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ABSTRACT

How do innovators respond to the shock of a natural disaster? Do natural disasters spur technical
innovations that can reduce the risk of future hazards? This paper examines the impact of three types
of natural disasters including earthquakes, droughts and flooding on the innovation of their respective
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lead to more risk-mitigating innovations, while the degree of influence varies across different types
of disasters and technologies.
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1. Introduction 

How people cope with natural disasters is a question that has for long concerned both 

policy makers and researchers. This issue is gaining renewed attention nowadays, given the 

increasingly evident threats of climate change. Many climate scientists warn that global warming 

will likely increase the frequency and intensity of extreme weather events, thereby substantially 

raising the risk of disasters such as droughts, heat waves, floods and tropical cyclones (e.g., Van 

Aals, 2006). A recent report released by the Intergovernmental Panel on Climate Change (IPCC, 

2012) confirms the link between climate change and natural disasters.1  Moreover, it calls for 

policy makers to integrate disaster risks reduction into their efforts of climate change adaptation.  

In this paper, we ask whether natural disasters lead to innovations of risk-mitigation 

technologies. Such technologies are analogous to those that may aid adaptation to climate change.  

A term initially used to explain biological evolution, adaptation is now more often applied to 

human society and regarded as an important strategy to address climate change (for a review on 

the concept, see Smit and Wandel, 2006). The IPCC defines adaptation as “adjustment in natural 

or human system in response to actual or expected climatic stimuli or their effects, which 

moderates harm or exploits beneficial opportunities” (IPCC TAR, 2001: 72). In a broad sense, 

adaption takes form of various actions and measures, which often depend on the characteristics 

of local environment, particularly the natural hazards associated with climate change. Adaptation 

can be either proactive or reactive (Fankhauser et al, 1999). The former occurs when people 

anticipate the risks and take measures to forestall disasters or mitigate their risks, while the latter 

refers to the actions taken only after the disaster events happened.  

                                                            
1 The report explicitly concludes “(A) changing climate leads to change in the frequency, intensity, spatial extent, duration, and 
timing of extreme weather and climate events, and can result in unprecedented extreme weather and climate events” (IPCC 2012: 
7). The report also highlights the impacts of those climatic or weather-related disasters: they have resulted in increased economic 
losses worldwide since 1980, and particularly tremendous deaths in developing countries.  
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Within the context of climate change adaptation, we coin the term “risk-mitigating 

innovation”, referring to the development of new and more effective technologies that assist 

people in better coping with natural disasters and building resilience to future shocks. 

Innovation is an important form of adaptation because it provides the technical methods for 

people to use in the process of adaption. While adaptation in some cases can be just behavioral 

changes, such as relocation, people more often have to employ certain technologies, which take 

either hard form (e.g., equipment and infrastructure such as building levees) or soft form (e.g., 

science, technical know-how, and skills such as emergency management) (UNFCC, 2006).  As 

an example of how technology can affect adaptation, consider how the advent of air conditioning 

changed the development of regions in warmer climates. Moving forward, other innovations, 

such as developing new breeds of crops more resistant to drought, have the potential to change 

the world’s ability to adapt to climate change. Innovation also includes improvement and 

commercialization of existing technologies, such as using new materials or new designs to make 

them more cost-effective in combating one or multiple types of hazards. As Ausubel notes in his 

1991 article, technical innovation and diffusion related to climate change “occur in all societies 

and sectors and in many forms”. The importance of science and technology for climate 

adaptation has received increased attention in the international policy world (e.g., UNISDR, 

2009; UNFCC, 2006), though this issue is often ignored in the research community. Our study 

contributes to a better understanding of the role of technologies in climate change adaptation.  

Research on innovation has important implications for policymaking related to climate 

adaptation and disaster risk management. While adaptation is generally a local activity, 

innovation produces new knowledge and technologies that can often serve as a public good or 

even a global good. New technologies can be transferred and adopted by non-inventors and 
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eventually benefit people and communities who face similar disaster risks. Therefore, 

introducing the concept of risk-mitigating innovation expands the conventional view on the 

highly localized nature of adaptation. From the policy perspective, encouraging risk-mitigating 

innovation and the transfer of these technologies can not only save the cost of repeated R&D 

elsewhere and improve the global equity in disaster risk reduction, but also can facilitate the 

knowledge spillovers and provide building blocks for persistent future innovations.2  

This paper presents the first study to relate natural disaster impacts to technology 

innovation. In particular, we focus on three types of natural disasters, earthquakes, droughts and 

floods, and match each of them with one or two kinds of mitigation technologies including 

earthquake-proof building and earthquake detection technology, drought-resistant crop, and flood 

control technology.3 Our analysis, using a panel of up to 30 countries over a period of 25 years, 

shows that all three types of natural disasters have a significant and positive impact on the patent 

counts of their corresponding technologies. Moreover, given the relative newness of adaptation 

as a climate change strategy, there has been very limited data and analyses done so far 

concerning the implementation of adaptation at a country or regional level. By using risk-

mitigating innovation as an outcome of adaptation, our study also presents the first attempt to 

examine systematically the adaptation responses across multiple sectors at the country level.  

Another contribution of this paper is to explore the motivation and ability for adaptation 

responses, which is an under-researched issue in the adaptation literature. Notably, a majority of 

the current adaptation studies focus on estimating costs or cost-effectiveness of adaptation 

                                                            
2  Given the fact that most innovation activities are conducted in industrialized countries, their advanced technologies, if 
transferred properly, can benefit the developing countries, which not only lack the innovative capacity but also are more 
vulnerable to natural disasters relative to their developed counterparts.  
3 It should be noted that earthquake is normally classified as a geological hazard and regarded with a weak link to climate change. 
However, given that catastrophic climate impacts have not yet been observed, we consider not only disasters directly relevant for 
climate change such as drought and floods, but also include responses to other natural disasters like earthquake. Moreover, as 
researchers expect the probabilities of earthquakes to rise in certain regions (such as California) due to the crust movement, we 
believe earthquake fits neatly into the context of adaptation.   
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measures, at either the global level or at the country level, and many climate models simply treat 

adaptation as autonomous. For instance, recent examples of climate policy models incorporating 

adaptation are the AD-DICE model (deBruin et al. 2009), the WITCH model (Bosello, Carraro, 

and De Cian, 2009), which assesses the optimal mix of mitigation and adaptation measures, and 

the FUND model, which has been used to analyze the tradeoff between mitigation and adaptation 

for protecting coastlines (Tol, 2007). None of these models consider the possibility that the 

tendency and ability to adapt are endogenous. Our empirical evidence of reactive risk-mitigating 

innovations can inform the current endeavors in integrated assessment modeling of climate 

change, and more specifically, suggests the possibility of treating adaptation as a function of 

previous disaster losses. Finally, this paper also contributes to the literature of endogenous 

technological change by testing the impact of natural disasters as a stimulus for innovation. 

The remainder of this paper is organized as follows. Section 2 provides a review of the 

relevant literature. Section 3 discusses a conceptual framework and lays out our key hypotheses. 

Section 4 describe the data sources and present some descriptive statistics. Section 5 discusses 

the empirical model and our results. Section 6 concludes.  

 
2. Literature review 

This paper is part of a growing literature on the economics of natural disasters (for a 

survey of the literature, see Cavallo and Noy, 2010 and Kellenberg and Mobarak, 2011). This 

literature primarily consists of two bodies of research, one concerning the economic effects of 

natural disasters, and the other assessing the determinants of natural disaster impacts (i.e., 

treating disaster damages as a function of natural and social factors). While our research falls 

into the first category, since we consider natural disasters as an explanatory variable, we also 

base our conceptual and empirical models partly on the second line of research which suggests 
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that disaster impacts are endogenous.  

Most empirical studies concerning the economic impacts of natural disasters (the first 

category) focus on assessing the costs of disasters or the impact of disaster shocks on output 

growth using macroeconomic indicators and sector-specific measures (e.g., Benson and Clay, 

2004). This literature involves a subset of research that looks into the behavioral changes induced 

by natural disasters (e.g., how countries cope with the aftermath of disasters). Two recent studies 

of relevance in this aspect are Cuaresma et al. (2008) and Yang (2008). The first study tests the 

Shumpeterian theory of creative destruction (i.e., natural disasters that destroy capital stocks 

provide an incentive to update capital and employ newer technologies, thereby leading to higher 

productivities) by examining the relationship between disaster frequency and the R&D stocks 

embodied in the imports of developing countries. Using both cross-country and panel data 

regressions, they don’t find any systematic evidence supporting such a positive link, except for 

high-GDP countries.4  Yang (2008) examines the impact of hurricanes on a variety of types of 

international financial flows to developing countries. He finds that hurricanes lead to a 

significant increase in foreign aid as well as in migrants’ remittances to the affected countries.  

In this paper, we examine the incentivizing effect of natural disasters on the innovation of 

risk-mitigation technologies. Our research question implies at least two hypotheses: first, 

technological innovation can be driven by external factors and is thus endogenous; and second, 

disaster shocks can induce precautionary behaviors. To illustrate the two statements, we draw on 

and connect two separate strands of literature. First, the theory of induced innovation posits that 

changes in the relative price of an input of production leads to innovations that enable reducing 

                                                            
4 Although Cuaresma et al (2008) also focuses on the link between natural disasters and technology, it should be noted that our 
research question is fundamentally different from theirs. While their study asks whether natural disasters make developing 
countries more likely to import and absorb new technologies to improve their productivity, our focus is a on a specific group of 
technologies that can mitigate the risks of natural disasters.   
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use of the relatively more expensive factor (Hicks, 1932). Over the past decade, this theory has 

been increasingly applied to the field of environmental economics, as researchers try to 

understand the relationship between energy prices, environmental regulations and energy related 

innovations (for an overview of this topic see Popp, Newell, and Jaffe 2010). Using U.S. patent 

data from 1970 to 1994, Popp (2002) finds that both demand-side influences (e.g. energy prices) 

and supply-side influences (e.g. the existing knowledge base) determine energy-efficient 

innovation. Similar empirical evidence on the responsiveness of innovations to energy prices and 

environmental regulations has been found by other researchers using other modeling techniques 

(e.g., Newell et al, 1999) and conducting cross-national analyses (e.g., Johnstone et al. 2010, 

Verdolini and Galeotti, 2011). Our study adds to this literature on induced innovation by making 

the first attempt to link innovative activities to natural disaster events. 

We also draw on the literature on risk perceptions and protection motivation to consider 

how disaster shocks encourage people to develop and adopt precautionary measures.  One key 

theoretical contribution in this field is the Roger’s Protection Motivation Theory (Roger, 1983), 

which posits that people adjust their protective behavior based on their appraisal of external risks 

and appraisal of their own competence in coping with the threat. More specifically, the risk 

appraisal, or risk perception, involves the perceived probability of the occurrence of a 

threatening event occurrence and perceived severity of the threat. More recently, this theory has 

been used by environmental researchers to study individuals or households’ adaptation 

motivation and behaviors. For example, Grothmann and Patt (2005) survey residents who face 

flooding risk in the city of Cologne, Germany and find that risk perception and perceived 

adaptive capacity play a more important role than socio-economic factors in explaining 

individuals’ adaption decisions. With regard to the factors that affect risk perception, many 
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researchers identify the prior disaster experiences/impacts as an important one.  In a review of 

the natural hazards literature, Weinstein (1989) concludes that past experiences with natural 

disasters generally increase people’s perception of risk and their preparedness, though such 

effects might be short-lived sometimes. Earlier studies (e.g., Perry & Lindell, 1986) find that 

prior disaster experiences involving only minor damages have little effect on risk perception and 

preparedness. This suggests that it is the severity of disaster impacts more than the disaster itself 

that determines people’s risk perception. 

Finally, we come back to the adaptation literature, which is a fast growing subfield of the 

contemporary natural disaster studies. The actual impact of a disaster falling on a community 

depends on the nature of the hazard as well as on local people’s adaptation measures or their 

adaptive capacity (Yohe and Tol, 2002; Brooks et al, 2005; IPCC, 2012). In fact, increased 

attention has been focused on the term of adaptive capacity, an umbrella concept referring to a 

country/community’s capability to undertake or develop adaptation (OECD, 2006; IPCC TAR, 

2001). While there seems no clear consensus on the definition of the term, most researchers use 

“adaptive capacity” to summaries a set of social, economic and political characteristics that 

enable a society to mobilize its available resources to carry out adaptation.  

In line with the notion of adaptive capacity is a series of empirical studies examining the 

determinants and heterogeneity of natural disaster impacts. By using a global cross-national data 

set on human mortalities from multiple types of natural disasters, Kahn (2005) shows that 

nations with higher income and more democratic institutions suffer fewer deaths from these 

disasters. His argument is that economic development and good institutions lead to better 

infrastructure and preventive technologies, more effective regulations and emergency 

management, which provide “implicit insurance” against natural disasters. Following Kahn’s 
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work, subsequent researchers use similar theoretical models and various measures of institution 

(e.g., inequality, corruption, political regime) to account for the cross-country heterogeneity in 

the impact of natural disasters. (Anbarci et al, 2005; Escaleras et al, 2006; Keefer et al, 2010). All 

of them offer strong evidence that good institutions can buffer natural disaster losses. The 

relationship between disaster losses and economic development was further examined by Toya 

and Skidmore (2007), Rashky (2008), Kellenberg and Mobarak (2008), Schumacher and Strobl 

(2011) and Hallegatte (2012). Rather than disaster losses decreasing monotonically with income, 

these studies show that the damage-income relationship also depends on the squared income 

level (Kellenberg and Mobarak, 2008), hazard exposure (Schumacher and Strobl , 2011) or the 

density of capital as risk (Hallegatte, 2012). In addition to income and institution, hazard 

exposure is another driving force for countries to adapt. For example, Hsiang and Narita (2012) 

find that countries with more intense tropical cyclones (TC) climates have lower marginal losses 

from an actual TC event, which provides direct evidence of adaptation. To sum up, this line of 

research reflects a consensus view that disaster impact is determined by both the exogenous 

natural hazards and local socioeconomic conditions. The implication for our study is that a 

disaster’s impact (as an independent variable in our research) is influenced by any existing 

adaptation efforts, including a country’s current adaptive capacity.  

 
3. Conceptual framework 

Drawing on the three lines of literature discussed above, we develop a conceptual 

framework for examining the effects of natural disaster on risk-mitigating innovations. Under 

this framework, the impact of a disaster shock potentially raises the perceived risks, and thereby 

leads to a higher demand for adaptive technologies. The anticipation of higher demand motivates 

the private sector to develop newer and more cost-effective technologies for mitigating disaster 
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risks. To be consistent with the risk literature, we expect risk perceptions to depend on the 

severity of disaster impacts (e.g., human and economic losses from natural disasters) rather than 

simple counts or physical properties of disasters. The rationale is simple: if a natural disaster of 

extremely high magnitude occurs in an uninhabited area and results in little damage, it may not 

substantially affect people’s risk perception. Our research question is essentially whether 

individuals react to these new events or whether the risks of natural disasters are properly 

perceived, so that new events do not change expectations.   

We begin by modeling perceived risk R*it, which is unobserved, as a function of country 

i’s baseline hazard H (e.g. does the country have a fault line?), the country’s capacity Cit to cope 

with a disaster in year t, and the impact of current events Dit (measured by death tolls or 

damages). The disaster impact in turn depends simultaneously on the magnitude of the 

exogenous disaster shock Mit and the country’s adaptive capacity Cit.  

(1) R*it = f {Hi, Cit, Dit (Mit, Cit)} 

The baseline hazard is important for perceived risk, because people living in a region 

known to be at risk for certain hazards are more likely to possess some level of risk perception. 

For example, 81% of all earthquakes occur in countries located along the “Ring of Fire” in the 

Pacific Ocean.5 People living in these quake-prone countries presumably perceive stronger risks 

of earthquakes. Adaptive capacity may affect the perceived risk in different channels: first, 

previous investments to reduce vulnerability, such as sea walls or earthquake-resistant buildings, 

reduce the risk that significant damages will follow a disaster event. In such cases, the perceived 

need for additional innovation will be lower. Also, perceiving a strong adaptive capacity may 

cause over-confidence and then lower the perceived risks.6  

                                                            
5 http://earthquake.usgs.gov/learn/faq/?faqID=95,  accessed April 24, 2012. 
6 An analogy is the theory of “levee effect”(Stefanovic, 2003), which posits that people may excessively rely on the existing 
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Because capacity is not directly observed, we model capacity as a function of the 

following observed variables: 

(2) C*it = f(Hi, Ki,t-1, Yit, Iit ). 

