

The moments in the data that we match are the entry distributions, winning bid distributions,

and average bid distributions, conditional on the state, number of potential entrants, and the level of

unemployment. When conditioning on unemployment, we divide it into two groups—auctions with high

unemployment (that is, auctions with unemployment greater than the median in the specific state/time

category) and those with low unemployment.24

To generate the importance sampling draws, for each observation in the data with observable covariates

Xa, we take 100 draws of parameters from the distribution ψ(θa|Xa) ≡ φ(θa|Xa, Γ̃) given in Table 2,

where φ(·) denotes the truncated normal model given in equation (9) with parameters Γ̃. Then for each

observation in the data set with observable characteristics Xa we randomly draw 50 solved auctions

without replacement from our large pool of solved auctions with the same Xa to form our set of simulations

for the estimation procedure. The parameter estimates are chosen to match these moments in the data

with the appropriately weighted moments generated from this set of simulated auctions. We estimate

standard errors using a nonparametric bootstrap where we construct 250 bootstrap samples by sampling

with replacement from the set of auctions in a state-number of potential bidders-level of unemployment

(high or low) combination.25

[Table 2 about here.]

Appendix C reports the results of Monte Carlo experiments that indicate that this estimator can

24The “entry distribution” is the profile of the sample proportion of auctions in which a particular number of bidders enters.
A particular element of the “winning bid distribution” is the sample proportion of auctions in which the winning bid
falls into a pre-specified bin; we use 15 equally-sized bins that cover the interval [0, 1.5]. The “average bid distribution”
tabulates the proportion of all potential bidders who submit a bid within a pre-specified bin; we use the same bins as in
the winning bid distribution. Note that while the winning bid distribution sums to 1, the average bid distribution sums to
the probability of entering the bidding stage and submitting a bid.

25For each auction we draw a fresh set of 50 simulations from our large pool so that the standard errors should account for
the fact that our estimates depend on the particular set of importance sampling draws used to calculate the moments.
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accurately recover the parameters even when we use a smaller number of importance sampling draws.

4.3. Identification

Due to data limitations and the need to account for selection, we take a fully parametric estimation

approach. Assuming no unobserved across-auction heterogeneity, Gentry and Li (2012b) study non-

parametric identification of a class of selective entry auction models like ours.26 They show that entry costs

and the joint distribution of signals and values are exactly identified when there is sufficient exogenous

variation in equilibrium entry thresholds (which in our setting could come from variation in the number of

potential entrants or observable controls like the unemployment rate), and that otherwise they can be

bounded. Krasnokutskaya and Seim (2011) show non-parametric identification of a first-price auction

model with a non-selective entry stage when there is unobserved heterogeneity in values, although for

estimation they too make parametric assumptions on model primitives. The estimation approach we

use to circumvent the computational burdens associated with perhaps more standard nested fixed point

methods also introduces parametric, across-auction heterogeneity in entry costs and signal noise.

5. RESULTS

In this section we present the estimation results and our counterfactual analysis of the impact of the DoTs

switching from the current procurement format to an ERA.

5.1. Parameter Estimates

Table 3 gives the parameter estimates for the model with the right-hand columns showing the implied

mean values, relative to cost estimates, for Oklahoma and Texas.

[Table 3 about here.]

To interpret the location and scale parameters together, we can compute the mean of the cost

distribution for each auction in the data and then average across auctions in the data. This procedure

shows that the mean of the cost distribution in Oklahoma is about 91.4% of the engineer’s estimate (with

a standard error of 0.84%), while it is 91.9% in Texas (with a standard error of 1.89%).

26In their conclusion they consider identification with unobserved heterogeneity that is only revealed to bidders after they
enter. In contrast, we assume that they know factors that shift mean values prior to making entry decisions.
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Mean entry costs are 1.5% of the engineer’s estimate of the cost of the project in Oklahoma and 1.9%

in Texas. These are lower than some estimates in the literature, based on models that assume no selection

(Krasnokutskaya and Seim (2011) who estimate them to be ≈ 3% and Bajari, Hong, and Ryan (2010)

who estimate them to be ≈ 4.5%). This reflects the fact that we find that there is some selection in the

entry process, as with selection, potential bidders may choose not to enter because they believe that they

have high costs as well as the need to pay the entry cost. Our estimates are in line with guidelines from

construction manuals that estimate a cost of 0.25% to 2% of the total project cost to research and prepare

bids (Halpin (2005)) and that bid costs are typically about 1% of the total bid (Park and Chapin (1992)).

The difference between the parameter estimates for Oklahoma and Texas, given by the β2 values, are not

statistically significant. Unemployment has a negative, but statistically insignificant effect on the location

parameter of the cost distribution.

The estimates in Table 3 suggest that entry is partially selective in this setting, with α around 0.50 in

Oklahoma and 0.61 in Texas; these levels of α correspond to the scale parameter σε of the error distribution

being approximately σC in Oklahoma and 1.3 times σC in Texas. Thus, despite the fact that the amount

of entry into these auctions is volatile, the fact that we find that bidders are partially informed of their

costs before doing further research suggests that the government may not want to regulate participation

in these auctions as it risks unnecessarily including high cost firms. We analyze this possibility in the next

section.

