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ABSTRACT

The theoretical literature presumes generational risk is large enough to merit study and that such 
risk can be meaningfully shared via appropriate government policies. This paper assesses these 
propositions. It develops an 80-period OLG model to directly measure generational risk and the 
extent to which it can be mitigated via financial markets or Social Security. The model is trend 
stationary as is common in the literature. It features isoelastic preferences, moderate risk 
aversion, Cobb-Douglas technology, and shocks to both TFP and capital depreciation. Our 
computation method builds on Marcet (1988), Marcet and Marshall (1994), and Judd, Maliar, and 
Maliar (2009, 2011), who overcome the curse of dimensionality by limiting a model's state space 
to its ergodic set.

Our baseline calibration uses the literature's estimate of the TFP shock process and sets 
depreciation shocks to match the variability of the return to U.S. wealth. The baseline results 
feature higher than observed output variability. Nonetheless, we find relatively little generational 
risk. This calibration produces a very small risk premium. Resolving this puzzle by adding 
increasing borrowing costs does not affect our conclusions regarding the size of generational risk. 
Our second calibration increases depreciation shocks, as in Krueger and Kubler (2006), to match 
the model's return variability with that of the equity market. Doing so reproduces the equity 
premium (even absent borrowing costs), but substantially overstates the variability of output and 
wages. This calibration generates significant cross-generational risk.

Under both calibrations, the one-period bond market is very effective in sharing risks among 
contemporaneous generations. But the simulated sizes of short and long bond positions associated 
with unrestricted use of this market appear unrealistically large. Finally, we find that Social 
Security can be effective in reducing generational risk no matter its initial size.
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1 Introduction

Generational risk references lifetime welfare differences across agents born at different dates

arising from shocks to the economy. Economists have long examined generational risk and

its mitigation via government policy (e.g., Diamond, 1977; Merton, 1983; Bohn, 1998, 1999,

2001, 2002, 2006, 2009; Shiller, 1999; Rangel and Zeckhauser, 2001; Smetters, 2003; Krueger

and Kubler, 2006; Ball and Mankiw, 2007; and Bovenberg and Uhlig, 2008). The above

studies don’t directly measure the size of generational risk. Rather, they presume genera-

tional risk is large enough to merit study and show that pay-as-you-go Social Security and

other generational redistribution policies can potentially share it.

This paper seeks to quantify the extent of generational risk and the relative roles of

the bond market and Social Security in mitigating it. It posits an 80-period OLG model

and develops a simple, robust method to overcome the curse of dimensionality, calculate

the model’s stationary stochastic equilibrium and measure generational risk. Our model’s

solution method is based on the trend-stationary, global computation techniques developed

by Marcet (1988), Marcet and Marshall (1994), and Judd, Maliar, and Maliar (2009, 2011).

Apart from the number of periods, our model is bare bones. It features isoelastic preferences,

moderate risk aversion, Cobb-Douglas production, a one-period bond market, and aggregate

shocks to both total factor productivity (TFP) and the rate of capital depreciation. Policy

is limited to Social Security.

Generational risk is measured in two ways. First, we examine the dispersion across gen-

erations born at different dates in their realized levels of lifetime utility. Second, we consider

the scope for contemporaneous generations to share risk. We consider two calibrations la-

beled baseline and alternative. The baseline calibration sets the variability of depreciation

shocks to reproduce the variability of the economy’s return to wealth. Specifically, we use

data from the Bureau of Economic Analysis’ National Accounts and the Federal Reserve’s

Financial Accounts to back out the return to the economy’s wealth based on

rt =
Wt+1 −Wt + Ct − Et

Wt

, (1)

where Wt, Et, Ct, and rt stand for time-t wealth, labor income, economy-wide consumption,

and the rate of return on economy-wide wealth. The wealth data come from the Federal

Reserve. The labor income and consumption data are from the National Accounts.1 Some

1We measure total labor income assuming labor’s share of proprietorship and partnership income is the
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components of the Federal Reserve wealth series are carried at books. Consequently, our

rt series may exhibit too little variability. As an alternative, we calibrate our depreciation

shocks such that our model’s return volatility matches that of the equity market.

Under our baseline calibration, generational risk is small or very small according to both

measures. The average, taken across all newborn generations, of the compensating differ-

ential (calculated as a generation-specific uniform absolute annual percentage consumption

adjustment) needed to achieve the average, across all newborns, in realized lifetime utility is

less than 5 percent. The average annual compensating differential needed to achieve full risk

sharing among contemporaneous generations is less than 1 percent. Under our alternative

calibration, these two figures are 21 percent and 4 percent, respectively.

Our baseline calibration features roughly 70 percent more output volatility than observed

in the economy. But the risk premium is very small. However, adding one ingredient to the

model, namely increasing costs of borrowing (soft borrowing constraints), leads to a realistic

risk premium and Sharpe ratio. Constantinides, Donaldson, and Mehra (2002) were the

first to use borrowing constraints (hard ones) in a life-cycle model to produce reasonably-

sized risk premiums. Our implementation borrows from Hasanhodzic (2014) who implements

Constantinides et al.’s idea via soft borrowing constraints in a model like ours.2 Adding soft

borrowing constraints has little impact on the economy’s key macro variables and does not

change our conclusions regarding the size of generational risk. Our alternative calibration

produces a realistic equity premium—close to 5 percent—with no need for borrowing costs.

But the model’s output volatility is over 6 times too large.

We prefer the base calibration for three reasons. First, output is not excessively volatile.

Second, we can generate a realistic equity premium by including borrowing costs rather than

relying on excessive shocks. And third, the baseline calibration matches the return volatility

on our best, if imperfect measure of aggregate wealth, not just the stock market.

The intuition for our finding of very modest generational risk among contemporaneous

generations, under both calibrations, is partly that pointed out by Bohn (2009) and Boven-

berg and Uhlig (2008) namely that shocks are correlated across overlapping generations.

Both the young and old earn more or less income when TFP shocks hit. As for depreciation

shocks, they impact young workers as well as old retirees since less capital means a lower

wage.3

same as for national income.
2Soft borrowing constraints are also featured in the theoretical models of Altonji and Siow (1987), Milde

and Riley (1988), Wirjanto (1995), Fernandez-Corugedo (2002), and Chatterjee, Corbae, Nakajima, and
Ŕıos-Rull (2007).

3With depreciation shocks, returns to capital at time t and wages at time t+1 (not time t) are correlated
since it takes a period for the change in the stock of capital to influence the wage.
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This said, the risks facing contemporaneous generations are far from perfectly correlated.

Younger generations are hurt more by adverse TFP shocks than older generations whose

relatively large holdings of capital are not impacted. And older generations are hurt more by

adverse capital depreciation shocks than are younger generations who hold limited amounts

of capital.

The different risk exposures of contemporaneous young and old generations lead them to

share risk via the model’s bond market. Indeed, we find that an unfettered bond market is

highly effective in sharing risk among overlapping generations. However, the absolute sizes

of the generation-specific short and long positions generated by the model are unrealistically

large.

Like Krueger and Kubler (2006) (KK), we find that Social Security can significantly

reduce generational risk regardless of its initial size. Their excellent paper may come closest

to ours. They, like we, calibrate an OLG model that considers generational risk. But they

provide no direct measures of generational risk nor do they examine the ability of a bond

market or a Social Security system to impact such measures. Instead, they ask whether

Social Security’s ability to mitigate generational risk (first pointed out by Merton, 1983) can

effect a Pareto improvement even if the system is unfunded and crowds out capital.4

KK’s model differs from ours in important ways. First, their model posits only 9 pe-

riods. Ours has 80. The extra number of periods appears important to the assessment of

generational risk, since more periods permits better averaging of shocks over the life cycle.

