
NBER WORKING PAPER SERIES

ALLOCATIVE EFFICIENCY, MARK-UPS, AND THE WELFARE GAINS FROM
TRADE

Thomas J. Holmes
Wen-Tai Hsu
Sanghoon Lee

Working Paper 19273
http://www.nber.org/papers/w19273

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2013

This paper grew out of work initially circulated under the title, "Plants, Productivity, and Market Size,
with Head-to-Head Competition." We are very grateful for discussion comments from Donald Davis
and Marc Melitz on this earlier work. We have also benefited from discussions with various colleagues
and in particular thank Sam Kortum and Jim Schmitz. The views expressed herein are those of the
authors and not necessarily those of the Federal Reserve Bank of Minneapolis, the Federal Reserve
System, or the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2013 by Thomas J. Holmes, Wen-Tai Hsu, and Sanghoon Lee. All rights reserved. Short sections
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.



Allocative Efficiency, Mark-ups, and the Welfare Gains from Trade
Thomas J. Holmes, Wen-Tai Hsu, and Sanghoon Lee
NBER Working Paper No. 19273
July 2013
JEL No. D61,F10,L13

ABSTRACT

This paper develops an index of allocative efficiency that depends upon the distribution of mark-ups
across goods. It determines how changes in trade frictions affect allocative efficiency in an oligopoly
model of international trade, decomposing the effect into the cost-change channel and the price-change
channel. Formulas are derived shedding light on the signs and magnitudes of the two channels.   In
symmetric country models, trade tends to increase allocative efficiency through the cost-change channel,
yielding a welfare benefit beyond productive efficiency gains.  In contrast, the price-change channel
has ambiguous effects on allocative efficiency.

Thomas J. Holmes
Department of Economics
University of Minnesota
4-101 Hanson Hall
1925 Fourth Street South
Minneapolis, MN 55455
and The Federal Reserve Bank of Minneapolis
and also NBER
holmes@umn.edu

Wen-Tai Hsu
School of Economics
Singapore Management University
90 Stamford Road
Singapore 178903
wentaihsu@smu.edu.sg

           Sanghoon Lee
           Sauder School of Business
           University of British Columbia
           2053 Main Mall
           Vancouver, BC V6T1Z2
           Canada
           Sanghoon.Lee@sauder.ubc.ca



1 Introduction

When mark-ups are the same across all goods, first-best allocative efficiency is attained.

The condition that the price ratio equals the marginal cost ratio, for any pair of goods,

holds because the constant mark-ups in prices cancel out. In this paper, we develop an

index  of allocative efficiency that can be calculated when mark-ups differ across goods,

and the first-best is not attained. We focus on how international trade influences .

In particular, we distinguish effects on allocative efficiency from standard Ricardian gains

from trade, which we account for through how trade affects an index of productive efficiency

Prod . Our key result is a decomposition of the effect on allocative efficiency into what

we define as the cost-change channel and the price-change channel. The decomposition

is useful because each channel has an intuitive formula that makes it possible to discuss

conditions determining sign and magnitude. In important limiting cases, both terms are

zero, and effects of international trade on can be safely ignored. In general, however, the

two terms are not zero, and the effect on allocative efficiency can be a significant component

of the overall welfare analysis of trade.

The analysis is conducted in an oligopoly model of international trade where firms com-

pete “head-to-head” in a Bertrand fashion. This approach follows Bernard, Eaton, Jensen,

and Kortum (2003) (hereafter BEJK), and Atkeson and Burstein (2008).1 Consider how

 changes when a friction  impeding trade between countries is reduced. To determine

the cost-change channel, we evaluate the effect of lower  on mark-ups, when we take into

account effects on costs, but leave prices fixed. Lower  affects only the costs of imported

goods. Thus, holding prices fixed, lower  raises mark-ups on imported goods. To de-

termine how this change affects allocative efficiency , the formula for the cost-change

channel compares mark-ups for imported goods, with the average mark-up (foreign and do-

mestic goods combined). The formula is intuitive, and is straightforward to calculate in

empirical applications, if micro data on product-level mark-ups are available. Suppose, for

example, that mark-ups on foreign goods are initially less than average. If  is then lowered,

it will enable foreign firms to raise mark-ups closer to the average, attenuating the initial

distortion.

In the limiting case where the friction is small and countries are symmetric, the cost-

change channel for the effect on  goes to zero, because mark-ups on imports and domes-

tic goods are identical in the limit. The cost-change channel is also approximately zero in

another limiting case where competing firms draw their productivities from a Pareto distri-

1Atkeson and Burstein (2008) focus on the Cournot version of their model, but also consider a Bertrand

variant. See also Devereux and Lee (2001) and Neary (2003) for related Cournot versions.
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bution, as is commonly assumed in the trade literature.2 Holding fixed productivity draws,

foreign firms incur trade costs that domestic firms do not, and everything else the same, this

tends to lower mark-ups for foreign firms compared to domestic. However, foreign firms

face a tougher selection process over productivity (since foreign firms must surmount the

trade cost barrier), and everything else the same, higher productivity for the market leader

raises mark-ups. Under the Pareto, these two offsetting forces cancel out, and mark-ups for

imports are the same as overall, zeroing out the cost-change channel. The outcome is a con-

sequence of the “fat-tailed” nature of the Pareto, which gives the selection effect great force.

If instead we use a distribution with less of a fat tail, like the log-normal, the selection effect

no longer “keeps up” as an offsetting force. Everything else the same (e.g. a symmetric

setup where foreign firms draw from the same productivity distribution as domestic firms),

foreign firms tend to have lower mark-ups than domestic because of the friction, and the

cost-change channel for the effect of a reduction in  on  is strictly positive.

To understand the price-change channel, consider the effect of lower  on allocative

efficiency , when we take into account how prices change, but hold costs fixed. It

turns out that in the two limiting cases just mentioned, the case of symmetry and negligible

frictions, and the case where productivity draws are Pareto, the price-change channel is zero

like the cost-change channel, and the overall effect of lower  on is zero. More generally

the price-change channel is non-zero, and its sign and magnitude depend upon how mark-

ups on goods whose prices decrease, when  goes down, compare with mark-ups on goods

whose prices remain the same. In symmetric cases when demand tends to be inelastic,

the price-change channel tends to be positive, and thereby reinforces the positive effect of

lower  that comes through the cost-change channel. In contrast, when demand is elastic,

the price-change channel tends to be negative, and in some cases can more than offset the

positive effect from the cost-change channel. In these cases, allocative efficiency actually

falls as trade frictions decline, as firms are less able to harmonize their mark-ups around the

simple monopoly mark-up.

Our paper builds on long understood ideas about allocative efficiency. In particular,

Robinson (Ch 27, 1934) showed that if there is a constant mark-up across all goods, first-

best efficiency is achieved. The literature on the theory of the second best (e.g. Lipsey and

Lancaster (1956-1957)) made the point that making one sector more competitive potentially

reduces welfare if there already exists monopoly distortions elsewhere in the economy. Based

on the insights of this old literature, it is clear that while increased trade might have “pro-

competitive” effects in reducing mark-ups, the effect of trade on allocative efficiency will not

2A similar limiting case is when firms draw productivities from a fat-tailed distribution and the number

of firms goes to infinity.
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necessarily be positive.