5.2. Regulating Bidder Entry with an Entry Rights Auction

In this subsection, we use our parameter estimates from Section 5.1 to study the consequences of the

DoTs regulating entry by selling the right to participate in these auctions. In presenting the results we

assume the DoTs design the ERA to minimize their cost of procurement, and then we compare the results

to those if instead they seek to maximize efficiency.

When implementing the ERAs, the auctioneer chooses to set n to n∗AUC, the value that minimizes

procurement costs. In doing so, the auctioneer balances competing effects of selling an additional entry

slot. Since the auctioneer bears all entry costs in equilibrium (via the first-stage bid function a(·)),27

one cost of letting an additional entrant into the auction is indeed the entry cost K. Additionally, by

27Conditional on n, the only effect that increasing the entry cost by ∆K would have is to reduce the first-round bid function
to ã(s) ≡ a(s)−∆K.
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opening an additional entry slot, the auctioneer lowers the expected profits of being admitted to the

second round, and this lowers first-round indicative bids, further raising net procurement costs. However,

the additional competition in the second round forces entrants to bid more aggressively, which reduces the

cost of procurement.

Table 4 lists efficiencies, procurement costs, and bidder profits for auctioneer-optimal ERAs based on

a number of parameters. The parameters chosen are tied to the estimates reported in Section 5.1. These

estimates of course define distributions over the parameters of the auction, and Table 4 selects parameters

from specific locations in the distribution. In particular, the baseline parameters presented in the first

row in the table correspond to the means of the truncated normal distributions from Section 5.1, for an

auction in Oklahoma with county-level unemployment equal to the mean unemployment in Oklahoma.

The table also shows the results for when we vary parameters one at a time to either the 10th or the 90th

percentiles of their respective distributions. The parameter we change is in italics in the table. We will

first discuss the efficiency results and then procurement costs. For almost all parameter values considered

in the comparison, the ERA results in higher efficiency (recall that this means that the cost of completion

plus the sum of entry costs paid is lower) by about 2–3%. The only exception is the Low K case, in which

the FPA is about 0.2% more efficient.

[Table 4 about here.]

We can also compute the total impact of changing from an FPA to an ERA in dollar terms by

aggregating over the entire sample of projects in our data, keeping in mind that these are a small sample

of the total number of road construction projects let by the DoTs during this time. For each project in

the dataset, we compute the expectation of efficiency in a FPA as well as in an ERA. Across our sample,

if the ERA had been used, efficiency would have been about $8.47 million, or 2.69%, higher.

To understand the differences between the two mechanisms, Table 5 breaks down the components

of efficiency and procurement costs. The table presents the completion cost in the FPA as well as the

entry rate, which are determined by the parameters and s′∗, also reported in the table. Recall that the

completion cost equals the winner’s cost in cases when there is a winning bidder and equals c0 (which is

set to the reserve of 1.5) when there is no winner. In the FPA, the completion cost can be mapped to the

procurement cost purely through the single bid function: these procurement costs (or winning bids) are

repeated from Table 4. Table 5 also presents the completion cost in the ERA along with the bid that
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the winner submits in the second round. The last component of the procurement cost in an ERA is the

first-round indicative bid paid by the entrants. The table also lists the optimal number of allowed entrants

n∗AUC. Finally, we report the expectation of the (n∗AUC + 1)st order statistic S of the signal distribution as

a benchmark to compare to s′∗ in the first-price auction.28

[Table 5 about here.]

Across the cases in Table 5, the ERA frequently allocates the project to a slightly lower cost firm

and also admits fewer entrants on average (in the Base case, for instance, 3.4 firms enter the FPA on

average but only 2 are selected in the ERA), thus clearly making it the more efficient mechanism.29 At

times the FPA awards the project to a lower cost firm, but the ERA is still more efficient because it

admits fewer firms on average. Only in the Low K case do the lower total entry costs paid in the ERA

not compensate enough for the fact that the FPA allocates the contract to a lower cost firm to make the

ERA more efficient.

How are the rewards of the ERA’s greater efficiency split between the DoTs and the firms? Returning

to Table 4, we find that procurement costs could be lowered by 3–4% if the DoTs regulated bidder

participation with an ERA. This drop in procurement costs is substantial, especially when compared to

the impact of setting an optimal (from a procurement cost perspective) reserve price, one of the most

commonly analyzed mechanism design tools. For example, in the Base case, switching to the ERA reduces

procurement costs by 3.14%, whereas using an optimal reserve price in an FPA only lowers procurement

costs by 0.2%.30 Bidders, on the other hand, are hurt by the ERA, with their expected profits falling

30%–40%.