Additional periods also provide agents with far more opportunities to adjust their behavior

(i.e., to self insure) through time. Second, KK posit Epstein-Zin preferences, whereas our

preferences are isoelastic. Third, and most important, KK calibrate their depreciation shocks

to the variability of the return to U.S. equities rather than to the variability of the return to

aggregate U.S. wealth. The former is over six times larger than the latter. As indicated, we

consider both calibrations.

We proceed below by reviewing some of the computation literature, detailing our model,

describing its solution, assessing its precision, specifying its calibration, presenting results,

and concluding. In the Appendix we 1) detail our algorithm, 2) present a generational

risk-inducing policy to check whether our generational risk measures are indeed capturing

generational risk, and 3) conduct a sensitivity analysis to consider cases with more persistent

TFP shocks and very high levels of risk aversion.

4Their general conclusion, which is no, tells us that Social Security’s risk mitigation is too small to
overcome its crowding out effects. But this doesn’t necessarily tell us anything about the size of generational
risk.
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2 Computation Literature Review

OLG models with macro shocks and long-lived agents encounter the curse of dimensionality.

Krussel and Smith (1998) banish the curse for certain single-agent models. They show that

the state space in such models may be adequately approximated by sufficient statistics, such

as the size of the economy’s capital stock. Gourinchas (2000), Storesletten, Telmer, and

Yaron (2007), and Harenberg and Ludwig (2016) apply the Krusell and Smith approach

to OLG models. They find it works well for their purposes. But Krueger and Kubler

(2004) argue that Krusell and Smith’s low-dimensional approximation approach cannot, as a

general matter, adequately handle OLG economies—a robustness concern raised by Krusell

and Smith (1998) themselves.5

Krueger and Kubler (2004, 2006) represents another major milestone in battling the

curse. They calculate solutions for life-cycle models experiencing macro shocks. They do so

by applying Smolyak’s (1963) algorithm to efficiently choose grid values.6 This algorithm

guarantees uniform approximation over a small (sparse) set of points in the multidimensional

hypercube. Their technique considers economic behavior over the entire state space. Unfor-

tunately, it cannot overcome the curse at least in computing models with realistic lifespans

measured in years. Indeed, Krueger and Kubler (2006) limit their model to 9 periods for

computational feasibility.

Ŕıos-Rull (1994, 1996) uses local perturbation methods to solve large-scale (55-period)

OLG models subject to aggregate productivity shocks calibrated to U.S. aggregate wealth

as in our base model (recall that we also consider larger shocks and use a global rather than

a local solution method). His papers ask, in part, whether the degree of completeness in

risk-sharing arrangements materially affects aggregate variables in the economy. His answer

is no. He also finds a very small risk premium, which he interprets as evidence of little macro

risk. Our findings are similar in some ways and different in others. First, we find a small

risk premium in our baseline simulation, but not under our alternative calibration, which

produces a realistic premium. Second, like Ŕıos-Rull, we find that fluctuations in macro

variables are similar regardless of the presence of a bond market or Social Security. But,

third, under both of our calibrations, the bond market materially reduces an aggregate risk,

namely generational risk. Social Security also materially reduces aggregate risk, especially

under our alternative calibration. Hence, we find that risk-sharing arrangements can matter,

5In the first draft of this paper, we suggested the inability of a single statistic, namely the stock of wealth,
to adequately capture consumption behavior in our OLG model by showing that transferring wealth from the
young to the old would dramatically change the economy’s transition. This said, multiple statistics might
adequately capture the impact of such a policy.

6Malin, Krueger, and Kubler (2011) detail this method.
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at least for risk sharing.

Our means of dispelling the curse builds on the Generalized Stochastic Simulation Algo-

rithm (GSSA) developed by Judd, Maliar, and Maliar (2009, 2011). GSSA, in turn, builds on

the Parametrized Expectations Approach (PEA) developed by Marcet (1988), Marcet and

Marshall (1994), and Marcet and Lorenzoni (1998), notably by replacing the Monte Carlo

integration method employed in these studies with a more accurate Gaussian quadrature

method.

Marcet (1988) is seminal. It contains the fundamental insight that, for computational

purposes, the state space can be limited to the economy’s ergodic set. I.e., economic be-

havior needs to be calculated only for states the economy will actually visit with non-trivial

probability.

As indicated in Marcet and Marshall (1992) and Judd, et. al. (2009, 2011), PEA and

its enhancement, GSSA, have been used to solve a wide range of economic models featuring

infinitely-lived agents. Our paper appears to be the first large-scale OLG model to implement

as well as build on PEA/GSSA.

Our solution method, detailed in the Appendix, is simple and can be easily extended to

handle more complex OLG models. First, we draw a sequence of aggregate shocks. Second,

we guess consumption functions for each of our 80 generations as linear polynomials of the

economy’s state vector. Third, we project the economy forward for 830 years from its initial

conditions.7 This involves clearing the bond market if one is assumed. Fourth, we use the

model’s Euler conditions to update our guessed decision functions. And fifth, we repeat

steps two through four until the Euler conditions are satisfied to a high degree of precision.

Unlike the initial 2013 version of this paper, which followed Judd et al.’s (2009, 2011) use

of assets and shocks as state variables, the state vector here consists of cash-on-hand and

shocks. This change does not affect the results but renders our simulation method highly

robust.

Reiter (2015) develops a method for solving multi-period OLG models. He independently

chose to characterize the state vector in terms of cash-on-hand. His main focus is the compu-

tation of global higher-order approximations to medium-sized OLG models, including mod-

els with asset short-sale constraints, through an efficient implementation of quasi-Newton

methods. His numerical results for six- and larger-period models include relatively large risk

premiums and support our finding that generational risk is small.

Bovenberg and Uhlig (2008) show that fully funded defined benefit pensions combined

7We chose 830 years to produce roughly 10 data points per 82 consumption-function coefficients entering
our polynomial approximations to the 80 generations’ consumption functions. This said, all the data are
used to estimate all the coefficients. Longer simulation periods produce no differences in results.
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with defined contribution pensions can improve the allocation of risk. Their work compli-

ments Bohn’s (1998, 1999, 2001, 2002, 2006, 2009) extensive analysis of the risk-sharing and

risk-making properties of particular government policies. These authors examine stochas-

tic two-period OLG models, which they solve using log-linearization techniques to derive

insights into the linearized behavior around the steady state.

3 The Model

Our model is intentionally bare bones to maximize the potential for generational risk. Thus,

we omit variable labor supply, which helps cohorts self insure against macro shocks. We

also omit progressive income taxation, which redistributes, in part, from winning to losing

generations. And we ignore all social insurance programs other than Social Security.

Each agent works through retirement age R, dies at age G, and maximizes expected

lifetime utility. There are no short sale constraints, but in some versions of the model agents

face borrowing costs which are increasing at the margin in the amount borrowed. There are

also no adjustment costs, so firms maximize static profits.

3.1 Endowments and Preferences

The economy is populated by G overlapping generations that live from age 1 to age G. All

agents within a generation are identical and are referenced by their age g at time t. Each

cohort supplies `g units of labor per period, which equals 1 before and 0 after retirement.

Hence, total labor supply equals R. Utility in a given year is time-separable and isoelastic,

with risk aversion coefficient γ. Thus,

u(c) =
c1−γ − 1

1− γ
. (2)

3.2 Technology

Production is Cobb-Douglas with output Yt given by

Yt = ztK
α
t L

1−α
t , (3)

6



where z is total factor productivity, α is capital’s share, Kt is capital, and Lt is labor demand.

Equilibrium factor prices satisfy

wt = z(1− α)

(
Kt

R

)α
, (4)

rt = zα

(
Kt

R

)α−1
− δt, (5)

with depreciation shock, δt ∼ N (0, ψ2).

