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“Everyone — from wheat farmers, to industrial conglomerates and motorcycle manufacturers — wants to
glean any nugget of information they can about how the monsoon might pan out this year” (Staines,
2010)

1. Introduction

It is well-established that agricultural profits in developing countries depend strongly on
weather realizations. It is similarly well-known from the development economics literature that farmers
without access to good insurance markets act conservatively, investing less on their farms and choosing
crop mixes and cultivation techniques that reduce the volatility of farm profits at the expense of lower
expected profits. Economists have focused valuable attention on policies and programs that can provide
improved ex post mechanisms for dealing with the consequences of this variability. For example,
innovations in insurance can spread risk across broader populations, or improved credit or savings
institutions can permit more effective consumption-smoothing over time. Innovations of this type can
mitigate the consequences of risk, and therefore permit farmers to make riskier, more profitable
decisions. Agricultural scientists have worked to improve the ex ante options available to farmers faced
with uninsured weather risk, most prominently by developing drought-tolerant varieties of important
crops.

Economists, however, have paid little attention to directly improving farmers’ capacity to deal
with weather fluctuations by improving the accuracy of forecasts of inter-annual variations in weather.
Like actuarially fair insurance, a perfectly accurate forecast of this year’s weather pattern, provided
before a farmer makes his or her production decisions for the season, eliminates weather risk. However,
a perfect forecast permits the farmer to make optimal production choices conditional on the realized
weather and thus achieve higher profits on average compared with a risk-neutral or perfectly-insured
farmer. The profit and welfare gains associated with improvements in the accuracy of long-range
forecasts (forecasts that cover, for example, an entire growing season) are potentially enormous, given
the tremendous variability in profits and optimal investment choices across weather realizations.
Existing qualitative research in Tamil Nadu, Burkina Faso, and Zimbabwe suggests that farmers demand
and respond strongly to information about future rainfall realizations (Ingrama et al (2002); Phillips et al
(2002); Huda et al (2004)).

Governments are aware of and responding to this opportunity. For example, in India the
national Monsoon Mission was launched in 2012 with a budget of $48 million for five years to support
research on improving forecast skill, with a special focus on seasonal weather forecasting.! There is
nothing new about this; in India the India Meteorological Department (IMD) has been issuing annual
forecasts of the monsoon across the subcontinent since 1895, and it is widely reported in the Indian
media that farmers’ livelihoods depend upon the accuracy of the forecast.? Despite these sums devoted

! The annual budget for the US National Oceanic and Atmospheric Administration, which is responsible for

forecasting research (among other responsibilities) in the US, was approximately S5 billion in 2010.

2 For example, “Laxman Vishwanath Wadale, a 40-year-old farmer from Maharashtra’s Jalna district, spent nearly

25,000 on fertilisers and seeds for his 60-acre plot after the Indian Meteorological Department (IMD) said in June

that it stands by its earlier prediction of normal monsoon. Today, like lakhs of farmers, Wadale helplessly stares at

parched fields and is furious with the weather office that got it wrong — once again. So far, rainfall has been 22%
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to improvements in forecasting skill, we know of no estimate of the profitability of improving the
accuracy of long-term forecasting.

We find that farmers in some regions of India appear to be responding to the IMD forecasts.
Farmers surveyed in 2005-2011 as part of the “new” ICRISAT VDSA surveys exhibit substantial variability
from year to year in their planting-stage investments. The mean (across farmers) coefficient of variation
(over time) in land preparation and planting investments is 54 percent. This variation might be
generated by lagged profits (if there are liquidity constraints), by lagged rainfall (which generates
variation in investment in the following year through a “moisture overhang” effect), or by changes in
input prices. We show, however, that a significant fraction of this variation is due to changing
expectations about the profitability of planting-stage investments associated with the IMD forecast.

One metric for quantifying the impact of imperfect protection from risk, other market
imperfections, or interventions designed to overcome such problems is the return on investments. In
estimating these returns, economists have rarely (if ever) been able to take into account the variability
in returns due to weather or other stochastic events that are common to all firms or farms. Well-
identified studies that show the profitability of an investment or technological innovation or the return
to an intervention are typically based on data from a single season in a particular locality and hence are
conditional on a single realization of weather or other correlated shocks (Duflo et al (2011), Banerjee
and Duflo (2008), Banerjee et al (2013), Bloom et al (2012), de Mel et al (2008, 2009), Mobarak and
Rosenzweig (2013), Karlan et al (2013), Fafchamps et al (2011), Udry and Anagol (2006)). This issue is
most salient for agricultural production. Because of weather variability and other sources of aggregate
risk, the standard errors associated with the estimated coefficients substantially overstate the precision
of the return estimate. For larger scale research projects spanning a wide range of geographical
locations a variety of weather realizations may be realized, but there will be a concern that the weather
realizations may be correlated with unobserved features of the locality that influence the returns to the
investment.® Studies spanning multiple localities over multiple years may be able to overcome this set
of challenges.

In this paper, we show in a simple theoretical model in which the sensitivity of farm profits to
rainfall affects the return to farm investment how risk-averse farmers optimally respond to information
provided by long-range forecasts about future rainfall realizations, and how these responses vary by the
skill of the forecast. The empirical work is based on the history of long-range forecasts from the IMD,
combined with panel data from two sources: ICRISAT (2005-2011) and REDS (1996-2006). We estimate
the returns to planting stage investments taking into account the effects of rainfall realizations on
returns by exploiting the multi-year observations on profits and rainfall. We use an instrumental
variables strategy in which the forecasts issued by the IMD before planting affect planting-stage
investments, but do not influence profits conditional on realized rainfall accept via these investments.

We first assess the skill of the IMD forecasts and show that there is wide variation across India in
the correlation between the monsoon forecast and July-September rainfall realizations (this correlation

below normal if you include the torrential rains in the northeast while Punjab and Haryana are being baked in one
of the driest summers ever with rainfall 42% below normal” (Ghosal and Kokata 2012).

3 Most obviously, rainfall realizations will be correlated with the rainfall distribution, which typically will be related
to agricultural returns (Duflo and Udry 2004).
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is our measure of forecast skill). We find that the IMD forecast has predictive power in a subset of the
ICRISAT villages and a subset of districts across India as a whole. Consistent with that, we find that
planting-stage investments in ICRISAT respond strongly to the forecast where it has skill, in accord with
the model. In particular, a % standard deviation increase in the monsoon forecast increases planting-
stage investments by two-thirds. We exploit the variation across India in IMD forecast skill to show that
farmers respond more strongly to the forecast the higher is the level of forecast skill. This estimate of
the effect of forecast skill on the responsiveness of investment to the forecast is robust to cross-
sectional variation in a variety of agricultural characteristics.

Our IV estimates of the profit function indicate that the expected profit-maximizing level of
investment is three times the observed mean investment by these farmers. ICRISAT farmers thus
dramatically underinvest. Our profit function results also show that the returns to investment are
extremely sensitive to rainfall realizations. This implies that inferences about the degree of
underinvestment are heavily dependent rainfall. For example, if rainfall were at the mean of the
observed rainfall distribution in the ICRISAT villages, a R10,000 increase in planting-stage investments
(over a base of R12,000) would lead to an increase in profits of about R20,000 (over a base of R33,000).
However, if rainfall were at the 75" percentile the same increase in planting-stage investments would
yield R40,000 in additional profit, while at the minimum rainfall realization this additional investment
would provide less than R10,000 in additional profit.

We use the estimates of the effects of the forecast and forecast skill on planting-stage
investments and our estimates of the profit function, coupled with the parameters of the IMD forecast
and actual rainfall realizations, to quantify the contribution of the forecast to investment variability and
returns. The simulations show that the gain to farmers of increased skill is similar to that found for
farmers who obtain weather insurance, in that it is largest at extreme values — high or low — of rainfall.
However, we show that farmers who exploit the forecast in making investment decisions experience
greater profit variability due to the added risk of forecast failures. Based on 10,000,000 joint weather
and forecast draws at each simulated skill level, we also show that expected farm profits are strongly
increasing in skill. Each 0.1 increase in the correlation between the rainfall forecast and realization leads
to anincrease in profits of R43,000.

Finally, we use the simulations to explore how changes in the rainfall distribution predicted by
climatologists as consequence of global warming (increased mean and variance of rainfall) affect the
returns to increasing the skill of the monsoon forecast. The simulations under the global warming
scenario indicate that while the mean and variance of profits rise, the high return to increasing forecast
skill is little affected.