As we did with efficiency, we can compute the total effect on procurement costs and bidder profits for

projects in our data of switching to an ERA. We predict that total procurement costs would have been

28Note one important difference between s′∗ and E[S]: in the FPA, only s′∗ is known to the entrants whereas in the ERA,
the actual realization of S is revealed indirectly to the entrants through the bid they are asked to pay.

29In the FPA, there is a small but nontrivial probability that no bidder enters and the procurer has to buy the contract at a
price of 1.5. This situation happens slightly less than 1% of the time in the Base case. In the ERA, however, the project
is only procured from the outside option when all n bidders who enter have costs larger than r, which never happens
in our simulations. It may be reasonable to assume that when no bidder enters the FPA, the procuring agency has the
option to costlessly re-run the auction, in which case we would condition all quantities in Tables 4 and 5 on at least one
bidder entering the FPA. However, doing so does not change any of our results qualitatively: the completion cost of the
FPA becomes slightly lower than that of the ERA, but the signs of the differences in efficiencies, procurement costs, and
bidder profits remain the same, and magnitudes are not significantly different.

30We compute the optimal reserve price by searching over a grid of reserve prices with 0.01 spacing. For each reserve price
we simulate procurement costs using 500,000 simulations.
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about $11.66 million, or 3.61%, lower and bidder profits would have decreased by $460,000, or 38.6%, if

the ERA had been employed.

To understand these effects, we again turn to Table 5. Despite the fact that the completion cost is

comparable between the FPA and the ERA, the winning bid columns for the two mechanisms show that

the procurement costs in the FPA are usually significantly higher even when ignoring the revenue from

the first-round bids in the ERA. In fact, for high σC and high α, the mean winner’s second-round bid in

the ERA is lower than the mean winner’s bid in the FPA, even though the costs are slightly lower in the

FPA. Figure 2 plots the distribution of the winner’s costs as well as the procurement costs (including the

first-round indicative bid in the ERA) for both mechanisms at the baseline parameters.31 The distribution

of the winner’s costs for the FPA and the ERA are similar in shape, with the distribution for the FPA

concentrated on slightly lower values than that for the ERA. The procurement costs, however, show a

marked difference in shape: the distribution for the FPA has a pronounced right tail in comparison to

that of the ERA. This tail exists because the markups (defined as the ratio of the bid to the cost, less 1)

when the winner’s cost is relatively high in the FPA are larger than those in the ERA.32

[Figure 2 about here.]

The difference in markups can be seen in Figure 3, which compares the FPA bid function and the

average bids from an ERA with the same parameters and n = 2.33 We also include the density functions

for the cost distributions of a typical entrant into each mechanism to highlight the most empirically

relevant areas of the bid functions. For this set of parameters, markups in the ERA are slightly larger

than in the FPA for low-cost bidders, but they are markedly smaller for higher costs, which the majority

of bidders have.

To understand these results, an important observation is that markups in the FPA are not monotonic

in costs. In the FPA, both bidders with low cost and those with moderately high costs (about 0.9 to

1.1) submit bids with large markups. That weak bidders also submit high markups comes from the fact

31These parameters correspond to the Base case presented in Table 4.
32The left end of the procurement cost distribution in Figure 2(b) is also of note. Recall that in the FPA, a single bid

function is used in all auctions. This bid function maps costs to the interval [b, r], and the sharp cutoff in the kernel
density for the FPA corresponds to b. On the other hand, the bid function in the ERA depends on the realization of s,
and differences in this realization lead to different minimum bids b. As a result, no sharp cutoff is seen in the density for
the ERA.

33Note that the average bid function in the ERA is defined by β(c) ≡
∫
β(c; s)fS(s) ds, where fS(·) is the density of the

(n+ 1)st lowest signal.
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that the number of entrants into the auction is uncertain, and an entrant with a moderately high cost

is likely to win only if no other bidders enter the auction: such entrants, therefore, submit a bid close

to the reserve. For the parameters presented in this example, the average markup of the winning bid in

the FPA is 9.38%.34 The ERA is much more effective at extracting profits from high-cost bidders since

in an ERA, the number of actual bidders is known, and so unlike in the FPA, there is no chance that a

high-cost bidder faces no competitors in the auction. This limits the incentives to offer a high markup;

the average markup of the winning bidder in the ERA is only 6.76%. The fact that entry is less variable

in the ERA means that bidders with higher costs bid more aggressively.

[Figure 3 about here.]

We can compare these effects of switching to an ERA to those if we instead assume that the DoTs seek

to maximize efficiency when choosing n. In doing so, they set n = n∗SP, which is the value that minimizes

the sum of the winner’s cost and the total entry costs paid. Note that the planner’s problem is relatively

straightforward. Given the monotonicity of a(·) and β(·; s), the actual shape of the bid functions are

irrelevant for the planner’s problem. Indeed, the planner merely balances the cost of letting an additional

entrant in with the marginal decrease in the lowest cost that comes from letting this entrant in.