The related modern literature is extensive and we start with BEJK. Our model is the

same as BEJK, with BEJK making a particular functional form assumption for the produc-

tivity distribution. BEJK show in their setup that the mark-up distribution is the same

for imports as it is for domestic goods, and that changes in trade frictions do not affect the

distribution of mark-ups. The BEJK productivity distribution has a fat-tailed shape, and

the cost-change and price-change channels are both zero, for how  affects , following

our discussion above. Atkeson and Burstein (2008) and de Blas and Russ (2012) start with

the BEJK model and show that with alternative assumptions on the distribution of produc-

tivity, foreign goods can have different mark-ups than domestic goods, and changes in trade

frictions can affect the overall distribution of mark-ups. Our work is different from these

papers, in our focus on allocative efficiency.

Recently, Edmond, Midrigan, and Xu (2012) consider a similar model and examine gains

from trade achieved through the “pro-competitive” effect of how trade changes the distribu-

tion of mark-ups. The paper provides a quantitative analysis, with model parameters pinned

down with Taiwanese manufacturing data. The key differences in our paper include (i) our

approach in developing a formal measure of allocative efficiency, (ii) how we decompose the

effects of trade on allocative efficiency into the cost-change and price-change components,

and (iii) how we use the decomposition to shed light on the potential signs and magnitudes

of the pro-competitive effect.

In a recent paper, Arkolakis, Costinot, and Rodriguez-Clare (2012), hereafter ACR, derive

a condition summarizing the welfare gains from trade that is applicable in a variety of models,

including BEJK. The condition depends upon the volume of observed trade. For example,

in the ACR framework, a necessary condition for trade to have welfare effects is that there be

positive trade flows. By focusing on the fat-tailed productivity draws included in the BEJK

setup, for which the mark-up distribution is invariant to trade, the ACR approach shuts down

any possibility of welfare effects through allocative efficiency. All welfare effects go through a

productive efficiency index Prod. If instead we consider productivity distributions without

a fat tail, then in general trade will affect both productive efficiency Prod and allocative

efficiency. In the end, if observed trade volume is zero, the ACR formula will determine

that trade leads to no gains in Prod. However, even if there are no observed trade flows,

the possibility of trade can affect the mark-up distribution, and hence overall welfare through

.3

There are now several models of monopolistic competition where trade affects mark-

3There is empirical evidence that the threat of competition from imports can influence domestic outcomes,

even if in the end, imports don’t come in. See Salvo (2010) and Schmitz (2005).
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ups, including Melitz and Ottaviano (2008) and Behrens and Murata (2012).4 Arkolakis,

Costinot, Donaldson, and Rodriguez-Clare (2012) is particularly relevant as it generalizes

the monopolistic competition version of the ACR framework to capture what they refer to as

“the elusive pro-competitive effects of trade.” The economics of the pro-competitive effect

is very different in a monopolistic competition model than it is in the oligopoly model we

consider. In monopolistic competition, a change in the trade friction only affects a domestic

firm through general equilibrium effects that might shift or rotate the firm’s demand curve.

Depending on assumptions about the shape of the utility function, monopoly demand can

become more or less elastic, and domestic mark-ups can go down or up. In contrast, in

a Bertrand environment, the pro-competitive force of trade operates at the level of the

particular good, not through general equilibrium. If trade frictions are lowered, a domestic

firm limit pricing on a foreign rival will directly have to lower price (and mark-up) to meet

competition.

The literature discussion above focuses specifically on trade. We note our paper is

also part of a broader literature on how allocative efficiency affects aggregate productivity,

including Restuccia and Rogerson (2008), Hsieh and Klenow (2009), and Peters (2012).5

2 Model

There are a continuum of goods on the unit interval, each good indexed by . Let 

indicate a quantity of consumption good  and let q = { :  ∈ [0 1]} denote a particular
consumption bundle. Assume preferences are represented by a homothetic utility function

U(q) over a bundle q. For most results, we impose the CES form,

U(q) =

µZ 1

0


−1


 

¶ 
−1

 for   0,  6= 1

= exp

µZ 1

0

ln 

¶
, for  = 1 (Cobb-Douglas).

For simplicity of exposition, assume there are two countries,  = 1 2. Each country has

a measure  workers. Labor is the only factor of production.

The different goods potentially vary in the number of firms capable of producing the

good and the productivity of the various firms. In particular, there are  different firms

capable of producing good  at . The total number of firms for good  across the two

4See also Ottaviano, Tabuchi, and Thisse (2002) for a treatment in a regional context.
5Peters (2012) in particular uses an index of allocative efficiency to examine growth that coincides with

our measure for the case of Cobb-Douglas.
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countries is  = 1 + 2. Assume that  ≥ 2. Let  ∈ {1 2 } index a particular
firm located at  capable of producing good  at .

Define  as labor requirement per unit produced of firm  located at  for good .

The inverse of  is the firm’s productivity . Suppose we rank all  firms at  for

good  in terms of labor requirement, from lowest to highest. Let ∗ and ∗∗ be labor

requirements of the firms with the first and second lowest values. If there is only one firm

for good  at , then set ∗∗ = ∞. If there are no firms for good  at  (implying there

are two or more in the other country) then set ∗ = ∞ and ∗∗ = ∞. The third lowest
and beyond will not be relevant for pricing or production, following the standard logic of

Bertrand competition (Grossman and Helpman (1991)), which will apply here.

We treat the labor requirements for a given good  as random draws from a joint dis-

tribution (
∗
1 

∗∗
1  

∗
2 

∗∗
2 ) of the first and second lowest labor requirement at 1, and the

first and second lowest at 2. Our main results do not impose the restriction that labor

requirements be drawn independently across firms.

In addition to the labor requirement, the cost of a firm at  to deliver to  will depend

upon the wage at  and the trade friction to deliver from  to . Let  denote the wage at .

Assume an iceberg trade friction  to ship from one location to the other, i.e., to deliver one

unit,  ≥ 1 units must be shipped. There is no shipping cost to deliver goods domestically.
The total costs to deliver to location 1, for the two lowest cost producers at 1, and the two

lowest cost producers at 2, are then

©
1

∗
1 1

∗∗
1 2

∗
2 2

∗∗
2

ª
.

Let ∗1 and ∗∗1 be the lowest and second lowest elements of this set. Analogously, we can

define the lowest and second lowest costs ∗2 and ∗∗2 to deliver to country 2.

Firms compete in price in a Bertrand fashion, market by market. For a particular good

 at , we can derive a demand curve() for  at  as a function of price , holding other

prices and income as fixed. Assume the underlying utility function is such that the demand

curve is continuously differentiable and strictly downward sloping. Suppose hypothetically

that the most efficient producer of  at  were a monopolist. The monopoly price ̄ would

solve

̄ = argmax


¡
− ∗

¢
()

=


 − 1
∗


i.e., the standard mark-up rule applies, where  is the elasticity of demand for  evaluated
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at the monopoly price. (In the CES case, which is our main focus,  = .)

In the equilibrium outcome of Bertrand competition, price will equal the minimum of the

monopoly price and the marginal cost ∗∗ of the second lowest cost firm to deliver to , i.e.,

 = min
¡
̄,

∗∗


¢
.

Define  to be the variable cost share of price for good  at ,

 =
∗


The inverse of  is the mark-up. It is notationally convenient here to focus on  rather

than its inverse, the mark-up, which is the typical focus in the literature.