As suggested by our literature review, both income, Yit, and the quality of institutions, Iit, 

influence the coping capacity of a country. Ki,t-1, represents the current knowledge and 

technologies available to cope with the disaster in question. To the extent that previous events led 

to new innovations, there will be less need for additional innovation after a subsequent shock.   

Finally, innovation itself depends on the perceived risk R*it (and thus the demand for 

better technologies to cope with disasters), the existing knowledge base on which inventors can 

build Ki,t-1, income Yit, and science policy Sit.  

(3) PATit = f(R*it, Ki,t-1, Yit, Sit) 

We use the count of patent applications pertaining to a given technology, PATit, to 

measure the outcome of innovative activities. Science policy includes the availability of qualified 

engineers to work on disaster-related research and patent policy, which determines the likelihood 

that inventors will seek patent protection for new innovations. We control for these by using the 

total number of patents by country and year. 

Combining equations (1), (2), and (3) summarizes this reduced form relationship: 

(4)  PATit = f(Dit, Hi,, Ki,t-1, Yit, Iit, Sit). 

Note that the effect of both economic development Yit and knowledge, Ki,t-1, are 

ambiguous. Equations (1) and (2) suggest that a greater existing knowledge stock and higher 

income increase adaptive capacity, thus reducing the need for additional innovation (because 

                                                                                                                                                                                                
protective measures knowing their existence. For example, people may think the construction of levees can fully protect 
themselves against all future floods.  
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perceived risk is lower).7  At the same time, equation (3) suggests that existing knowledge serves 

as a building block for future innovation.  While we expect a positive relationship between 

existing knowledge and innovation, it may also be the case that a strong existing stock may 

constrain technological opportunities and make future breakthroughs more difficult. Similarly, as 

innovation is primarily carried out in industrialized countries, and people from higher-income 

countries may have a higher demand for mitigation technologies, a positive correlation between 

GDP and patenting activity is also possible.  

Equation (4) raises two issues for estimation. First, we consider potential lags between 

disaster events and patents. Innovation is a gradual process. Research projects take multiple 

years, and staff may not be easily shifted to a new project just because a new profitable 

opportunity arises. Similarly, adjustments to perceived risk may also be gradual. For example, a 

drought in one year may be perceived as a random event. Persistent drought over multiple years 

may be perceived as changing climate. As such, we consider multiple lags when estimating our 

model. 

Second, we must also consider how globalization renders countries increasingly 

interdependent with each other, so that a salient foreign disaster shock may generate a global 

effect in that it may raise the risk perception of the hazard in other countries.8  One anecdotal 

example is that the Netherlands launched a full re-assessment of its risk management policy soon 

after Hurricane Katrina hit Louisiana, US in 2005. The global impact also includes technology 

spillovers, as advanced technologies developed in one country can be employed by the rest of the 

world to cope with their own disaster risks. In our baseline specification, year effects capture 

                                                            
7 This suggests a learning-by-doing phenomenon, which we test in another paper which examines the effect of knowledge stocks 
in mitigating disaster risks.   
8 This “contagious effect” hypothesis has actually received some support in micro-level studies, as researchers find that indirect 
disaster experiences, which people obtain from observing disasters that happen to others, can also influence risk perception of 
those unaffected. 
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both the effect of these disasters on perceived risk and on the accumulation of global knowledge 

that may serve as a building block for domestic innovation. Later, we also directly assess the 

effect of foreign shocks and foreign knowledge stocks on domestic innovation by replacing the 

year fixed effects by such variables in our empirical analysis.  

 
4. Data and Descriptive Statistics 

In this study our dependent variable is the flow of risk-mitigating innovations, which is 

measured by the number of successful patent applications filed in a country in a given year. All 

our patent data is taken from an online global patent database Delphion.com and is identified 

through either International Patent Code (IPC) or key word searches (For a more detailed 

description of our patent search strategy, please see appendix 1). Given the issue of cross-country 

patenting (i.e., inventors can patent the same technology in multiple countries where they desire 

protection), we take a set of procedures in cleaning the data to ensure that 1) one patent 

represents one unique innovation and is counted only once in our sample; and 2) each patent is 

assigned to only one country where the first inventor indicated in the patent document is located.  

It is important to acknowledge that a patent, as a common measure of invention used in 

the innovation literature, is not a perfect measurement. Issues regarding using patent statistics to 

measure innovations were discussed by Griliches (1990) and Motohashi and Goto (2010). There 

are two major disadvantages of using patent data: first, the number of patent applications in a 

country is highly subject to its patent system. Thus, we control for country heterogeneity by 

including the overall number of patents in each country in our regression. Second, not all 

inventions get patented. Inventors have the right to hide or reveal their inventions. Since the 

propensity to patent varies by technology, we do separate regressions for each technology, so that 

our identification strategy focuses on patenting changes within a single technology.  
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We construct a country’s stock of knowledge in a specific technology field using patent 

counts based on the perpetual inventory model, which assumes that the knowledge stock depends 

on a distributed lag of the current and past flows of innovations.  

(5)  Kit = PATit + (1- ߩ) Kit-1 

where ρ is the rate of stock depreciation, which we assume to be 15 percent following the 

conventional innovation literature. Using a depreciation rate implies that the patent/knowledge 

produced earlier become less valueable and relevant for today’s innovations. For the first year’s 

knowledge stock, we simply equate the patent counts in the first year to knowledge stock, since 

most countries have zero patents in their first year of our estimation period.9 For the ease of 

interpreting the effect of knowledge stock, we normalize this variable by taking log of the value 

of knowledge stock plus 1.   

We measure disaster impacts, our key independent variable, using both human mortalities 

and economic losses from the natural disasters. Our disaster data on the three types of natural 

disasters (earthquake, drought and flood) is taken from two sources. We use the drought and 

flooding data from the Emergency Event Database (EM-DAT) maintained by the Centre for 

Research on the Epidemiology of Disaster. Most current studies involving cross-country and 

multi-hazard analyses use the EM-DAT database. While this database is publically assessable, 

the accuracy of its data has been questioned given its humanitarian focus and specific thresholds 

for events to be included.10 While we can identify no better alternative for information on 

flooding and droughts, we collect data on earthquakes from the National Geophysical Data 

                                                            
9 In most applications of perpetual inventory model, the starting stock is calculated by dividing the first year’s flow by average 
annual logarithmic growth plus the depreciation rate (e.g., Coe and Helpman 1995). This method cannot be applied in our case, 
since a lot of countries in our sample have zero patents during the years. We feel safe to do so also because many countries have 
zero patents in their first year in our data set.  Moreover, as our regressions begin in 1984 but our patent data begin in 1974, we 
have 10 years of historical data for most countries to construct the initial knowledge stock. 
10 EM-DAT includes events with either more than 10 fatalities, over 100 people affected, a declaration of a state of emergency, or 
a call for international assistance. It contains information on disaster events from 1900.   
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Center (NGDC) Significant Earthquake Database. This database is preferred to EM-DAT since it 

contains richer information on earthquake physics (e.g., magnitude and Modified Mercalli 

Intensity), much longer timespan and more small-impact events that do not meet the EM-DAT 

threshold. The economic losses are adjusted by the World Bank GDP deflator index.  

In addition to the disaster impacts data, we also collect data to measure the magnitude of 

the exogenous disaster shocks, in order to instrument for potentially endogenous disaster impacts 

and knowledge stocks. For earthquakes, the NGDC database provides information such as the 

Richter scale of individual earthquake events. For drought, we use the Standardized Precipitation 

Evapotranspiration Index (Vicente-Serrano et al, 2010), which is a multi-scalar drought index 

that is calculated using precipitation and temperature data11 and presented in a global gridded 

dataset at a spatial resolution of 0.5 degree (approximately 56 km x 56 km at the equator) 

covering the period of 1901 to 2009. This index is claimed to be “particularly suited to detecting, 

monitoring, and exploring the consequences of global warming on drought conditions” (Vicente-

Serrano et al, 2010: p1698). Considering that drought is most likely to affect agriculture, we 

focus on the drought events occurring on cropland, and match the SPEI data with a global 

cropland coverage data set which is also at 0.5 spatial degree resolution.12  Since out data is a 

panel structure of country by year, we use geospatial software to create a new country-year 

aggregate drought measure: we take the mean of the SPEI values which are under 0 (indicating 

dryness) with their feature points (defined by longitude and latitude) located on cropland.13 For 

flood, we use the area-weighted-precipitation data from Dell et al (2012) and assume that 

                                                            
11 Their original weather data is taken from the Global Historical Climatology Network database. 
12 The global cropland dataset, which spans from 1700 to 2007, is produced by Navin Ramankutty at the Land Use and the 
Global Environment lab of Mcgill University.  
 The data is retrieved from http://www.geog.mcgill.ca/~nramankutty/Datasets/Datasets.html 
13 In the original global cropland data, for each feature point cropland is identified by a crop coverage percentage. To simplify our 
definition of cropland, we calculate the mean cropland coverage ratio by country-year and treat all feature points which exceed 
the country mean in the same year as cropland.   
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excessive rainfall is often an exogenous shock causing flooding.14  

For data on country characteristics, we use the data on real GDP per capita and 

population from Penn World Table (7.0 version). To measure institutional quality, we use the 

polity variable from POLITY IV project, which takes on the value from -10 to 10 and indicates a 

country’s openness of political institution (higher values suggest a more democratic and open 

political institution). As discussed above, countries are different in terms of their science bases, 

patent systems and general propensity to patent innovations. Thus we use the total number of 

patent applications filed by a country’s residents to control for this country characteristic. This 

data comes from the World Bank World Development Indicators and the database of the World 

Intellectual Property Organization.  

In this study, we look at three types of natural disasters and four different types of 

technologies. For each technology, we construct a sample of countries with the selection criteria 

that the country should have at least five patents in a given technology field between 1974 and 

2009. We begin in 1974 because patent data for many countries first appears in the Delphion 

database in the mid-1970s. Therefore, our sample size varies according to different technology 

types.  Appendix 2 lists the countries included for each technology. 

Table 1 provides national summary statistics reporting the average deaths and damages 

from natural disasters per year by disaster type, and total patent counts by technology type for a 

period 1970-2009. A large majority of our sample countries are industrialized countries. This is 

consistent with the notion that most of the global R&D activities are carried out by developed 

countries (National Science Board, 2010), since they have higher demand and more resources for 

science, technology and innovation. In particular, United States, Germany and Japan appear to 

                                                            
14 The precipitation data in Dell et al (2012) have also been aggregated to the country-year level. The original data is taken from 
the Terrestrial Air Temperature and Precipitation: 1900-2006 Gridded Monthly Time Series, Version 1.01(Matsurra and Willmott 
2007).  
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play leading roles in patenting on these mitigating technologies. Notably, China seems to be most 

severely impacted by all three types of disasters among all sample countries, while it also has a 

large number of patents on these technologies. To compare across disaster types, earthquakes and 

floods cause much larger losses on our sample countries than droughts. This suggests that two 

possibilities. First, while droughts will typically affect a larger geographic area than earthquakes 

or floods, their impact is primarily on a single sector (agriculture), rather than the entire economy 

of the affected area. Second, given that most of our sample countries are developed countries, 

they already have good technologies and infrastructure such as irrigation systems which make 

them less vulnerable to drought. In fact, the statistics of global drought impacts by country 

(based on the EM-DAT data) shows that most of the severe drought events in the past forty years 

have occurred in developing nations, in particular the least developed countries in Africa.15  This 

fact further confirms that the impact of drought highly depends on an area’s vulnerability or 

adaptive capacity. 

Figures 1-3 illustrate trends in patenting behavior for selected countries, with major 

disaster events also highlighted. Figure 1 shows earthquake mitigation patenting trends for the 

United States and Japan.  In both cases, patenting activity increases after major earthquakes, such 

as the 1989 Loma Prieta earthquake in the U.S. and the 1995 earthquake in Kobe, Japan.  Figure 

2 shows similar trends for flood control technology in the Unites States and United Kingdom.  In 

contrast, a visual inspection of drought-resistant crop technologies suggests a more gradual 

increase in patenting activity over time.  Possible explanations include increased awareness of 

drought risks from climate change or increased patenting due to advances in agricultural 

                                                            
15 We rank countries that are most often hit by drought from 1970 to 2010 using the drought data from EM-DAT. Only five 
countries in the top 15 (China, Brazil, Australia, India, United States) are included in our sample. The other countries are 
Mozambique, Ethiopia, Kenya, Bolivia, Somalia, Honduras, Indonesia, Mauritania, Philippines, and Sudan, which have no 
patents in either of the drought-mitigating technologies.  
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biotechnology.  Year effects in the regression analysis allow us to control for both possibilities. 

Table 2 presents the descriptive statistics of main variables in the analysis. It should be 

noted that though our patent data generally becomes available in 1974, we deliberately choose to 

start our estimation period at least 10 years later because we have the knowledge stock, which is 

also a function of patent counts, on the right hand side. In this way, we allow the stock to 

accumulate for ten years before it enters into the estimation equation.  

 

5. Empirical model and main results 

5.1 Domestic disaster impacts 

To examine the relationship between disaster shocks and risk-mitigating innovations, we 

estimate a reduced-form empirical model based on our proposed conceptual framework:   

    (6)   PATjit  =  f (
5

0
it n

n

D 

 , Yit, Iit, Kjit-1, Sit, ηi, ) 

where the innovation flow (PATjit) is the total number of successful patents in the technology 

field j applied by the residents in country i in year t. It is the function of contemporary and 

lagged impact of natural disasters that occurred in country i and a set of country characteristics 

including real GDP per capita Yit, political institutions Iit, existing domestic knowledge stock 

relevant to the specific technology type in question, Kjit-1, and general patent application quantity 

Sit. The reason for using a distributed lag of disaster impacts is that we are reluctant to impose a 

structure on the effects of recent year’s disasters on innovation.16  Country fixed effects ηi, 

control for time-invariant heterogeneity across country (e.g., the baseline hazard risks, 

                                                            
16 As we discussed earlier, innovation takes time. Whether the most recent disasters have bigger impacts on innovative activities 
is an empirical question. To determine the number of year lags to be included in the regression, we first conduct a sensitivity test 
by gradually increasing the lags. We find the coefficients on lagged values of disaster effects generally become insignificant 
beyond five years ago.  Further sensitivity analysis of the lags is available in Appendices 3 and 4. 

t
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innovation capacity, and other unobserved country specific characteristics), and also helps to 

address the potential endogeneity of the disaster impact variables. Year fixed effects control 

for time-varying factors common to all countries (e.g., the global technology advancement, 

salient disaster shocks which occurred in one country but affect the global risk perception).  

Given the count-data nature of our dependent variable (i.e., patent counts) and panel 

nature of our data structure, we use Poisson fixed-effects model with robust standard errors to 

address possible over-dispersion in the data (Cameron and Trivedi, 2005). Standard errors are 

clustered by country.17  We use the fixed-effects model because the unobserved heterogeneity 

across countries as discussed above is very likely to exist and correlate with the explanatory 

variables.18  

We estimate our empirical model by using the Generalized Methods of Moments (GMM) 

technique (Hansen, 1982).  While this estimation equation allows the individual effects to 

correlate with the other regressors, the consistency of the estimators rely on the assumption of 

strict exogeneity of explanatory variables (E(xituit) = 0). In other words, the regressors must not 

correlate with any of the past, current and future error terms. However, this assumption seems 

difficult to justify in our model for two reasons.  First, our lagged knowledge stock variable is 

constructed using a distributed lag of previous patent counts, and therefore has the similar 

character of a lagged dependent variable, which is predetermined.  Second, the disaster impacts 

may also be predetermined in the sense that the earlier efforts of innovating as a response to past 

disaster shocks may help alleviate the human mortalities and economic losses of the subsequent 

similar events. It should also be noted that the inclusion of country fixed effects is to capture the 

                                                            
17 Because of the panel nature of the data, we do not use a negative binomial model, as the negative binomial fixed effect model 
does not truly control for unobserved fixed effects (Alison and Waterman, 2002; Cameron and Trividi 2005; Paulo 2008).   
18 Unless we can find proper measures for the country specific heterogeneity and include them in the regression, the potential 
correlation between the observed fixed components ηi with the other regressors would make a standard random effects estimator 
inconsistent.  

t
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time-invariant individual effects that may affect innovation motivation and patenting.  If the 

time-varying elements of a country’s adaptive capacity that may affect disaster outcomes are not 

fully accounted for, this might also induce the endogeneity issue of our disaster variables.  