Based on our estimates, the results of switching to an ERA do not greatly depend on whether the

DoTs seek to minimize procurement costs or to maximize efficiency. In all ten of the eleven cases presented

in Table 4, n∗SP = n∗AUC. The only exception is when K is low, in which case n∗SP = 3. As an observation,

in all the numerical experiments we have performed, we have never found a case where n∗SP < n∗AUC. A

procurer that seeks to minimize procurement costs can exert market power by reducing the number of

entry slots. Reducing the number of second-stage bidders raises first-round bids, reduces the effective

entry costs the procurer pays, and does not tend to greatly raise the second-stage winning bid because

the firms that do participate are those most likely to have the lowest costs of completion (and so they

34That weak bidders bid close to the reserve suggests that the reserve may play an important role in determining the
expected markups of the winner and of the representative entrant. Figure 3, however, suggests that the distribution of
the winner’s cost—which is even farther to the left than the distribution of the representative entrant’s cost—is away
from the region where bids are close to the reserve. Indeed, the winner’s bid is usually close to b, which is still a function
of r, of course, but does not move one-to-one with r. At the Base parameters, changing the reserve price over a wide
range—from 1.1 to 4.75 (the maximum of the support of the cost distribution)—only changes the winner’s markups from
8.3% to 10.9%. The average bidder’s markup does, however, change dramatically from 9.1% to 51.9%. However, most of
that can be attributed to a small mass of bidders bidding near these large reserve prices, which we do not see in our data.
For these reasons, along with those mentioned at the end of Section 3, we consider a reserve of 1.5 to be a reasonable
approximation in our setting.
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tend to submit lower bids). Moreover, because there is no uncertainty as to the extent of competition

that bidders face, high-cost entrants no longer submit the very high markups that they would have in an

unregulated entry process. As a result, we have found that for a wide variety of parameters, the social

planner prefers to admit at least as many entrants to the second stage as the procurer.

Given the sizable gains of using an ERA that we estimate above, a potential puzzle is why they are not

used more often for the sort of public procurement we study here. There are several possible explanations.

First, it may be the case that the reduced bidder surplus in the ERA is actually harmful for the seller. In

most real-world settings, the seller expects to procure many contracts over a number of years, and so will

benefit when there are a large number of firms that are active in the industry and are potentially interested

in bidding. The need to ensure that bidders get sufficient surplus will be even more important when

many potential bidders are small firms who may face liquidity constraints, that may also be tightened by

having to make binding bids in ERAs.35 A second possibility is that bidders may be risk averse. There are

competing effects of risk aversion on procurement costs in the standard auction and in the ERA. While

entrants will bid more aggressively, which serves to lower procurement costs, potential entrants will also

be more reluctant to pay sunk entry costs to participate in an auction with an uncertain outcome, and

this will lead to lower participation in both mechanisms, as well as lower indicative bids in the ERA. To

evaluate whether risk aversion was a possible explanation for why ERAs are not used more widely in

these auctions we computed procurement costs based on our model’s estimated parameters and a variety

of assumptions about the risk preferences of bidders with CARA utility. We found that for plausible

levels of bidder risk aversion, the ERA was still more efficient and lowered expected procurement costs.36

Thus, risk aversion is unlikely to be the primary reason why ERAs are not more widely used. As a third

possibility, Hendricks and Quint (2013) suggest that ERAs may provide sellers with perverse incentives to

try to sell off contracts that, once they undertake research, bidders will find to be worthless. This seems

unlikely to be a concern for state agencies that need to procure a large number of contracts and so are

likely to want to maintain a reputation for probity. A fourth possibility is suggested by Kagel, Pevnitskaya,

and Ye (2008), who find that in a laboratory setting that the strategic complexity of formulating offers

in an ERA can lead to overbidding and bankruptcies. Whether this would hold in the field is an open

35Government agencies typically have targets for the value of contracts that should be allocated to small or minority-owned
businesses which often leads them to use set-asides or bid subsidies (e.g., Krasnokutskaya and Seim (2011), Athey, Coey,
and Levin (2013)).

36Previous versions of this paper contained these simulation results and they are available on request.



Regulating bidder participation in auctions 25

question. Finally, it may of course be that some of the standard assumptions used to model procurement

auctions, which we have maintained here, such as independent private values, simultaneous entry decisions

and independent signals (e.g., Athey, Levin, and Seira (2011), Krasnokutskaya and Seim (2011) or Li and

Zheng (2011)) are incorrect and affect the comparison of the different designs. For example, if bidder

signals are correlated or entry decisions are made sequentially, entry into the FPA may be less volatile,

mitigating some of the gains to using the ERA.

6. CONCLUSION

In procurement settings, where it is expensive for potential bidders to learn their costs of completing a

project, unregulated entry can lead to volatile amounts of bidder participation. If bidders have either no

information or perfect information about their costs before entering, then fixing the number of entrants,

say by auctioning off entry slots as is done in an entry rights auction, can raise efficiency. Motivated by

the importance of public procurement we consider whether a simple scheme that regulates entry can raise

efficiency and reduce procurement costs.