3 Welfare

To define our welfare decomposition, we first introduce additional notation. Let p= { :  ∈ [0 1]}
denote a particular set of prices at . Having already assumed a homothetic utility func-

tion, without loss of generality we can further assume utility is homogeneous of degree one.

Define the price index  to be the minimum cost at  to construct a consumption bundle

delivering a unit level of utility, i.e.,

 ≡
Z 1

0

 ̃,

where q̃= {̃ :  ∈ [0 1]} is the expenditure-minimizing consumption bundle that solves

q̃ ≡ argmin
q

Z 1

0

,

subject to

U(q) = 1.

Let  be the share of spending at  on good ,

 =
 ̃



.

Next, let be total revenue of firms located at  across all goods, including both domestic

sales and exports. This will equal the total income at , which is divided between labor and
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profits,

 =  +Π.

Define  to be the revenue-weighted mean share of variable cost in revenue across

goods with source at location . This equals

 =




=

R
{: ∗1()=} 111 +

R
{: ∗2()=} 222R

{: ∗1()=} 11 +
R
{: ∗2()=} 22

, (1)

where ∗ () ∈ {1 2} denotes the source country for any particular good  at destination

. To understand (1), observe that for a good  sold at 1 with source at 1, 11 is the

spending at 1, by definition of 1. Then 111 is the total variable cost for such goods,

by definition of 1 as the variable cost share. This accounts for the numerator of (1). The

denominator sums sales to 1 and 2, from source .

Define 
buy
 to be the revenue-weighted mean share of variable cost in revenue across

goods with destination at .


buy
 =

Z 1

0



Finally, we introduce additional notation for what prices would be under marginal cost

pricing. Let the price of an individual good at marginal cost be denoted

 = ∗,

and let  be the price index at  when all goods are priced at marginal cost. Assume

that productivity distributions are not too fat-tailed so that both price indices  and are

finite.6

We now present our welfare decomposition. We can write welfare at location  as

 
 =





=




1



(2)

=  × 1



× 
buy




× 

 ×
buy


To get the first line, note that because utility is homogeneous of degree one, we can write

utility at  as income divided by the price index. To obtain the rest of the first line, we

6For example, if we assume Fréchet structure of productivity draws as in BEJK, then, as in any Eaton-

Kortum models,    − 1 is required to guarantee finite price index (and hence equilibrium existence),

where  is the shape parameter of Fréchet. The larger the , the thinner the tail.
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substitute in (1). The second line is a straightforward manipulation. We can write (2) as

 
 =  ×Prod

 × 
buy




×
 (3)

for the productive efficiency index Prod
 ,

Prod
 ≡ 1



,

and the allocative efficiency index 
 ,


 ≡



 ×
buy


=

R 1
0
̃


R 1

0
̃

. (4)

The manipulation results in a decomposition (3) of welfare into four terms. Without

loss of generality we will focus on the welfare of country 1, and we will set the wage at 1 to

be the numeraire, 1 = 1. To save notation, we will then leave country subscript  implicit

(as  = 1 always). As the labor supply  will be fixed in the analysis, the first term in the

welfare decomposition is a constant that we will henceforth ignore.

The productive efficiency index Prod , the second term of (3), is what the welfare index

would be with no mark-up. It equals the inverse of, which is the price index at marginal

cost prices. The index varies when there is technical change determining the underlying

levels of productivity. It also varies when trade cost declines, decreasing the cost of foreign

firms to deliver goods locally. Terms of trade effects also show up inProd , because a lower

wage from a source country will raise the index.

The third and fourth terms depend upon mark-ups, or equivalently, the inverse of the

mark-ups which are the cost shares. In ACR, and in the broader literature that it encom-

passes, trade has no effect on the distribution of mark-ups, and so it has no effect on the

third and fourth terms. Thus in ACR, the welfare effects of trade operate entirely through

the effects on the productive efficiency index Prod.

The third term is a “terms of trade” effect on mark-ups. Holding fixed the other

components of welfare, total welfare is higher in country 1, if the cost share of price in

the goods that it purchases tends to be high relative to the cost share of price in the goods

that it sells. In a symmetric version of the model where the two countries are mirror images

of each other, the “buy” cost share will equal to the “sell” cost share, and the third term

will drop out.

The fourth term is the allocative efficiency index, the main focus of this paper. The

expression (4) presents two alternative ways to write. The first way writes it as the ratio
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of the price indexes under marginal cost and actual pricing, divided by the mean variable

cost share of price.

For the second way, consider two bundles, q̃ and q̃, that deliver one unit of utility.

Bundle q̃ minimizes expenditure at marginal cost pricing, while bundle q̃ minimizes ex-

penditure at actual prices. The second way of writing the allocative efficiency index is as

the ratio of expenditure on these two bundles, evaluated at marginal cost pricing. It is

immediate that  ≤ 1, since bundle q̃ minimizes expenditure at marginal cost pricing

by definition. Suppose in the actual price vector, the mark-up is constant across all goods

, i.e., that the ratio between any two actual prices is the same as what the ratio would be

with marginal cost pricing. Then q̃ = q̃ and  = 1. Otherwise   1.

4 Allocative Efficiency and Trade

When evaluating the effect of a change in the trade friction, it is convenient to take logs and

conduct the analysis in elasticity terms,

 ≡  ln 

 ln 
= Prod + __ + ,

where  is the elasticity for component . (The first term 11 of (3) is a constant given

the normalization 1 = 1, so we ignore this term.) In particular, we define the allocative

efficiency elasticity  to be

 ≡  ln

 ln 


This section derives a formula for  that decomposes it into two components: the cost-

change channel and the price-change channel. Note in the introduction, we referred to a

decrease in  , in order to discuss gains from trade. However, for expositional simplicity

going forward, we refer to an increase in  , because if we did otherwise, we would have to

carry around an extra minus sign.

4.1 Decomposing  into the Cost-Change and Price-Change Chan-

nels

We need to introduce additional notation to allow us to distinguish various cases. When

a good is being purchased from a domestic firm, there are three possibilities: the domestic

firm may be limit pricing on another domestic firm, limit pricing on a foreign firm, or setting

the unconstrained monopoly price. Analogously, there are three possibilities when a good
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is purchased from a foreign firm. We index these six different possibilities by the elements

of {11 12 1̄ 21 22 2̄}, where “11” means a firm at 1 is limit pricing on a firm at 1 (i.e.

domestic on domestic), “12” means a firm at 1 is limit pricing on a firm at 2, and 1̄ means

a firm at 1 is setting the monopoly price. Analogously, “21,” means a firm at 2 is limit

pricing on a firm at 1, and so on. Let Ω11 be the set of products with event “11”, Ω12 be

the products with event “12,” and so on.

For tractability, we assume CES utility in this and the next sections. For allocative

efficiency , only buy is involved, and hence we suppress superscript “buy” to save

notation. Let Ω be the expected (or mean) value of the sales-weighted cost share ,

conditional on  ∈ Ω, for some subset of goods Ω. Analogously, let 1−Ω be the sales-

weighted expected value of 1− conditional on Ω.

Let p and m denote the vector of prices and marginal costs of the lowest cost firms

supplying at 1, i.e., the element  is the price of the lowest cost firm and is the marginal

cost, including any trade friction incurred (and again  = ). Given p and m,

spending shares are determined by consumer choice, and we can calculate allocative efficiency

 through equation (4). To understand how a change in the friction  affects , we

need to first determine how a change in  affects p and m, and then how  changes with

new values of p and m.