2. Modelling Weather Risk, Forecasts, and Farming Choices

Two essential characteristics of agriculture are that output and the returns to agricultural
investments are heavily dependent on weather shocks and second, that the agricultural production
process takes place over time. Farmers must choose inputs before the realization of shocks which affect
the productivity of those inputs. Revelation of information about the probability distribution of the
current year’s shocks will change farmers’ optimal input choices. This is true for profit-maximizing
farmers, and a fortiori so for risk-averse farmers lacking access to complete insurance markets. In this
section we provide a simple model of farmer decision making that clarifies how changes in information
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generated by weather forecasts influence input choices, and how improvements in forecast skill affect
input choices, profits and welfare.

Consider a farmer who makes decisions about farm inputs (x) in the planting period 0 and who
realizes a harvest in period 1. In the harvest period, there are two possible states, S €{b, g} with

prob(S =b) = 7. Output f_ (X) depends on the input choice and the realized state, with f, (x) < f, (x)

and of, (x) < of (x)

OX OX
work smoothly; the farmer can borrow to finance inputs or save at the same risk-free interest factor r.
Denote net saving by a and the farmer’s initial wealth by Y. Although credit markets work well, we
assume that insurance is incomplete; farmers face uninsurable risk from the realization of weather. The
budget constraints are

for all x. To highlight the role of risk, we assume that credit and saving markets

(1) =Y -x-a
(2) c.=f,(x)+ra

Before making input decisions, the farmer receives a forecast of the state to be realized in period 1. The
forecast is either B or G. Let prob(S=b|B)=prob(5=g|G)=q, so that q is the skill of the forecast (Hamil and
Juras, 2006).* Conditional on the receipt of forecast F €{B, G} the farmer’s decision problem is

(3) max u(c®) +prob(S =b|F)u(c;) +prob(S = g | Fu(c,)

subject to (1) and (2), and the usual non-negativity constraints on x, ¢°, and Ci , which will never bind

because we make Inada assumptions on u(.) and f_(.).

2.1 Forecasts and Input Decisions

In this subsection we confirm that risk-averse farmers without access to insurance markets
choose lower levels of inputs than would a profit-maximizing farmer, that input use increases (and net
savings decreases) when the forecast is for good weather and that this increase in input use increases
with the skill of the forecast.

Proposition 1: A risk-averse farmer chooses lower levels of planting-season inputs then would a
profit-maximizing farmer.

Proof: Suppose the forecast is B. A profit-maximizing farmer would chose x so that:

of of
4 b (1l-g)—%=r.
@ q6x+( ) OX '

4 We show that the forecast of the IMD exhibits this symmetry property: the accuracy of the forecast does not
depend on whether it is a forecast for good or bad rainfall.
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The profit-maximizing farmer sets the expected marginal product of farm inputs equal to the rate of
return on financial assets.

In contrast, a risk-averse farmer uses fewer inputs and keeps more of his resources in the risk free net
savings. The first order conditions for the choice of x and a, conditional on a forecast of B, are

(5) —-u'(c )+,B(qu '(ct )—b+(1 qu' (c ) =2 j:

(6) —u'(c”) + Br(aqu'(q) + (—-q)u'(c;)) =0.

Thus

of
r(qu'(c)+@-qu'(cy))= clU'(Cé)%+(l—q)U'(c;)—g

(7)
< gEu'(ct ) +(1 q)Eu (c)

where Eu'(c') = qu'(c;) +(1—q)u '(c;) and the inequality follows from the convexity of u() and the

. f, af
assumption that aa < — 5 . Hence the optimal choice of x for a risk-averse farmer, conditional on a
X X

forecast of B satisfies

of of
(8) r<g—=+@1-q)—=
a= (1-q) p
Comparing (4) and (8), we see that the optimal input levels of a risk-averse farmer are less than profit-
maximizing. We’ve shown this conditional on a forecast of the bad state, but an exactly analogous

argument holds given a forecast of the good state.

Proposition 2: Planting period inputs are larger and net savings smaller after a forecast of good
rainfall compared to a forecast of bad rainfall.

Proof: First order conditions (5) and (6) define optimal input use x conditional on a forecast of
Bad weather, when forecast skill is g, which we write as x(q/B). Similarly, optimal net savings is a(q/B).
The implicit function formula implies

of
[ﬂrz(qu"(cs,)+(1—q)u"(c;))+u"(c@]ﬂ[u'(e&)i—f;—u'(c;>a—;}

dx(q|B) _ -1
d det
T {ﬂr(QU"(C) %ot @-gu(e) 52 J+U"(Co)}[ﬂr(u'(ctﬁ)—U'(Cé))]

(9) <0.

det is the determinant of the Jacobian and is positive. The inequality follows because
of
u (cé)% —u (c;)a—g <0 (this follows from the concavity of u(.), f (x)> f (x)and
X X
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o) _ oty ()
OX OX

weather declines. A similar comparative static shows that q
q
prob(5=b|B)=prob(S=g|G)=q, (3) implies that

x(A-9)[G)=x(q|B)

a((1-9)|G)=a(q|B).

Therefore

1) d(x@lG) _,
dq

and

(11) w <0
dq

> 0.> Since

for all x). As the forecast skill improves, input use in the case of a forecast of poor

da(q|B)

So as long as forecasts are informative (g>0.5), x(q/G)>x(q|B) and a(q/G)<a(q|B). Therefore, a forecast
of good weather (as opposed to bad) increases investment in inputs and reduces investment in the safe

asset.

Proposition 3: The increase in investment with a forecast of good weather (compared to a

forecast of bad weather) is larger as forecast skill improves.

d(x(alG) _d(x(@lB) _,

Proof: From (9) and (10),
dg dg

B

2

0
OX
da(q[B) _ -1 |

= e e ~we)]

5 For the curious,

of
-ﬂ(u'(cé)%—u'(c;)a—;j

6

N o ., of
v 2+ qu (cé)(—b

3

1 f ngAl afg
+(1-q)u'(c,) —5 +(@-q)u (cg)(&]

2 |t u"(Co)

of
{ﬂf(qu "(Ci)%+ (1-q)u "(Cé)a—ij +Uu "(Co)}

>0.



2.2 Farmer Heterogeneity

Some dimensions of farmer heterogeneity are particularly salient for understanding how rainfall
forecasts and their accuracy influence cultivation decisions. In particular, we show in this section that
farmer wealth, the installed base of irrigation, and the riskiness of production all have direct effects on
investment choices, and on the responsiveness of investment to forecasts.

Proposition 4: If farmers have decreasing absolute risk aversion, then despite the smoothly-
operating credit/savings market, input use is higher for farmers with higher initial assets Y. The response
of input use to forecasts varies by initial assets.

Proof:
(—u(c”)(Ar* [au*(e) + L-a)u'(cy) | +u'(c”))
dx(q|B) 1 f
v et +(u"(c°»(ﬂ{qu"(cé>%+(1—q)u"(c;>a—g}+u"(c°)j
OX OX
B ng A0 of
-pute) [qu"(cé)w(l—q)u"(c;)r}—{qu"(c&)ﬁa—fxw(1—q)u"(c;)a—ng
(12) LU (0 ] P . A Y .Y
= | )| r=2t [+ @-a) (cg)(r 6XN
LAV I T (- N TR (R c Y
> det qu'(cy)| r o +(L-q)u (Cb)(r ox j)
W@ () e
- det [q ' OX + q)[r axn

>0

where the first inequality is a consequence of I <&g and decreasing absolute risk aversion (which

implies ‘U "(Cé)‘ > ‘U "(C;)‘ ). The second inequality is a consequence of (8). An exactly parallel

argument shows that input use increases with Y in the context of a good forecast as well. The sign of
d(x(q|G) d(x(qlB)

dy dy
absolute risk aversion relative to the rate of decline of the marginal product of investment. However, in
general the response of input use to forecasts will vary with initial assets Y.

is not determined in general, because it depends on the rate of decline of

Proposition 5: Suppose complete irrigation eliminates rainfall risk. Then as the skill of the
forecast increases, the difference in the responsiveness of farmers with and without irrigation to a
forecast of good weather increases.



For a farmer whose land is fully irrigated, fg (x) = f,(x). Then x(q/G)=x(q|B), and the farmer

does not respond at all to the forecast. By proposition 3, as the skill of the forecast increases, the
difference in the responsiveness of farmers with and without irrigation to a forecast of good weather
increases.

Proposition 6: Farmers who live in riskier environments will invest less in inputs, respond
differently to forecasts, and respond differently to the skill of forecasts.

Consider a mean preserving spread in output. We model this by rewriting the production
Y r 1
functions as fg (x)= fg (X)+7/, fb(X) = fb(X)—7/. If 7= > then an increase in ¥ is a MPS.