When bidders’ pre-entry information about their cost of completion is either very precise (so that

bidders know their completion costs prior to bidding) or very imprecise, the entry rights auction dominates.

However, if bidders have some pre-entry information about their costs, this need not be the case. The

reason is that, unlike a standard auction into which there is free entry, the number of entrants selected by

an entry rights auction is not conditioned on bidders’ private pre-entry information.

Therefore, in computing the gains to regulating entry this observation highlights the importance of

allowing for bidders to be imperfectly informed of their value of participation prior to entering. We do so

when modeling bidder participation into bridge-building contracts in Texas and Oklahoma. We estimate

that there is an intermediate amount of selection in the entry process, opening up the possibility that

regulating entry may actually hurt efficiency in these auctions despite the fact that bidder participation is

variable across different projects in the data. However, when we compute the gains to implementing a

standard entry rights auction instead of the current free-entry first-price auction, which to our knowledge

is the first quantification of the impact of using an entry rights scheme based on real-world parameters,

we predict that efficiency will indeed be improved by regulating entry. We also predict that an entry

rights auction will reduce procurement costs, partly by encouraging more aggressive bidding behavior
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by high cost bidders. Therefore, while in the current procurement mechanism used by the Texas and

Oklahoma DoTs, firms’ independent participation decisions maximize the possible efficiency afforded by

such a mechanism, we predict that—despite bidders having imperfect information about their costs prior

to entering—efficiency could be even greater were the DoTs to regulate entry by employing an entry rights

auction.
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A. NUMERICAL METHODS TO SOLVE THE FIRST-PRICE AUCTION

In this Appendix we detail the numerical methods used to solve for equilibrium in a first-price auction

with partially selective entry. Section A.1 provides parameters, such as the degree of the polynomial

expansion and the type of grid, used in the computations. It also enumerates additional constraints used

in practice. Section A.2 discusses numerical checks developed on the solution to the optimization problem.

A.1. Details of the Optimization Problem

The choice of grid {xi}Ni=1 has a minor effect on the solution to the programming problem. Hubbard and

Paarsch (2009) use an N -point Gauss-Lobatto grid on [b, r],37 but we have found in our experiments that

an evenly spaced grid is often more efficient. Throughout the paper, we use N = 500 grid points and

P = 25 polynomials in the expansion; these choices solve the optimization problem reliably and efficiently.

Bid functions are monotonic in the cost of the bidder, so we follow Hubbard and Paarsch (2009) and

impose that β∗−1(xi) ≥ β∗−1(xi−1) for 2 ≤ i ≤ N . Furthermore, we impose the rationality constraint that

an agent never bids less than his cost: β∗−1(xi) ≤ xi for all i. Finally, we replace the constraint in equation

(4) by the condition that the two sides cannot differ by more than 0.1% of K. The integral in equation (4)

is replaced by an approximation using the trapezoidal rule on the N -point grid defined previously.

A.2. Checks on the Solution

We implement a simple consistency check on the solved bid function β∗ by solving equation (1) by

simulation; this check is similar to the one used by Gayle and Richard (2008), who develop a numerical

method to solve for bid functions in a first-price auction in the presence of collusion. We choose a fine grid

B of “bids.” For a given cost c, we compute the argument of the right hand side of equation (1) for each

b ∈ B by simulation, fixing β∗−1(·) and s′∗ to the values determined by the optimizer. We of course expect

the optimum to be β∗(c). This check amounts to computing the best response of a player conditional on

all other players using the bid functions computed by the optimizer and an entry rule dictated by the

computed value of s′∗. Figure 4 plots a sample instance of this check where B has step size equal to 0.003,

using the baseline parameters in the Base case in Table 4: the computed functions (solid) and the best

37A Gauss-Lobatto grid on [−1, 1] is defined to be the points yk = cos [kπ/(N − 1)] for k ∈ {0, 1, . . . , N − 1}. To define a
grid on other intervals, we simply scale these points linearly.
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response (dashed) match each other quite closely. The major discrepancies between the bid function and

the best response occur at low costs and at especially high costs. There are too few draws of bidders with

low or high costs for the simulation to return meaningful results.

[Figure 4 about here.]

We can check the computed value of s′∗ by computing the profits of a marginal entrant. Bayes’ Rule

gives the distribution of costs of an entrant who receives a signal s′∗. Fixing the bid functions and entry

thresholds of all agents to the computed ones and assuming that the marginal entrant will enter, we use

simulation to compute the profits of the marginal entrant in the bidding stage. We expect this number to

be close to the entry cost. In the baseline case again, using 500,000 simulations shows that the expected

profit and the entry cost differ by less than 1%.

Another method to check the value of s′∗ is to use the result from Gentry and Li (2012b) that the

competitive s′ coincides with the social planner’s choice of s′. Given an s′, the efficiency of an auction

where bidders enter if and only if their signals are below s′ can be determined by computing an integral.