In our decomposition, we separate out how a change in  affects costs m (the cost

channel) and how it affects prices p (the price channel). What an increase in  does tom is

straightforward: all foreign firms that are exporting to country 1 experience a proportionate

increase in costs. Next consider what an increase in  does to p. A domestic firm that is

limit pricing on a foreign firm’s cost (event “12”) will be able to increase price proportionately

as  increases. Analogously, a foreign firm limit pricing on another foreign firm (event “22”)

proportionately increases price. Finally, a foreign firm that is setting the monopoly price

(event “2̄”) proportionately increase price (as price is a constant mark-up  ( − 1) over
cost). Denote the three events where price rises proportionately with  as

Ω↑ ≡ Ω12 ∪ Ω22 ∪ Ω2̄. (5)

Denote the relative wage of country 2 to country 1 as . Let  denote the proportion

of increase of , i.e., let  =  ◦◦, where  ◦ and ◦ are the initial trade friction and

relative wage. A change in  affects costs m such that

() = ◦
,  ∈ Ω2, (6)

() = ◦
,  ∈ Ω2,

10



where Ω2 is the set of goods at 1 that are imported from country 2. Similarly, a change in

 affects prices p for the set Ω↑ such that

() = ◦,  ∈ Ω↑, (7)

() = ◦,  ∈ Ω↑.

We now present our main result that decomposes the overall effect of an increase in

 on allocative efficiency into two components, a cost channel and a price channel. Let

cost ≡  ln(1)



¯̄̄
p fixed

denote the derivative of ln () evaluated at  = 1 while keeping

prices p fixed. Similarly, price ≡  ln(1)



¯̄̄
m fixed

is the derivative of ln evaluated at

 = 1 while keeping costs m fixed. We have

Proposition 1

 ≡  ln

 ln 

=
¡
cost + price

¢ 1


 ()




where

cost = 2

µ
1−2

1−
− 2



¶
, (8)

price = −Ω↑
µ
1− Ω↑



¶
, (9)

and where the subset Ω↑ is defined by equation (5).

Proof. We sketch the proof for Cobb-Douglas ( = 1) and symmetric countries. The

appendix provides a formal proof for general  and general asymmetry. Under Cobb-

Douglas, we can write the log of allocative efficiency as

ln = ln

µ


 ×

¶
= [ ln− ln ]− ln () =  ln − ln () , (10)

where we use the price index formula  = exp( ln ) that applies for the Cobb-Douglas

case. With symmetric countries, we can assume 1 = 2 = 1. We separate out the effects

of changes in  on costs, from effects through changes in prices. Following the notation of

11



(6) and keeping prices p fixed, we write

 () =

(



 ∈ Ω2,




 ∈ Ω2.

(11)

Note that  ln  =  ln . On account of the proportionate cost change for imports, we have

 ln 

 ln 
=

 ln  (1)


= 1,



 ln 
=

 (1)


= ,  ∈ Ω2,

 ln 

 ln 
=

 ln  (1)


= 0,  ∈ Ω2.

Differentiating (10) yields

cost =
 ln (1)



¯̄̄̄
p fixed

=

Z
Ω2

1 ·  −
R
Ω2




= 2

µ
1− 2



¶
. (12)

Calculating the price channel price is analogous, but opposite in sign, since price is in

the denominator of the cost share of price. In the proof above, we have switched the order

of differentiation and integration. In the appendix, we show why this can be done. Note we

haven’t mentioned how a change in  affects the sets Ω2 and Ω↑, because the changes in

these sets have no first-order effects.

For Cobb-Douglas, the cost-change channel (8) boils down to the particularly intuitive

expression (12). An increase in  proportionately increases costs for all imported goods.

To understand the effects on allocative efficiency, holding prices fixed, we only need to

compare the mean cost share 2 on imported goods, which all get a cost increase, with

the overall cost share . In particular, if 2 is greater than , the effect of higher

 on allocative efficiency through this channel is strictly negative. In this case, higher 

increases the mark-up discrepancy between the imported and domestic goods, exacerbating

the distortion. Formula (12) also depends upon the spending share 2 on imports, and it

is intuitive that this should matter. Next note that for the general  case, formula (8) for

the cost-change channel is similar to what it is in the Cobb-Douglas case, with an additional

term that takes into account that spending shares across goods are not constant, outside of

the Cobb-Douglas case. Finally, the intuition for the price-change channel is similar to the

intuition for the cost-change channel.

We make two comments about Proposition 1. The first is about the additional term
1

() in the decomposition in Proposition 1 taking into account that  can affect the

relative wage between countries. With symmetric countries, the relative wage  = 1, and

this adjustment drops out (i.e., it equals one as a multiplicative term). More generally, we

12



expect the sign of () to be strictly positive, i.e. an increase in the friction increases

relative cost in the foreign country, even taking into account any potentially offsetting effect

on the relative wage. Hence, the sign of  is the same as cost + price . In what follows

we fill focus on the sign of cost + price , and its decomposition into the cost-change channel

cost and price-change channel 

price .

The second comment concerns how it might be possible to estimate the cost and price

channels in empirical applications. Suppose we have product-level data on mark-ups and

sales volumes, where imported and domestic products are separately classified. This is a

stringent data requirement, but one that is potentially attainable, as access to micro data

sets has expanded, and data sets from different countries are combined. If we also have

knowledge of the  parameter (a common parameter needed in trade analyses), the cost-

change channel given by equation (8) can be directly calculated. (It uses two moments of

the data.) Calculating the price-change channel (9) is more daunting, because we need to

know which firms would raise price if the friction increases. Perhaps data on how prices

change after a tariff change would be of help here. In lieu of obtaining a point estimate of

the price-change channel, in applications it may be possible to use the formula to bound

the price-chance channel. Combining this bound with a point estimate on the cost-change

channel will produce a bound on the overall effect on allocative efficiency.

4.2 Signing the Cost-Change and Price-Change Channels

In this subsection we discuss the signs of the two components. We begin by examining two

limiting cases where we find that both the cost-change and price-change channels are zero.

We then discuss why in general the channels are nonzero away from the limiting cases.

The first limiting case is the BEJK model which imposes a particular Fréchet structure

on the distribution of productivities across firms. In particular, BEJK assume that the

distribution of two top productivities each country  follows

Pr [1 ≤ 1 2 ≤ 2] =
£
1 + 

¡
−2 − −1

¢¤
−

−
2 for 0 ≤ 2 ≤ 1. (13)

As de Blas and Russ (2012) show, in a Bertrand oligopoly model like the one here, the

distribution above is in fact the limiting distribution, when the number of firms goes to

infinity, and firms draw their productivities from a fat-tailed distribution, such as the Pareto

and Fréchet itself.7 We obtain the following result about the allocative efficiency elasticity

 and its components cost and price for this case:

7That is, a distribution that falls in the domain of attraction for Fréchet.
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Proposition 2 If firms draw their productivities from a fat-tailed distribution, in the limit

where the number of firms goes to infinity, the overall  = 0, as well as the components,

cost = 0 and 

price = 0.