Total factor productivity, z, obeys

ln(zt+1) = ρ ln(zt) + εt+1, (6)

where εt ∼ N (0, σ2).

3.3 Financial Markets

Households save and invest in either risky capital or one-period safe bonds. Investing 1 unit

of consumption in bonds at time t yields 1 + r̄t units of the model’s single good in period

t + 1. The return, r̄t, is indexed by t because it is determined at t. The asset demand of a

household age g at time t is given by θg,t and its share of assets invested in bonds is given

by αg,t. The supply of capital in period t, Kt, satisfies

Kt =
G∑
g=1

θg,t−1. (7)

Bonds are in zero net supply, hence for all t,

G∑
g=1

αg,tθg,t = 0. (8)

As shown in Green and Kotlikoff (2008), fiscal policy can be labeled in an infinite number

of ways to produce whatever time path of explicit and implicit debts the government wishes

to report. Such relabeling makes no difference to this or any other neoclassical model.8

8I.e., all relabeled models are isomorphisms.
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Hence, our model can be viewed as including government debt or not depending on the

reader’s preferences. With government debt included in the policy’s labeling, the left-hand-

side of (8) would be larger by the amount of debt. But the right-hand-side would also be

larger by exactly the same amount, leaving the capital stock unchanged.9

How can a one-period bond market among the living impact generational risk? It ob-

viously can’t be used to share risk between the living and the unborn. But it can help

contemporaneous generations share risks. For example, workers can hedge negative TPF

shocks by buying bonds from retirees who can use the proceeds to buy stock. Retirees are

in a position to sell bonds to workers because part of their resources, namely the principal

of their assets, is insulated from TFP shocks. This is particularly the case for the oldest

elderly who have the fewest years left to live and whose consumption is disproportionately

determined by their stock of assets as opposed to the return on their assets.

Depreciation shocks reverse this logic, but to a lesser degree than one might first think.

A large negative depreciation shock directly hurts retirees, who are the primary owners of

capital. But, thanks to the induced shortage of capital, it also helps them by raising the rate

of return over the short term. As for workers, the reduction in the stock of capital leads to

a short-term reduction in their wage.

3.4 Borrowing Costs

We follow Hasanhodzic (2014) and model borrowing costs via a function proposed by Chen

and Mangasarian (1996). The function is smooth and rising for negative bond holdings and

essentially zero when bond holdings are close to zero or positive. Specifically, to borrow the

amount of αθ households have to pay the borrowing cost of f(α)θ, where

f(α) = 0.2

(
−bα− 1 +

1

5
ln(1 + e5bα+5)

)
(9)

and b is a parameter described in Section 4 governing the slope of f . Since f is increasing

in bond shares (α), for a given level of assets (θ) the marginal borrowing cost is increasing

in total amount borrowed (αθ).10

9The ability to relabel a given model with a given generational redistribution policy so that it has whatever
time-path of government debt one wishes to report does not imply that changes in generational policy have
no impact. It simply implies that the size of government debt does not help measure this or any other policy.

10As explained in that paper, specifying the borrowing costs via f(α)θ rather than f(αθ) insures that
the model remains scalable. This specification also makes economic sense. With 2θ in assets and some α,
the marginal costs would be the same as with θ in assets and that same alpha, since the extra assets could
be used as collateral. This is in line with Goodfriend (2005) and Goodfriend and McCallum (2007), where
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3.5 Government

Social Security benefits are financed by a 15 percent wage tax and provided to all retirees on

a per-capita basis. In the Appendix we also consider an unrealistic, risk-inducing policy to

test the ability of our methods to capture generational risk. This risk-inducing policy also

taxes the young and hands the proceeds to the old. But the proportion of the wages taken

from the young raises steeply with the wage.

Let Hg,t denote the tax levied on the age-g household at time t and let Bg,t denote the

benefit paid to the age-g household at time t. Then

Hg,t =

τwt`g, with Social Security Policy

µ(wt)`g, with Risk-Inducing Policy
(10)

where

µ(wt) = a
¯
w +

bw̄ − a
¯
w

w̄ −
¯
w

(wt −
¯
w), (11)

and
¯
w and w̄ are minimum and maximum values of w. As described in Section 4, the

parameters a, b, τ ,
¯
w, w̄ are chosen to exacerbate generational risk. Finally,

Bg,t = (1− `g)
∑G

g=1Hg,t

80−R
. (12)

collateral is as a valuable input in loan production because it enables a bank to enforce the repayment of loans
with less monitoring (i.e., the greater is the borrower’s collateral, the more productive is the intermediary’s
monitoring effort).
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3.6 Household Problem

At time t, the economy’s state is (st, zt), with st = (x1,t,. . . ,xG−1,t) denoting the set of

age-specific holdings of cash-on-hand. 11

Vg(s, z) = maxc,θ,α

{
u(c) + βE

[
Vg+1(s

′, z′)
]}

for g < G, and (13)

VG(s, z) = u(c) (14)

subject to

c1,t = `1wt − θ1,t −H1,t +B1,t, (15)

cg,t = `gwt +
[
αg−1,t−1(1 + r̄t−1) + (1− αg−1,t−1)(1 + rt)

]
θg−1,t−1 − θg,t (16)

− If(αg−1,t−1θg−1,t−1)−Hg,t +Bg,t,

for 1 < g < G, and

cG,t = `Gwt +
[
αG−1,t−1(1 + r̄t−1) + (1− αG−1,t−1)(1 + rt)

]
θG−1,t−1 (17)

− If(αG−1,t−1θG−1,t−1)−HG,t +BG,t,

where cg,t is the consumption of a g-year old at time t, I is an indicator variable that equals 1

if there are borrowing costs and equals 0 otherwise, f is the borrowing cost function described

above, and (15)–(17) are budget constraints for age group 1, those between 1 and G, and

that for age group G.

3.7 Equilibrium

Given the initial state of the economy (x1,0, . . . , xG−1,0, z0), the recursive competitive equi-

librium is defined as follows.

Definition. The recursive competitive equilibrium is governed by the consumption func-

tions, cg(s, z), the share of savings invested in bonds, αg(s, z), factor demands of the rep-

resentative firm, K(s, z) and L(s, z), government policy, H(s, z) and B(s, z), as well as the

11Note that xG,t, the cash on hand of the oldest generation is not included in the state vector. When the
depreciation shock, δ, is zero, the value of xG,t can be inferred from the other state variables. When δ is
random, this is no longer the case. Now the initial value of xG,t (or equivalently the initial value of δ) is
needed to fully characterize the economy’s initial-period consumption vector. But we still exclude xG,t from
the state vector because it provides no addition information about the economy’s future evolution. Also, we
can directly calculate xG,t and, thus, the consumption of the old for periods beyond the first.
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pricing functions r(s, z), w(s, z), and r̄(s, z) such that:

1. Given the pricing functions, the value functions (13) and (14) solve the recursive prob-

lem of the households subject to the budget constraints (15)–(17), and θg, αg, and cg

are the associated policy functions for all g and for all dates and states.

2. Wages and rates of return on capital satisfy (4) and (5).

3. The government budget constraint (12) is satisfied.

4. All markets clear.

5. Finally, for all age groups g = 1, . . . , G − 1, optimal intertemporal consumption and

investment choice satisfies

1 = βEz
[(

1 + r(s′, z′)
)u′(cg+1(s

′, z′))

u′(cg(s, z))

]
(18)

+ IβEz
[(
αg(s, z)(r̄(s, z)− r(s′, z′))− f(αg(s, z))

)u′(cg+1(s
′, z′))

u′(cg(s, z))

]
and

0 = Ez

[
u′(cg+1(s

′, z′))
(
r̄(s, z)− r(s′, z′)− If ′(αg(s, z))

)]
, (19)

where Ez is the conditional expectation of z′ given z.