The value of s′ that minimizes this integral is the same as the value of s′∗. In the baseline case, the

computed value of s′∗ and the value that minimizes the integral agree to four decimal places.

B. DETAILS OF SAMPLE CONSTRUCTION

De Silva, Dunne, Kankanamge, and Kosmopoulou (2008) study auctions from January 1998 through

August 2003. However, we only focus on auctions after March 2000 due to an important change in policy

in Oklahoma: prior to March 2000 they did not disclose engineer’s estimates to bidders. Throughout this

paper, we restrict our attention to auctions with between 4 and 11 potential bidders since, as discussed in

Section 4, there are very few auctions with other numbers of potential bidders. From the set of bridge

construction contracts let during this period, we remove auctions from the dataset in which there was

no winner or the winning bid was extremely high or low. In some auctions, companies submitted bids

but the DoT did not allocate the contract to any of the bidding companies. There is no indication in

the dataset to explain why the DoT did not accept any of the bids and so we drop these auctions. We

remove all auctions with a winning bid less than 70% of the engineer’s estimate from the dataset. Only 3

of the 161 auctions in Texas in which a winner was declared were removed due to this criterion, but 47
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of the 310 auctions in Oklahoma were removed. We justify this cutoff by noting that over one-third of

the auctions that were dropped in Oklahoma (16 of the 47 auctions) were won by one of two companies,

however, these companies only won 4 of the remaining 263 auctions in the sample. Furthermore, there is

no noticeable observable difference between these auctions and the rest of the sample in terms of project

characteristics. As described in the text, we also drop auctions with winning bids greater than 150% of

the engineer’s estimate.

C. MONTE CARLO STUDIES

To test the performance of the estimator, we conduct a set of Monte Carlo experiments using data

simulated from the specification in equation (9). We draw the number of potential entrants N uniformly at

random from the set {4, 6, 8}. We set the vector of observed characteristics for auction t to be Xa ≡ (1, xa)

where xa is drawn uniformly at random from the set {0, 0.2, 0.4, 0.6, 0.8, 1}. The remaining parameters

in the specification are taken to be βµC = (0, 0.65)′, βσC = (0.05, 0)′, βα = (0.5, 0)′, βK = (0.04, 0.05)′,

ωµC = 0.05, ωσC = 0.02, ωα = 0.05, and ωK = 0.015. We denote this “true” parameter vector, consisting of

all β and ω parameters, as Γ0 throughout this section. The truncation points are taken to be cµC = −0.4,

cµC = 1, cσC = 0.005, cσC = 0.995, cα = 0.1, cα = 0.9, cK = 0.0001, and cK = 0.16. These truncation

points are chosen to ensure that the solver can determine a correct solution for the auction with any set of

parameters drawn from the above distribution. The reserve price is set of 4.75, a value that is beyond the

99% quantile for most (µC , σC) pairs drawn from the specification. As a result, the reserve is relatively

non-binding. For each set of parameters drawn from this distribution, we solve for the equilibrium bid

functions and entry decisions and generate a single simulation. We assume that the observable data are

the potential number of entrants, xa, the entry decision of each potential entrant, and the bids of all

agents who chose to enter, as is the case in our empirical application.

We separate the data by groups consisting of the same N and xa values. For each such group of

auctions, we calculate

1. the number of potential entrants who enter but do not submit a bid (since their valuations are above

the reserve),

2. the distribution of the number of entrants,
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3. the distribution of the minimum bid, and

4. the distribution of all bids.

The distribution of the number of entrants is essentially an (N + 1)-element vector where the kth element

gives the proportion of auctions in which k − 1 bidders entered. The distribution of the bids are similarly

discretized as well. In particular, for the distribution of the minimum bid, we divide the interval [0.4, 2.65]

into bins of width 0.075. For the distribution of all bids, we subdivide the interval [0.4, 4.2] into bins of

width 0.1.

We perform two experiments. First, we compute the infeasible estimator by using the true distribution

as the importance sampling density. Using notation from Section 4.2, ψ(θa|Xa) ≡ φ(θa|Xa,Γ0). We begin

by drawing 25,000 values of N and xa. These variables are drawn uniformly from the discrete distributions

specified above. For each of these draws, a single θa is drawn from the distribution specified by Γ0; the

draw of θa of course depends on the draw of xa. Finally, for each draw of θa, we simulate a single auction

and record the information detailed above.

The Monte Carlo experiment proceeds by first selecting 500 of these auctions as data. We then choose

2,500 other auctions as importance sampling simulations for importance sampling, which corresponds to

using 5 importance sampling simulations per data auction. The simulated moments are calculated for a

particular choice of Γ by appropriately weighting the moments from this simulation set. The parameter

Γ is then chosen to minimize the distance between the moments for the data and the moments of the

importance sampling simulation, with the identity as the weighting matrix.38 This procedure is repeated

100 times by reselecting both the data and simulations and subsequently recalculating Γ. Column (A) in

Table 6 shows both the means and the standard deviations over the 100 runs. When sampling from the

true distribution, all parameters are recovered accurately.