Proof. Under said conditions, (13) holds, and the limit model is BEJK. In BEJK, the

equilibrium share of variable cost in revenue is invariant to source country, and in particular,

is the same for imports as it is overall, i.e., 2 = . It is easily verified that1− = 1−2 ,

using similar proof to that in BEJK. By (8), cost = 0. Furthermore, in BEJK, the overall

distribution of mark-ups is invariant to  , implying that  = 0. The decomposition in

Proposition 1, and  = cost = 0, immediately imply that 

price = 0.

A key result of BEJK is that the mark-up for foreign firms are the same as for domestic

firms. Foreign firms have to pay a trade friction that domestic firms avoid. Everything else

the same, this would drive up a foreign firm’s cost and lower the mark-up relative to domestic

firms. However, a second consideration is a selection process over productivity. On average,

foreign firms need to be more productive to overcome the trade friction disadvantage. In

the BEJK Fréchet structure, the two forces exactly counterbalance, implying that cost share

for imports 2 is identical to the overall share , which means 

cost = 0. It turns out

that mark-ups on the set of goods Ω↑ where price increases in  are also the same as the

overall average, and so price = 0, as well.

We next consider a second limiting case where countries are symmetric and the friction

is small.

Proposition 3 If countries are symmetric then at  = 1,

 = cost = price = 0,

while

Prod  0.

Proof. With symmetry and  = 1, it is immediate that the distribution of the cost share of

price is the same regardless of whether a good originates at country 1 or country 2. This

implies2 = , and1−2 = 1−, and thus cost = 0. Next observe that from symmetry

and  = 1, that 12 = 21, and 12 = 21. This implies Ω↑ = 2 and Ω↑ = 2, and

thus price = 0. Next,

Prod ≡  lnProd

 ln 
= − ln

 ln 
= −2 ,
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where 2 is the import share of spending at marginal cost prices. The first line above

follows from the definition of Prod, and the second line is a straightforward application of

the envelope theorem. Note we use the fact that on account of symmetry,  = 1 and hence

() = 1. The result that Prod  0 then follows because 2 =
1
2
at the limit of  = 1,

on account of symmetry.

Proposition 3 says that adding a small friction to trade between symmetric countries has

no first-order effect on allocative efficiency. To see the intuition, observe that at the limit

with no trade frictions, foreign firms are just like domestic firms, and in particular, have the

same distribution of cost shares, implying that the cost-change term is zero. Analogously,

the price-change term is zero. While there is no first-order effect on allocative efficiency,

there is a first-order effect on productive efficiency at the limit. Thus, in this part of the

parameter space, the issue of allocative efficiency is negligible relative to the productivity

effects of  .8 In other words, with symmetry and small frictions, to a first approximation is

it safe to abstract from the issue of how trade frictions affect allocative efficiency.

We turn now to more general environments away from these limiting cases. We begin with

a discussion of the price-change term. To focus the discussion, we consider an environment

in which there are no imports in equilibrium, in which case the cost-change term (8) is zero.

(This is because 2 = 0; we also note that 
Prod = 0 for this case.) Specifically, assume there

are two sectors,  and . In sector  there is one firm for each good in each country,

and assume that productivity is identical for the two firms. The domestic firm will limit

price on the foreign firm, and the cost share in sector  equals  =
1

.9 For sector ,

we consider two possibilities. In the first case there are two firms in each country with

equal productivity. With Bertrand competition, price equals marginal cost, and  = 1.

In the second case there is a single firm in each country, and we assume the sector B good

is nontradable, so the single firm is a monopolist. Assuming elastic demand for this case,

  1, the cost share in sector  is  = ( − 1) . In either case, price increases with

 for the sector  goods, and doesn’t change for the sector  goods. It is convenient to

rewrite the price-change channel in equation (9) as

price = −
µ
 −



¶
.

In the first case where sector B is competitive and  = 1, it follows that price  0.

8This point is contingent on  being a true resource friction as opposed to a tariff for which welfare weight

is put on tariff revenue collections. In this case, following the usual logic, the first-order effect on Prod

will be offset by a change in tariff revenue.
9Assume   ( − 1). Otherwise domestic firms set the simple monopoly price and increases in  are

irrelevant.
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Raising  allows the sector A firms to lower the cost share of price even further below the

competitive case (where it equals one), increasing distortions. In the second case where

sector B is monopoly, and   , it follows that 

price  0. Raising  makes the sector

 firms more similar to the monopoly firms in sector B. As the mark-ups in the two sectors

get closer together, allocative efficiency increases. This discussion makes clear that while

the price-change component is zero in the limiting cases considered in Propositions 2 and 3,

in general the effect can go either way, depending on how mark-ups for the goods getting

price increases compare with mark-ups for goods with unchanged prices.

In terms of the previous literature, we can interpret the price-change channel as capturing

the “pro-competitive” effect of trade, as changes in  yield changes in price, through Bertrand

competition. Our discussion then shows how the pro-competitive effect of trade has an

ambiguous effect on allocative efficiency.

We next turn to the cost-change component. We focus on the symmetric country case.

In the literature it is standard to consider models where firms take i.i.d. productivity draws

from either a log-normal or Pareto distribution. We follow that approach here, and consider

both distributions. For the Pareto, the functional form is

 () = 1− −,  ≥ 1,

for productivity  = 1

equal to the inverse of the labor requirement . The parameter 

is the shape parameter, where the larger is , the more similar the draws. (There is also a

scaling parameter that we normalize to one.) For the log-normal, we assume that log() (for

  0) is distributed normal with unit mean and standard deviation 1

. For the numerical

example we set  = 5 for the Pareto and  = 387 for the log-normal, which holds the

coefficient of variation constant across the two cases. (Our qualitative results are similar

for alternative values of the coefficient of variation.)

Table 1 presents numerical results for a variety of cases. In each example, the number of

firms per good is the same across all goods, and we consider the case of 2 firms per good, 4

firms per good, and 6 firms per good, with the firms equally divided across the two countries.

We consider various levels of . In the table, we have fixed  = 15 throughout. (We obtain

qualitatively similar results for other values of  , away from the limit of   1.) For each

parameter set, the table reports in the last three columns the allocative efficiency elasticity

, and its decomposition into cost and price. For reference, the table also reports the

import share 2 and the productive efficiency elasticity 
Prod.

Table 1 provides another illustration of the point that price can be negative or positive.

At high values of , price tends to be positive. For intuition, consider that when  is high,

a relatively large fraction of firms set the interior monopoly price. In such cases, when 
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increases, those domestic firms limit pricing on foreign firms are able to raise mark-ups closer

to the monopoly mark-ups most other firms are setting, raising allocative efficiency. In the

opposite case when  is low, in particular  ≤ 1, all firms limit price, and price is strictly

negative.