4 Calibration

As indicated below, our calibration is standard.

4.1 Endowments and Preferences

Agents work for 45 periods and live for 80. We set the quarterly subjective discount factor,

β, to 0.99. This implies an annual value of 0.96 for β. In the base model as well as the

model with risk-inducing policy, risk aversion γ equals 2. In the alternative model it equals

5. With this level of risk aversion, the alternative model delivers a realistic risk premium

absent borrowing costs. But, as indicated, it comes at cost, namely an overly volatile output

series.
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4.2 Technology

Base Model

For the base model, we calibrate the TFP process, z, based on Hansen (1985) and Prescott

(1986).12 Hansen estimates a quarterly value for the autocorrelation coefficient, ρ, of 0.95

and a standard deviation, σ, of the innovation ε ranging from 0.007 to 0.01. Prescott’s (1986)

estimates are 0.9 for ρ and 0.00763 for σ.

Our assumed quarterly values for ρ and σ are 0.95 and 0.01, respectively. On an annual

basis they are 0.814 and 0.019, respectively, generating a mean TFP value of 0.997 with a

standard deviation of 0.033 and a coefficient of variation of 3.293 percent.

In our base model, we set the quarterly value of the standard deviation, ψ, of the de-

preciation shock, δ, to 0.011 (implying an annual value of 0.045).13 This is higher than the

0.0052 quarterly estimate of Ambler and Paquet (1994). With this calibration of the shocks,

the wage displays a standard deviation of 0.117 around a mean of 1.934, for a coefficient of

variation of 6.047 percent.

The alternative model

In the alternative model, the TFP process is calibrated as above, but the quarterly standard

deviation of the depreciation shock is increased to 0.034 (implying an annual value of 0.137)

to reproduce the Sharpe ratio of the stock market.14 This accords with the size of the

standard deviation of the depreciation shock assumed by Krueger and Kubler (2006).

Empirical estimates of the historic equity premium and the standard deviation of the

return on stocks—and therefore the Sharpe ratio—vary greatly depending on the time period

used and the security chosen to proxy for the safe asset.

The equity premium often targeted in academic studies is 4 percent (see, e.g., Jagan-

nathan, McGrattan, and Scherbina (2001)). This accords with Siegal’s (1998) estimate

based on data for the last two centuries. Mehra (2008) suggests that the historic equity

premium ranges from 2 to 4 percent if an inflation-indexed, default-free bond portfolio is

used as a proxy for the risk-free rate. Jagannathan, McGrattan, and Scherbina (2001) find

that the equity premium has declined over time, averaging just 0.7 percent after 1970. As

for the standard deviation of stock returns, Constantinides, Donaldson, and Mehra (2002)

12This TFP formuation is standard. See, e.g., Cooley and Prescott (1995), Ŕıos-Rull and Santaeulalia-
Llopis (2010), Gomme, Rogerson, Rupert, and Wright (2005), and Judd, Maliar, and Maliar (2011).

13We interpret Y (equation 3) as the net production function, and hence set the mean value of depreciation
at zero.

14The model’s Sharpe ratio is defined as the difference in mean real returns to capital and safe bonds
divided by the standard deviation of the real return to capital.
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report a range of 13.9 to 15.8 percent.15 Combining a 4 percent equity premium and a 14

percent standard deviation of the real equity return implies an empirical Sharpe ratio of

0.286.

Our model’s alternative calibration generates a risk premium of 4.634 percent and a

standard deviation of the return to capital of 13.922 percent, producing a Sharpe ratio

of 0.333. These values are in line with the historical record of measured equity returns.

They also accord with the practitioner literature (see, e.g., Hasanhodzic, Lo, and Patel,

2009). Thus, in this case, a reasonable risk premium is obtained without resort to special

preferences, borrowing costs or other assumptions, by simply overstating the size of the

shocks facing the economy.

Other Models

In Appendix A.3, we consider variants of the base model with depreciation shocks turned

off, but with more persistent or more volatile TFP processes and depreciation shocks. When

the TFP process is more persistent, its autocorrelation coefficient equals 0.961 on an annual

basis, which is significantly larger than the base case model’s 0.815 value. Our more volatile

TFP process incorporates a standard deviation of εt that is 5 times larger than in the base

model.

4.3 Borrowing Costs

The borrowing costs function is calibrated so that the ratio of the marginal borrowing cost

to the risk-free rate ranges from 15 to 20. Many credit card companies now charge interest

rates between 15 and 25 percent. Given that the yield on 30-year TIPS is 1 percent and

even lower on shorter-term TIPS, our borrowing cost ratio seems reasonable. Moreover,

even those borrowers with high incomes, excellent credit, and considerable home equity, face

home equity rates that can be 10 or more times higher than the one-month T-Bill rate. To

achieve this ratio, the borrowing cost parameter b is set to 25 in the model without Social

Security and to 33 in the model with it.

4.4 Government

As indicated, Social Security benefits are financed via a payroll tax, τ , of 15 percent. As

for the risk-inducing policy, we set its parameters, a and b, to 0.1 and 0.4, respectively. The

minimum and maximum values of w,
¯
w and w̄, are estimated by iteratively simulating the

15This is in line with the standard deviation of the annualized returns of the S&P500 Total Return Index
over the last 22 years.
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model and using the minimum and maximum wage from a previous simulation until those

values converge.16 The resulting tax rates range from 9.995 percent to 40.000 percent of the

wage. Note that (10) and (11), together with the above choice of parameters, imply that

the risk-inducing policy is countercyclical, i.e., the correlation between the net wage and z

is negative.17 Since this tax rate is applied to all wages and rises steeply with the wage,

it transforms good times into bad time for workers and makes good (bad) times far better

(worse) for retirees.

4.5 Return to U.S. Wealth and to Safe Assets

As indicated in the Introduction, to measure the empirical equivalent to the model’s return on

capital we use the national income accounting identity that Wt+1 = Wt+rtWt+Et−Ct−Gt,

where Wt stands for national wealth at time t , Et stands for labor income at time t, Ct

standards for household consumption at time t, and Gt stands for government consumption

at time t. We solve this identity for annual values of rt by plugging in values of Wt, reported

in the Federal Reserve’s Financial Accounts data, and Et, Ct, andGt , reported by the Bureau

of Economic Analysis in the National Income Accounts. Our data for this calculation cover

1947-2015. All data were converted into real dollars using the PCE index and measured

at producer prices. The share of labor earnings in proprietorship and partnership income

was assumed to equal the overall share of labor income to national income on a year-by-

year basis. The empirical counterpart to the model’s safe rate of return is calculated as the

annualized real return on one-month Treasuries from 1947-2015.

As reported in Table 1, the mean return to capital (actually, total U.S. assets) is 6.512

percent with a standard deviation of 4.886. The mean safe return is 1.083. These figures

imply a Sharpe ratio of 1.111, which, as indicated below, is very close to our base model’s

Sharpe ratio.

5 Solution Method and Its Precision

Our algorithm contains outer and inner loops. The outer loop solves for consumption func-

tions of each generation. The inner loop uses a combination of techniques from the numerical

16In starting this iteration we use the minimum and maximum wage from the no-policy model. The final
minimum and maximum values of the wage are 1.492 and 1.983. The average wage is 1.657.

17For example, when the TFP decreases from 1.040 to 0.989 between years 778 and 779, the net wage rises
from 1.268 to 1.294. And when the TFP increases from 1.031 to 1.057 between years 747 and 748, the net
wage falls from 1.276 to 1.262. Similar examples abound.
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analysis literature—Broyden, Gauss-Seidel, and Newton’s method—to compute the agents’

bond holdings and the risk-free rate that clears the bond market.