Conditional on either a bad or a good forecast, investment in inputs declines as the riskiness of
production increases. In the case of a forecast of bad weather:

(477 [qu"(ch) + L—a)u"(ch) ]+ u"(c,))

f
-(—qu"(cé)%+(1—q)u"(c;>a—gj
dx(B) _ -1 ox ox
d det(B of
(13) 7 G —[ﬂr[qu"(ci)%Jr(1—Q)U"(C3)—g}+u"(co)j
X OX

{(Br(-qu"(ch) + @-a)u"(c})))
_BUC) [ ety O RN e
=~ 4er®) { qu (Cb)(ax r}+(l qu (cg)(ax rD<O.

<0 as well.

M <r< M Analogous reasoning shows X(G)
X OX oy
Farmers reallocate their investment from risky inputs to the safe asset as the riskiness of production
rises. It will be important in our empirical work to be able to distinguish the effects of forecast skill
(which increases investment) from the effects of riskiness, since the two may be inversely correlated
across space. The interaction effects of the riskiness of production and the responsiveness of
investment to a forecast of good weather will also in general be nonzero, although the sign of the

dx(G) dx(B)
dy dy

production on the response of investment to a change in forecast accuracy is generally nonzero, but of
ambiguous sign.

The inequality follows because

interaction effect is ambiguous ( cannot be signed). Similarly, the effect of a MPS in



2.3 Welfare

In this subsection, we show that and that ex ante (before the forecast is made) both farmer
profits and welfare increase with the skill of the forecast. To simplify the notation, we assume that the
unconditional probability of bad weather (1) is %.

Proposition 7: Expected profits and expected utility increase with forecast skill.
Proof:

dE(mUmﬁ.zz[fJxm|G»—deMIG»]+[fAXM|B»—fJXU”B»]

dq
L 8x(@ |G>{q[afg(x(q|e» _r} (1_q)[6fb(x(q G)) _r}}
dg OX OX
, dx(@lB) {q[aﬂxx(q B) r} i q)[ﬁfg(x(q B) r}}
dg OX OX
>0

The first two terms sum to a positive because x(q |G) > x(q | B) . These are the direct effect of
improved forecast skill on better matching input choices to the realized state; these terms would be the
same for a risk neutral farmer who simply maximizes profit. The second two terms are the effect of
improved forecast skill on reducing the risk faced by the farmer. They sum to a positive as well, because
the reduced risk permits a risk-averse farmer to increase investment, on average, reducing the gap in
the expected marginal product of investment in inputs and the return on the risk free asset summarized
1Al 1AL
u(c1G) _ u'(cIB)
1Al 1ALl
u'(c; |G) u'(cy[B)
X(q]|G) > x(q|B)anda(q|B) >a(q|G)). Thisin turn (by (7)) implies that

of G of B
] ng »+a_ma4ﬂme»>qadum5»+a_m o (X(@1B))
X OX OX OX

by (8). The second two terms sum to a positive because (since

Now consider expected utility conditional on a forecast of good rainfall.

6 The simplification associated with this assumption is that if and only if 7 = .5, the probability of a Bad (Good)
forecast is invariant to changes in forecast accuracy. In general,

d Pr(Bad Forecast) _2z-1
dg (29-1°

This is a consequence of our use of g to summarize forecast accuracy symmetrically for forecasts of good and bad

1
weather. For 7 # —, there are additional terms in the comparative statics below which do not change the

conclusions.



BEWIS) _ sl (a16)) - u(ci(alG))]

q
_u.(co),(dx(q 6) , da(g |G>]
do d
S prlavey(@lon + - c(al)]
of G
HI8) 5 quelal ) PO+ -l o IO
q OX OX

- plu(ci(alG)) - u(ci(alG))]

_u-(co).(dx(q G) , da(g |G)]
do do
{dx(;'f) ' ds(jq'G)}ﬂr[qu'(c;(q 16)+ - qu'ci(a]G)]

= p[u(ci(a]G)) - u(ci(alG) ]

The second equality follows from the analogue of (7) for the case of a forecast of Good weather, and the
third equality follows from the analogue of (6) for the case of a forecast of Good weather. Do the same
exercise for expected utility conditional on a forecast of Bad weather, and sum weighted by % to find

dE(U)
dq

(14) 2= u(ci(a]G)) ~u(ci(al 6)) +(u(ci(al B) —u(cs(al B)) |>O.

Expected utility rises because the gain in utility associated with the forecast being correct when the
forecast is for good weather is larger than the loss in utility associated with the forecast be correct when
the forecast is for bad weather (because a is higher and x lower with B than with G).

3. Data

We use two panel data sets. The first is from the ICRISAT Village Dynamics in South Asia (VDSA)
surveys from the years 2005-2011 describing farmer behavior in the six villages from the first generation
ICRISAT VLS (1975-1984). The villages are located in the states of Maharashtra and Andhra Pradesh.
There are two key features of these data for our purposes. First, there is a module providing daily
rainfall for each of the six villages. This permits us to compute various time-specific measures of rainfall
for estimating the sensitivity of investment returns to rainfall outcomes and for the assessment of
forecast skill. Second, the data is collected at a high frequency so that accurate information is provided
on the value of inputs by operation and by date. This enables us to measure kharif-season planting-stage
investments that are informed by the IMD forecasts (which are issued at the end of June) but made
prior to the full realization of rainfall shocks as well as the season-specific profits associated with those
investments. These data thus enable us to estimate both the returns to planting-stage investments
under different weather conditions and the response of those investments to the IMD forecasts. Our
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estimates of the profit function and planting-stage investment decisions use an unbalanced panel
consisting of 477 farmers appearing in at least two survey years (1,667 observations).

The second panel data set we use is from the 1999 and 2007-8 Rural Economic and
Development Surveys (REDS) carried out by the National Council of Economic Research (NCAER). This
survey was carried out in 242 villages in the 17 major states of India. Like the ICRISAT survey, this survey
elicited information on inputs by season and stage of production so that it is possible to also construct a
measure of kharif planting-stage investments. The data set also includes monthly rainfall information by
village for 212 villages covering the years 1999-2006. These rainfall data enable us to estimate the skill
of the IMD forecasts across Indian regions and thus to estimate if and how planting-stage investments
respond differentially to forecast skill conditional on other regional characteristics for 2,219 farmers. A
limitation of the data is that there is no rainfall information for the year in which profits and inputs were
collected in the 2007-8 round, so it is not possible to estimate the returns to planting-stage investments
that account for the effects of rainfall variability taking into farmer fixed effects using these data.

The top and bottom panels of Table 1 provide descriptive statistics for the ICRISAT and REDS
data. As can be seen, while the average planting-stage investments in both surveys is comparable, there
is substantially more investment variation in the REDS data set, reflecting its wider geographic scope.
The shape of the distribution of investments is similar across the data sets, and is well characterized by
the log-normal distribution. Figures 1-4 display the planting-stage and the log planting-stage
distributions from both data sets. Given these distributions, we will employ the log of planting-stage
investments when we estimate the determinants of those investments. Another notable difference in
the two data sets is that the intertemporal coefficient of variation in crop-year rainfall in the ICRISAT
villages is double that for the average for the more representative sample of farmers in rural India. The
fraction of land that is irrigated for ICRISAT farmers is also 26% lower than that of farmers in the REDS.
Rainfall variability is thus an especially salient issue for the ICRISAT farmers.

Our measure of profits is the value of agricultural output minus the value of all agricultural
inputs, including the value of family labor and other owned input services. Our model suggests that the
value of output should be discounted by r, the return on risk-free assets between the time of input
application and the time of harvest. Appendix table A shows the nominal annual interest rates of formal
and informal savings accounts held by the ICRISAT households. 85% of the households have positive
savings balances. The average nominal interest rate (weighted by value of deposit) is 10.4%. Average
annual inflation over the span of the ICRISAT survey was 10.6%. Therefore, we set r=1 and do not
discount output when we calculate profits.

4, IMD Monsoon Forecasts and Forecast Skill

Each year at about the end of June, the Indian Meteorological Department (IMD) in Pune issues
forecasts of the percentage deviation of rainfall from “normal” rainfall for the July-September period
(summer monsoon). Rainfall in this period accounts for over 70% of rainfall in the crop year and is
critical for kharif- season profitability - planting takes place principally in June-August, with harvests
taking place in September-October. IMD was established in 1886 and the first forecast of summer
monsoon rainfall was issued on that date based on seasonal snow falls in the Himalayas. Starting in
1895, forecasts have been based on snow cover in the Himalayas, pre-monsoon weather conditions in
India, and pre-monsoon weather conditions over the Indian Ocean and Australia using various statistical
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techniques.” Thus, IMD forecasts are based on information that is unlikely to be known by local farmers.
There has been no alternative source of monsoon forecasts other than IMD until 2013, when a private
weather services company (Skymet) issued its own forecast for a limited set of regions.