Next note that cost ≤ 0 in each of the cases illustrated in Table 1. For log-normal, cost
is negative throughout all range of parameters. For Pareto, cost is negative when there are

two firms for each good (thus one in each country) and 0 when there are more than two

firms. We have used numerical analysis to verify this pattern holds more broadly in the

symmetric country model with each firm drawing from the Pareto or log-normal, and each

good having the same number of firms.10 Our numerical analysis has also looked at the

uniform distribution and found that it behaves similarly to log-normal in terms of cost . The

key point is that in this class of models, the cost share of price tends to be higher for imported

goods. The direct effect of the friction on a higher cost share for imports is not completely

offset by the selection effect of higher productivity, in contrast to BEJK, where these forces

exactly counterbalance. Thus 2  . Also, if   1, we can expect 1−2 ≤ 1−,

which together with formula (8) imply that cost  0. If   1, the 1−2 1− term goes

the other way. However, in the numerical analysis, we find the net effect remains negative,

cost ≤ 0.
When price is also negative, it reinforces the negative effect of 


cost , and the combined

effect  = price + cost can be large in absolute value, and similar in magnitude to the

productivity effect Prod. When price is positive, there are cases where it more than offsets

the negative effect of cost , resulting in combined effect 
 that is positive. For example,

this is true with 2 firms, log-normal draws, and  = 4, where the overall allocative efficiency

elasticity is .035. In this case, a higher trade friction raises allocative efficiency.

Our last point about Table 1 concerns the comparison between the log-normal and Pareto

cases. When there are two firms for each good (again one in each country), the log-normal

and Pareto cases are qualitatively the same. However, under the Pareto, when there two or

more firms per good in each country, cost and 

price are both virtually zero. The log-normal

is very different; while cost and 

price do shrink in magnitude as we add more firms, they do

not collapse to zero. Recall from the above discussion that if we take the Pareto model with

 draws, and make  large, the model goes to the Fréchet structure of BEJK. Therefore,

with the Pareto in the limiting case of large , the effects are zero (Proposition 3). It is

interesting to see that as far as allocative efficiency is concerned (and specifically how 

relates to it), the Pareto model begins to approximate the limiting case with as little as two

draws in each country.

10The appendix provides details about our numerical analysis.
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The sharp differences in implications between the Pareto and log-normal, and the frequent

use of both distributions in the literature, motivate the next section where we explore this

issue further.

5 Allocative Efficiency with the Pareto and Log-normal

In this section we explore how allocative efficiency changes as the market becomes large and

previously separated economies become integrated. In particular, we consider changes from

 = ∞ where countries are in autarky, to  = 1, where different countries are completely

integrated into one economy. Let there be 1 firms for each good in country 1, and 2 firms

for each good in country 2. In autarky, only 1 firms compete to sell in country 1. After

integration,  = 1 + 2 compete to sell in country 1. Hence, integration is equivalent to

an increase in the number of firms. In this section we ask: How does allocative efficiency

 vary as we increase the number of firms and integrate economies? And how does the

answer depend upon whether firms draw from Pareto or log-normal?

For a given product , let ∗ and ∗∗ be the first and second highest of  independent

productivity draws. Let  ≡ ∗∗ 
∗
 be the ratio of the second highest to highest. It is

well known that under the Pareto, the distribution of the ratio  is invariant to the number

of draws.11 The Pareto maintains its relative shape, as we push out into the tail. For our

next result, we need a slightly different statement of this property, where we condition on

the second highest level of productivity ∗∗, as well as the number of draws . Formally, let

(| ∗∗) be the cumulative probability of this ratio conditional on  and ∗∗. The Pareto
has the following property.

Lemma 1 Under the Pareto, (| ∗∗) = ,  ∈ [0 1], that is, the distribution of the ratio
of second to first best does not depend upon the number of draws or what the second best is.

Proof. Observe that

 (|∗∗ ) =
R∞
∗∗


 (∗ ∗∗) ∗R∞
∗∗  (

∗ ∗∗) 


where  denotes the joint density of top two order statistics from a Pareto distribution, and

the result is immediate by plugging in this density function.

The cost share satisfies  = , if  ≤ 1 and  = max
©


−1


ª
for   1. Given

Lemma 1, the distribution of mark-ups is independent of  and ∗∗ and is a truncated Pareto,

analogous to BEJK. Using this fact we can show

11Malika and Trudela (1982), for example, characterizes the distribution of the ratio of all order-statistics

of the Pareto. See also the discussion in de Blas and Russ (2012) .
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Proposition 4 Under the Pareto, allocative efficiency is a constant   1 that does not

vary with the number of firms . Therefore, a trade opening that is equivalent to an increase

in the number of firms has no effect on allocative efficiency.

Proof. See the appendix.

The key step of the proof is that since the distribution of cost shares is invariant to , the

actual price index  and the price index under marginal cost pricing decrease by the same

proportion, as  increases. >From formula (4) for , it is immediate that  remains

constant. We note there is allocative inefficiency for any given value of , i.e.   1.

The point is that its level does not change as economies integrate and  increases.

The outcome is quite different for the log-normal.

Proposition 5 If the distribution of the ratio  = ∗∗∗, given second best ∗∗ and the

number of firms , is degenerate at  = 1 in the limit as →∞, then

lim
→∞

 = 1.

Under the log-normal, the above condition is satisfied. Thus, under the log-normal, while

  1 for any finite , allocative inefficiency is eliminated in the limit as the market

becomes large.

Proof. See the appendix.

For intuition, consider a case where firms draw from a bounded productivity distribution.

When there are many draws, the highest and second highest will both tend to be close

to the upper bound, and the ratio will be close to one. Limit prices will be close to

the competitive level, with the cost shares of price close to one, where first-best allocative

efficiency is achieved. This notion of compression at the top, when markets are large and

there are many firms, is consistent with the discussion in Syverson (2004) and Combes et

al. (2012). Proposition 5 shows that even though the log-normal is unbounded, the right

tail is sufficiently thin enough that the implication for allocative efficiency in the limit is

the same as for the bounded case. In contrast, the Pareto is very different. The tail is

sufficiently fat that even with many draws, there is no sense that the first and second highest

get compressed together. In fact, the relationship doesn’t change at all.

6 Conclusion

We examine how trade affects a measure of allocative efficiency, deriving formulas for two

components of welfare change, the cost-change channel and the price-change channel. Both
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channels are negligible if (i) frictions are negligible and countries are symmetric or (ii) firms

draw productivity from Pareto-like distributions. More generally, trade affects allocative effi-

ciency. In symmetric models, the cost-change channel leads to gains in allocative efficiency,

that reinforce the standard production efficiency gains from trade. When demand tends

to be inelastic, the price-change channel leads to additional gains in allocative efficiency.

However, if demand is elastic, the price-change channel goes the other way.

We also consider a limit economy where we increase the number of competitors for each

good, and find a sharp difference between what happens when firms draw from a Pareto-like

distribution compared to when the distribution has less of a fat tail, like the log-normal. In

the former case, distortions in allocative efficiency never go away, as the market gets big.

In the later, the economy converges to first-best allocative efficiency. The result highlights

the important role functional form assumptions can play, in quantitative models of the gains

from trade.