To address these issues, we estimate two specifications.  First, we replace the Kjit-1 in the 

estimation equation (6) with Kjit-6, so that the knowledge stock is no longer a function of the 

lagged disaster impact variables in our regression and can be treated as exogenous to today’s 

innovation flows. Using this specification we essentially assess the effect of disaster events that 

occurred in the present year as well as in the last five years on risk-mitigating innovation, 

considering that they may both induce innovation today to do lagged reactions and may reduce 

the need for innovation due to earlier improvements to adaptive capacity in the past five years in 

reaction to lagged disasters.  One caveat is that the reduced form specification does not address 

the issue of strict exogeneity.  Given the long time frame of our sample, such concerns are 

unlikely to cause significant bias, and this specification does not suffer if potential instruments, 

described below, are weak (Wooldridge 2010).19   

Second, we use the instrumental variable approach, using the magnitude measures of 

shock events that have induced natural disasters as instruments.  Our argument is that the 

“natural destructiveness” of a disaster correlates directly with the disaster outcomes such as 

human and economic losses and should be exogenous.  Moreover, since our theory posits that 

disasters induce innovation and subsequent accumulation of the specific technical knowledge to 

cope with disasters, the magnitude measures should also exert a positive effect on the knowledge 

stock. Therefore, in addition to using the disaster magnitude that corresponds to each year’s 

disaster impact, we instrument for knowledge stock using the magnitude information over a 

                                                            
19 When strict exogeneity is violated, the bias is a function of 1/T.  Our regressions include 24-26 years of data, so that any 
potential bias is scaled by a factor of approximately 0.04.  
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longer period of 25 years, given the availability of rich pre-sample data. By instrumenting for the 

lagged knowledge stock, the second specification allows us to directly interpret the effect of the 

existing knowledge base on upcoming innovations. For some types of technology (e.g., 

earthquake mitigating innovations), we also use a country’s population as an instrument for 

disaster impacts because a high density of population is presumably more subject to human and 

economic losses when being hit by a disaster shock.20  One complication for earthquake is that 

our unit of analysis is country-year instead of events. We use two variables to measure the 

severity of earthquakes, the maximum earthquake magnitude if any occurs in a country-year and 

the total number of earthquakes with a magnitude six or large in a country-year. As for drought, 

we use the aggregated Standardized Precipitation Evapotranspiration Index (SPEI) at country-

year level as well as population to instrument for drought damages and lagged knowledge stocks. 

The instrument we use in the case of flooding is area-weighted precipitation (Dell et al, 2012) for 

country-year.  In all cases, the instrumental variable approach provides consistent estimates of 

our parameters as long as the quality of our instruments is good. However, the results suffer if 

the instruments are not strong predictors of disaster impacts and lagged knowledge. 

Table 3 presents the estimation results for both specifications using death tolls as the 

measure of disaster impact. Note that for droughts we focus on only economic damage because a 

majority of our sample countries have zero deaths over the estimation period. Income and total 

patent applications are in logs, so that the coefficients can be interpreted as elasticities. The 

results show that human mortalities from recent disasters generally have a significant and 

positive effect on the domestic patent flows for all technologies concerned. Such evidence 

                                                            
20 To address the predetermined and endogenous regressor issue, we have also tried other approaches following the literature on 
panel count-data models. For example Chamberlain (1992), Wooldridge (1997), and Windmeijer (2000) have suggested a quasi-
differencing GMM estimator using the lagged xit as instruments. This approach can not only allow the unobserved heterogeneity 
to correlate with regressors but no longer rests on the strict exogeneity assumption. But the precision of the estimator may be 
hampered if the regressors are highly persistent over time, which thus have less relevance for the differenced terms (weak 
instrument problem). We have found the same problem when we applied this approach to our data.  
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supports our principal hypothesis that natural disasters lead to risk-mitigating innovations, and 

the amount of successful patent applications following disaster events increase with the severity 

of disaster impacts. Specifically, in the case of earthquakes, the coefficients on the current-year’s 

death (measured in thousand) suggest that an additional 1,000 deaths increases the expected 

counts of patents of earthquake-proof building and detection technology applied for in same year 

by 1.3% - 1.5%, respectively.21 Comparing the two types of earthquake-mitigating technologies, 

we find that earthquake impacts seem to have a long-term effect on quake-resistant building 

patents while its effect on detection patents seems more immediate (i.e., only the coefficients on 

the present year and last year’s death are statistically significant). The row “sum of death” 

presents the joint significance of all current and lagged impacts.  For quake-proof buildings, one 

thousand deaths from earthquakes can increase the expected counts of patents filed in the next 

five years by about 18.6 – 23.8%, while such impact on the detection patents are insignificant 

over the five-year period. It is somehow surprising to see the lagged effect does not become 

smaller with the increase of year lags, as reflected in the magnitude of the coefficients. One 

possible explanation is that the innovation of earthquake-proof buildings is not only stimulated 

by the disaster events but also subject to the changes in regulations (e.g., building codes may be 

revised following severe events, thereby providing a long-term motive for innovation). By 

comparing the two different specifications, we notice that the significance of most coefficients 

does not change much, and the coefficient magnitudes of those highly significant variables are 

largely similar.22  

                                                            
21 As we use Poisson model for estimation, we are able to interpret the coefficients in a semi-elasticity form.  
22 However, recall that we should be cautious about the difference in how to interpret these coefficients, since we are controlling 
for two different levels of lagged knowledge stock in the two models. In specification (1), we estimate the effect of recent 
disasters conditioning on the six-year lagged knowledge stock (that had been established before these events actually happened); 
and in specification (2), we estimate the effect of a distributed lag of disasters controlling for last year’s knowledge stock, so the 
effect of earlier disaster events (e.g., year t-5) on existing knowledge will already be captured in the knowledge stock variable.  In 
Appendix 5, we demonstrate that this has little impact on the magnitude of the individual coefficients. 
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As for flood-control technology, we only show the results for specification 1 because the 

instrument (i.e., area-weighted precipitation) is weakly correlated with the death variables.23 The 

results shows that the cumulative effects of recent flooding events on the innovation of flood-

control technologies in particularly prominent: an additional 1,000 deaths from floods that have 

occurred in the past five years plus the present year would lead to an increase of patent 

application in this field by 88%. Also, the six-year lagged knowledge stock is statistically 

significant and positive for patent counts: a ten percent increase in the knowledge stock of six 

years ago is associated with 2.5% increase in today’s patent applications. This suggests that the 

earlier knowledge stock serves as a building block for future innovations even after considering 

its possible competing effects on risk-mitigating innovations as part of a country’s existing 

adaptive capacity. 

Table 4 reports the estimation results using economic losses as a measure of disaster 

impact for both specifications. The results are largely consistent with what we have found using 

human losses, that is, economic damages from recent disasters generally have a statistically 

significant and positive effect on the innovation of risk-mitigation technologies. As for 

earthquakes, the pattern of the disasters-innovation relationship is somewhat similar with that in 

Table 3: patenting in earthquake-proof building technology seem to be more affected by the 

earlier events (though it should be noted that in specification 2, the coefficient on current year’s 

damage turns significant with a much large magnitude compared to that in specification 1), while 

patenting of earthquake detection technology is more responsive to the most recent events. We 

also notice that when instrumenting for disaster impacts (specification 2), the coefficients on 

one-year lagged knowledge stock for both two technologies are positive and significant at 5% 

level, which suggests that the supply-side effect of the existing knowledge base on upcoming 
                                                            
23 Appendix 6 provides information on the fit of the instruments for each of our technologies and endogenous variables. 
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innovations may play a dominant role. As for flooding, the stimulating effect of disasters on 

patenting seems to come more from recent years, and both specifications show that the 

magnitude of such impact is biggest for the current year’s flooding: an additional $1 billion 

economic loss would increases the expected number of flood-control patent applications filed in 

the same year by 4.8% - 11%. The effect of the lagged knowledge stock seems ambiguous in this 

case: although both two have positive coefficients, neither is significant at 5% level. As for the 

drought-resistant crop technology, the effect of drought on patenting activities is also positive 

and statistically significant in most lagged years (except year t-1 and t-3) in the specification 1. It 

is estimated that an additional $1 billion economic losses from drought that occurred no earlier 

than five years ago would increase the expected number of patent applications filed at the present 

year by approximately 20%. When we instrument for drought damage using aggregated drought 

index, the coefficient of the present year’s damage has been substantially inflated to 0.244 (this 

suggests the immediate innovation response is even larger than the long-term responses in the 

specification 1), while coefficients on other lagged years turn insignificant. It is also surprising to 

see that the coefficients on other country controls, such as GDP, institution quality and general 

patent applications, are very different from those in specification 1.  In particular, the control for 

total patent applications has an unexpected negative sign in this specification.  We suspect these 

problems are the results of the relatively weak link between our instruments and the damage 

variables, as discussed in Appendix 6. Given that there are few differences between 

specifications 1 and 2 for other technologies, we place more faith in specification 1 for drought-

resistant crops. 
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5.2  Do foreign shocks matter? 

So far we have examined the effect of domestic disaster shocks on domestic innovation 

of risk-mitigating technologies. Here we consider whether innovators also respond to salient 

foreign disaster shocks and whether they could benefit from the adaptive knowledge that has 

been created abroad (i.e., knowledge spillover effects). To answer this question, we create 

variables measuring the impact of foreign shocks as well as foreign knowledge stocks and use 

them to replace the year fixed effects to avoid multicollinearity.24 Specifically, we estimate the 

following model:25 

(7)    PATjit  =  f (
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in which DDit  denotes the human mortality or economic losses resulting from natural disasters 

that occurred in country i in year t, while FDit  is the human or economic losses from disasters 

that occurred outside country i in year t. DKjit-6 denotes the domestic knowledge stock in 

technology field j in country i by year t-6. FKit-6 denotes the foreign knowledge stock constructed 

by the patents filed outside country i up until year t-6.  

Table 5 reports the estimation results.  First, removing the year fixed effects and adding 

controls for foreign disasters and knowledge increases the significance of some coefficients on 

the distributed lag of domestic disasters. But this does not affect the cumulative effect of 

domestic shocks much, which suggests the robustness of our estimation. In terms of foreign 

impact, we find foreign disasters that have occurred between year t and year t-5 together exert a 

                                                            
24 To create the foreign impact variables, we first calculate the total global impacts by aggregating the human or economic losses 
from all countries in the database (not limited to our sample countries) and subtract each country’s own losses from the total 
global losses. We construct the foreign knowledge stock in the same way as we create the domestic knowledge stock (using the 
perpetual inventory model). We aggregate the total number of patents filed in the world in a year and then subtract each country’s 
own patents from the global pool to obtain the foreign patent counts by country-year.  
25 Note that model (7) is largely based on specification (1), which uses country fixed effects and no instrument variables. We 
choose this to derive our foreign model due to the small difference between this approach and the instrument approach.  
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statistically significant and positive effect on the domestic innovation of flood control and 

drought-resistant crop technology, though the magnitude of such effect is much smaller 

compared to the domestic disasters. Surprising, the patent counts of quake-proof technology 

decrease with the severity of foreign earthquakes, and this effect is statistically significant at 1% 

level for most lagged-year coefficients when severity is measured by deaths. While it may simply 

be that innovation of building technology might be primarily driven by domestic demand and 

institutions (e.g., building codes) and less subject to the foreign disaster shocks, we cannot rule 

out that the lack of year fixed effects may imply an omitted variable correlated with foreign 

disasters. For detection technology, the innovative response to foreign earthquakes seems more 

immediate and only significant in the current year. This pattern is consistent with the response to 

domestic earthquakes, while the magnitude of foreign effects is also very small. In terms of the 

knowledge spillover effects, we find that for earthquake detection and drought-resistant crop, 

foreign knowledge stocks lagged by six years have a significant and positive effect on domestic 

innovation, which suggests the potential spillovers across countries.  

In addition to not controlling for year effects, the previous model also assumes that all 

global disasters have a similar impact on innovation.  We next relax this assumption, asking 

whether disaster shocks that occur in nearby foreign countries would more likely induce 

domestic innovation of risk-mitigating technologies. The rationale is that geographic proximity 

leads countries to share some similar geophysical characteristics, thereby causing risk perception 

to be influenced by the incidence of one another. Moreover, geographic proximity might imply a 

potential same market and make it easy for foreign technologies to diffuse and profit. To test this 

hypothesis, we group countries by continent and create variables of foreign disaster impact based 

on the same continent external to country i. By adding more cross-country variation to foreign 
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disasters, we are also able to once again include year fixed effects, so that year dummies can 

capture global technological progress, salient global shocks, and any potential omitted variables 

correlated with such shocks. Other variables remain the same.  

Table 6 reports the estimation results using this approach. Again, the coefficients on the 

distributed lag of domestic disaster impact largely stay the same as compared to the original 

domestic model. Foreign disasters that occurred between year t and t-5 on the same continent 

external to a country have a positive cumulative effect on its domestic innovation of detection 

and flood control technology, and such effect is statistically significant when foreign impact is 

measured by death for detection and damage for flood control. For quake-proof building 

technology, using this new measure makes some originally negative coefficients on foreign 

shocks in model (7) no longer significant.  But we still see no evidence on the link between 

foreign disasters and domestic innovation for this technology. Finally, unlike when controlling 

for all foreign damages, foreign disaster impacts generally are now insignificant for drought-

resistant crop technology. One possible explanation is the presence of the global crop market and 

the concentration of innovative activities by a few biotech multinational corporations. To 

summarize, we do find some evidence suggesting the impact of foreign shocks and foreign 

knowledge spillovers on domestic innovation, though such evidence is not pervasive across all 

technology types.  

 

6. Conclusion 

Natural disasters cause tremendous human causalities, as well as significant economic 

losses worldwide. But apart from this, what do people learn from suffering natural disasters?  Do 

they improve their coping capacity every time after being hit by a disaster shock? These are 
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meaningful questions for both researchers and policy makers to consider. Until now, there has 

been no systematic study of the role of technology and innovation in climate change adaptation. 

This paper fills this gap, linking three types of natural disasters (earthquakes, droughts, and 

flooding) to a set of mitigation technologies. 

By introducing the idea of “risk-mitigating innovation”, we conceptualize innovation as 

an important form of adaptation. We bring together two lines of research on induced innovation 

and adaptation to develop a conceptual framework for assessing the effects of natural disasters 

on risk-mitigating innovation. Our empirical analysis, using a panel of up to 30 countries 

covering a period of about 25 years, reveals a consistent stimulating effect of natural disasters on 

patent flows of the technologies that can mitigate similar disaster risks. For all types of 

technologies concerned here, we find evidence that the amount of risk-mitigating innovation in a 

country increases with the severity of its recent natural disasters. This finding suggests that 

people are constantly learning from their disaster experiences, though they adapt to natural 

disasters in a reactive manner. This has important implications for both policymakers and 

modelers of climate policy, as it suggests that innovations that facilitate adaptation to climate 

change are unlikely to come from the private sector until after climate damages have been 

experienced.  The potential role of public R&D support to facilitate earlier improvements in risk-

mitigating technologies thus deserves investigation in future research.  

Moreover, our study also shows that innovators not only respond to domestic shocks but 

also respond to natural disasters occurring in other countries, although the magnitude of the latter 

is much smaller and the link is not pervasive across all technology types. We also find that the 

growing pool of global knowledge on disaster mitigation exerts a stimulating effect on domestic 

risk-mitigating innovation (e.g., for earthquake detection and drought-resistant crop technology). 
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This finding has important implication for global adaptation policy making. Since most of the 

innovative activities are currently taking place in industrialized countries, their risk-mitigating 

innovation can generate positive externalities to the developing world and could be translated 

into useful local knowledge to cope with natural disasters and reduce vulnerability. Policies are 

needed to facilitate the transfer of more risk-mitigating technologies to countries with limited 

technological resource and capacity and deployment of these technologies.  