What is the skill of the forecasts in predicting July-September rainfall? The IMD has published
the history of its forecasts since 1932 along with the actual percentage deviations of rainfall in the
relevant period. One could use the entire time series to assess the forecast. However, in addition to the
fact that the statistical modeling has changed over time so that forecast skill in earlier periods may no
longer be relevant, the forecast regions have changed - geographical forecasting by region was
abandoned in the period 1988-1998 - and in many years the forecasts are qualitative (“far from normal,”
“slightly below normal”). Starting in 1999, actual percentage deviations were re-introduced. For India as
a whole, using the published data from 1999-2010, we find that forecast skill is not very high. However,
the forecasts exhibit the symmetry property we have assumed in the model: when the IMD forecast is
for below-normal monsoon rainfall or for above-normal monsoon rainfall the likelihood the forecast is
correct slightly above 50% in each case.

Forecast skill may, however, vary by region. In the period 1999-2003, the forecasts were issued
for three regions - Peninsular India, Northwest India and Northeast India. Starting in 2004, the forecasts
have been issued for four broad regions of India (see Appendix Map A). To assess area-specific forecast
skill, we obtained the correlations between the regional IMD forecasts and the village-specific times-
series of rainfall in the ICRISAT and REDS data. For the ICRISAT data (2005-2011) we use the Southern
Peninsula (SP) forecasts. For the REDS (1999-2006), we matched up the REDS village rainfall time-series
with the appropriate regional forecasts over the time period. If there is indeed spatial variation in skill,
we can use that variation to test a key prediction of our model, that the response of investments to the
forecasts will be stronger the higher is forecast skill.

Table 2 provides the correlations between the IMD forecasts and actual July-September rainfall
for each of the six ICRISAT villages between 2005 and 2011. As can be seen, for the four Maharashtra
villages, skill is relatively high (p=.267), but for the two Andhra villages the forecast is not even positively
correlated with the rainfall realizations. It is not obvious what accounts for the higher skill in the
Maharashtra villages. It is not because there is less rainfall variability in those villages, as the average
rainfall CV is significantly higher than that in the Andhra villages.

That there are regional patterns to forecast skill is also exhibited in the REDS data. While the
overall correlation between the forecast and actual July-September rainfall in the 1999-2006 period is
only .132, the range in village-specific correlations, where the correlations are non-negative, is from .01
to .77. This variation could just be noise. However, there appear to be broad geographical areas where
the skill is substantially higher. Map 1 shows where in India the correlations are highest (darker areas),
with the Northeast area exhibiting the highest skill. Of course, the key question raised by Propositions 2
and 3 is whether farmers respond to the forecasts, and do so more strongly where the forecast has
greater skill.

7 Regression techniques were first used in 1909 to predict monsoon rainfall. IMD has changed statistical techniques
periodically, more frequently in recent years. Different statistical methods were used for the 1988-2002, 2003-
2006, and 2007-2011 forecasts (Long Range Forecasting in India, undated).
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5. Specification

Agricultural profits depend on investments in planting-stage inputs and on the realization of
rainfall, and as our model has emphasized, on the interaction between these. In addition, agricultural
profits are functions of a number of dimensions of heterogeneity, such as farm size, soil characteristics,
and irrigation and interactions of these with rainfall. There is also good evidence (Sharma and Acharya
2000) that profits depend as well on lagged rainfall (differentially depending upon farm characteristics,
particularly soil depth) through an overhang effect of retained soil moisture. Hence we specify a
linearized version of the farm profits of household h in village v in year t as

ﬂ-hvt = ﬁxxhvt + ﬁxxxﬁvt + th |:ﬂr +ﬂrert + ﬂrxxhvt + ﬂrxxxsvt + Z(ﬂrkzkhv):|
k
(15)

+Ryy - {ﬂn + LR+ Z(,Brkl Zyny )} + Ay + En-
X

X @nd Xﬁvt are investments in planting period inputs (and its square) of household h in village v in year
t, R, is the rainfall realization in that village in year t, and Z,,, are a set of fixed characteristics of the
farm of household h, including total landholdings, irrigated landholdings, soil depth and four soil types.

A . is a household fixed effect that may be correlated with observed dimensions of household

heterogeneity and &, is a shock to farm profits.

Excluded from (15) is the rainfall forecast (th) . This is the primary identification assumption of

the empirical work. As described in section 3, we measure realized rainfall as the total amount of
rainfall over the year, and the total amount of rainfall over the monsoon. The IMD long-range forecast
is the prediction for the total amount of rainfall over the monsoon. Conditional on realized rainfall, the

forecast of total rainfall in the monsoon effects profits only through its effect on X, , .2 As shown in

section 2, optimal input investment by household h depends upon this forecast (Proposition 2), the
interaction of the forecast with the same set of fixed farm characteristics Z,,,, (Propositions 5 and 6),

lagged profits (Proposition 4), and forecast skill (itself interacted with the forecast itself, and with Z,, )

(Proposition 3).% In addition, X, depends upon lagged rainfall realizations via soil moisture overhang,

8 One concern is that conditional on our specific measures of realized rainfall (total annual rainfall, monsoon
rainfall), the forecast of total rainfall is correlated with an unmeasured dimension of rainfall that matters for
profits. It has been hypothesized (Binswanger and Rosenzweig 1993) that the monsoon onset date is a salient
feature of rainfall for farm profits in India. However, in the ICRISAT data we see that conditional on even a subset

of our measures of rainfall (monsoon rain, Mth ), the forecast of total rainfall is not correlated with the onset
Onset, = 370 —.139MR, —1.064F,

date, measured in days from the start of the year: . Absolute values

(347) (747)  (0.86)

of the asymptotic t-ratios in parentheses.

® Our model treats input prices as fixed. However, the forecast, which changes investment behavior of the
population will likely affect planting-stage input prices. Our estimate of the effect of the forecast on investment
13



and this effect may vary across farmers depending on Z most importantly soil depth (which effects

jhv 7
the extent of moisture overhang). It is important that we control for lagged rainfall, in case the IMD
forecast partly depends on rainfall history. We are examining early season, planting-stage input
investments to ensure that these decisions do not depend upon later season rainfall realizations (this
assumption, however, is not required for identification and is tested below). Planting stage input

investments by household h in year t are therefore specified as

tht = th ' |:aF + aFF th + Z akFZkhv:| + a;zﬂ.hvt—l
k
(16)

+th—l ’ ar + zajrzjhv + th ’ qv '|:aqF + Zaqukhvj| + ﬂ’xhv + 77hvt7
j k

where 4, is a household fixed effect that may affect input choices, and 77, is a random shock

uncorrelated with other determinants of input choice.
6. Rainfall Variability and the Returns to Planting-Stage Estimates

In this section we present fixed-effects (FE at the farmer level) and fixed-effects instrumental
variable (FE-1V) estimates of the profit function (15) that is quadratic in planting-stage investments using
the ICRISAT panel data to assess the sensitivity of the returns to those investments to rainfall variability,
exploiting the multiple years of the ICRISAT panel and its detailed information on inputs, outputs, and
rainfall. As described in section 5, we use the IMD forecast, interacted with the characteristics of the
farm and farmer, as instruments to predict planting-stage investments. All profit function specifications
include current-year and prior-year annual and July-September rainfall, the squares of the rainfall
variables, and the rainfall variables interacted with total landholdings, irrigated landholdings, soil depth,
and four soil types (red, black, sandy, loam).

The first column of Table 3 reports FE estimates of the returns to planting-stage investments
ignoring the possibility that the effects of planting-stage investments on profits depend on rainfall
realizations and that the investments may be correlated with profit shocks. These estimates indicate
that there are diminishing returns to planting-stage investments, with the two investment coefficients
jointly significant. The second column reports the FE-1V estimates for the same specification. Both
investment coefficients are individually statistically significant and considerably larger in absolute value
than their FE counterparts. The point estimates indicate that the profit-maximizing farmer would invest
75,278 rupees at the planting stage. This compares with the average investment, as seen in Table 1, of
12,000 rupees. These estimates, which take into account the endogeneity of investment but not the
dependence of investment returns on weather, thus suggest considerable under-investment.

If investment returns are sensitive to rainfall outcomes, then the second-column estimates of
the “average” returns to investments and the inferred amount of under-investment would be incorrect,
given diminishing returns. In the next two columns we report FE and FE-IV estimates, respectively, of the

thus incorporates this equilibrium effect. There is a potential identification issue if the planting-stage input-price
change has an intertemporal effect on harvest-stage labor supply. We think that this kind of intertemporal
substitution has only second-order effects.
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fully-specified profit function (15) in which the effects of the planting-stage investments depend on
rainfall. For either estimation procedure we can strongly reject the hypothesis that the returns do not
depend on rainfall. And for either we cannot reject the hypothesis that the returns vanish at zero rainfall
- planting-stage investments thus wholly depend on rainfall outcomes. These estimates imply that ex-
post optimal investments depend on realized rainfall outcomes, or, put differently, how much
underinvestment one would infer from estimates depends on what is assumed to be the typical rainfall
outcome.®

Figure 5 plots the relationship between profits and investments for rainfall at the mean and at
the minimum, maximum and 75 percentile of the actual rainfall distribution in the ICRISAT villages
based on the statistically-preferred FE-IV estimates. We take note of three important features of this.