Recall that the state vector consists of cash-on-hand variables, xg,t, of generations 1

through G − 1 and exogenous shocks. Given the information at time t, agents decide how

much of their cash on hand to consume, cg,t . They also choose the proportion αg,t of their

savings to allocate to bonds at the prevailing risk-free rate r̄t.

The outer loop starts by making an initial guess of generation-specific consumption func-

tions cg as polynomials (linear, for this paper) in the state vector and the prevailing depre-

ciation shock.18 Next, we take a draw of the path of shocks for T periods. We then run the

model forward for T periods using the economy’s initial condition (which corresponds to the

non-stochastic steady state of the no-policy model), guessed consumption functions and the

drawn shocks. I.e., we compute cash-on-hand variables at time t + 1 using the information

we have at time t and the exogenous shocks at time t + 1. Since the α’s and the r̄ that

are determined at time t are realized at time t+ 1, their knowledge is necessary to compute

cash-on-hand variables in period t+ 1.

In running the model forward, at each time t, we compute the agents’ choice of bond

shares and the risk-free rate that clears the bond market. To solve for r̄t, we use Broyden’s

method based on the bond-market clearing condition. This condition requires that the sum

of bond holdings at time t equals zero. The bond holdings at time t of each agent age g is

αg,tθg,t. The choice of the αg,t’s make them functions of r̄t. Hence, for given values of the

θg,t’s, the bond-market clearing condition is a function of r̄t and can be used, via Broyden’s

method, to find the r̄t that sustains market clearing.

For any given r̄t, the choice of αg,t’s is determined by Gauss-Seidel iterations to solve the

system of simultaneous G−1 generation-specific Euler equations governing the choices of the

G− 1 α’s for the new values of those α’s. Specifically, for given guesses of each agent’s value

of α, other than that of agent i, we apply Newton’s method to agent’s i’s Euler equation to

determine the new guessed value of α for agent i.19

Simulating the model forward produces the data needed to update our guessed consump-

tion functions. Specifically, for each age group g and each period t, we evaluate the Euler

condition to determine what that age group’s consumption should be in that period. This

calculation is based on the derived period-t state variables and the current guessed consump-

tion functions of all agents, which enter, via their impact on the state vector of cash of hand

at t + 1, into the determination of any given age-g agent’s marginal utility of consumption

18Although we do not include δ as part of the theoretical state space, using it as a regressor for approxi-
mating the consumption functions proved valuable.

19Taking other unknowns as given is Gauss-Seidel.
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at t+ 1. The expected value is evaluated using Gaussian quadrature, as in GSSA.

Following PEA/GSSA, we then regress these time series of age-specific consumption levels

on the state variables plus the depreciation shock and use the new regression estimates to

update, with dampening, the polynomial coefficients of each guessed consumption function.

We iterate the updating of these functions based, always, on the same draw of the path of

shocks until consumption functions converge.

We evaluate the accuracy of our solutions using two methods proposed in the literature—

out-of-sample deviations from the exact satisfaction of the Euler equations and the statistic

proposed by Den Haan and Marcet (1989, 1993).

5.1 Out-of-Sample Deviations from the Perfect Satisfaction of Eu-

ler Equations

A satisfactory solution requires that generation-specific Euler equations (18) hold out of

sample. Hence, to test the accuracy of our solution, we draw a fresh sequence of 1660 sets of

shocks for each simulated model. We then run the model forward for 1660 years (twice the

length of the original simulation), imposing the drawn shocks, using the original consumption

functions, cg, and clearing the bond market by rerunning the model’s inner loop each year as

we move through time. To calculate out-of-sample, unit-free deviations from full satisfaction

of the Euler equations, we form

ε(s, z) = βEz
[(

1 + r(s′, z′)
)u′(cg+1(s

′, z′))

u′(cg(s, z))

]
− 1 (20)

+ IβEz
[(
αg(s, z)(r̄(s, z)− r(s′, z′))− f(αg(s, z))

)u′(cg+1(s
′, z′))

u′(cg(s, z))

]
− 1

for each period in the newly simulated time path and for each generation g ∈ 1, . . . , G− 1.

Finally, we compute the average, across time, of the absolute value of the deviations from

these Euler equations for each generation.

Table A.1 in the Appendix reports summary statistics, across generations, of their average

absolute deviations from Euler equations for each model considered.20 As indicated, in all

cases these deviations are at most 0.004. And in most cases, they are zero to the third

20Note, these deviations are not Euler errors, which capture differences in period t’s marginal utility and
period (t + 1)’s realized marginal utility (properly weighted by β and r(s′, z′)). Rather, they reference
mistakes in satisfying the Euler equation, i.e., the discrepancy in period t between the marginal utility and
its properly weighted time-t expectation.
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decimal place.

The portfolio choice equations (19) and the bond market-clearing condition (8) hold

almost perfectly by construction, since the α’s and r̄ that satisfying them are calculated in

the inner loop with a high degree of precision. In particular, the average absolute deviations

from these equations, which theoretically should equal zero, are at most 0.0005 and 0.00001,

respectively, and in most cases equal zero to the seventh decimal place.

5.2 The Den Haan-Marcet Statistic

An alternative precision test is provided by Den Haan and Marcet (1989, 1993). Taylor and

Uhlig (1990) use this test to compare alternative solution methods for nonlinear stochastic

growth models. We follow Taylor-Uhlig’s particular implementation method.

As above, we start with a fresh draw of shocks over T periods and simulate the model

forward based on these shocks, using the original consumption functions and clearing the

bond market each period based on the inner loop technique (discussed above). We set

T again to 1660. Then, for each generation-specific Euler equation (18), we compute the

residual, ηg, where g references the generation’s age at time t.

ηg(t) = β
(
1 + r(t+ 1)

)u′(cg+1(t+ 1))

u′(cg(t))
. (21)

We next regress, separately for each generation, their 1600 ηg values on a matrix xg consisting

of a constant, five lags of cg, and five lags of z. The predicted values of the regression equation,

âg,

âg = (Σxg(t)
′xg(t)

)−1
(Σxg(t)

′ηg(t)
)
, (22)

are then used to construct the Den Haan-Marcet statistic mg as follows:

mg = â′g
(
Σxg(t)

′xg(t)
)(

Σxg(t)
′xg(t)ηg(t)

2
)−1(

Σxg(t)
′xg(t)

)
âg. (23)

If the generation-specific Euler equations (18) are satisfied, then Et−1[ηg(t)] = 0 must hold.

This implies that the coefficient vector, and, therefore, mg is zero, which is the null hypoth-

esis. Note that our solution method does not enforce this property, so as Den Haan and

Marcet (1994) point out, theirs is a challenging test.
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Under the null, mg is distributed as χ2(11) asymptotically. Based on a two-sided test

at the 2.5 percent significance level, we would fail to reject the null if mg lies outside the

interval (3.82, 21.92). In Table A.2 we compute the minimum, mean, and maximum across

generations of generation-specific statistics mg in the base and alternative models with and

without Social Security. The mean across generations of the statistic is well within the

acceptance interval for all four models. The same holds for the minimum value. Two of the

four maximum values are slightly above the top value of the acceptance range.

6 Results

Turning to the results, we begin by comparing models’ asset returns with those in the data,

and then measure generational risk in our base and alternative models and the role of the

bond market and Social Security in limiting such risk.

6.1 Summary Statistics of Asset Returns

Table 1 compares returns to capital and the safe bond in our model and in the data. The base

model, regardless of whether it includes borrowing costs or Social Security, reproduces quite

well the variability of the real return to U.S. wealth. Specifically, the standard deviation of

the return to capital ranges from 4.587 percent to 4.606 percent in the model compared to

4.886 percent in the data. By contrast, the alternative model, where the standard deviation

of the returns to capital equals 13.922 percent, overstates the actual return variability by

almost a factor of three.