As the first study integrating technology innovation and adaptation, we believe that this 

line of research can be further extended in at least two directions. First, in this study we construct 

the measure of foreign disaster shocks and foreign knowledge stocks in a relatively coarse way. 

In fact, not all natural disasters that have occurred elsewhere in the world or foreign knowledge 

available are relevant for a country.  More detailed analyses could be done in this regard, for 

example, weighing the foreign impacts by geographic distance between countries and measuring 

the existing foreign knowledge stock using the patent family and patent citation information.  

Second, more research could be done to assess the role of technological change in facilitating 

adaptation to climate change. In this study we mainly focus on how natural disasters induce risk-

mitigating innovation, but we have little to say about the effectiveness of these new innovations 

in reducing disaster risks (e.g., saving lives and preventing economic losses). Particularly, given 

the public good nature of knowledge, it is an important policy and research question to gauge the 

potential benefits of diffusion of risk-mitigating technologies in the global context.   



  29

References 

Allison, P. D. and R. P. Waterman (2002). "Fixed-Effects Negative Binomial Regression 
Models." Sociological Methodology 32: 247-265. 

Anbarci, N., Escaleras, M., and Register C.A.(2005). Earthquake fatalities: the interaction of 
nature and political economy. Journal of Public Economics. 89, 1907-1933.  

Ausubel, J.H., (1991). Does climate still matter? Nature, 350, 649–652. 

Benson, C. and E.J.Clay (2004) Understanding the Economic and financial impacts of natural 
disasters. Disaster risk Management Series, No. 4 (Washington, D.C.: World Bank). 

Bosello, F., C. Carraro, and E. De Cian (2009), “An Analysis of Adaptation as a Response to 
Climate Change,” Copenhagen Consensus Center, Copenhagen Business School. 

Brooks, N., Adger, W., and Kelly, P. (2005) The determinants of vulnerability and adaptive 
capacity at the national level and the implications for adaption. Global Environmental 
Change, 15 151-163 

Cameron, A. C. and P. K. Trivedi (2005). Microeconometrics: Methods and Applications. 
Cambridge, Cambridge University Press. 

Cavallo, E., and Noy, I.(2010). The economics of natural disasters. A survey. Inter-American 
Development Bank working paper series No. IDB-WP-124 

Coe, D.T., & Helpman, E.(1995). International R&D spillovers. European Economic Review, 39, 
859-887.  

Cuaresma, J.C., Hlouskova, J., and Obersteiner, M (2008). Natural disasters as creative 
destruction? Evidence from developing countries. Economic Inquiry. 46, 2.  

de Bruin, Kelly C., Rob B. Dellink, and Richard S.J. Tol (2009), “AD-DICE: an implementation 
of adaptation in the DICE model,” Climatic Change, 95: 63-81. 

Dell, M., Jones, B., Olken, B (2012). “Temperature shocks and economic growth: evidence from 
the last half century.” American Economic Journal: Macroeconomics. 4(3): 66-95  

Escaleras, M., Anbarci, N., and Register, C.(2006) Public sector corruption and natural disasters: 
A potentially dead interaction. No 6005, Working Papers from Department of Economics, 
College of Business, Florida Atlantic University 

Fankhauser, S., Smith, J.B., and Tol, R. S.J.(1999) Weathering climate change: some simple rules 
to guide adaptation decisions. Ecological Economics 30:  67-78.  

Grothmann, T., and Patt, A. (2005) Adaptive capacity and human cognition: the process of 
individual adaptation to climate change. Global Environmental Change 15. 199-213. 



  30

Hansen, L. P. 1982. Large Sample Properties of Generalized Method of Moments Estimators. 
Econometrica 50:1029-1054. 

Hicks, J.R. (1932). The theory of wages, Macmillan, London. 

Intergovernmental Panel on Climate Change (IPCC) TAR (2001) Climate change 2001: Impacts, 
Adaptation and Vulnerability. IPCC, Third Assessment Report, Cambridge University 
Press. 

IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. 
Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. 
A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate 
Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA. 

Johnstone, N., Hascic, I., Popp, D., 2010. Renewable energy policies and technological 
innovation: evidence based on patent counts. Environmental and Resource Economics 45 
(1), 133-155. 

Kahn, M. (2005). The death toll from natural disasters: the role of income, geography, and 
institutions. The Review of Economics and Statistics, 87(2): 271-284. 

Kellenberg, D.K., and Mobarak., A.M., (2008). Does rising income increase or decrease damage 
risk from natural disasters? Journal of Urban Economics 63, 788-802 

Kellenberg, D., and Mobarak, A.M. (2011) The economics of natural disasters. Annu. Rev. 
Resour. Econ. 3: 297-312. 

Keefer, P., Neumayer, E., and Plumper, T (2010) Earthquake propensity and the politics of 
mortality prevention. Policy Research Working Paper 5182.  

Hallegatte, S.(2012) An exploration of the link between development, economic growth and 
natural risk. Policy research working paper 6216. The World Bank. 

Hsiang, S.M., Narita, D (2012). Adaptation to Cyclone Risk: Evidence from the Global Cross-
Section, Climate Change Economics, Vol. 3, No.2.  

Levina, E., and Tirpak, D. (2006) Key adaptation concepts and terms. Organization for Economic 
Co-operation and development. 

Martin, W.E., Martin, I.M., and Kent, B. (2009). The role of risk perception in the risk mitigation 
process: the case of wildfire in high risk communities. Journal of Environmental 
Management, 91. 489-498.  

National Science Board (2010). Science and Engineering Indicators 2010, Arlington, VA: 
National Science Foundation.  

Paulo, G. (2008). "The fixed effects negative binomial model revisited." Economics Letters 99 



  31

(1): 63-66. 

Perry, R.W., & lindell, M.K., (1986). Twentieth century volcanicity at Mt.St. Helens: The 
routinization of life near an active volcano (Final report of National Science Foundation 
Grant CEE-8322868). Tempe: Arizona State University, School of Public Affairs.  

Popp. D. (2002). Induced innovation and energy prices. American Economic Review, 92(1): 160-
180. 

Popp, D., Newell, R, & Jaffe, A. (2010) “Energy, the Environment, and Technological Change,” 
Handbook of the Economics of Innovation: vol. 2, Bronwyn Hall and Nathan Rosenberg, 
eds., Academic Press/Elsevier, 873-937. 

Rashky, P.(2008). Institutions and the losses from natural disasters. Natural Hazards and Earth 
System Sciences 8, 627–634. 

Rogers, R.W.(1983). Cognitive and physiological processes in fear appeals and attitude change: a 
revised theory of protection motivation. In: Cacioppo, B.L., Petty, L.L (Eds.), Social 
Psychophysiology: A Sourcebook. Guilford, London, UK, PP 153-176. 

Schumacher, I., Strobl, E.(2011). Economic development and losses due to natural disasters: The 
role of hazard exposure. Ecological Economics, 72, 97–105. 

Stefanovic, I.L.(2003). The contribution of philosophy to hazards assessment and decision 
making. Natural Hazards, 28, 229-247. 

Smit, B and Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability. Global 
Environmental Change, 16: 282-292. 

Tol, Richard S.J. (2007), “The double trade-off between adaptation and mitigation for sea level 
rise: an application of FUND,” Mitigation and Adaptation Strategies for Global Change, 
12, 741-753. 

Toya, H., Skidmore, M.(2007). Economic development and the impact of natural disasters. 
Economics Letters 94, 20–25. 

United Nations Framework Convention on Climate Change (2006) Technologies for adaptation 
to climate change. 
http://unfccc.int/resource/docs/publications/tech_for_adaptation_06.pdf    

United Nations International Strategy for Disaster Reduction (2009) Reducing disaster risks 
through science: issue and actions, the full report of the ISDR Scientific and Technical 
Committee 2009.  http://www.unisdr.org/files/11543_STCReportlibrary.pdf   

Van Aalst, M. (2006) The impacts of climate change on the risk of natural disasters. Disasters. 
Special Issue: climate change and disasters. Volume 30, Issue 5-18. 

Verdolini, E and Galeotti, M. (2011). At home and abroad: an empirical analysis of innovation 



  32

and diffusion in energy technologies. Journal of Environmental Economics and 
Management, 61, 119-134  

Vincente-Serrano, S.M., Begueria, S., and Lopez-Moreno, J.I. (2009) A multiscalar drought 
index sensitive to global warming: the Standardized Precipitation Evapotranspiration 
Index. Journal of Climate. 23. 1696-1718 

Weinstein, N.D. (1989) Effects of personal experience on self-protective behavior. Psychological 
Bulletin 103 (1), 31-50 

Wooldridge, J.M. (2010). Econometric Analysis of Cross Section and Panel Data: Second 
Edition, MIT Press, Cambridge, MA. 

Yang, D(2008). Coping with disaster: the impact of hurricanes on international financial flow, 
1970-2002. The B.E. Journal of Economic Analysis & Policy. Vol. 8, No. 1 (Advances), 
Article 13. 

Yohe G., and Tol, R. (2002) Indicators for social and economic coping capacity-moving toward a 
working definition of adaptive capacity, Global Environmental Change, 12, 25-40



  33

Table 1- Natural Disaster and Patent Statistics for Sample Nations, 1970-2009 
Disasters Earthquake Drought Flood 

Technology       Quake-proof Building                       Detection Drought-resistant  Flood Control 

Country 
Average 

deaths per 
year 

Average 
damages per 

year  

Total patent 
counts  

Total patent 
counts  

Average 
deaths per 

year 

Average 
damages per 

year 

Total patent 
counts  

Average 
deaths 

per year 

Average 
damages 
per year  

Total patent 
counts  

Argentina 1.93 5.50 10 . . . . . . . 
Australia 0.30 0.17 12 . 0 405.93 39 5.08 116.28 10 
Austria 0.03 0 7 . 0 0 6 0.975 96.13 5 
Belarus 0 0 8 . . . . . . . 
Belgium 0.05 2.17 8 . 0 0 22 . . . 
Brazil . . . . 0.5 214.86 5 . . . 
Bulgaria 0.08 0.2 8 . . . . . . . 
Canada 0 0 35 12 0 270.53 39 0.925 64.22 16 
China 9055.73 3347.25 291 748 88.35 685.72 636 949.33 4140.81 305 
Czech Republic . . . . . . . 2.18 150.59 46 
East Germany . . . . 0 0 12 . . . 
Denmark 0 0 6 . 0 24.53 . . . . 
France 0.23 0 134 28 0 57.78 46 4.75 157.69 34 
Germany 0 9.28 149 20 0 0 182 1.08 375.95 227 
Greece 6.78 107.88 31 12 . . . . . . 
Hungary 0 0 11 . 0 35.03 10 7.73 21.173 10 
India . . . . 8.8889 78.36 7 . . . 
Israel 0 0 . 8 0 2.16 23 . . . 
Italy 152.75 1520.69 42 6 0 0.0263 . 14.43 634.39 9 
Japan 154.73 4211.90 9928 1344 0 0 93 28.15 329.41 415 
Mexico 266.00 175.51 10 . 0 47.71 5 . . . 
Netherlands, The 0.03 3.26 11 . 0 0 18 0.03 18.07 8 
Norway . . . . 0 0 . . . . 
New Zealand 0.08 8.10 29 . 0 3.13 12 . . . 
Poland 0 0 13 . . . . 2.35 146.64 22 
Republic of Korea 0 0 217 27 0 0 48 57.1 91.14 187 
Romania 39.98 82.73 23 . . . . 16.7 105.69 7 
Russia 100.93 753.50 79 126 0 0 16 13.58 68.50 61 
Saudi Arabia . . . . 0 0 . . . . 
Singapore . . . . 0 0 . . . . 
South Africa . . . . 0 33.41 . . . . 
Soviet Union (Former) 1126.95 1229.65 385 47 0 0 60 6.73 214.86 11 
Spain 0 1.27 25 . 0 396.07 8 . . . 
Sweden 0 0 6 . 0 0 . 0.28 11.49 10 
Switzerland 0 0 12 . 0 0 13 0.25 72.26 13 
Taiwan 58.60 403.05 97 27 0 0 . 2.7 6.71 18 
Ukraine 0 0 217 5 . . . . . . 
United Kingdom 0 0 33 7 0 0 15 1.23 415.47 89 
United States 5.68 1406.02 323 125 0 203.80 864 35.5 1356.8 91 
 All the economic losses are in million US dollars (2005 level). According to our sample selection criteria, countries with less than five patents in the given technology are not 
included in the sample and are thus indicated as “.” in the table.  For these excluded countries, we don’t indicate their disaster impact information. But this by no means implies 
that these countries have never been hit by any disasters.    
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Table 2 - Descriptive Statistics 

Disaster Type Earthquake Drought Flood 

Technology Type Quake-proof building Earthquake Detection Drought-resistant Crop Flood Control 

Dependent variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Patent counts 15.21 72.74 6.57 19.80 4.21 14.03 3.14 6.55 

Independent variables 

Deaths (thousand) 0.18 3.33 0.34 4.74 0.01 0.10 0.06 0.34 

Foreign deaths (thousand) 14.63 23.70  23.21 46.88  0.30 0.53  7.10 6.10 

Damages  (2005 US$, billion) 0.56 7.47 1.12 10.66 0.11 0.86 0.66 2.72 
Foreign damages (2005 US$, 
billion) 18.67 37.95  17.99 37.11  3.06 3.92  18.47 12.00 

Log domestic knowledge stock 1.99 1.58 1.87 1.60 1.34 1.38 1.60 1.37 
Log foreign knowledge stock 7.54 0.65  5.75 0.66  5.02 1.14  5.21 0.91 

Real GDP per capita (2005 US$, 
thousand) 21.42 10.75 22.44 11.09 22.44 11.03 23.67 10.62 

Institution index (-10~10) 7.33 5.18 7.81 4.68 7.69 4.85 7.78 4.80 
Patent application counts 
(thousand) 27.20 69.87 34.84 78.86 34.54 78.26 39.42 82.57 

Population (million) 88.54 223.77 161.11 312.42 160.14 310.31 114.33 264.70 

Maximum Earthquake Magnitude 1.63 2.83 2.48 3.19 

Count of earthquakes (>=6) 0.32 0.88 0.55 1.15 

Aggregated Drought Impact Index 0.73 0.60 

Area-weighted Precipitation (mm) 67.86 34.61 

Number of countries 30 15 23 21 

Timespan 1984-2009 1984-2009 1984-2009 1986-2009 
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Table 3. Regression Results in Response to Deaths 
Technology  Quake-proof building Earthquake detection Flood control 

 (1) (2)  (1) (2)  (1) 

Death 0.0149*** 0.0139*** 0.0130*** 0.0131*** 0.214**
 (0.00540) (0.00368) (0.00224) (0.000690) (0.0986)

L1.death 0.00821 0.000765 0.00951*** 0.0102*** 0.131**
 (0.00653) (0.00695) (0.00248) (0.00111) (0.0620)

L2.death 0.0242* -0.00177 -0.00736 0.0539 0.312***
 (0.0130) (0.0556) (0.0221) (0.0561) (0.0968)

L3.death 0.0123 0.106 -0.00297 0.101 0.120*
 (0.0183) (0.0909) (0.0203) (0.142) (0.0650)

L4.death 0.0471 0.0182 -0.0546 0.0154 0.0107
 (0.0336) (0.0569) (0.0652) (0.0886) (0.0434)

L5.death 0.0800*** 0.101** -0.104 -0.0767*** 0.0958
 (0.0209) (0.0395) (0.0674) (0.0135) (0.0706)

Sum of deaths 0.18669*** 0.23855*** -.146725 0.1168832 0.8841***
 (0.56063) (0.083) (0.13317) (0.25461) (0.23391)

   
L6. Log stock 0.265 -0.262 0.254***

 (0.224) (0.166) (0.0891)

L1. Log stock  0.662*  0.0163
  (0.354)  (0.291)

Log GDP per capita 1.904* 2.703** 0.622 2.077 1.845**
 (1.056) (1.073) (1.082) (1.807) (0.825)

Institution index 0.00817 0.121 0.0941 0.0743 0.297**
 (0.0622) (0.114) (0.110) (0.152) (0.135)