First, the profit-maximizing amount of planting-stage investments increases with the level of
rainfall. This feature demonstrates that information about the impending rains would induce a profit-
maximizing farmer to change investments: for example, a farmer who knew that rainfall this year would
be at the maximum of the ICRISAT observed distribution would invest fifty percent more than a farmer
who knew that rainfall would be at the minimum of the distribution. This feature of Figure 5 also
demonstrates the challenges involved in attempting to generalize results from studies of agriculture
undertaken in limited geographical range. If the plots by rainfall realization represent averages for
different areas, rather than the stochastic outcomes of one area, our estimates indicate that estimates
obtained at different places would provide very different estimates of optimal planting practice just
from rainfall heterogeneity. For example, the profit-maximizing investment level is one-third higher at a
rainfall mean corresponding to the 75" percentile of the ICRISAT than that for an area with a mean
rainfall corresponding to the minimum of the ICRISAT rainfall distribution.

A second feature of the figure is that actual farmer investments are considerably lower than
those that would maximize expected profits, consistent with Proposition 1. In this figure, we can see
that the actual mean investment level observed in the sample is lower than the investment level that
maximizes profit at the minimum rainfall level, which in turn is lower than the investment that
maximizes expected profits. We calculate the expected profit-maximizing investment level in section 8.

Third, an estimate in one place at one time of the returns to investments has a precision that is
much smaller than that indicated by the t-ratios of the coefficients if the influence of rainfall variability is
ignored - the returns to a given investment vary substantially depending on the rainfall outcome. For
example, an additional R10,000 investment (over the base of R12,000) would have an estimated return
of about R10,000 in additional profits if estimated in year of rainfall at the minimum of the distribution.

10 Our instruments have power. The F(9, 1724)-statistics for the set of identifying variables including the forecast,
the forecast squared, the forecast interacted with total landholding, the forecast interacted with irrigated
landholdings, and the forecast interacted with July-September rainfall and annual rainfall and landholdings and
irrigated landholdings are, for the four endogenous variables (preparation investments, preparation investments
squared, preparation investments interacted with annual rainfall, and preparation investments squared interacted
with annual rainfall) 8.19, 10.17, 6.74, and 7.63, respectively, all significant at the .0001 level. The full set of first-
stage estimates are available upon request from the authors.
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However, the same investment would have a return of over R50,000 if estimated using data from a year
in which rainfall was at its maximum.

7. Rainfall Forecasts, Forecast Skill and Planting-Stage Investments

The profit function estimates indicate that investment returns depend significantly on weather
realizations. Thus, as our model shows, farmers benefit from rainfall forecasts and their planting-stage
investments will be affected by such forecasts to the extent the forecasts have skill. But do changes in
forecasts substantially alter investments? Table 4 reports estimates from the ICRISAT panel data of the
planting-stage investment equation (16) in which the household’s beginning-period endowment and the
rainfall forecast affect planting investments. In that specification we treat lagged profits, reflecting the
household’s time-varying endowment at the start of the period, as endogenous, using the lagged IMD
forecast and its square and the interactions of the lagged forecast with the farm land characteristics as
instruments. The first column of the table reports the farmer fixed-effect (FE) estimates of the first-stage
reduced-form equation for lagged profits. The lagged forecast coefficients in that equation are jointly
statistically significant, indicating that the forecast is influencing farmer decisions, consistent with the
first-stage estimates in the profit function estimation. Reassuringly, however, the contemporaneous
forecast, announced after prior-period profits are realized, has no power in the lagged profit equation.

Column two reports the fixed effect-instrumental variables (FE-IV) estimates of the log planting-
stage investment equation including predicted lagged profits. The IMD rainfall forecast significantly
affects investment levels, as in Proposition 2. The forecast and forecast squared coefficients are jointly
significant, as is the complete set of forecast interactions with land characteristics, which are not shown
in the table (irrigation share, total acreage owned and four soil types). In accord with the model, a
forecast of higher rainfall increases investments and the marginal effect, given at the bottom of the
column, is also statistically significant and large. The point estimates, computed at the mean values of
the interaction variables, indicate that a positive one percentage point increase in the forecasted rainfall
deviation increases planting-stage investment by 48%. Lagged profits, however, do not have a
statistically significant effect on investments made in the planting stage.

One concern is that the planting-stage investments, made after the onset of monsoon rains, also
reflect in part realized rainfall in the early months of the kharif season, which are correlated with the
forecast, so that we are over-estimating the power of the forecast in influencing farmer decisions. To
test this, we also included in the specification actual July-September rainfall (not shown). This variable
was not a significant predictor of planting-stage investments, with an asymptotic t-ratio of 0.11, while
the forecast coefficients retained their statistical significance at the .04 level.

Another concern is that the relationship between the forecast and investments in spurious. We
make use of Proposition 3 to show that farmers are behaving in accord with the model. Proposition 3
implies that the ICRISAT farmers in Andhra Pradesh should not be responding to the IMD forecasts in
making their planting-stage investments. As shown in Table 2, forecast skill in the Andhra Pradesh
villages is nil, so unless farmers are unaware of the poor performance of the forecasts or we have
incorrectly characterized forecast skill, the finding that planting-stage investments are influenced by the
forecasts in these villages would call into question our assumptions and/or model. The response of
investments in the planting stage to the forecast should only be exhibited in the Maharashtra ICRISAT
villages. We estimated the planting-stage equation separately for the two sets of villages. The estimates
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of the planting-stage investment equation for the Maharashtra and Andhra villages are reported in
columns three and four of Table 4, respectively. In accord with the model, the forecast variables indeed
have no power in predicting investments in the Andhra Pradesh villages and the quantitative effect of
variation in the forecast on investments is small and statistically insignificant. In contrast, the forecast
variable coefficients are highly significant predictors of planting-stage investments for the Maharashtra
farmers, with the point estimates indicating that forecast variation has a strong effect on those
investments.

In the Maharashtra villages, there is no evidence that lagged profits are associated with
investments, while this effect is marginally statistically significant in the Andhra Pradesh villages. The
moisture overhang effect of lagged rainfall is an important and statistically significant determinant of
investment in both states. In Maharashtra it is apparent at soil depths greater than 3 feet. Such deep
soil is not observed in Andhra Pradesh; there the moisture overhang effect is significant for soils of 1-3
foot depth.?

There may be alternative explanations associated with unobserved heterogeneity at the village
level that account for the sharp difference we observe in the effects of the forecast on planting-stage
investment across the two ICRISAT areas other than differences in forecast skill. The REDS data, from
which we have many more village-level estimates of forecast skill and many more farmers, allows us to
estimate directly how forecast skill, as measured by the correlation between the IMD forecast and
actual rainfall in the local area, affects the responsiveness of planting stage investments to forecasts. We
can also use the REDS data to assess the robustness of our forecast estimates to heterogeneity in
farmers and geographic areas. We thus use the REDS data to estimate investment equation (16)
excluding lagged profits (which did not seem to matter), given we only have two observations per
farmer, but including the interactions between forecast and forecast skill and the interactions of
forecast skill with other characteristics of the region and farmer. 12

Column 1 of Table 5 reports FE estimates of the effects of the IMD forecast and the forecast
interacted with forecast skill on the log of planting-stage investments for the 2219 farmers in the REDS
data.’® Consistent with the model, the profit function estimates, and with the investment estimates by
state from the ICRISAT data, the response of the investments to the forecast is statistically significantly
higher the higher is forecast skill in the area, and a higher forecast leads to more investments, though
not statistically significantly so. One reason for the small average response to the forecast is that, as
shown in Table 1, a large fraction of REDS farmers cultivate on irrigated land. Proposition 5 indicates
that because irrigation reduces the losses from poor rainfall outcomes, planting-stage investments of
irrigated farmers will be less responsive to increases in forecast skill. To test this, we added interactions

11 The net effect of higher responsiveness of investment to forecasts in Maharashtra and higher responsiveness to
lagged profits in Andhra Pradesh is that investment in Maharashtra is more variable. The average coefficient of
variation of investment in the Maharashtra villages is 60%, while the average CV in Andhra Pradesh is 41% (these
are statistically significantly different, p=0.027).

12 Excluding lagged profits from the specification does not significantly affect the forecast or other coefficients
shown in Table 4.