Appendix

Proof of Proposition 1

Observe that

 ≡  ln

 ln 

¯̄̄̄
=◦=◦

=

Ã
 ln

(◦◦)
◦◦

1

◦
 ()



!
=1

=
 ln (1)



1

◦
 ()



¯̄̄̄
=◦=◦



Note that for CES utility,

 =
1−

 1−  (14)

̃ =
−
−

=
−³R 1

0
1− 

´ 
−1

 (15)

Using (4) and (15), we can express ln and
 ln(1)


as

ln = − 1

 − 1 ln
Z 1

0

1−
  − ln

Z 1

0


−
  +



 − 1 ln
Z 1

0

1− 

 ln (1)


= − 1

 − 1



R 1
0
1−

 R 1
0
1−

 
−




R 1
0


−
 R 1

0
− 

+


 − 1



R 1
0
1− R 1

0
1− 


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We will later show that





Z 1

0

1−
  =

Z 1

0




1−

  (16)





Z 1

0

1−  =

Z 1

0




1−  (17)





Z 1

0


−
  =

Z 1

0






−
  (18)

Recall that
R 1
0
1−

  =1−, and that
R 1
0
1−  =  1−. By the above, we obtain

 ln (1)
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
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1−
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)

=
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Ω↑ 

1−
 

R 1
0
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1−

 1− 
− 

R
Ω↑ 

1−
 

 1−

⎫⎬⎭
=

½
2

µ
1−Ω

1−
− Ω



¶¾
+

½
−Ω↑

µ
1− Ω↑



¶¾


In each line above, the first large bracket is the cost channel and the second the price channel.

We are left to show that (16) to (18) hold. For this purpose, we first recall the Lebesgue

dominated convergence theorem, which states that if {} is a sequence of Lebesgue-integrable
functions on an interval  which converges almost everywhere on  to a limit function  , thenR

 = lim→∞

R
, provided that there exists a nonnegative, Lebesgue-integrable function

 such that, for all , | ()| ≤  () almost everywhere on .12

We start with proving (16). Define

 () ≡ 


1−

 

Consider a sequence {} such that lim→∞  = 1. Define a sequence of functions {}
12Theorem 10.27, Apostol, T. M., Mathematical Analysis (second edition), page 270.
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such that

 () =
1−


−1−



 − 1
,

where  is  associated with . Note that  ≡ 1.

Since





Z 1

0

1−
  = lim

→∞

R 1
0
1−


 − R 1

0
1−

 

 − 1
= lim

→∞

Z 1

0

 () 

and Z 1

0




1−

  =

Z 1

0

lim
→∞

 ()  =

Z 1

0

 () ,

we complete the proof by showing that the Lebesgue dominated convergence theorem holds.

Note that  () is integrable by assumption that the price index under marginal cost pricing

 is finite. Also note that  () →  () by construction. Hence, we need to find an

nonnegative, integrable  such that | ()| ≤  () for all .

Since  = min
©
∗1 

∗
2

ª
, when  changes from 1, the proportion of change in 

is less than or equal to . Specifically, when   1, 
≤ , and when   1,


≥ . Hence,

| ()| =
¯̄̄̄
¯1−


−1−



 − 1

¯̄̄̄
¯ ≤

¯̄̄̄
1− − 1
 − 1

¯̄̄̄
1−

  (19)

By the mean value theorem, for each  there exists ̂ between 1 and  such that

()
1− − 1

 − 1
=

1−



¯̄̄̄
=̂

= (1− ) ̂− 

Thus, we obtain

| ()| ≤ |1− | × sup


̂− ×1−
 ≡  () 

That  () is integrable follows from the fact that  is finite.

For the proof of (17), simply observe that for when   1,  ≤ , and when

  1,  ≥ , and thus the key inequality (19) holds with  replaced with . The

rest of the proof is the same with  replaced with  (and  replaced with  ).

For the proof of (18), define  () = 

(

−
 ) and  () =


−


−
−


−1 . Because
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 ≤ ,

| ()| =
¯̄̄̄
¯̄

³
− − −

´
+
¡


−

¢
−

 − 1

¯̄̄̄
¯̄ ≤ µ¯̄̄̄− − 1 − 1

¯̄̄̄
 + 1

¶
1− 

The rest of the proof is similar.

Proof of Proposition 4

As the distribution of  is not degenerate,   1. We want to show that  is inde-

pendent of the number of firms . Given , denote the joint density of the first and second

highest productivities as  (
∗ ∗∗), and the marginal density of the first and second high-

est productivity as 1 (
∗) and 2 (

∗∗), respectively. Let  () be an arbitrary continuous

function of  = ∗∗∗. Then,Z
∗


µ
∗∗

∗

¶
 (

∗ ∗∗)
2 (∗∗)

∗ = ∗

µ


µ
∗∗

∗

¶
|∗∗ 

¶
=  ( () |∗∗ ) =

Z


 ()  (| ∗∗) ,
(20)

which is independent of ∗∗ and  by Lemma 1.

For CES utility,  (∗ ∗∗) = 1
∗∗ min

©

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ª
, and

 1− =

Z
2 (

∗∗)

µ
1

∗∗

¶1− "Z µ
min

½


 − 1
∗∗

∗
 1

¾¶1−
 (

∗ ∗∗)
2 (∗∗)

∗
#
∗∗(21)
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

 − 1
∗∗

∗
 1
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∗∗) ∗∗,(22)

where the last equality follows from the fact that the bracket term is independent of ∗∗,

as (20) explains. Note that  = max
©
∗∗
∗ 

−1


ª
. Using the definition of , (14), (22), and

Lemma 1,
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©


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ª¢1− (∗∗∗)
2(∗∗)

∗


which is independent of ∗∗ and . As ≡ 
× , we are done if is also independent
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of . From (22),

µ




¶1−
=

R
1−

 R
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=
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1
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.

As mentioned, the bracket term in the denominator is independent of ∗∗ and . By Lemma

1,
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1
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1
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which is independent of ∗∗ and . Thus,  is, indeed, independent of .

Proof of Proposition 5

We first show that if  (| ∗∗) is degenerate at  = 1 as →∞, that is, if  (| ∗∗)→ 0

for any   1 as →∞, then → 1. Under the said condition,  = 
¡
max

©
1

 −1



ª¢→
1 as →∞. As  ≡ 

× , 
 → 1 if  → 1 when →∞.

Use the same notation of , 1, 2, and  as those in the proof of Proposition 4. Note

that
R
∗ 
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¢
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2(∗∗)
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using (21), we have
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(23)

→
R ¡

1
∗
¢1−

1 (
∗) ∗R ¡

1
∗∗
¢1−

2 (∗∗) ∗∗
→ 1,

as → 1 in distribution implies that distributions of ∗ and ∗∗ are arbitrarily close to each

other when  is arbitrarily large.13

13To see this, note that the difference between two distributions is

Pr [∗∗  |]− Pr [∗  |] = Pr [∗  |]− Pr [∗  |]→ 0

since  degenerates to 1 as →∞.
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Now, we turn to the log-normal case. With the log-normal density,
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=

−2 (∗∗)
£
1− 

¡
∗∗


¢¤
−2 (∗∗) [1−  (∗∗)]

=
1− 

¡
∗∗


¢
1−  (∗∗)

=

R∞
∗∗


1

−

[ln()−]2
22 R∞

∗∗
1

−

[ln()−]2
22 



Using L’Hopital’s rule and noting that ∗∗ →∞ when →∞, for any   1, we have

lim
∗∗→∞

 (| ∗∗) = lim
∗∗→∞

exp

µ
[2 ln (∗∗)− 2− ln ()] ln ()

22

¶
= 0

Numerical Analysis of sign of cost

We calculate cost numerically for the following parameter values. For the distribution of a

productivity draw , we use log-normal, uniform, and the Pareto distributions. A log-normal

distribution is characterized by mean and standard deviation of ln. The mean does not

affect cost, thus we normalize it to 1. For the standard deviation we use the following values:

0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5, and 8. A uniform distribution is characterized by lower and

upper bound for . Rescaling  does not change cost, thus we set the upper bound to 1

and vary the lower bound using the following values: 0 to 0.9 with 0.1 increment. A Pareto

distribution is characterized by scale parameter and shape parameter. The scale parameter

does not affect cost, thus we normalize it to 1. For the shape parameter, we use 0.25, 0.5,

0.75, 1, 1.5, 2, 3, 5, and 8. Beside the productivity draw distribution, we need to specify

the values for trade friction  , preference parameter , and the total number of firms (or

potential entrants) for each product. For  , we use 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2,

2.2, 2.4, 2.6, 2.8, 3, 3.5, and 4. For , we use 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.3,

2.6, 3, 3.5, 4, 5, 7, and 10. For the total number of firms (at both locations combined), we

use 2,4,6,8,10, 14, and 20. The parameter grid generates 19,278 combinations for log-normal

and for Pareto distributions and 21,420 combinations for uniform distribution.