Log Patent applications 0.317* -0.345 0.343 -0.383 0.286
 (0.179) (0.311) (0.413) (0.594) (0.250)

   
Observations 717 703 338 327 459
Countries 30 30 15 15 21
E(Q) 0.0000 0.0827 0.0000 0.2053 0.0000
Timespan 1984-2009 1984-2009 1984-2009 1984-2009 1986-2009

      Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1.   
      Deaths are measured by 1000 people. The instruments we use in the specification (2) for quake-proof building and earthquake detection technologies   
      include the maximum  earthquake magnitude and counts of earthquakes with magnitude 6 or larger in year t  to year t-25, and population in year t to year t-5. 
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Table 4. Regression Results in Response to Damages 
Technology  Quake-proof building Detection  Flood control       Drought-resistant crop 

 (1) (2)  (1) (2)  (1) (2)  (1) (2) 
Damage 0.00443 0.0124*** 0.00847*** 0.0119** 0.0476*** 0.111** 0.0659*** 0.175**
 (0.00380) (0.00193) (0.00189) (0.00090 (0.0123) (0.0462) (0.0140) (0.0714)
L1.damage 0.00322 0.00336 0.00461*** 0.00823* 0.0414*** 0.0442** 0.0177 -0.0358
 (0.00196) (0.00223) (0.00172) (0.00106) (0.0157) (0.0185) (0.0209) (0.0670)
L2.damage 0.00286** 0.00133 0.00358* 0.00583* 0.0323*** 0.0309 0.0514*** 0.0120
 (0.00144) (0.00135) (0.00198) (0.00265) (0.00954) (0.0643) (0.0197) (0.0460)
L3.damage 0.00474*** 0.00324 0.000752 0.00275 0.0111 0.0473 0.00771 -0.0486
 (0.00100) (0.00310) (0.00318) (0.00455) (0.00948) (0.0376) (0.0124) (0.0949)
L4.damage 0.00280** 0.00110 0.000666 0.00431 0.0121* -0.0898** 0.0246*** -0.0846
 (0.00133) (0.00152) (0.00230) (0.00290) (0.00681) (0.0408) (0.00806) (0.0577)
L5.damage 0.00297*** 0.00332** -0.00295 0.00527* 0.00492 0.0719 0.0346*** -0.00908
 (0.00101) (0.00135) (0.00227) (0.00226) (0.00497) (0.0490) (0.00907) (0.0228)
Sum of damages 0.02102*** 0 .0248*** 0.01513 0.025557 0.14947** 0.21493 0.202 0.009
 (0.00813) (0.00479) (0.01153) (0.00934) (0.05297) (0.20379) 0.0624 0.1204
L6. Log stock 0.195   -0.129   0.146*   -0.0181  
 (0.222)   (0.245)   (0.0768)   (0.125)  

L1. Log stock  0.565**   0.584**   0.104   0.685*** 
  (0.242)   (0.271)   (0.343)   (0.241) 

Log GDP per capita 1.710** 1.650*  0.444 1.037  1.843** -1.319  0.120 3.584** 
 (0.749) (0.929)  (0.983) (1.094)  (0.785) (7.648)  (0.529) (1.796) 

Institution index 0.0290 0.0612  0.0432 -0.0677  0.306** 0.367  0.0653 -0.344*** 
 (0.0499) (0.0805)  (0.0787) (0.155)  (0.135) (0.252)  (0.0687) (0.120) 

Log Patent 
applications 

0.417*** -0.0950  0.301 -0.463  0.400 2.316  0.302* -1.422** 
(0.150) (0.295)  (0.346) (0.338)  (0.254) (1.837)  (0.177) (0.706) 

   
Observations 717 703 338 327 459 383 503 491
Countries 30 30 15 15 21 20 23 22
Timespan  1984-2009 1984-2009 1986-2009 1986-2006 1984-2009
E(Q) 0.0000 0.0048 0.0000 0.2259 0.0000 0.0245 0.0000 0.0305

 
Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1.  Economic damages are measured by billion US dollars at 2005 level.  The instruments we use in the 
specification (2) for quake-proof building and earthquake detection technologies include the maximum earthquake magnitude and counts of earthquakes with magnitude 6 or larger 
in year t to year t-25, and population in year t to year t-5. For flood control we use area-weighted precipitation in year t to year t-25 to instrument for all damage variables and 
l1.kstock in specification (2).  For drought-resistant crop, we use the country aggregated mean SPEI value tin year t to year t-25 and population in year t to year t-5 to instrument 
for all damage variables and l1.kstock. 
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Table 5. Regression Results in Response to Global Death and Damage 

Technology Quake-proof Building Detection Flood Control Crop 

Impact measure Death Damage Death Damage Death Damage Damage 

  (1) (2) (3) (4) (5) (6) (7) 

year 0 0.0187*** 0.00408*** 0.0167*** 0.00928*** 0.268*** 0.0355** 0.0618** 

(0.00497) (0.000737) (0.00187) (0.000606) (0.0841) (0.0144) (0.0246) 

year -1 0.0124* 0.00355*** 0.00944*** 0.00264** 0.153* 0.0456** 0.0488* 

(0.00636) (0.000345) (0.00337) (0.00115) (0.0822) (0.0183) (0.0276) 

year -2 0.0404*** 0.00386*** 0.0427* 0.00352*** 0.301*** 0.0356*** 0.0845*** 

(0.0111) (0.000616) (0.0257) (0.00120) (0.0586) (0.0124) (0.0248) 

year -3 0.0283** 0.00495*** 0.0199 0.00234** 0.174** 0.0136 0.0320*** 

(0.0142) (0.000709) (0.0226) (0.00103) (0.0714) (0.0121) (0.00661) 

year -4 0.0378*** 0.00445*** 0.00226 -0.000272 0.0766* 0.0289*** 0.0352*** 

(0.00504) (0.000584) (0.0146) (0.00115) (0.0458) (0.00924) (0.0100) 

year -5 0.0103* 0.00249*** -0.0562** -0.000564 0.0999 0.0229*** 0.0509*** 

(0.00580) (0.000461) (0.0226) (0.000679) (0.0745) (0.00418) (0.00779) 

sum of domestic 
shocks 

0.148*** 0.023*** 0.035 0.017*** 1.072*** 0.182*** 0.313*** 

(0.0292) (0.0010) (0.0515) (0.0044) (0.2817) (0.0680) (0.0772) 

year 0  -0.00152 -0.000500 0.000733*** 0.00156* 0.0185*** -0.0135*** 0.0102 

(0.00113) (0.000903) (0.000249) (0.000857) (0.00355) (0.00505) (0.0107) 

year -1 -0.00308*** -0.000916 -0.000373 -0.00270 0.00779 0.00469 0.0264* 

(0.00104) (0.000920) (0.000626) (0.00181) (0.00638) (0.00456) (0.0151) 

year -2 -0.00544*** 0.00147* -0.000350 0.00294** 0.0163** 0.000795 0.0342*** 

(0.00151) (0.000829) (0.000921) (0.00150) (0.00719) (0.00433) (0.0127) 

year -3 -0.00707*** -0.0000487 0.0000358 0.00213 0.0256*** 0.00144 0.0130 

(0.00196) (0.000793) (0.000997) (0.00271) (0.00642) (0.00329) (0.00995) 

year -4 -0.00737*** -0.00201 -0.000563 -0.0000288 0.0265*** 0.0201*** 0.00475 

(0.00267) (0.00209) (0.000552) (0.00180) (0.00743) (0.00318) (0.0122) 

year -5 -0.000580 -0.00204 -0.00219*** 0.00386** 0.0258*** 0.0145*** -0.00419 

(0.000981) (0.00143) (0.000612) (0.00169) (0.00469) (0.00489) (0.00995) 
sum of foreign 
shocks 

-0.0251*** -0.0040 -0.0027 0.0078 0.1204*** 0.0281*** 0.0845 

(0.0045) (0.0044) (0.0018) (0.0074) (0.0155) (0.0041) (0.0496) 

l6. log domestic 
stock 

0.0856 0.0449 -0.242 -0.173 0.271*** 0.168** 0.247** 

(0.114) (0.0663) (0.163) (0.205) (0.0763) (0.0690) (0.107) 

l6. log foreign 
stock  

0.102 -0.0491 0.552*** 0.604*** -0.00977 -0.0148 0.887*** 

(0.230) (0.144) (0.127) (0.175) (0.124) (0.133) (0.162) 

log GDP per 
capita 

2.043** 1.245*** 1.538 0.863 1.803** 1.702** 0.122 

(0.901) (0.301) (1.174) (0.808) (0.809) (0.829) (0.556) 

Institution index -0.0343 0.0576 -0.0491 0.0345 0.313** 0.335*** 0.0377 

(0.0711) (0.0562) (0.0897) (0.0690) (0.124) (0.126) (0.0502) 

log Patent 
applications 

0.214 0.555** 0.00944 0.288 0.317 0.442 0.227 

(0.298) (0.228) (0.362) (0.322) (0.266) (0.275) (0.217) 

Observations 717 717 338 338 459 459 503 

Countries 30 30 15 15 21 21 23 

Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1 
Deaths are measured by 1000 people. Damages are measured by billion US dollars of 2005 price.  
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Table 6- Regression Results in Response to Foreign Shocks (based on the same continent) 

Technology Quake-proof Building Detection Flood Control Crop 

Impact measure Death Damage Death Damage Death Damage Damage 

  (1) (2) (3) (4) (5) (6) (7) 

year 0 0.0190*** 0.00273 0.0124*** 0.0141*** 0.206** 0.0443*** 0.0621*** 

(0.00697) (0.00249) (0.00194) (0.00214) (0.100) (0.0107) (0.00954) 

year -1 0.0106 0.00292 0.00920*** 0.00699*** 0.127* 0.0532*** 0.0105 

(0.00720) (0.00211) (0.00229) (0.00203) (0.0733) (0.0147) (0.0209) 

year -2 0.0303* 0.00158 -0.00187 0.00330* 0.359*** 0.0417*** 0.0435** 

(0.0165) (0.00195) (0.0196) (0.00198) (0.0890) (0.0125) (0.0192) 

year -3 0.0149 0.00422*** -0.0103 -0.00136 0.110 0.0126 0.00748 

(0.0204) (0.00153) (0.0217) (0.00359) (0.0864) (0.0121) (0.0122) 

year -4 0.0279 0.00284 -0.0282 -0.000618 -0.0180 0.0126 0.0213*** 

(0.0369) (0.00194) (0.0606) (0.00236) (0.0542) (0.00847) (0.00774) 

year -5 0.0685*** 0.00240** -0.0922 -0.00149 0.122* 0.0113* 0.0318** 

(0.0204) (0.000985) (0.0663) (0.00375) (0.0704) (0.00672) (0.0142) 

sum of domestic 
shocks 

0.171** 0.017* -0.111 0.021* 0.906*** 0.176*** 0.177*** 

(0.0671) (0.0088) (0.1337) (0.0122) (0.2632) (0.0557) (0.0628) 

year 0 0.00399 -0.00358 0.00192 0.00762*** -0.0291 0.00150 0.000723 

(0.00443) (0.00235) (0.00140) (0.00179) (0.0436) (0.00536) (0.0391) 

year -1 0.00244 0.0000405 0.00277** 0.00355* 0.0653** 0.0212*** -0.0183 

(0.00318) (0.00153) (0.00130) (0.00191) (0.0256) (0.00549) (0.0257) 

year -2 -0.00517* -0.00484 0.00414*** -0.000691 0.110* 0.0120** -0.0422 

(0.00294) (0.00350) (0.00129) (0.00158) (0.0568) (0.00608) (0.0463) 

year -3 -0.00141 -0.000453 0.00197 -0.00454* -0.0245 0.000726 -0.00301 

(0.00253) (0.00224) (0.00200) (0.00271) (0.0662) (0.00654) (0.0167) 

year -4 -0.00239 -0.000591 0.00486*** -0.000917 -0.0157 -0.00413 -0.0198 

(0.00265) (0.00153) (0.000846) (0.00145) (0.0352) (0.00571) (0.0215) 

year -5 -0.00749** -0.000887 0.00416 0.00256 0.00922 0.00324 -0.00398 

(0.00300) (0.00307) (0.00292) (0.00333) (0.0292) (0.00632) (0.0201) 

sum of foreign 
shocks 

-0.0100 -0.0103 0.0198*** 0.0076 0.1154 0.0345** -0.0865 

(0.0095) (0.0080) (0.0041) (0.0067) (0.1076) (0.0152) 0.0762 

l6. log domestic 
stock 

0.294 0.226 -0.480*** -0.159 0.247*** 0.112 0.0102 

(0.255) (0.224) (0.115) (0.225) (0.0942) (0.0764) (0.116) 

log GDP per capita 

1.964* 1.648** 1.963*** 0.659 1.578* 1.755** 0.136 

(1.017) (0.738) (0.673) (0.847) (0.837) (0.718) (0.510) 

Institution Index 0.0110 0.0244 0.0762 0.0437 0.294** 0.315** 0.0686 

(0.0609) (0.0468) (0.0887) (0.0672) (0.144) (0.148) (0.0713) 

log Patent 
Applications 

0.286* 0.395*** -0.0106 0.268 0.328 0.467* 0.270 

(0.169) (0.138) (0.237) (0.280) (0.262) (0.243) (0.185) 

Observations 717 717 338 338 459 459 503 

Countries 30 30 15 15 21 21 23 

 Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1 
Deaths are measured by 1000 people. Damages are measured by billion US dollars of 2005 price.  
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Figure 1: Patenting of earthquake-mitigation technology 
 
A. United States

 

B. Japan 
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Figure 2: Patenting of flood control technology 

A. United States 

 

B. United Kingdom 
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Figure 3: Patenting of drought-resistant crop technology 

A. United States 

 

B. China 



A1 

Appendix 1. Patent Search Codes 
 
Earthquake–proof building 
((E04H 00902) <in> IC) 
 
Earthquake detection  
((G08B 02110 OR G01V OR G01H) <in> IC) AND (earthquake <in> (TI, AB)) 
 
Drought-resistant crops 
((drought AND (tolerant OR tolerance OR resistant OR resisting OR resistance OR combat OR 
fight)) <in> (AB, TI)) 
 
Desalination 
((C02F 10308 <in> IC) AND ((desalination OR desalinization OR desalinating) <in> (TI, AB))) 
OR (((desalination OR desalinization OR desalinating) AND (((sea OR ocean) AND water) OR 
seawater)) <in> (TI, AB))  
 
Flood control 
(flood <in> (AB,TI)) AND ((E02B 0030? OR E02B 0031? OR E02B 007??) <in> IC) 
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Appendix 2. Sample Countries for each type of technology  
 Quake-proof Building  
 Argentina 
Australia 
Austria 
Belarus 
Belgium 
Bulgaria 
Canada 
China 
Denmark 
France 

Former Soviet Union 
Germany 
Greece 
Hungary 
Italy 
Japan 
Mexico 
Netherlands 
New Zealand 
Poland 

Republic of Korea 
Romania 
Russia 
Spain 
Sweden  
Switzerland 
Taiwan 
Ukraine 
United Kingdom 
United States 

 
 Earthquake Detection  
 Canada 
China 
France 
Former Soviet Union 
Germany 

Greece 
Israel 
Italy 
Japan 
Republic of Korea 

Russia 
Taiwan 
Ukraine 
United Kingdom 
United States 

 
 Drought-resistant Crop 
Australia 
Austria 
Belgium 
Brazil 
Canada 
China 
East Germany 
France 

Former Soviet Union 
Germany 
Hungary 
India 
Israel 
Japan 
Mexico 
Netherlands 

New Zealand 
Republic of Korea 
Russia 
Spain 
Switzerland 
United Kingdom 
United States

 
 Flood Control 
Australia 
Austria 
Canada 
China 
Czech Republic 
France 
Former Soviet Union 
Germany 
Hungary 
Italy 

Japan 
Netherlands 
Poland 
Republic of Korea 
Romania 
Russia 
Sweden 
Switzerland 
Taiwan 
United Kingdom 

United States 
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Appendix 3.  Sensitivity to Lag Length 

In the main paper, we include deaths and damages lagged through year 5.  In this appendix we 

demonstrate that our results are robust to different lag lengths. The tables in this section present 

reduced form estimates (corresponding to column (1) in Tables 3 and 4) including lags from 3 to 

8 years.  The results are not sensitive to the length of the lag.  In particular, there is little change 

in the magnitude of coefficients for recent years as more distant lags are added to the model.  