13The set of interactions between the forecast and the characteristics of the individual farm were not statistically
significant and are omitted.
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between the fraction of the farmer’s land that is irrigated and the forecast and forecast skill. The
estimates for this specification, shown in column two of Table 5, are consistent with the model and the
effects of irrigation on the sensitivity of investment returns - the higher the fraction of the farmer’s land
that is irrigated, the lower the responsiveness to forecast skill. This irrigation gradient is statistically
significant, as is the effect of forecast skill on the forecast response for unirrigated farmers. The point
estimates indicate that at a forecast skill of, say, .43 (the forecast skill in Shirapur) among unirrigated
farmers a one percentage point increase in the forecast deviation increases planting-stage investments
by 9%.

Village-level forecast skill may be correlated with other area characteristics that affect farmer
investments. As was seen in Map 1, forecast skill has strong spatial patterns. One striking fact is that
where the forecast skill is higher many farmers grow rice. Map 2 shows the rice-producing areas in India,
based on the cropping patterns of the farmers in the REDS. As can be seen the northeast area with good
forecast skill is one of the rice-intensive areas, defined as areas in which at least 75% of farmers grow
rice. To assess if our finding of the higher responsiveness of investments to the monsoon rainfall
forecast in high skill areas merely reflect the differential responsiveness of rice farmers to forecasts, we
added interactions between the forecast and forecast-skill interaction and a dummy variable for
whether the village was in a rice growing region. In addition, Proposition 6 shows that the riskiness of
production will in general change the responsiveness of farmers to forecasts and to the skill of forecasts.
Therefore, we added interactions between the forecast and forecast skill variables and a measure of the
variability of village-level rainfall (CV). The fourth column of Table 5 displays these estimates, and Map 3
shows the geography of rainfall variability. As can be seen, neither the set of rice nor the set of CV
interaction coefficients is statistically significant, while the magnitudes and statistical significance of the
coefficients associated with the responsiveness of investments to forecast skill for irrigated and
unirrigated farmers are unaffected.'

8. Optimal Input Choices and Forecasting

In this section we (a) obtain the profit-maximizing level of planting stage investment and (b)
assess the contribution of the forecast to actual investment variability and average profit levels and
profit variability.’> We use simulations based on our estimates and the actual rainfall distribution
characterizing the ICRISAT sample. The planting-stage investment choices of a risk-neutral (or fully-
insured) farmer without access to forecasts would set the expected marginal return of these
investments equal to the real discount factor. The expectation would be taken over the unconditional
distribution of rainfall realizations, and we have hypothesized that the real discount factor is
approximately 1 (a real interest rate of 0). We calculate the profit-maximizing planting-stage investment

14 We also estimated specifications adding mean rainfall interactions. These also were not significant determinants
of planting-stage investments and did not alter the forecast skill estimates.

15 1n making this calculation, we are assuming that farmers are knowledgeable of the distribution of rainfall. Giné
et al. (2009) show that for farmers in the semi-arid tropics of India, where the ICRISAT villages are located, at the
.05 percent level one cannot reject that the perceived distribution of the rainfall onset date and the actual
distribution were identical for 85% of farmers.
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of a farmer by attributing to that farmer the mean characteristics of farmers in the Shirapur village
sample, and then simulate profits at alternative levels of investment using the coefficients of our
estimated profit function (Table 3, column 4) and repeated draws from the joint distribution of annual
and monsoon rainfall in Shirapur. For each investment level, we calculate average profits over the
10,000,000 draws from the rainfall distribution. We then find the investment level that maximizes the
expected value of profits. We begin with the actual means and correlations of the joint distribution of
total rainfall, monsoon rainfall and the IMD rainfall forecast that we take from the data describing the
village of Shirapur over the period 2005-2011.° In each simulation of profits we draw a total rainfall
realization and a monsoon rainfall realization from the joint normal distribution defined by the
covariance matrix defined by these parameters.” We find the profit-maximizing investment level to be
R42,000, compared with actual mean investment in the ICRISAT sample of R12,000. As we noted in
section 6, there is substantial underinvestment in planting-stage inputs, by a factor of more than 3.

We now compare this profit-maximizing investment level to the behavior of a typical farmer in
the sample of Maharashtra farmers, who as we have seen in Table 4 respond to IMD forecasts, which
vary from year to year. In Figure 6, we display the Maharashtra sample mean investments and estimated
profit-maximizing investment level of a farmer with mean Shirapur sample characteristics. We also
simulate the effect rainfall forecasts on the investments of a farmer. To isolate the responsiveness of
planting-stage investment to variations in the forecast, we again assign to a farmer the mean
characteristics of farmers in the ICRISAT sample, and also fix lagged profits at their mean, and lagged
rainfall at its mean. We expose this farmer to the forecasts from a sequence of 20 draws from the joint
distribution of annual rainfall, monsoon rainfall and the IMD forecast. We specify the skill of the forecast
as p = 0.43, our estimate of forecast skill in Shirapur (from which we take the rainfall distribtution), and

use the estimates of the investment coefficients in equation (16) from Column 3 of Table 4.

The line labeled “Responsive to Forecast” reports the farmer’s adjustment of planting-stage
investment in response to the forecast. We have eliminated variation in investment due to lagged
profits (which is small and statistically insignificant in any case, as seen from the estimates reported in
Table 4 column 3) and any variation due to the soil moisture overhang effect (which is an important
source of variation in our sample, as can be seen in the same set of estimates). This is just an example
of one particular sequence of 20 seasons of realizations of rainfall and forecasts; a different sequence
would of course yield a different time path. Nevertheless, it is apparent from Figure 6 that planting-

16 The rainfall forecast does not enter the present calculation of expected profits at each level of planting-season
investment. But the rainfall forecast does, of course, affect the choice of planting-season investment described in
the next paragraph, so we describe the joint distribution here. The covariance matrix for total rainfall (mm),

453.7 84861 348
monsoon rainfall (mm) and the IMD forecast (% of normal) is | 84861 360.9 329 |. Asthe simulations
348 329 96.4

change the correlation between monsoon rainfall and the IMD forecast, we assume that the correlation between
the total rainfall and the forecast changes proportionally, while of course the correlation between total and
monsoon rainfall is fixed.
17 We carried out Shapiro-Wilk and Shapiro-Francia tests for normality of the rainfall distribution covering a 23-
year period for the village. Neither test indicated rejection of the null hypothesis at conventional levels of
significance (p=.262, .699, respectively).
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stage investments respond to the long-range monsoon forecast. Investment rises from the mean of
R10,300 to nearly R13,000 in years when the forecast is for good rainfall, and falls to under R6,000 in the
year of the simulation in which rainfall is predicted to be very low. The variation in investment
attributable solely to forecast variation in the Maharashtra villages is sizable: the coefficient of variation
of investment in this simulation is 15 percent, compared to an average c.v. of investment in these
villages in our sample of 60 percent. So about % of the variation in early-season investment in the
villages is accounted for solely by variation in the rainfall forecast.

In figure 7 we display the estimated profits realized from this same sequence of draws of rainfall
and forecasts. The “Sample Average” line is the profits achieved under each of the draws of the
simulation of a farmer investing each year a fixed amount of R10,300. Given this sequence of rainfall
realizations, this generates average profits of R42,300 with only a small amount of variability due to
rainfall (because, as can be seen in Figure 5, at this low level of investment the rainfall variation leads to
only mild variation in profits). In contrast, profits are extremely variable at the much higher profit-
maximizing investment of R42,000. As expected this very large, profit-maximizing investment level also
leads to much higher average profits: the mean profit over these 20 rainfall realizations is R86,000. The
line labeled “Responsive to Forecast” shows profits under the scenario in which the farmer’s investment
adjusts to the forecast, as in Figure 6. By responding to forecasts, the farmer increases his mean profits
to R46,625 over the “Sample Average” scenario mean of R42,300, while his mean investment increased
only to R11,113 (from R10,300). As can be seen, this increased average profit comes at the cost of much
more profit variability. There are two sources of risk that generate this increased variability: rainfall risk
itself, and the risk that the forecast is incorrect. The worst outcome for the farmer now occurs in a year
in which the forecast is for good weather (leading the farmer to increase early-season investment) but
the actual realization of rainfall is poor. The fact that we find that farmers choose to adjust their inputs
so strongly in response to imperfect forecasts, despite the much higher variability of profits generated
by this decision, is indicative that farmers in the ICRISAT villages have access to some ex post risk sharing
mechanisms (Townsend 1994; Mazzocco and Saini 2012), as well as of some form of borrowing friction
that makes achieving the high “Profit-Maximizing” level of investment costly.