Table 1 shows that, absent borrowing costs, our base model also produces a risk-premium

puzzle. The rate of return to capital averages 3.916 percent without Social Security and 4.892

percent with it, while the corresponding safe rates of return average 3.632 percent and 4.622

percent, respectively. The resulting risk premia are very small—0.285 percent without Social

Security and 0.270 percent with it.

However, the puzzle is readily resolved by adding increasing costs to borrowing. Our

borrowing cost function produces a risk-free rate of roughly two-tenths of one percent on

average. This implies a risk premium of 3.762 percent in the model without Social Security

and 4.772 percent with it. The latter is close to the 5.429 percent measured in the data.

The model’s mean return to capital ranges from 3.916 percent to 4.994 percent in the

model, depending, crucially on the presence of Social Security. This falls short of the 6.512

percent mean return to U.S. wealth observed in the data. But we could easily introduce

additional government policies, such as government consumption financed by an income tax,
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Mean 

Return to 

Capital (%)

Mean Safe 

Rate of 

Return (%)

S.D. of 

Return to 

Capital (%)

Risk 

Premium 

(%)

Sharpe 

Ratio

No Social Security 3.916 3.632 4.592 0.285 0.062

Social Security 4.892 4.622 4.606 0.270 0.059

No Social Security 3.999 0.237 4.587 3.762 0.820

Social Security 4.994 0.222 4.599 4.772 1.037

No Social Security 2.640 -1.994 13.922 4.634 0.333

Social Security 4.414 0.241 14.032 4.173 0.297

6.512 1.083 4.886 5.429 1.111

Summary Statistics of Rates of Return

Base Model

Base Model With Borrowing Costs

Alternative Model

Data Based On Return to U.S. Wealth

Table 1: Summary statistics of rates of return in the model and in the data.

which would crowd out capital and raise capital’s return to match that of the data.21

Table 2 compares the variability of output for different variants of our model to that

in the data. Following Prescott (1986), we detrend real net national product for the years

1929 through 2015 and form the standard deviation of the percent deviations from trend.

Our model abstracts from growth, so we simply form the standard deviation of our model’s

percentage deviation of annual output from its mean.22

As the table shows, our models overstates actual output variability. For example, in the

base model with Social Security and borrowing costs, the standard deviation of percentage

output deviations is 5.237 percent in our model compared with 3.396 percent in the data.

This suggests that the base model’s finding of small generational risk cannot be attributed

to an understatement of output variability. The alternative model produces a standard

deviation of 21.516 percent with Social Security and 22.262 percent without it, overstating

output volatility in the data by more than a factor of six.

6.2 Generational Risk in the Base Model

Our two generational risk measures focus on risk in a stationary, stochastic environment

where policy has been in place for at least 75 years. In what follows we describe each

measure and present corresponding results.

21We chose not to do so to isolate the impact of Social Security on generational risk.
22The standard deviation of detrended per capita output is virtually identical.
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Model/ Data S.D. (%)

No Social Security 5.782

Social Security 5.685

No Social Security 5.275

Social Security 5.237

No Social Security 22.262

Social Security 21.516

Real Net National Product, 1929-2015 3.396

Base Model

Base Model With Borrowing Costs

Alternative Model

Data

Standard Deviation of Percent Deviations of 

Output from Trend

Table 2: Standard deviation of percent deviations from trend of U.S. real Net National Product, 1929–2015
and standard deviation of percent deviations of output from its mean in the base and alternative models.

6.2.1 Realized Utility Measures of Generational Risk

In Table 3 we report the realized lifetime utility generational risk measure. The realized

utility measure is based on the particular state to which the generation is born and the par-

ticular sequence of shocks it experiences over its lifetime. We first calculate each generation’s

particular realized lifetime utility and form the average of these realized values across all gen-

erations born between years 75 and 751. Next, we calculate for each generation the factor

by which we need to multiply each year’s realized consumption to produce the same realized

lifetime utility as the first 677 generations experience on average. Finally, we compute the

absolute value of this factor’s deviation from 1. The closer are the percent adjustments to 0,

and the less variable they are through time, the less difference does the date of birth make

for the household’s expected lifetime utility, i.e., the smaller is the generational risk.

This table shows that the compensating consumption differential needed to equate re-

alized lifetime utility of each cohort through time to the average across newborns of their

realized lifetimes utilities averages 4.675 percent with a standard deviation of 3.800 percent

in the presence of a fully functional bond market. These values are modest. The maximum

value of the differential is 19.961 percent, which is large, but as discussed above, the bond

market is not designed to share risk among the living and the unborn. Rather, it may exacer-

bate differences in realized lifetime utility across non-overlapping generations or generations

with limited overlap.
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Min Mean Max S.D.

No Social Security 0.014 4.675 19.961 3.800

Social Security 0.000 4.107 18.097 3.388

No Social Security 0.006 2.663 10.333 2.082

Social Security 0.001 2.372 10.639 1.996

No Social Security 0.000 2.686 10.329 2.096

Social Security 0.007 2.394 10.639 2.006

No Bond Market

Borrowing Costs

Bond Market

Absolute Percentage Adjustments to Achieve 

Average Realized Utility of Newborns

Table 3: Means, standard deviations, minimums, and maximums of absolute percent adjustments in each
cohort’s annual consumption needed to achieve post-transition average realized lifetime utility of newborns
in the base model.

Eliminating the bond market leaves us with our purest measure of generational risk since

it is the risk that prevails prior to any market or government mitigation. In this case, the

average absolute percentage adjustment across 677 generations needed to achieve the same

realized lifetime utility is only 2.686 percent. Clearly, this represents modest generational

risk. Adding Social Security, whether in the presence or absence of bonds, does relatively

little to limit the small residual risk needing to be shared. For example, with no bond market,

Social Security reduces this risk measure by only 10.9 percent—from 2.686 percent to 2.394

percent.

Why might shocks hitting earlier generations not greatly impact later generations? All

generations live for 80 periods meaning that initial good or bad shocks will have limited

impact on the shocks that a generation experiences later in life.23 Intuitively, new shocks,

even if their TFP impact persists, arrive each period and average out. Moreover, our economy

is ergodic and naturally rebounds from bad or good states. Hence, a generation that is born

into bad (good) times with a small (large) stock of capital will, on average, experience better

(worse) times in the future.

6.2.2 Measuring Generational Risk Among Contemporaneous Generations

Finally, we ask whether contemporaneous generations are experiencing materially different

shocks as measured by differences in their annual percentage consumption changes. If so, such

23This is true even when we assume unrealistically high degrees of autocorrelation in TFP shocks.
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changes could be pooled either via private arrangements or government policy. Recall that

full risk sharing among contemporaneous generations, indeed all agents, with the homothetic

preferences considered here, requires equal percentage changes in the consumption from one

period to the next (see Abel and Kotlikoff, 1988). Hence, one can measure the extent of

generational risk by considering the co-movement of consumption across age groups as well as

the extent of consumption adjustments that would be needed to achieve perfect consumption

co-movement.

We present results with and without Social Security, post transition. Minimum, mean,

and maximum are taken across all cohorts and all time. The standard deviation value is the

mean across cohorts of cohort-specific time-wise standard deviations.

Min Mean Max S.D.