Moreover, with the exception of flood control in reaction to deaths, the sum of all damage or 

death coefficients experience little change when adding more than five years of lags.   

We choose to present lags of five years in the paper as nearly all lagged values are insignificant 

after 5 years.  Moreover, the AIC statistics verify that either a four or five year lag is optimal for 

all technologies except drought-resistant crops.  Thus, for ease of presentation in the main text, 

we choose a lag of five years for all technologies.   
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Table A1: Lag sensitivity: Deaths as Independent Variable 
A. Quake-proof buildings 

(1) (2) (3) (4) (5) (6) 

year 0 0.0155*** 0.0152*** 0.0149*** 0.0145** 0.0141** 0.0139* 
(0.00513) (0.00542) (0.00540) (0.00578) (0.00654) (0.00750) 

year -1 0.00807 0.00853 0.00821 0.00810 0.00766 0.00761 
(0.00634) (0.00621) (0.00653) (0.00685) (0.00775) (0.00892) 

year -2 0.0256** 0.0260** 0.0242* 0.0222 0.0228 0.0251 
(0.0117) (0.0118) (0.0130) (0.0144) (0.0153) (0.0154) 

year -3 0.0135 0.0127 0.0123 0.0107 0.0132 0.0177 
(0.0182) (0.0182) (0.0183) (0.0186) (0.0181) (0.0171) 

year -4 0.0504 0.0471 0.0385 0.0358 0.0444 
(0.0332) (0.0336) (0.0370) (0.0403) (0.0366) 

year -5 0.0800*** 0.0683*** 0.0662*** 0.0718***
(0.0209) (0.0221) (0.0257) (0.0278) 

year -6 -0.0384 -0.0447 -0.0409 
(0.0321) (0.0356) (0.0385) 

year -7 -0.0130 -0.0143 
(0.0287) (0.0289) 

year -8 -0.0121 
(0.0386) 

sum of shocks 0.063* 0.113** 0.187*** 0.124 0.102 0.113 
(0.0346) (0.0513) (0.0561) (0.0905) (0.1135) (0.1220) 

L4.log stock 0.312   
(0.227)   

L5.log stock 0.284   
(0.226)   

L6.log stock 0.265   
(0.224)   

L7.log stock 0.256   
(0.230)   

L8.log stock 0.196   
(0.235)   

L9.log stock 0.0973 
(0.228) 

log GDP per capita 1.834* 1.862* 1.904* 1.960* 1.930 1.823 
(0.989) (1.026) (1.056) (1.145) (1.234) (1.315) 

Institution Index -0.000254 0.00307 0.00817 0.0107 0.00650 -0.00272 
(0.0528) (0.0564) (0.0622) (0.0657) (0.0689) (0.0688) 

log Patent apps 0.298* 0.313* 0.317* 0.333* 0.375** 0.416** 
(0.179) (0.176) (0.179) (0.183) (0.187) (0.192) 

AIC 2247.92 2249.90 2244.42 2247.16 2266.31 2284.29 
Observations 717 717 717 717 717 717 
Countries 30 30 30 30 30 30 
Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1.    
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B. Earthquake Detection 

(1) (2) (3) (4) (5) (6) 

year 0 0.0134*** 0.0131*** 0.0130*** 0.0133*** 0.0137*** 0.0142***
(0.00206) (0.00212) (0.00224) (0.00223) (0.00228) (0.00232) 

year -1 0.0103*** 0.00988*** 0.00951*** 0.00969*** 0.0105*** 0.0113***
(0.00197) (0.00212) (0.00248) (0.00263) (0.00257) (0.00243) 

year -2 -0.00283 -0.00323 -0.00736 -0.00621 -0.00638 -0.00779 
(0.0270) (0.0232) (0.0221) (0.0252) (0.0285) (0.0291) 

year -3 -0.00193 -0.00174 -0.00297 -0.00290 0.00164 0.000735 
(0.0291) (0.0235) (0.0203) (0.0215) (0.0276) (0.0297) 

year -4 -0.0425 -0.0546 -0.0630 -0.0513 -0.0419 
(0.0499) (0.0652) (0.0729) (0.0751) (0.0686) 

year -5 -0.104 -0.113 -0.106 -0.0962 
(0.0674) (0.0751) (0.0814) (0.0796) 

year -6 -0.101*** -0.0944** -0.0840* 
(0.0367) (0.0439) (0.0468) 

year -7 -0.0345 -0.0324 
(0.0450) (0.0470) 

year -8 -0.117*** 
(0.0450) 

sum of shocks 0.019 -0.025 -0.147 -0.263 -0.267 -0.353 
(0.0519) (0.0666) (0.1332) (0.1781) (0.2304) (0.2587) 

L4.log stock -0.163   
(0.130)   

L5.log stock -0.248**   
(0.116)   

L6.log stock -0.262   
(0.166)   

L7.log stock -0.243   
(0.166)   

L8.log stock -0.142   
(0.179)   

L9.log stock -0.0519 
(0.176) 

log GDP per capita 0.372 0.628 0.622 0.469 0.113 -0.140 
(0.980) (0.994) (1.082) (1.092) (1.020) (0.982) 

Institution Index 0.101 0.0933 0.0941 0.0931 0.102 0.115 
(0.116) (0.106) (0.110) (0.120) (0.130) (0.131) 

log Patent apps 0.347 0.315 0.343 0.396 0.459 0.482 
(0.369) (0.384) (0.413) (0.432) (0.438) (0.457) 

AIC 1072.24 1067.99 1065.88 1066.52 1074.86 1074.12 
Observations 338 338 338 338 338 338 

Countries 15 15 15 15 15 15 
Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1.    
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C. Flood control 

(1) (2) (3) (4) (5) (6) 

year 0 0.190** 0.184** 0.214** 0.273** 0.257* 0.272* 
(0.0787) (0.0807) (0.0986) (0.126) (0.131) (0.142) 

year -1 0.113** 0.105** 0.131** 0.171** 0.210** 0.198** 
(0.0535) (0.0535) (0.0620) (0.0735) (0.0845) (0.0796) 

year -2 0.310*** 0.301*** 0.312*** 0.344*** 0.368*** 0.360*** 
(0.0928) (0.101) (0.0968) (0.0906) (0.0945) (0.0932) 

year -3 0.167*** 0.154** 0.120* 0.146** 0.178*** 0.182*** 
(0.0636) (0.0632) (0.0650) (0.0651) (0.0629) (0.0675) 

year -4 0.0212 0.0107 -0.0259 -0.0180 -0.0132 
(0.0415) (0.0434) (0.0361) (0.0354) (0.0401) 

year -5 0.0958 0.0977 0.0479 0.0447 
(0.0706) (0.0772) (0.0643) (0.0627) 

year -6 0.141** 0.146* 0.123** 
(0.0680) (0.0745) (0.0621) 

year -7 0.121*** 0.104* 
(0.0460) (0.0563) 

year -8 0.0262 
(0.0462) 

sum of shocks 0.780*** 0.765*** 0.884*** 1.146*** 1.309*** 1.297*** 
(0.1904) (0.1700) (0.2339) (0.3644) (0.4249) (0.4514) 

L4.log stock 0.238**   
(0.112)   

L5.log stock 0.303***   
(0.0894)   

L6.log stock 0.254***   
(0.0891)   

L7.log stock 0.177   
(0.139)   

L8.log stock 0.106   
(0.173)   

L9.log stock -0.0827 
(0.163) 

log GDP per capita 1.600** 1.659** 1.845** 2.045** 2.086** 2.060** 
(0.683) (0.737) (0.825) (0.892) (0.921) (0.964) 

Institution Index 0.285** 0.293** 0.297** 0.288** 0.282** 0.273** 
(0.126) (0.129) (0.135) (0.130) (0.128) (0.124) 

log Patent apps 0.331 0.269 0.286 0.366 0.439 0.543* 
(0.270) (0.247) (0.250) (0.277) (0.293) (0.285) 

AIC 1321.00 1314.21 1322.01 1328.27 1332.17 1334.88 
Observations 459 459 459 459 459 459 

Countries 21 21 21 21 21 21 
Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1.    
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Table A2: Lag sensitivity: Damages as Independent Variable 
A. Quake-proof buildings 

(1) (2) (3) (4) (5) (6) 

year 0 0.00411 0.00417 0.00443 0.00435 0.00456 0.00473 
(0.00384) (0.00377) (0.00380) (0.00385) (0.00373) (0.00357) 

year -1 0.00275 0.00293 0.00322 0.00315 0.00335* 0.00374** 
(0.00172) (0.00190) (0.00196) (0.00206) (0.00202) (0.00175) 

year -2 0.00268** 0.00274** 0.00286** 0.00282* 0.00306** 0.00354** 
(0.00120) (0.00130) (0.00144) (0.00147) (0.00144) (0.00140) 

year -3 0.0044*** 0.0046*** 0.0047*** 0.00450*** 0.00478*** 0.00524***
(0.00066) (0.00088) (0.0010) (0.00124) (0.00112) (0.000890) 

year -4 0.00248* 0.00280** 0.00257* 0.00264 0.00313** 
(0.00126) (0.00133) (0.00154) (0.00165) (0.00149) 

year -5 0.0030*** 0.00268** 0.00276** 0.00315** 
(0.00101) (0.00123) (0.00136) (0.00140) 

year -6 -0.000446 -0.000429 -0.000108 
(0.00137) (0.00154) (0.00154) 

year -7 0.000493 0.000771 
(0.00122) (0.00126) 

year -8 0.00118 
(0.00138) 

sum of shocks 0.014** 0.017** 0.021** 0.020* 0.021* 0.025** 
(0.0058) (0.0071) (0.0081) (0.0100) (0.0112) (0.0114) 

L4.log stock 0.263 
(0.213) 

L5.log stock 0.226 
(0.221) 

L6.log stock 0.195 
(0.222) 

L7.log stock 0.189 
(0.226) 

L8.log stock 0.140 
(0.217) 

L9.log stock 0.0570 
(0.177) 

log GDP per capita 1.786*** 1.764** 1.710** 1.753** 1.683** 1.551* 
(0.687) (0.724) (0.749) (0.837) (0.852) (0.802) 

Institution Index 0.0246 0.0266 0.0290 0.0290 0.0265 0.0222 
(0.0426) (0.0458) (0.0499) (0.0507) (0.0512) (0.0490) 

log Patent apps 0.389** 0.408*** 0.417*** 0.427*** 0.452*** 0.473*** 
(0.156) (0.151) (0.150) (0.156) (0.165) (0.178) 

AIC 2279.89 2278.66 2272.21 2275.11 2285.71 2294.07 
Observations 717 717 717 717 717 717 
Countries 30 30 30 30 30 30 
Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1.    
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B. Earthquake Detection 

(1) (2) (3) (4) (5) (6) 

year 0 0.0093*** 0.0090*** 0.0085*** 0.0085*** 0.0088*** 0.0089***
(0.00129) (0.00144) (0.00189) (0.00182) (0.00167) (0.00153) 

year -1 0.0058*** 0.0052*** 0.0046*** 0.0045** 0.0049*** 0.0049***
(0.00137) (0.00153) (0.00172) (0.00175) (0.00168) (0.00141) 

year -2 0.00497** 0.00443** 0.00358* 0.00356** 0.00403** 0.00383**
(0.00195) (0.00204) (0.00198) (0.00178) (0.00180) (0.00157) 

year -3 0.00198 0.00164 0.000752 0.000609 0.00120 0.00102 
(0.00315) (0.00306) (0.00318) (0.00321) (0.00318) (0.00296) 

year -4 0.00157 0.000666 0.000354 0.000895 0.000740 
(0.00181) (0.00230) (0.00255) (0.00246) (0.00216) 

year -5 -0.00295 -0.00330 -0.00289 -0.00310 
(0.00227) (0.00245) (0.00269) (0.00247) 

year -6 -0.00223 -0.00187 -0.00215 
(0.00162) (0.00187) (0.00174) 

year -7 -0.000470 -0.000886 
(0.00209) (0.00197) 

year -8 -0.00301* 
(0.00169) 

sum of shocks 0.022*** 0.022*** 0.015 0.012 0.015 0.010 
(0.0060) (0.0078) (0.0115) (0.0131) (0.0147) (0.0143) 

L4.log stock 0.0921 
(0.213) 

L5.log stock -0.0305 
(0.202) 

L6.log stock -0.129 
(0.245) 

L7.log stock -0.134 
(0.231) 

L8.log stock -0.0555 
(0.221) 

L9.log stock -0.0693 
(0.213) 

log GDP per capita -0.170 0.177 0.444 0.425 0.192 0.182 
(0.904) (0.928) (0.983) (0.928) (0.846) (0.826) 

Institution Index 0.0487 0.0481 0.0432 0.0389 0.0415 0.0395 
(0.0910) (0.0850) (0.0787) (0.0785) (0.0815) (0.0784) 

log Patent apps 0.357 0.309 0.301 0.322 0.343 0.357 
(0.319) (0.332) (0.346) (0.352) (0.349) (0.372) 

AIC 1054.58 1056.02 1053.58 1054.19 1057.99 1056.78 
Observations 338 338 338 338 338 338 

Countries 15 15 15 15 15 15 
Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1.    
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C. Flood Control 

(1) (2) (3) (4) (5) (6) 

year 0 0.0470*** 0.0456*** 0.0476*** 0.0542*** 0.0549*** 0.0541***
(0.0134) (0.0125) (0.0123) (0.0127) (0.0133) (0.0128) 

year -1 0.0407** 0.0416*** 0.0414*** 0.0429*** 0.0419** 0.0420** 
(0.0159) (0.0160) (0.0157) (0.0163) (0.0165) (0.0164) 

year -2 0.0324*** 0.0314*** 0.0323*** 0.0349*** 0.0365*** 0.0350***
(0.00911) (0.00949) (0.00954) (0.00957) (0.00984) (0.0115) 

year -3 0.0115 0.0115 0.0111 0.0163 0.0156* 0.0178* 
(0.00819) (0.00933) (0.00948) (0.0101) (0.00831) (0.0101) 

year -4 0.0128* 0.0121* 0.0135* 0.0125** 0.0129** 
(0.00668) (0.00681) (0.00713) (0.00620) (0.00636) 

year -5 0.00492 0.00588 0.00591 0.00502 
(0.00497) (0.00486) (0.00436) (0.00527) 

year -6 0.0118** 0.0109** 0.0109** 
(0.00524) (0.00508) (0.00502) 

year -7 -0.00568 -0.00664 
(0.00648) (0.00628) 

year -8 -0.00689 
(0.00576) 

sum of shocks 0.132*** 0.143*** 0.149*** 0.180*** 0.172*** 0.164*** 
(0.0430) (0.0500) (0.0530) (0.0553) (0.0516) (0.0566) 

L4.log stock 0.195** 
(0.0927) 

L5.log stock 0.212** 
(0.0903) 

L6.log stock 0.146* 
(0.0768) 

L7.log stock 0.0750 
(0.0941) 

L8.log stock 0.0379 
(0.127) 

L9.log stock -0.124 
(0.145) 

log GDP per capita 1.622** 1.738** 1.843** 1.895** 1.852** 1.803** 
(0.709) (0.729) (0.785) (0.820) (0.876) (0.916) 

Institution Index 0.302** 0.306** 0.306** 0.303** 0.297** 0.286** 
(0.124) (0.128) (0.135) (0.131) (0.132) (0.127) 

log Patent apps 0.401 0.382 0.400 0.482* 0.510** 0.611** 
(0.263) (0.263) (0.254) (0.258) (0.256) (0.258) 

AIC 1282.88 1280.86 1288.32 1290.82 1292.92 1291.57 
Observations 459 459 459 459 459 459 

Countries 21 21 21 21 21 21 
Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1.    
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D. Drought-resistant crops 