9. The Profitability of Changing Forecasting Skill
9.1 Returns under current weather conditions

Both datasets provide evidence that farmers adapt to the skill of IMD forecasts: in regions in
which the forecast is more strongly positively correlated with rainfall outcomes, farmers respond more
powerfully to the forecast by increasing (decreasing) planting-stage investments when the forecast is for
more rain. We have also shown that the return to these planting-stage investments is higher when
realized rainfall is higher. Proposition 7 states that expected profits should rise with forecast skill. Our
estimates of the profit function and the input demand function can be combined with assumptions
regarding the joint distribution of rainfall realization and forecasts to provide estimates of the effects of
changes in forecasting skill on the distribution of farm profits.

Farm profits are a concave function of planting-season investments interacted with rainfall
realizations. As a consequence, expected profits are not a simple function of expected rainfall, expected
forecasts, and the expected value of planting-stage investments. In order to describe the distribution of
profits (including its mean), we simulate profits using repeated draws from the joint distribution of
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rainfall and forecasts for a typical farmer, subject to varying assumptions regarding the skill of the
forecast.

These realizations, along with the mean values of farm characteristics in Shirapur (Z,,) and the

parameter estimates of the coefficients in equations (15) and (16) are used to generate a prediction of
planting-stage investment, and (using the predicted planting-stage investment) farm profit. The
parameter values for the coefficients in equation (16) are those from column 2 of Table 4, while &q and

&kq , Which characterize the responsiveness of input choices to forecast skill, come from column 2 of

Table 5. The parameter values for the coefficients in equation (15) are those from column 4 of Table 3.
For each value of forecast skill, we again draw 10,000,000 realizations of rainfall and the forecast in
order to characterize the distribution of profits.

The solid line in Figure 8 provides these initial results. It represents the mean of the distribution
of profits for a typical Shirapur farmer, given the distribution of rainfall in Shirapur, at various levels of
forecast skill. The key result is that increases in forecast skill have a very large effect on mean profits.

As skill increases, the typical farmer responds more aggressively to match his planting-stage investment
to the forecast, and that forecast more often is close to the rainfall realization, and therefore the
profitability of farming is on average much higher. Increasing the correlation of the forecast with rainfall
realizations by 0.1 causes an increase in profits of approximately R43,000 (over of a baseline profit of
approximately R32,000).

The dashed line in Figure 8 shows that most of this gain to improved skill comes from farmers’
increasing willingness, as forecaster skill increases, to adjust their input choices in response to the

forecast. That line reports the results of simulations in which ¢, and ,, are set equal to zero, so that

the responsiveness of farmers to the forecast is set at the mean responsiveness reported in column 2 of
Table 4. In this case, an increase of 0.1 in forecaster skill is associated with only about R250 of additional
profits.

Figure 9 emphasizes the scale of the weather risk faced by farmers. The curves labeled “Low”
and “High” represent the 25" and 75" percentiles of the profit distribution, for each level of forecasting
skill. Fully half of the profit realizations, then, fall even further from the mean than these curves. This
variation dwarfs even the very large improvements in profits associated with a 0.1 increase in forecast
skill. These simulated profits reflect only the consequences of village level rainfall shocks and the
variance of the forecast itself, not any of the idiosyncratic variation in inputs or profits represented by

the errors &, ,and7,,, . Any single cross-section within a village or forecast region only provides

information on profits conditional on this particular draw from the {rainfall, forecast} distribution.

Improvements in forecast skill have differential effects over the rainfall distribution. Figure 10
shows that improvements in the accuracy of rainfall forecasts are particularly valuable when rainfall is
very low, and when it is very high. The mean of the rainfall distribution is approximately 430, so the
smallest effect of increased skill is found in moderately good years of rain. The impact of increased
forecast skill, therefore, replicates the ex post impact on net agricultural income (farm profit, inclusive of
insurance premia and payouts) of crop or rainfall index insurance. Mobarak and Rosenzweig (2012), Cai
et al (2010), Cole et al (2011) and Karlan et al. (2013) show that farmers with access to insurance
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organize production to take on more risk, so their net income increases in good rainfall states, and the
insurance payouts make net income increase as well in poor rainfall states.

9.2 The Effects of Global Warming

How will global warming affect the returns to improving forecasting skill? In Figure 11, we
present the results of simulations of rainfall under global warming based on parameters from the
dominant Global Coupled Models linking monsoon behavior to global warming (Turner and Annamalai,
2012).2® Changing the parameters of the rainfall distribution to match these predictions and replicating
the simulation exercise yields the results summarized by the curve labeled “Warming optimal response”.
Profits on average increase at all skill levels, reflecting the higher mean rainfall predicted for the global
warming scenario.’® The high return to increasing forecast skill is little affected by global warming.

10. Conclusion

It is well-known that returns to investments depend on the realizations of stochastic outcomes,
particularly for agriculture in which production takes place over time and output is sensitive to rainfall
shocks. However, we know of no empirical studies that quantify the dependence of investment returns
on rainfall or other aggregate ex post shocks. It is not possible to infer the degree of under-investment,
an important indicator of market incompleteness, without knowledge of the distribution of stochastic
shocks and their consequence for returns. This is because the optimal investment for a risk-neutral
agent maximizes the expected value of profits over the full distribution of shocks. Thus an estimate of
investment returns at one point in time may be a very poor estimate of sub-optimal investment in risky
settings. The existence of agricultural risk also implies that farmers would benefit from improved signals
of future rainfall realizations. Long-term forecasts of rainfall have been issued by the Indian government
for many years, yet we also know of no empirical studies that document whether farmers respond to
such forecasts and, if so, how that affects agricultural profitability.

In this paper we used newly-available panel data on farmers in India to estimate how the
returns to planting-stage investments vary by rainfall realizations using an IV strategy in which the
Indian forecast of monsoon rainfall serves as the main instrument. We show that the Indian forecasts
significantly affect farmer investment decisions and that these responses account for a substantial
fraction of the inter-annual variability in planting-stage investments, that the skill of the forecasts vary
across areas of India, and that farmers respond more strongly to the forecast where there is more
forecast skill and not at all when there is no skill. Our profit-function estimates indicate that Indian
farmers on average under-invest, by a factor of three, when we compare actual levels of investments
with the optimal investment level that maximizes expected profits over the full distribution of rainfall
realizations.

18 We use the mean and standard deviation of monsoon rainfall from the CMIP3 mpi_echam5 model.
19 This exercise does not take into account the effects of mean temperature changes associated with the global
warming scenario, because we have no estimates of the effect of temperature variation on profits or input choice.
The simulations of course assume that the parameters of the input demand and profit functions are stable; if
farming practices are altered in response to the change in the rainfall distribution, our simulations understate the
gains associated with the change.
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We also used our estimates to quantify how farmers’ responses to the forecast affect both the
level and variability in profits relative to actual and optimal investments in a scenario in which there are
no signals. These indicated that farmer’s use of the forecasts increased average profit levels but also
increased profit variability compared with farmers without access to forecasts. Indeed, based on the
actual behavior of the farmers, our estimates indicated that they do better than farmers who would
undertake optimal, unconstrained investments but have no forecasts when rainfall realizations are high,
but worse under adverse rainfall conditions. Finally, we also assessed how profit levels would increase in
the future as forecast skill increases under current climate conditions and under conditions predicted by
climate models.? These exercises indicate that even modest skill improvements would substantially
increase average profits, and slightly more so in a warmed climate.

The possibility of improvements in forecasting weather realizations has important consequences
for the design of agricultural insurance. Conversely, the provision of agricultural insurance affects the
responsiveness of farmers to weather forecasts. We have shown that farmers adjust their planting-
season investments in response to skilled forecasts. Given access to conventional weather index
insurance products, which are sold at a fixed price up to the start of the farming season, farmers will
adjust their demand for insurance in response to skilled forecasts, as has been suggested by Robertson
et al (2010). Contrary to conventional belief, then, weather index insurance products are subject to
adverse selection, and the strength of that selection will increase as forecast accuracy increases. There
are two ways to overcome this adverse selection: index insurance can be sold only before the release of
skilled forecasts, or the price of the insurance must vary depending upon the forecast.

Even abstracting from the reality of basis risk, risk-averse farmers who make investments
influenced by forecasts cannot achieve complete insurance and thus productive efficiency using weather
index insurance alone. The responsiveness of inputs to forecasts implies that the loss that a farmer
faces upon the realization of bad weather depends upon the prior forecast: the loss is greater if the
forecast had been for good weather then if it had been for bad weather. To achieve full insurance, the
farmer would require a larger payout in the event of a drought following a forecast of good weather
than in the event of a drought following a forecast of a drought. This is quite a general point: if the
production process is dynamic — decisions made over time contingent on the revelation of information
about the probability of the realization of a random shock — then full insurance requires insurance that
covers not just the final realization of that shock, but the entire sequence of decision-relevant signals.