[Table 6 about here.]

We also run a second experiment where the importance sampling simulations are drawn from a wider

distribution Γ′ where ωµC = 0.1, ωσC = 0.04, ωα = 0.1, and ωK = 0.03 and all other parameters are the

same as in Γ0. The data runs are still drawn from the distribution Γ0 specified earlier. We generate

38We have found that the objective function is smooth and we conduct this minimization procedure using Matlab’s built-in
optimization routine lsqnonlin. The initial guess is set to the true value, but we have found through experimentation
that initial guesses on the same order of magnitude return optimal points that are numerically identical.
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75,000 simulations from this distribution. For each Monte Carlo run, we choose 500 auctions from the

true distribution as the data runs and 2,500 auctions from the wider distribution as importance sampling

simulations. The results over 100 Monte Carlo runs are given in column (B). We repeat the Monte Carlo

runs using 15,000 simulation auctions for each run (corresponding to 30 simulations per auction), and the

results over 100 runs are given in column (C). Even with 5 importance sampling simulations per auction,

the Monte Carlos effectively recover the true parameters for the constant and the value of the dependence

on xa. Estimates of the standard deviations ω are biased slightly when using 5 simulations per auction,

but they become closer to the true values when using 30 simulations per auction.
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FIGURES

Figure 1: Comparing efficiency, amount of entry and the expected completion cost in the FPA and in the
ERA when FC(c) ∼ LN(−0.09, 0.2), K = 0.02, N = 4, r = c0 = 0.85, and Si = Ci · exp (εi).
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(a) Winner’s cost (b) Procurement Cost

Figure 2: Kernel densities for (a) the winner’s cost and (b) total procurement costs to the seller in both
the FPA and the ERA, using the baseline parameters. The costs to the procurer in the ERA include
the revenue from the first-stage indicative bids. Densities are plotted based on 500,000 simulations, and
simulations of the FPA in which no bidders entered are ignored.

Figure 3: Comparing the bid function for a FPA (solid line) with the average bid function in an ERA with
n = 2 (dashed line). The parameters are µC = −0.0963, σC = 0.0705, α = 0.4979, K = 0.0147, N = 7,
and a reserve price r = 1.5. The dotted line is the 45◦ line, for comparison. Densities for the cost of a
typical entrant into both the FPA and the ERA are also plotted.
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Figure 4: Computed bid function (solid) and simulated best response (dashed) for a first-price auction
with parameters equal to those in the Base case in Table 4. The dotted line is the 45◦ line. We use
500,000 simulations to compute the best response.
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TABLES

Variable Mean Std. Dev. 25th-tile 50th-tile 75th-tile
O

K
#

ob
s.

=
26

2 Potential Bidders 6.882 1.997 5 7 8
Probability of Entry 0.649 0.198 0.500 0.667 0.800
Unemployment 4.136 0.971 3.2 4.1 4.6
Engineer Estimate 491,120 543,662 226,338 320,755 523,139
Win Bid 451,800 520,945 207,146 288,317 471,151
Relative Win Bid 0.917 0.133 0.826 0.888 0.980

T
X

#
ob

s.
=

15
4 Potential Bidders 7.909 2.027 6 8 10

Probability of Entry 0.626 0.192 0.500 0.600 0.750
Unemployment 5.641 1.214 4.4 5.6 6.5
Engineer Estimate 1,409,158 1,185,331 550,537 967,817 1,977,169
Win Bid 1,366,487 1,177,504 530,084 892,737 1,847,180
Relative Win Bid 0.976 0.134 0.892 0.965 1.038

A
L

L
#

ob
s.

=
41

6 Potential Bidders 7.262 2.067 6 7 9
Probability of Entry 0.640 0.196 0.500 0.625 0.778
Unemployment 4.693 1.291 3.8 4.4 5.7
Engineer Estimate 830,971 949,131 258,485 446,273 914,745
Win Bid 790,410 936,689 240,553 406,155 887,277
Relative Win Bid 0.939 0.136 0.844 0.914 1.006

Table 1: Summary statistics for various quantities, subdivided into state groups. Win Bid and Engineer
Estimate are measured in dollars. Relative Win Bid is the winning bid relative to the engineer’s estimate.
See the text for more details of the sample.