No Social Security 0.000 0.224 1.098 0.163

Social Security 0.000 0.317 1.108 0.152

No Social Security 0.000 0.933 5.904 0.699

Social Security 0.000 0.713 3.811 0.535

No Social Security 0.000 0.929 5.853 0.696

Social Security 0.000 0.721 3.877 0.539

No Bond Market

No Borrowing Costs

Borrowing Costs

Absolute Percentage Adjustments to 

Achieve Perfect Risk Sharing Among 

Contemporaneous Generations

Table 4: Absolute percent adjustments to achieve perfect risk sharing among contemporaneous generations
in the base model. Minimum, mean, and maximum are taken across all cohorts and all time. The standard
deviation value is the mean across cohorts of cohort-specific standard deviations.

Table 4 summarizes the agent- and year-specific absolute percentage consumption ad-

justment needed to achieve perfect risk sharing, i.e., to ensure that all agents experience the

same percentage change in the year in question.24 It shows that the average (across agents)

absolute percentage adjustment needed to achieve full risk sharing is 0.224 percent without

Social Security, but with an unfettered bond market. The standard deviation is only 0.163

percent. Hence, generational risk among contemporary cohorts is quite small even absent

any government risk-sharing policy. Indeed, the maximum absolute adjustment is only 1.098

percent. Adding Social Security to the risk-sharing mix actually slightly exacerbates gener-

ational risk, raising the average adjustment needed to achieve percent risk sharing to 0.317

24Values of 0.000 and 1.000 reflect rounding.
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percent.

With borrowing costs and no Social Security, the absolute adjustments are larger, but

still quite small—0.933 percent on average. The maximum adjustment in this case—5.904

percent—is almost six times larger than arises without borrowing costs. In this case, adding

Social Security improves risk sharing. It reduces the average absolute adjustment needed for

full risk sharing by one quarter. It also lowers the standard deviation of the adjustment and

its maximum value.

Note that the unfettered bond market is more than three times as efficient as Social

Security in reducing risk among contemporaneous generations. Compare, in this regard, the

value of 0.224 percent with the value of 0.721 percent. The former number is the mean

absolute percent adjustment with the bond market, but no Social Security. The later value

is the mean adjustment with Social Security, but no bond market. However, as shown below,

the simulated size of short and long bond positions associated with unrestricted use of this

market appears unrealistically large.25

6.2.3 Illustrating Consumption Co-Movement Among Contemporaneous Gen-

erations

Age TFP
Depreciation 

Rate (%)
C

% Change 

in C
Wage

Stock 

Holdings

Bond 

Holdings

Rate of 

Return 

on Bonds 

(%)

Rate of 

Return to 

Capital 

(%)

% Change 

Output

% Change 

in Agg C

29 0.934 -5.960 1.659 2.396 1.805 11.029 -10.160 3.446 9.544 -1.460 2.772

30 0.946 5.160 1.605 -3.276 1.859 11.916 -10.198 3.284 -1.644 2.959 -3.169

31 0.971 6.285 1.555 -3.129 1.873 11.263 -9.823 3.462 -2.537 0.754 -3.320

32 0.984 7.453 1.494 -3.907 1.858 10.563 -9.430 3.709 -3.492 -0.799 -3.907

33 0.974 3.545 1.460 -2.258 1.796 9.784 -9.007 3.951 0.571 -3.317 -1.957

34 0.950 2.733 1.428 -2.227 1.732 9.521 -8.708 4.009 1.367 -3.544 -1.765

69 0.934 -5.960 1.700 3.030 0.000 20.772 9.111 3.446 9.544 -1.460 2.772

70 0.946 5.160 1.646 -3.228 0.000 21.274 9.205 3.284 -1.644 2.959 -3.169

71 0.971 6.285 1.585 -3.670 0.000 19.847 8.939 3.462 -2.537 0.754 -3.320

72 0.984 7.453 1.519 -4.162 0.000 18.362 8.645 3.709 -3.492 -0.799 -3.907

73 0.974 3.545 1.490 -1.948 0.000 16.874 8.293 3.951 0.571 -3.317 -1.957

74 0.950 2.733 1.466 -1.552 0.000 16.052 8.050 4.009 1.367 -3.544 -1.765

Worker

Retiree

Illustrating the Comovement in Consumption

Table 5: An example of consumption co-movement of a worker and a retiree through time.

25We also computed pairwise correlations of percentage changes in consumption among all contemporane-
ous generations. Rounded to one decimal place, all correlations equal 0.9, regardless of the bond market or
Social Security. This indicates that the risk the economy experiences is, for the most part, not generation-
specific.
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In Table 5, we follow a worker age 29 and a retiree age 69 for six years to illustrate

the co-movement in their consumption in the base model. While we consider just six years,

starting in the year 745, they are very typical of our simulation results.

As columns two and three show, the model’s shocks are sizable. There is, for example,

close to a 5 percent difference between the largest and smallest TFP values over the period.

And the depreciation shocks range from -6.0 percent to 7.5 percent. (Note, negative depre-

ciation is a good thing, i.e., a plus, when it comes to expanding the size of the capital stock

and the return to capital.)

These shocks as well as their associated impact on capital accumulation produce signif-

icant changes in the wage. In year 750, for example, the wage is 6.78 percent smaller than

two years earlier. And the rate of return to capital ranges from 9.54 percent in 745 to -3.49

percent in 746.

Interestingly, aggregate consumption and output can move in different directions over

short periods in our model. For example, output rises, but consumption falls between the

first and second years of our table. This reflects the higher stock of capital (thanks to negative

depreciation) in 745 and the higher level of TFP. But the year 746 return to capital is negative

reflecting the significant depreciation rate that year. This depresses the consumption of the

old as well as the young who also hold stock (capital).

The size of these shocks, the size of changes to factor returns, and the size of output

changes notwithstanding, there is very high co-movement of the worker’s, the retiree’s con-

sumption as well as aggregate consumption.26

Table 5 suggests that borrowing by the young and lending by the old are instrumental

to risk sharing among the living. This raises the real world question of whether the young

borrow to buy stocks.

We have two responses. First, as shown below, eliminating the bond market actually

reduces risk across non-contemporaneous generations, although at the price of a modest rise

in risk across contemporaneous generations.

Second, one subtle mechanism by which workers may be borrowing from the old to

purchase stocks is via their company’s borrowing on their behalf and paying them more

when the company does well. These payments may be contemporaneous with company’s

performance or be made through time. This effectively lets workers borrow to invest in

stocks.27

That said, the simulated sizes of short and long bond positions associated with unre-

26Also per capital consumption since the model features zero population growth.
27The fact that young borrow to purchase equity is a central feature of Constantinides, Donaldson, and

Mehra (2002).
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stricted borrowing and lending appear unrealistically large.

6.3 Generational Risk in the Alternative Model

6.3.1 Realized Utility Measures of Generational Risk

Table 6 reports our realized lifetime utility measures in the alternative model. The mea-

sures are much larger that their Table 3 counterparts. For example, under the alternative

calibration with neither bonds nor Social Security, one would need to expand or contract

a newborn’s consumption in all years of her life by 15.141 percent, on average, in order

to achieve average realized utility across newborns. The maximum adjustment is 83.694

percent. The corresponding figures in the base model are 2.686 percent and 10.329 per-

cent. Thus, the alternative calibration is highly effective in generating risk across newborns

through time.28

Min Mean Max S.D.

No Social Security 0.096 20.078 78.201 16.675

Social Security 0.008 16.895 66.167 14.229

No Social Security 0.105 15.141 83.694 13.758

Social Security 0.004 9.248 32.863 8.435

Absolute Percentage Adjustments to Achieve Average 

Realized Utility of Newborns

Alternative Model

Bond Market

No Bond Market

Table 6: Means, standard deviations, minimums, and maximums of absolute percent adjustments in each
cohort’s annual consumption needed to achieve post-transition average realized lifetime utility of newborns
in the alternative model.