There is thus a missing market for forecast insurance. In the context of our model with only 2
states and a forecast, complete insurance would be achieved with 3 insurance products, all sold before
the revelation of the forecast: a conventional weather index product that pays out in the event of bad
weather, and two forecast insurance policies, one that pays out in the event of bad weather after a
forecast of good weather, and the other that pays out in the event of good weather after a forecast of
bad. There would be demand for all three products at actuarially fair rates, and their combination
would achieve complete insurance and productive efficiency. The response of planting-season

20 As we noted in the introduction, the Indian government has launched the $48 million “Monsoon Mission” to
improve forecasts in the next five years.
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investment to the forecast would be larger with this set of insurance than without, and the gain in
expected profits from increases in forecast skill would be larger.

As we have shown, access to skilled forecasts increases a farmer’s expected profits and
expected utility. It does, however, generate a new, particularly bad state of nature: a misleading
forecast of good weather. Here, the losses of a farmer are particularly high because of the high
investments that the erroneous forecast has induced. In the absence of conventional weather index
insurance, there would be demand, in particular, for insurance against this specific event. Aninsurance
product that paid out when bad weather followed a forecast of good would be a valuable financial
innovation.
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Map 1. Forecast Skill by District (REDS)




Map 2. Rice-Growing Areas by District (REDYS)




Map 3. Rainfall CV by District (REDS)




Distributions of Planting Stage Investments

ICRISAT Panel, 2005-2011
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Figure 5
Relationship Between Crop-Year Farm Profits and Kharif Planting Investments (x10-3),
by Realized Kharif Rainfall
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Figure 6. Simulated Planting-Stage Investments Over Time
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Figure 7. Simulated Profits Over Time
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Figure 8. Profits by Forecast Skill and Scenario
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Figure 9. Profits by Forecast Skill and Scenario
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Figure 10. Profit Gain From a 0.1 Increase in Forecast Skill, by Rainfall Realization
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Figure 11. Profits by Forecast Skill and Scenario
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Table 1

Descriptive Statistics: ICRISAT Panel (2005-2011) and REDS Panel (1999 and 2006)

Variable Mean Sd
ICRISAT Panel 2005-2011
Kharif planting-stage investment (2005 rupees) 11949.7 13061.9
Annual profits (2005 rupees) 32700.8 61063.6
Total acres owned 8.68 7.44
Share irrigated acres 497 376
Share acreage with soil depth 1-3 feet .647 367
Share acreage with soil depth >3 feet 244 376
June-September rainfall (mm) 507.7 318.2
CV rainfall 614 .205
Southern peninsula forecast (% of normal June-September rain) 96.4 2.77
Forecast skill (correlation, forecast and June-September rain) 267
Number of villages 6
Number of farmers 477
REDS Panel 1999 and 2006
Kharif planting-stage investment (2005 rupees) 11315.9 97899.3
Total acres owned 5.27 7.33
Share irrigated acres .637 453
Share acreage with soil depth 1-3 feet 392 471
Share acreage with soil depth >3 feet 268 431
July-September rainfall (mm) 533.7 434.6
CV rainfall 269 125
Area-specific forecast (% of normal June-September rain) 98.1 2.70
Forecast skill (correlation, forecast and June-September rain) 132
Farmer cultivates rice 510 .500
Number of villages 212
Number of farmers 2219




Table 2
Forecast Skill and Rainfall Characteristics, ICRISAT Villages 2005-2011, by Village

State Maharashtra Andhra Pradesh
Village Kalman Kanzara Kinkheda Shirapur Aurepalle Dokur
Mean July-September rainfall (mm) 415.8 582.5 571.1 360.9 586.4 525.4
CV July-September rainfall 753 750 736 741 488 213

Skill (SP forecast-rainfall correlation) 451 173 193 397 -401 -.161




Table 3
Profit Function Estimates: The Returns to Planting-Stage Investments
(ICRISAT Panel, 2005-2011)

Estimation method/variable FE FE-IV FE FE-IV
Planting-stage investment 922 3.38 -.0818 -312
(2.87) (2.72) (0.106) 0.17)
Planting-stage investment x rainfall - - .00195 .00840
(2.49) (2.72)
Planting-stage investment squared (x107) -.556 -4.49 982 -1.10
(1.25) (2.15) (1.31) 0.42)
Planting-stage investment squared x rainfall (x107) - - -.281 -.837
(2.58) (1.90)
F-test: investment, investment squared=0 [p] 8.26 - 0.03 -
[.004] [.872]
F-test: investment x rainfall, investment squared x rainfall=0 - - 6.22 -
] [.013]
¥*(2) test: investment, investment squared=0 [p] - 8.30 - 1.19
[.016] [.550]
¥*(2) test: investment x rainfall, investment squared x - - - 8.15
rainfall=0 [p] [.017]
N 1667 1667 1667 1667

Absolute values of asymptotic ~ratios in parentheses. Specification also includes current-year annual and July-September rainfall, prior-year rainfall,
current-year and prior-year rainfall squared, and current-year rainfall and prior-year rainfall interacted with total landholdings, irrigated landholdings,
soil depth, and four soil types. The instruments include the rainfall forecast, its square and the rainfall forecast interacted with the soil and
landholding variables and annual and July-September rainfall.



Table 4
Rainfall Forecasts, Profits and Planting-Stage Investments
(ICRISAT Panel, 2005-2011)

Estimation method FE FE-IV
Variable Profits (1) Log planting-stage investments (7)
Maharasthra ~ Andhra Pradesh

Sample All Villages (high skill) (no skill)

Forecast rain (#1) - 303490 - - -
(2.68)

Forecast rain squared (1) 1534.4 - - -
(3.97)

Forecast rain (7) 32159 572 1.37 -419
(0.40) (1.22) (2.87) (0.44)

Forecast rain squared (7) -163.3 -.0048 -.0068 .00036
(0.68) (2.40) (2.78) 0.07)

Profits (+1) x 10 - 722 .106 6.76

0.79) 0.27) (1.67)

Rain (#1) x soil depth, 1-3 -18.7 .00052 .00067 -
(1.37) (3.25) (3.706)

Rain (#1) x soil depth, > 3 34.0 .00015 .00051 .00033
(1.60) (2.08) (0.51) (2.52)

¥*(2) forecast (7 vatriables=0 0.30 7.65 9.63 2.10

(2] [.739] [.022] [.008] [.350]

¥*(2) forecast (1) vatiables=0 8.47 - - -

1 1.000]

¥*(8) all forecast (7) interaction - 13.5 15.6 5.48

variables=0 [p] [.09¢] [.01¢6] [.705]

dlog investment/ dforecast (7) - 480 .688 -.101

at mean values (2.49) (2.85) 0.22)

N 1399 1399 974 425

Absolute values of asymptotic £ratios in parentheses. Lagged profit specification also includes lagged
rainfall, lageged rainfall interacted with land size, irrigation share, and four soil types and the lagged and
contemporaneous forecasts interacted with land size, irrigation share, and four soil types. The investment
specification also include the forecast interacted with land size, irrigation share, and four soil types.



Rainfall Forecasts, Forecast Skill and Log Planting-Stage Investments

Table 5

(REDS Panel, 1999 and 20006)

Estimation method/variable FE FE FE FE

Forecast rain -.0670 -122 -125 -.153
(1.60) (1.47) (1.89) (1.54)
Forecast rain x skill 168 482 495 570
(2.53) (4.28) (4.22) (3.41)
Forecast rain*irrigated land share - .0839 .0800 0767
(1.23) (1.13) (1.12)
Forecast rain*skill* irrigated land share - -.383 -.348 -.354
(3.55) (3.17) (3.08)
Forecast rain x rice area - - .0264 .0306
(0.027) (0.31)
Forecast rain x skill x rice area - - -.0836 -.100
(0.63) (0.75)

Forecast rain x rainfall CV - - - .00010
(0.75)

Forecast rain x skill x CV - - - -.00023
(0.80)
dlog investment/ dforecast (7) at .00538 .0851 .0879 .0916
skill=.43 (0.38) (0.98) (1.64) (1.77)
N 4438 4438 4438 4438

Absolute values of asymptotic ~ratios in parentheses clustered a at the forecast area level.



Appendix Map A

India Meteorological Department




Table A
Savings Accounts of ICRISAT Households and Annual Interest Rates,
Weighted by Account Value

Account Interest Rate Mean Interest Rate SD Account Value (Rs)
Chit Funds 23.18 3.45 1,779,525
Co-operative Bank 5.97 1.33 1,297,245
LIC/PLI policies 8.14 2.17 3,117,557
National Bank 7.35 1.38 2,811,895
Others (GPF, etc.) 8.36 2.03 656,550

Post Office 8.40 2.33 492,600

Self Help Group 12.15 7.69 705,355

Total 10.44 6.49 10,878,727
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