β0 β1 β2 ω c c

µC −0.07 −0.005 0 0.012 −0.4 1.0
σC 0.05 0 0 0.025 0.0095 0.995
α 0.5 0 0 0.25 0.1 0.9
K 0.015 0 0 0.01 10−4 0.16

Table 2: Importance sampling density Γ̃ for estimation. The parameter Γ̃ specifies distribution, as given
by the functional form given in equation (9).
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β0 β1 β2 ω OK Mean TX Mean
µC −0.0868

(0.0324)
−0.0023
(0.0064)

0.0154
(0.0132)

0.0142
(0.0091)

91.4%
(0.84%)

91.9%
(1.89%)

σC 0.0687
(0.0196)

−0.0117
(0.0213)

0.0304
(0.0132)

6.62%
(0.97%)

5.33%
(0.87%)

α 0.4979
(0.0972)

0.1115
(0.0943)

0.1284
(0.0764)

0.4979
(0.0770)

0.6094
(0.0752)

K −0.0018
(0.0406)

0.0105
(0.0191)

0.0189
(0.0109)

1.35%
(0.26%)

1.84%
(0.28%)

Table 3: Parameter estimates for Γ. Standard errors are computed through a nonparametric bootstrap
described in the text. Standard deviations for the means displayed in the last two columns are computed
by running the procedure described in the text for each bootstrap estimate; the standard deviation of
these means of expected values is then reported. All %s are relative to the engineer’s estimate.
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FPA ERA

Case Comp Cost Win Bid Entry Prob s′∗ Comp Cost Win Bid Entry Bid n∗AUC/N E[S]

Base 0.837 0.914 0.483 0.9043 0.835 0.891 0.0046 2/7 0.8778

Low N 0.845 0.923 0.625 0.9376 0.844 0.902 0.0036 2/5 0.9095
High N 0.831 0.908 0.392 0.8837 0.829 0.884 0.0051 2/9 0.8587

Low µC 0.821 0.899 0.485 0.8884 0.820 0.875 0.0043 2/7 0.8620
High µC 0.852 0.930 0.481 0.9206 0.851 0.907 0.0050 2/7 0.8940

Low σC 0.877 0.940 0.469 0.9049 0.873 0.900 −0.0054 2/7 0.8934
High σC 0.797 0.890 0.496 0.9068 0.800 0.882 0.0147 2/7 0.8626

Low α 0.835 0.915 0.473 0.9028 0.831 0.881 0.0006 2/7 0.8817
High α 0.838 0.914 0.497 0.9072 0.841 0.902 0.0088 2/7 0.8717

Low K 0.828 0.870 0.656 0.9452 0.835 0.891 0.0169 2/7 0.8778
High K 0.848 0.961 0.408 0.8874 0.835 0.891 −0.0109 2/7 0.8778

Table 5: Breakdown of the expected values of major quantities in a FPA and an ERA. The cases correspond
to the parameters listed in Table 4. The “Comp Cost” column reports the expected completion cost in the
mechanisms, which is the winner’s cost when the project is awarded to a bidder and is the outside option
c0 = r = 1.5 when there is no winner. The “Win Bid” column in the FPA is identically the expected
procurement cost, while in the ERA, it is the winner’s expected second-round bid. The “Entry Bid”
column lists the expected first-round bid that the entrants have to pay in an ERA. The column n∗AUC/N
corresponds to the optimal number of entrants in the ERA. Finally, E[S] lists the expected value of the
(n∗AUC + 1)st lowest signal.
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Experiment

Parameter Variable True Value A B C

Location Parameter (µC) Constant 0 0.0000
(0.0100)

0.0015
(0.0186)

−0.0043
(0.0170)

xa 0.65 0.6507
(0.0174)

0.6533
(0.0282)

0.6602
(0.0247)

ω 0.05 0.0488
(0.0044)

0.0575
(0.0073)

0.0504
(0.0059)

Scale Parameter (σC) Constant 0.05 0.0494
(0.0074)

0.0463
(0.0152)

0.0416
(0.0126)

xa 0 −0.0002
(0.0113)

0.0085
(0.0204)

0.0195
(0.0194)

ω 0.02 0.0192
(0.0035)

0.0295
(0.0094)

0.0225
(0.0077)

Degree of Selection (α) Constant 0.5 0.4994
(0.0205)

0.4985
(0.0354)

0.4984
(0.0231)

xa 0 0.0000
(0.0308)

−0.0102
(0.0607)

−0.0130
(0.0571)

ω 0.05 0.0479
(0.0078)

0.0803
(0.0190)

0.0561
(0.0164)

Entry Cost (K) Constant 0.04 0.0388
(0.0047)

0.0361
(0.0118)

0.0387
(0.0085)

xa 0.05 0.0516
(0.0074)

0.0559
(0.0173)

0.0529
(0.0121)

ω 0.015 0.0143
(0.0025)

0.0209
(0.0063)

0.0145
(0.0038)

Table 6: Monte Carlo simulations, with standard deviations of the estimates in parentheses. All Monte
Carlo runs use 500 auctions as data. Column A corresponds to the infeasible estimator that uses the true
distribution as the importance sampling distribution, with 2,500 simulation auctions per run. Column B
corresponds to using a wider distribution as the sampling distribution, with 2,500 simulation auctions per
run. Column C corresponds to using the wider distribution, with 15,000 simulation auctions per run. Note
that 2,500 simulations per run corresponds to using 5 simulations per auction in the data (and 15,000
simulations per run correspond to using 30 simulations per auction) since simulations are drawn without
replacement from the pool of all simulations computed.