(1) (2) (3) (4) (5) (6) 

year 0 0.0746*** 0.0717*** 0.0659*** 0.0651*** 0.0611*** 0.0643***
(0.0132) (0.0131) (0.0140) (0.0155) (0.0140) (0.0143) 

year -1 0.0140 0.0173 0.0177 0.0159 0.0187 0.0207 
(0.0219) (0.0218) (0.0209) (0.0195) (0.0198) (0.0192) 

year -2 0.0509*** 0.0522*** 0.0514*** 0.0493** 0.0508*** 0.0593***
(0.0177) (0.0181) (0.0197) (0.0192) (0.0191) (0.0195) 

year -3 0.00350 0.00675 0.00771 0.00512 0.00541 0.0132 
(0.0128) (0.0125) (0.0124) (0.0128) (0.0131) (0.0132) 

year -4 0.0176** 0.0246*** 0.0239*** 0.0205* 0.0270***
(0.00732) (0.00806) (0.00926) (0.0108) (0.0102) 

year -5 0.0346*** 0.0349*** 0.0370*** 0.0334***
(0.00907) (0.00976) (0.00958) (0.00980) 

year -6 -0.00338 0.000467 0.00159 
(0.00964) (0.00991) (0.0102) 

year -7 0.0124 0.0184* 
(0.0103) (0.00969) 

year -8 0.0308***
(0.0105) 

sum of shocks 0.143*** 0.166*** 0.202*** 0.191*** 0.206*** 0.269*** 
(0.0513) (0.0536) (0.0624) (0.0633) (0.0613) (0.0706) 

L4.log stock 0.182 
(0.118) 

L5.log stock 0.128 
(0.116) 

L6.log stock -0.0181 
(0.125) 

L7.log stock -0.0599 
(0.122) 

L8.log stock -0.175 
(0.112) 

L9.log stock -0.298*** 
(0.105) 

log GDP per capita 0.339 0.312 0.120 0.0512 -0.0932 -0.286 
(0.601) (0.583) (0.529) (0.538) (0.508) (0.494) 

Institution Index 0.0391 0.0456 0.0653 0.0707 0.0931 0.124 
(0.0651) (0.0656) (0.0687) (0.0701) (0.0771) (0.0833) 

log Patent apps 0.0854 0.127 0.302* 0.348* 0.490*** 0.676*** 
(0.181) (0.181) (0.177) (0.192) (0.189) (0.201) 

AIC 1273.44 1276.90 1277.14 1278.37 1274.79 1261.78 
Observations 503 503 503 503 503 503 

Countries 23 23 23 23 23 23 
Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1.    
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Appendix 4. Lag sensitivity without knowledge stocks 

In this section we provide additional sensitivity analysis showing the robustness of our results to 

both different finite lag structures and to potential endogeneity concerns when including 

knowledge stocks.  To avoid these endogeneity concerns about the knowledge stock, the models 

presented here consider a reduced form in which the knowledge stock is replaced by the sum of 

previous deaths or damages.  Essentially, the entire history of deaths or damages for each 

country is included, with the coefficient constrained to be the same after L years to allow 

estimation of the equation.  The model can be written as: 

(A1) ܲܣ ௝ܶ௜௧ ൌ ∑ ௜,௧ି௟ܦ௟ߚ
௅
௟ୀ଴ ൅ ுߚ ∑ ௜,௧ି௛ܦ

ு
௛ୀ௅ାଵ ൅ ઺ܜܑ܆܆ ൅ ௜ߟ ൅ ߶௧ ൅ ߳௜௧ 

For example, if L = 3, the model includes a separate damage coefficient for years 0 to t-3, and a 

single coefficient, H, on the sum of all damages occurring from year t-4 onward until 1960, the 

first year for which we have disaster data.  We denote this as year H above.  Xit represents a 

matrix of the various control variables used.  

Panels A-C in Table A3 present the results for deaths and panels A-D in Table A4 present the 

results for damages.  The tables show that our results are robust to various lag lengths.  With the 

exception of flood control technology, lagged deaths or damages are rarely significant after four 

or five years.  Moreover, in most cases (the effect of damages on earthquake detection being the 

most notable exception), the coefficient on the sum of past events is insignificant, suggesting that 

additional lags are unimportant.  Moreover, the sums of the various l coefficients, shown at the 

bottom of each table, are comparable to the sums found in the regressions in Tables 3 and 4 of 

our paper and do not vary much across various lag specifications.  For example, the sum of 

deaths for a 5 year lag for earthquake-proof buildings, shown in panel A of Table A4, is 0.185, 
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compared to 0.187 in the reduced form regression in Table 3 of the paper.  The largest range of 

the sums occurs for flood control in response to deaths, with a range from 0.621-0.857. 
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Table A3: Lag sensitivity without knowledge stocks: Deaths as Independent Variable 
A. Quake-proof buildings 

lag: (3) (4) (5) (6) (7) (8) 

Death 0.0146** 0.0149** 0.0149** 0.0149** 0.0149** 0.0149** 
(0.0065) (0.0065) (0.0063) (0.0064) (0.0063) (0.0063) 

L1.death 0.0080 0.0084 0.0090 0.0090 0.0090 0.0090 
(0.0075) (0.0074) (0.0072) (0.0072) (0.0072) (0.0071) 

L2.death 0.0281** 0.0280** 0.0278** 0.0277** 0.0277** 0.0277** 
(0.0116) (0.0114) (0.0112) (0.0111) (0.0112) (0.0111) 

L3.death 0.0230 0.0222 0.0199 0.0203 0.0202 0.0201 
(0.0173) (0.0171) (0.0171) (0.0170) (0.0171) (0.0171) 

L4.death 0.0448 0.0429 0.0435 0.0434 0.0435 
(0.0339) (0.0344) (0.0342) (0.0345) (0.0343) 

L5.death 0.0702** 0.0708** 0.0705** 0.0704** 
(0.0320) (0.0316) (0.0321) (0.0322) 

L6.death -0.0432 -0.0433 -0.0435 
(0.0465) (0.0471) (0.0479) 

L7.death -0.0203 -0.0204 
(0.0287) (0.0288) 

L8.death -0.0228 
(0.0437) 

Sum of past deaths -0.0052 -0.0136 -0.0285 -0.0254 -0.0265 -0.0273 
(0.0367) (0.0396) (0.0432) (0.0438) (0.0506) (0.0577) 

Log GDP per capita 1.5944* 1.5536* 1.5147* 1.5232* 1.5226* 1.5211* 
(0.9556) (0.9299) (0.8885) (0.9012) (0.8999) (0.8962) 

Institution index -0.0119 -0.0128 -0.0154 -0.0148 -0.0150 -0.0151 
(0.0548) (0.0539) (0.0529) (0.0527) (0.0523) (0.0516) 

Log patent apps 0.4640* 0.4503* 0.4159* 0.4222* 0.4197* 0.4184* 
  (0.2518) (0.2462) (0.2456) (0.2422) (0.2350) (0.2265) 

Observations 717 717 717 717 717 717 
sum of deaths 0.074** 0.118** 0.185*** 0.143 0.122 0.099 

(0.0310) (0.0508) (0.0667) (0.1055) (0.1286) (0.1576) 
AIC 2287.497 2282.405 2268.616 2268.126 2268.068 2268.037 

BIC 2420.174 2415.082 2401.293 2400.803 2400.745 2400.714 

Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1 
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B. Earthquake detection 

lag: (3) (4) (5) (6) (7) (8) 

Death 0.0135*** 0.0133*** 0.0134*** 0.0133*** 0.0132*** 0.0134***
(0.0016) (0.0017) (0.0017) (0.0018) (0.0018) (0.0018) 

L1.death 0.0107*** 0.0105*** 0.0102*** 0.0102*** 0.0102*** 0.0103***
(0.0022) (0.0023) (0.0022) (0.0022) (0.0022) (0.0022) 

L2.death -0.0004 -0.0001 0.0002 -0.0001 -0.0002 -0.0006 
(0.0326) (0.0327) (0.0328) (0.0327) (0.0326) (0.0327) 

L3.death 0.0063 0.0076 0.0118 0.0155 0.0168 0.0182 
(0.0313) (0.0316) (0.0322) (0.0323) (0.0323) (0.0330) 

L4.death -0.0134 -0.0155 -0.0099 -0.0087 -0.0063 
(0.0664) (0.0671) (0.0683) (0.0685) (0.0662) 

L5.death -0.0597 -0.0591 -0.0554 -0.0509 
(0.0826) (0.0814) (0.0827) (0.0808) 

L6.death -0.0472 -0.0464 -0.0350 
(0.0476) (0.0472) (0.0471) 

L7.death 0.0183 0.0209 
(0.0587) (0.0568) 

L8.death -0.0553 
(0.0660) 

Sum of past deaths 0.0107 0.0162 0.0332 0.0539 0.0635 0.0864 
(0.0724) (0.0755) (0.0701) (0.0744) (0.0790) (0.0777) 

Log GDP per capita -0.0365 -0.0727 -0.1526 -0.2439 -0.2758 -0.2975 
(1.0146) (1.0303) (1.0603) (1.0542) (1.0369) (1.0239) 

Institution index 0.0971 0.0983 0.1035 0.1111 0.1139 0.1195 
(0.1340) (0.1345) (0.1354) (0.1352) (0.1345) (0.1330) 

Log patent apps 0.4215 0.4463 0.5070 0.5753 0.6003* 0.6335* 
  (0.3183) (0.3378) (0.3619) (0.3631) (0.3535) (0.3553) 

Observations 338 338 338 338 338 338 
sum of deaths 0.030 0.018 -0.040 -0.077 -0.052 -0.085 

(0.0612) (0.1006) (0.1707) (0.2135) (0.2627) (0.3128) 
AIC 1038.474 1038.061 1033.985 1029.137 1028.142 1019.437 

BIC 1091.996 1091.583 1087.507 1082.660 1081.664 1072.960 

Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1 
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C. Flood Control 

lag: (3) (4) (5) (6) (7) (8) 

Death 0.1565** 0.1599** 0.1647** 0.2057** 0.1904** 0.1924** 
(0.0679) (0.0740) (0.0759) (0.0911) (0.0846) (0.0849) 

L1.death 0.0671 0.0676 0.0875** 0.1065** 0.1332*** 0.1226***
(0.0483) (0.0477) (0.0425) (0.0425) (0.0429) (0.0435) 

L2.death 0.2784*** 0.2706** 0.2758*** 0.2997*** 0.3126*** 0.3190***
(0.0899) (0.1071) (0.1045) (0.0932) (0.0887) (0.0850) 

L3.death 0.1404** 0.1398** 0.0999 0.1155* 0.1408** 0.1448** 
(0.0606) (0.0608) (0.0719) (0.0691) (0.0600) (0.0582) 

L4.death -0.0171 -0.0203 -0.0647* -0.0658* -0.0555 
(0.0440) (0.0436) (0.0383) (0.0364) (0.0382) 

L5.death 0.0483 0.0521 -0.0035 -0.0056 
(0.0538) (0.0556) (0.0392) (0.0391) 

L6.death 0.0845* 0.0925* 0.0604 
(0.0450) (0.0481) (0.0400) 

L7.death 0.0570 0.0532 
(0.0501) (0.0475) 

L8.death -0.0126 
(0.0458) 

Sum of past deaths -0.0341 -0.0357 -0.0441 -0.0565 -0.0658* -0.0746* 
(0.0382) (0.0395) (0.0397) (0.0366) (0.0361) (0.0403) 

Log GDP per capita 2.0454** 2.0707** 2.2210** 2.4125** 2.5270*** 2.6318** 
(0.8835) (0.9116) (0.9433) (0.9475) (0.9598) (1.0356) 

Institution index 0.2673** 0.2670** 0.2670** 0.2702** 0.2748** 0.2771** 
(0.1310) (0.1302) (0.1282) (0.1247) (0.1230) (0.1220) 

Log patent apps 0.4298 0.4366 0.4654 0.5515* 0.5967* 0.6216** 
  (0.3231) (0.3222) (0.3179) (0.3139) (0.3063) (0.2977) 

Observations 459 459 459 459 459 459 
sum of deaths 0.642*** 0.621*** 0.656*** 0.799*** 0.857*** 0.819*** 

(0.1534) (0.1428) (0.1385) (0.1583) (0.1626) (0.1607) 
AIC 1311.618 1311.551 1309.636 1304.491 1300.780 1299.736 

BIC 1394.199 1394.132 1392.217 1387.072 1383.361 1382.317 

Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1 
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Table A4: Lag sensitivity without knowledge stocks: Damages as Independent Variable 
 
A. Quake-proof buildings 

lag: (3) (4) (5) (6) (7) (8) 

Damage 0.0050 0.0051 0.0051 0.0051 0.0051 0.0051 
(0.0031) (0.0031) (0.0031) (0.0031) (0.0032) (0.0031) 

L1.damage 0.0040*** 0.0041*** 0.0042*** 0.0042*** 0.0041*** 0.0042***
(0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012) 

L2.damage 0.0045*** 0.0045*** 0.0045*** 0.0045*** 0.0045*** 0.0045***
(0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) 

L3.damage 0.0062*** 0.0063*** 0.0063*** 0.0063*** 0.0063*** 0.0063***
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) 

L4.damage 0.0041*** 0.0043*** 0.0043*** 0.0043*** 0.0043***
(0.0015) (0.0015) (0.0015) (0.0015) (0.0015) 

L5.damage 0.0045*** 0.0044*** 0.0044*** 0.0044***
(0.0014) (0.0014) (0.0014) (0.0014) 

L6.damage 0.0012 0.0012 0.0012 
(0.0017) (0.0017) (0.0017) 

L7.damage 0.0021 0.0021 
(0.0013) (0.0013) 

L8.damage 0.0025* 
(0.0015) 

Sum of past damage 0.0026** 0.0023* 0.0019 0.0021 0.0021 0.0020 
(0.0013) (0.0013) (0.0014) (0.0014) (0.0016) (0.0018) 

Log GDP per capita 1.8234*** 1.7625*** 1.6812*** 1.7124*** 1.7136** 1.6999** 
(0.6563) (0.6390) (0.6278) (0.6553) (0.6687) (0.6855) 

Institution index 0.0371 0.0352 0.0328 0.0337 0.0338 0.0333 
(0.0446) (0.0441) (0.0437) (0.0431) (0.0425) (0.0414) 

Log patent apps 0.5236** 0.5193** 0.5080** 0.5122** 0.5126*** 0.5099***
  (0.2099) (0.2073) (0.2073) (0.2040) (0.1990) (0.1930) 

Observations 717 717 717 717 717 717 
sum of damages 0.020*** 0.024*** 0.029*** 0.030*** 0.032*** 0.035*** 

(0.0048) (0.0059) (0.0067) (0.0078) (0.0089) (0.0099) 
AIC 2280.224 2276.314 2268.486 2267.374 2267.370 2267.043 

BIC 2412.901 2408.991 2401.163 2400.051 2400.047 2399.721 

Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1 
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B. Earthquake detection 

lag: (3) (4) (5) (6) (7) (8) 

Damage 0.0094*** 0.0094*** 0.0093*** 0.0093*** 0.0093*** 0.0094***
(0.0013) (0.0013) (0.0013) (0.0014) (0.0014) (0.0013) 

L1.damage 0.0060*** 0.0060*** 0.0059*** 0.0059*** 0.0059*** 0.0059***
(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) 

L2.damage 0.0064*** 0.0064*** 0.0064*** 0.0065*** 0.0065*** 0.0066***
(0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) 

L3.damage 0.0038 0.0038 0.0039 0.0040 0.0041 0.0042 
(0.0030) (0.0030) (0.0029) (0.0029) (0.0029) (0.0029) 

L4.damage 0.0040** 0.0039** 0.0040*** 0.0041*** 0.0042***
(0.0017) (0.0015) (0.0015) (0.0016) (0.0015) 

L5.damage 0.0005 0.0005 0.0006 0.0009 
(0.0021) (0.0020) (0.0020) (0.0020) 

L6.damage 0.0018 0.0018 0.0021 
(0.0013) (0.0013) (0.0014) 

L7.damage 0.0036* 0.0036 
(0.0022) (0.0023) 

L8.damage 0.0019 
(0.0018) 

Sum of past damages 0.0039** 0.0038* 0.0046** 0.0054*** 0.0059*** 0.0069***
(0.0018) (0.0020) (0.0019) (0.0021) (0.0022) (0.0022) 