We use 6 million draws to approximate the continuum of products featured in the model.

The more number of products we use, the more precise the numerical approximation becomes.

In order to see the sign of numerical errors, we also report simulation outcomes with smaller

numbers of products: 10,000 to 3 million. As the number of products increases, the simulated

values converge toward true values.

For Pareto, we distinguish the case of one firm at each location (two firms altogether)

from the case where there are two or more firms in one location. For the log-normal and

uniform distribution, we consider the entire range of firm counts. The numerical analysis
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summarized in Table A1 shows that the basic pattern revealed in Table 1 of the paper for

a particular selection of model parameters holds throughout the wide range of parameters

considered in the analysis. In particular, for log-normal and uniform for general firms, and

the Pareto with one firm at one location, we have cost ≤ 0. Note that in the simulations
with finite draws we do get realizations where cost  0. However, as shown in the table,

the maximum realized value gets very close to zero as the number of draws increases. Also

when we fix a cutoff value equal to .00001, we see that the fraction of deviations where the

realized value goes above this small cutoff goes to zero as the number of draws increases.

For Pareto with two or more firms at each location, the pattern is different in Table 1.

Rather than take a negative value, we see that cost is close to zero. Table A2 shows this

pattern holds throughout the parameter range considered in the numerical analysis.
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Table 1 
The Decomposition of the Allocative Efficiency Elasticity for Various Alternative Parameters 

 
Panel A:  LogNormal Distribution 

Number 
of 

Firms 

σ 
(elas.) 

s2 
(import 
share) 

ηProd ηA Decomposition 

ηA
cost ηA

price 

2 0.50 0.12 -0.14 -0.036 -0.018 -0.018 
2 1.00 0.13 -0.13 -0.072 -0.036 -0.036 
2 1.50 0.14 -0.12 -0.088 -0.054 -0.034 
2 2.00 0.15 -0.12 -0.015 -0.063 0.048 
2 4.00 0.11 -0.08 0.035 -0.038 0.074 
       

4 0.50 0.09 -0.09 -0.009 -0.005 -0.004 
4 1.00 0.09 -0.09 -0.018 -0.010 -0.008 
4 1.50 0.09 -0.08 -0.025 -0.014 -0.012 
4 2.00 0.09 -0.08 -0.026 -0.018 -0.008 
4 4.00 0.07 -0.06 0.005 -0.019 0.023 
       

6 0.50 0.07 -0.07 -0.005 -0.003 -0.002 
6 1.00 0.07 -0.07 -0.009 -0.005 -0.004 
6 1.50 0.07 -0.07 -0.014 -0.008 -0.006 
6 2.00 0.07 -0.06 -0.016 -0.010 -0.005 
6 4.00 0.06 -0.05 0.000 -0.013 0.013 

Panel B: Pareto 
2 0.50 0.06 -0.06 -0.015 -0.008 -0.007 
2 1.00 0.07 -0.07 -0.033 -0.017 -0.017 
2 1.50 0.08 -0.07 -0.041 -0.026 -0.015 
2 2.00 0.09 -0.07 -0.003 -0.035 0.032 
2 4.00 0.11 -0.09 0.033 -0.025 0.058 
       

4 0.50 0.08 -0.08 0.000 0.000 0.000 
4 1.00 0.09 -0.09 0.000 0.000 0.000 
4 1.50 0.09 -0.09 0.000 0.000 0.000 
4 2.00 0.09 -0.09 0.000 0.000 0.000 
4 4.00 0.10 -0.10 0.000 0.000 0.000 
       

6 0.50 0.09 -0.09 0.000 0.000 0.000 
6 1.00 0.09 -0.09 0.000 0.000 0.000 
6 1.50 0.10 -0.10 0.000 0.000 0.000 
6 2.00 0.10 -0.10 0.000 0.000 0.000 
6 4.00 0.11 -0.11 0.000 0.000 0.000 

The calculations set τ = 1.5 throughout and θ=5 for Pareto and θ=3.87 for the lognormal. 



Table A1. Numerical Analysis of        

 

Panel A: LogNormal Distribution 

 Number of 
Products 

Count of 
Parameter 

Combinations 
Min Mean Max 

Count of 
     
  

        

Share of 
     
  

        
 6,000,000 19,278 -1.26E-01 -7.45E-03 8.30E-14 0 0.00% 

 3,000,000 19,278 -1.27E-01 -7.72E-03 1.52E-08 0 0.00% 

 1,000,000 19,278 -1.27E-01 -7.33E-03 1.13E-05 1 0.01% 

 100,000 19,278 -1.26E-01 -7.22E-03 1.28E-03 71 0.37% 

 10,000 19,278 -1.29E-01 -7.27E-03 1.37E-02 378 1.96% 

Panel B: Uniform 
 6,000,000 21,420 -2.63E-02 -1.53E-03 4.76E-11 0 0.00% 

 3,000,000 21,420 -2.63E-02 -1.53E-03 1.51E-11 0 0.00% 

 1,000,000 21,420 -2.62E-02 -1.52E-03 6.58E-12 0 0.00% 

 100,000 21,420 -2.58E-02 -1.52E-03 7.56E-07 0 0.00% 

 10,000 21,420 -2.61E-02 -1.52E-03 5.29E-06 0 0.00% 

Panel C: Pareto, with one firm in each location 
 6,000,000 2,754 -9.35E-02 -1.27E-02 1.64E-11 0 0.00% 

 3,000,000 2,754 -1.29E-01 -2.42E-02 1.08E-11 0 0.00% 

 1,000,000 2,754 -9.32E-02 -1.18E-02 4.19E-12 0 0.00% 

 100,000 2,754 -9.45E-02 -1.09E-02 1.45E-03 5 0.18% 

 10,000 2,754 -9.18E-02 -9.69E-03 1.08E-03 11 0.40% 

 

  



 

 

Table A2. Numerical Analysis of        
Pareto distribution, with the number of firms at each location ≥ 2 

 

 

Number of 
Products 

Count of 
Parameter 

Combinations 
Min Mean Max 

6,000,000 16,524 -6.93E-04 -9.41E-06 2.56E-04 

3,000,000 16,524 -1.40E-03 1.67E-05 9.63E-04 

1,000,000 16,524 -9.98E-04 6.36E-05 1.34E-03 

100,000 16,524 -2.27E-03 2.01E-05 3.55E-03 

10,000 16,524 -8.40E-03 -1.97E-05 1.48E-02 

 