Log GDP per capita 0.4995 0.5001 0.5547 0.5910 0.6122 0.6730 
(0.8920) (0.8908) (0.8307) (0.8146) (0.8031) (0.7797) 

Institution index 0.0712 0.0706 0.0724 0.0764 0.0790 0.0816 
(0.0978) (0.0961) (0.0912) (0.0881) (0.0869) (0.0844) 

Log patent apps 0.3054 0.3034 0.3300 0.3594 0.3793 0.3970 
  (0.2947) (0.2898) (0.2750) (0.2612) (0.2552) (0.2473) 

Observations 338 338 338 338 338 338 
sum of damages 0.026*** 0.030*** 0.030*** 0.032*** 0.036*** 0.039*** 

(0.0044) (0.0056) (0.0073) (0.0083) (0.0101) (0.0116) 
AIC 1001.577 1001.566 993.924 987.937 985.300 975.806 

BIC 1055.099 1055.089 1047.447 1041.459 1038.823 1029.329 

Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1 
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C. Flood control 

lag: (3) (4) (5) (6) (7) (8) 

Damage 0.0445*** 0.0451*** 0.0434*** 0.0478*** 0.0482*** 0.0481*** 
(0.0133) (0.0135) (0.0137) (0.0130) (0.0136) (0.0135) 

L1.damage 0.0377** 0.0396** 0.0396** 0.0373** 0.0367** 0.0372** 
(0.0155) (0.0158) (0.0161) (0.0179) (0.0167) (0.0167) 

L2.damage 0.0269*** 0.0267*** 0.0277*** 0.0288** 0.0294** 0.0289** 
(0.0097) (0.0101) (0.0103) (0.0117) (0.0132) (0.0123) 

L3.damage 0.0047 0.0053 0.0056 0.0096 0.0096 0.0103 
(0.0102) (0.0109) (0.0109) (0.0116) (0.0114) (0.0128) 

L4.damage 0.0053 0.0050 0.0057 0.0055 0.0056 
(0.0081) (0.0083) (0.0087) (0.0084) (0.0083) 

L5.damage -0.0019 -0.0012 -0.0008 -0.0008 
(0.0044) (0.0049) (0.0057) (0.0056) 

L6.damage 0.0032 0.0034 0.0039 
(0.0059) (0.0062) (0.0069) 

L7.damage -0.0128** -0.0123*** 
(0.0060) (0.0047) 

L8.damage -0.0123* 
(0.0068) 

Sum of past damages -0.0063 -0.0074 -0.0086* -0.0108** -0.0103* -0.0098 
(0.0051) (0.0046) (0.0047) (0.0047) (0.0058) (0.0064) 

Log GDP per capita 1.9448** 2.0193** 2.1005*** 2.1441*** 2.1179*** 2.0891** 
(0.8288) (0.7902) (0.7763) (0.7414) (0.8093) (0.8904) 

Institution index 0.2810** 0.2809** 0.2811** 0.2865** 0.2857** 0.2851** 
(0.1234) (0.1216) (0.1203) (0.1174) (0.1190) (0.1200) 

Log patent apps 0.5546** 0.6057** 0.6298** 0.7191** 0.7100*** 0.7044*** 
  (0.2778) (0.2781) (0.2780) (0.2798) (0.2669) (0.2592) 

Observations 459 459 459 459 459 459 
sum of damages 0.114*** 0.122** 0.119** 0.131** 0.119* 0.109 

(0.0437) (0.0531) (0.0583) (0.0646) (0.0648) (0.0680) 
AIC 1267.923 1264.714 1263.631 1258.947 1258.818 1258.687 

BIC 1350.504 1347.295 1346.212 1341.528 1341.399 1341.268 

Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1 
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D. Drought-resistant crops 

lag: (3) (4) (5) (6) (7) (8) 

Damage 0.0662*** 0.0641*** 0.0600*** 0.0605*** 0.0585*** 0.0572***
(0.0088) (0.0092) (0.0098) (0.0119) (0.0125) (0.0121) 

L1.damage 0.0155 0.0125 0.0109 0.0111 0.0084 0.0079 
(0.0251) (0.0268) (0.0271) (0.0278) (0.0285) (0.0287) 

L2.damage 0.0535** 0.0506** 0.0447* 0.0450* 0.0431 0.0369 
(0.0242) (0.0250) (0.0263) (0.0273) (0.0281) (0.0283) 

L3.damage 0.0108 0.0082 0.0011 0.0016 -0.0013 -0.0052 
(0.0123) (0.0129) (0.0146) (0.0167) (0.0175) (0.0182) 

L4.damage 0.0218 0.0174 0.0177 0.0154 0.0112 
(0.0234) (0.0243) (0.0258) (0.0258) (0.0253) 

L5.damage 0.0269 0.0272 0.0244 0.0201 
(0.0238) (0.0253) (0.0255) (0.0247) 

L6.damage -0.0113 -0.0140 -0.0204 
(0.0288) (0.0279) (0.0268) 

L7.damage -0.0044 -0.0108 
(0.0365) (0.0342) 

L8.damage -0.0012 
(0.0367) 

Sum of past damages 0.0078 0.0027 -0.0102 -0.0093 -0.0166 -0.0336 
(0.0281) (0.0301) (0.0332) (0.0375) (0.0377) (0.0358) 

Log GDP per capita 0.1785 0.1751 0.1678 0.1603 0.2226 0.3628 
(0.6341) (0.6285) (0.6179) (0.6582) (0.6794) (0.6814) 

Institution index 0.0545 0.0577 0.0647 0.0646 0.0657 0.0694 
(0.0632) (0.0621) (0.0609) (0.0607) (0.0600) (0.0583) 

Log patent apps 0.1986 0.2297 0.3079 0.3055 0.3263* 0.3805** 
  (0.2066) (0.2055) (0.1931) (0.1892) (0.1830) (0.1740) 

Observations 503 503 503 503 503 503 
sum of damages 0.146** 0.157* 0.161 0.152 0.130 0.096 

(0.0608) (0.0851) (0.1136) (0.1483) (0.1838) (0.2139) 
AIC 1257.304 1256.062 1250.880 1250.866 1250.263 1245.607 

BIC 1350.157 1348.915 1343.733 1343.719 1343.116 1338.460 

Robust standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1 
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Appendix 5.  Further Sensitivity Analysis 

The reduced form models presented in the paper use damage lagged 6 years to avoid endogeneity 

concerns.  The instrumental variables model include instruments for damage, and thus include 

only a one year lag so as to ease interpretation of the stock variable.  However, this may lead to 

changes in the lagged damage coefficients, since the lagged values in the reduced form equation 

include both the direct effect of the event on innovation and the indirect effect of the lagged 

event changing the existing knowledge stock.   

To assess whether moving from a six-year lag to a one-year lag affects the results, Tables A5-A6 

present three results.  For each technology, column (1) is the reduced form results presented in 

Tables 3 or 4 (corresponding to column 1 in those tables).  Columns (2) & (3) use instrumental 

variables for knowledge and deaths (or damages).  Column (2) uses the six-year lagged 

knowledge stock, and column (3) uses the one-year lagged knowledge stock, as in column (2) for 

each technology in Tables 3 and 4.26  In all cases, the results are similar.  Moreover, the sum of 

deaths or damages is larger in both columns (2) and (3) for all cases except flood control (where 

the results are insignificant), suggesting that it is the use of instrumental variables, and not 

changing the lagged knowledge stock, that leads to slightly larger estimates. 

  

                                                            
26 No results are presented for drought-resistant crops, as the model using instruments with the six-year knowledge stock did not 
converge to a solution. 
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Table A5.  Further Sensitivity Analysis: Deaths as Independent Variable 

  Quake-Proof Building Earthquake Detection 
  Baseline IV IV Baseline IV IV 
death 0.0149*** 0.0158*** 0.0139*** 0.0130*** 0.0131*** 0.0131*** 

(0.00540) (0.00492) (0.00368) (0.00224) (0.000945) (0.000690)
L1.death 0.00821 0.00921* 0.000765 0.00951*** 0.0104*** 0.0102*** 

(0.00653) (0.00482) (0.00695) (0.00248) (0.00202) (0.00111) 
L2.death 0.0242* -0.0255 -0.00177 -0.00736 0.0605 0.0539 

(0.0130) (0.0629) (0.0556) (0.0221) (0.0429) (0.0561) 
L3.death 0.0123 0.0797 0.106 -0.00297 0.107 0.101 

(0.0183) (0.0728) (0.0909) (0.0203) (0.0877) (0.142) 
l4.death 0.0471 0.0226 0.0182 -0.0546 0.0216 0.0154 

(0.0336) (0.0571) (0.0569) (0.0652) (0.0417) (0.0886) 
L5.death 0.0800*** 0.108*** 0.101** -0.104 -0.0710 -0.077*** 

(0.0209) (0.0320) (0.0395) (0.0674) (0.0622) (0.0135) 
Sum of deaths 0.187*** 0.210* 0.239*** -0.147 0.141*** 0.117 

(0.0561) (0.1126) (0.0830) (0.1332) (0.0507) (0.2546) 

lag6_dstock 0.265 0.294 -0.262 0.0428 
(0.224) (0.270) (0.166) (0.386) 

lag1_dstock 0.662* 0.0163 
(0.354) (0.291) 

Log GDP per capita 1.904* 3.022** 2.703** 0.622 1.994 2.077 
(1.056) (1.184) (1.073) (1.082) (2.310) (1.807) 

Institutional index 0.00817 0.0415 0.121 0.0941 0.0791 0.0743 
(0.0622) (0.0926) (0.114) (0.110) (0.184) (0.152) 

Log patent apps 0.317* -0.194 -0.345 0.343 -0.369 -0.383 
(0.179) (0.417) (0.311) (0.413) (0.689) (0.594) 

Observations 717 703 703 338 327 327 
e(Q) 0.0000 0.0712 0.0827 0.0000 0.2053 0.2053 
Countries 30 30 30 15 15 15 
Time Span 1984-2009 1984-2009 
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Table A6. Further Sensitivity Analysis: Damages as Independent Variable 

  Quake-proof Building Earthquake Detection Flood Control 

Baseline IV IV Baseline IV IV Baseline IV IV 
damage 0.00443 0.0123*** 0.0124*** 0.00847*** 0.0111*** 0.0108*** 0.0476*** 0.00218 0.111** 

(0.00380) (0.00379) (0.00193) (0.00189) (0.00111) (0.000827) (0.0123) (0.0339) (0.0462) 
L1.damage 0.00322 0.00687* 0.00336 0.00461*** 0.00941*** 0.00781*** 0.0414*** -0.0169 0.0442** 

(0.00196) (0.00401) (0.00223) (0.00172) (0.00132) (0.00109) (0.0157) (0.0480) (0.0185) 
L2.damage 0.00286** 0.000606 0.00133 0.00358* 0.00794*** 0.00576** 0.0323*** -0.0270 0.0309 

(0.00144) (0.00193) (0.00135) (0.00198) (0.00160) (0.00289) (0.00954) (0.0474) (0.0643) 
L3.damage 0.00474*** 0.00236 0.00324 0.000752 0.00237 0.00113 0.0111 -0.00403 0.0473 

(0.00100) (0.00271) (0.00310) (0.00318) (0.00206) (0.00428) (0.00948) (0.0181) (0.0376) 
L4.damage 0.00280** 0.000803 0.00110 0.000666 0.00302 0.00185 0.0121* -0.00921 -0.0898** 

(0.00133) (0.00141) (0.00152) (0.00230) (0.00185) (0.00264) (0.00681) (0.0402) (0.0408) 
L5.damage 0.00297*** 0.00364*** 0.00332** -0.00295 -0.000347 -0.0018*** 0.00492 0.0449** 0.0719 

(0.00101) (0.00111) (0.00135) (0.00227) (0.00160) (0.000406) (0.00497) (0.0183) (0.0490) 

Sum of damages 0.021*** 0.027*** 0.025*** 0.015 0.033*** 0.026*** 0.149*** -0.010 0.215 
(0.0081) (0.0096) (0.0048) (0.0115) (0.0034) (0.0093) (0.0530) (0.1500) (0.2038) 

L6.log stock 0.195 0.222 -0.129 0.303 0.146* 0.792*** 
(0.222) (0.291) (0.245) (0.258) (0.0768) (0.195) 

L1.log stock 0.565** 0.313* 0.104 
(0.242) (0.175) (0.343) 

Log GDP per capita 1.710** 2.077* 1.650* 0.444 0.0852 0.930 1.843** 0.648 -1.319 
(0.749) (1.141) (0.929) (0.983) (1.455) (1.388) (0.785) (5.280) (7.648) 

Institutional Index 0.0290 0.0117 0.0612 0.0432 0.0164 -0.00290 0.306** 0.368 0.367 
(0.0499) (0.0871) (0.0805) (0.0787) (0.201) (0.143) (0.135) (0.555) (0.252) 

Log Patent Apps 0.417*** 0.0492 -0.0950 0.301 0.0187 -0.240 0.400 0.0944 2.316 
(0.150) (0.432) (0.295) (0.346) (0.506) (0.524) (0.254) (1.300) (1.837) 

Observations 717 703 703 338 327 327 459 383 383 
e(Q) 0.0000 0.0704 0.0817 0.0000 0.2188 0.2259 0.0000 0.0205 0.0245 
Countries 30 30 30 15 15 15 21 20 20 
Time Span 1984-2009 1984-2009 1986-2009 1986-2006 1986-2006 
Standard errors in parentheses *** p<0.01, **p<0.05, *p<0.1
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Appendix 6.  Instrument Quality 

To assess the quality of our instruments, Table A7 includes the partial R2 and Shea partial R2 

statistics for each of our endogenous variables for each technology.  With multiple endogenous 

variables, simply assessing the F-statistic of the excluded instruments is not a sufficient test of 

the strength of the instrument (Baum 2006).  Shea’s partial R2 statistic accounts for the 

intercorrelations among instruments.  If the Shea partial R2 is significantly smaller than the 

standard partial R2, it suggests that there are not enough unique instruments to identify each 

endogenous variable.  As we see in Table A1, that is not the case, as both partial R2 values are 

similar for each variable.   

However, as discussed in the text, the instruments for flood control and drought-resistant crops 

are weak, as the partial R2 values are below 0.05 for nearly all variables.  Thus, for these 

technologies we have more faith in our reduced form regressions.  Given that there are few 

differences between the reduced form and instrumental variable results when the instruments are 

stronger in the case of earthquake, we do believe that these reduced form estimates are valid. 
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Table A7. Partial R2 Statistics 

 

Earthquake Buildings Earthquake Detection Flood Control Drought-Resistant Crops

partial R2
Shea 

partial R2 partial R2
Shea 

partial R2 partial R2
Shea 

partial R2 partial R2
Shea partial 

R2
Deaths(t) 0.3457 0.3984 0.4227 0.4594 0.0187 0.0278
Deaths(t-1) 0.2880 0.3666 0.3913 0.4301 0.0124 0.0240
Deaths(t-2) 0.1893 0.2038 0.3729 0.3732 0.0149 0.0201
Deaths(t-3) 0.2138 0.2293 0.3928 0.3938 0.0163 0.0220
Deaths(t-4) 0.2068 0.2374 0.3701 0.3883 0.0184 0.0281
Deaths(t-5) 0.1924 0.2409 0.3902 0.4420 0.0112 0.0205
Knowledge Stock (t-1) 0.0731 0.0789 0.3455 0.3625 0.1431 0.1608

Damages(t) 0.2844 0.2980 0.3433 0.3489 0.0417 0.0478 0.0861 0.1044
Damages(t-1) 0.2485 0.2908 0.3291 0.3463 0.0401 0.0463 0.0420 0.0530
Damages(t-2) 0.1980 0.2102 0.2575 0.2662 0.0376 0.0563 0.0380 0.0416
Damages(t-3) 0.2098 0.2224 0.2910 0.2925 0.0410 0.0555 0.0410 0.0477
Damages(t-4) 0.2309 0.2431 0.3074 0.3150 0.0396 0.0484 0.0396 0.0523
Damages(t-5) 0.2444 0.2747 0.3340 0.3566 0.0392 0.0475 0.0339 0.0489
Knowledge Stock (t-1) 0.0661 0.0789 0.3602 0.3625 0.1446 0.1608 0.0769 0.1185
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