Table 6 confirms that the presence of the bond market increases generational risk. How-

ever, in the alternative model, the increase is much more pronounced.

6.3.2 Measuring Generational Risk Among Contemporaneous Generations

Table 7 presents our measures of generational risk among contemporaneous generations for

the alternative model. As indicated, the average absolute percentage adjustments needed to

28These results raise the question of whether Krueger’s and Kubler’s (2006) finding that Social Security
can be Pareto improving, if not in general, at least under some under particular preference structures, is
driven by their assumption of unrealistically large economic shocks.
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achieve full risk sharing are less than half a percent without Social Security, but with bonds.

Hence, in the presence of a bond market, generational risk among contemporary cohorts is

quite small even absent any government risk-sharing policy. Indeed, the maximum value is

only 7.014 percent. Adding Social Security reduces reduces these small values even further.

Now the average absolute adjustment is 0.262 percent and the maximum adjustment is 4.172

percent.

Min Mean Max S.D.

No Social Security 0.000 0.437 4.557 0.341

Social Security 0.000 0.296 4.179 0.289

No Social Security 0.000 3.473 24.012 2.627

Social Security 0.000 2.307 17.919 1.789

Absolute Percentage Adjustments to 

Achieve Perfect Risk Sharing Among 

Contemporaneous Generations

Alternative Model

Bond Market

No Bond Market

Table 7: Absolute percent adjustments to achieve perfect risk sharing among contemporaneous generations
in the alternative model. Minimum, mean, and maximum are taken across all cohorts and all time. The
standard deviation value is the mean across cohorts of cohort-specific standard deviations.

Without bonds or Social Security, the absolute adjustments are larger—2.943 percent on

average, with a much larger maximum value of 23.983 percent. Social Security reduces the

average and the maximum values of the adjustment to 2.004 percent and 15.335 percent,

respectively.

But, as was the case in the base model, if the bond market could be used with unrestricted

leverage, it would be more effective than Social Security in reducing generational risk among

the living. To see this, compare the value of 0.486 percent with the value of 2.004 percent.

The former value is the mean absolute percent adjustment with the bond market, but no

Social Security. The later value is the adjustment with Social Security, but no bond market.

7 Conclusion

Generational risk and its mitigation via Social Security and other government policies has

long intrigued economists. This paper adds to the literature on this issue. Its bare bones,

trend-stationary, 80-period OLG model can generate small or large generational risk depend-

ing on the calibration.
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Our baseline calibration sets depreciation shocks to replicate the variability of returns

to total U.S. wealth. Our alternative calibration reproduces the variability of returns to

U.S. equities. We view the baseline calibration as more reasonable, since its output (and

thus wage) variation, while higher than observed, is substantially lower than that of the

alternative calibration.

Under the baseline calibration, generational risk is remarkably small, regardless of the

presence of the bond market. This holds whether generational risk is measured in terms

of differences across age cohorts in realized lifetime utility or as differences across contem-

poraneous generations in their exposure to risk from contemporaneous shocks. Under our

alternative calibration, the risk of realizing a much higher level of lifetime utility than another

generation is economically significant. However, even with this calibration, contemporaneous

generations are able to effectively trade risk using the model’s one-period bond market with

unrestricted leverage. Interestingly, though, although the bond market helps contempora-

neous generations share risk, its presence accentuates differences in realized lifetime utility

across generations.

Social Security is a significant generational risk-mitigating institution regardless of the

calibration. But it’s not as powerful in this regard as the one-period bond market. One

should, however, view our bond-market results as illustrative of the potential power of fi-

nancial exchange to share risk, not as evidence that such risk sharing necessarily arises. The

reason is that full financial risk sharing entails, in our model, unrealistically large short- and

long-bond positions for particular cohorts.

Beyond these points, the paper demonstrates the feasibility of simulating realistic, large-

scale OLG models with aggregate shocks in which generational policy matters as appears

so evident in real economies. Our solution algorithm is simple and results are robust based

on a range of simulations including those featuring large and persistent TFP shocks as well

as very high degrees of risk aversion. An interesting direction would be to move away from

our trend stationary environment and consider the effect on generational risk of a random

walk in TFP in this model. This is likely more important for studying generational risks in

countries whose TFP processes exhibit either much higher serial correlation than observed

for the U.S. or breaks in their TFP growth rates.29 We leave this for future work.

29Prescott(1986) indicates that modeling the growth rate in U.S. TFP as a random walk ”result in es-
sentially the same fluctuations” as the autoregressive process, which he used and we employ. This said,
generational risk, even in the U.S., might be different based on a random walk in TFP growth.
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A Appendix

For Online Publication

A.1 Algorithm

The following is a step-by-step description of our algorithm.

Initialization:

• Set z̄ and δ̄ to their average values and solve for the nonstochastic steady state cash

on hand of each age group without bond, s̄ = (x̄1, . . . , x̄G−1). Let (s0, z0, δ0) = (s̄, z̄, δ̄)

be the starting point of the simulation.

• Approximate G − 1 consumption functions by polynomials in the state variables and

the shock delta: c1(s, z, δ) = φ1(s, z, δ; b1), . . . , cG−1(s, z, δ) = φG−1(s, z, δ; bG−1), where

b1, . . . , bG−1 are polynomial coefficients. We use linear polynomials. To start the iter-

ations, we make the following initial guess for the coefficients:

b1 = (0, 0.9c̄1/x̄1, 0, . . . , 0, 0.1c̄1, 0), . . . , bG−1 = (0, 0, . . . , 0, 0.9c̄G−1/x̄G−1, 0.1c̄G−1, 0).

• Take draws of the exogenous path of shocks for T years. We set T to 830, which

corresponds to roughly 10 observations per polynomial coefficient.

Outer loop:

• The first step in the outer loop is to simulate the model forward, i.e. compute the

state space for t = 1, . . . , T . To do so, at each time t we proceed as follows:

– Recall that at time t, the state vector consists of the vector of cash-on-hand

variables of generations 1 through G − 1, st = (x1,t, . . . , xG−1,t) and exogenous

shocks.

– Using this state vector, for each age group g, calculate its consumption c
(p)
g given

the current guess for the coefficients b
(p)
g , where the subscript (p) denotes the

current iteration of the outer loop. I.e., c
(p)
g,t equals the inner product of the vector

(1, st, zt, δt) with the vector of coefficients b
(p)
g . Compute the generation-specific

asset demands, θg,t, as the difference between cash on hand and consumption,

θg,t = xg,t − cg,t. Note that the sum of asset demands of generations 1 through

G− 1 is the capital stock at the beginning of period t+ 1, kt+1.
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– At this point enter the inner loop to compute the agents’ choices of bond shares,

αg,t, for generations 1 through G− 1, and the risk free rate r̄t. Recall that these

are needed to compute the cash-on-hand variables at time t+ 1.

– Inner loop:

∗ Use Broyden’s method to solve (8) for r̄t. To start, make an (arbitrary) initial

guess for the value of r̄t.

∗ Given r̄t, solve the system of G−1 equations given by (19) for g = 1, . . . , G−1,

for G− 1 unknowns, α1,t, . . . , αG−1,t. To do so, approximate the expectation

by Gaussian quadrature.30 Notice that the consumption at time t+ 1, cg,t+1,

on the right-hand-side of each equation (19) needs to be approximated by the

polynomial in the state vector plus δ. Hence, each of these equations depends

on the entire distribution of the cash-on-hand variables, and through them,

on all of the generation-specific α’s, α1,t, . . . , αG−1,t. To solve a nonlinear

system of G − 1 nonlinear equations in G − 1 unknowns we use the Gauss-

Seidel algorithm, which reduces the problem of solving for G − 1 unknowns

simultaneously in G−1 equations to that of iteratively solving G−1 equations

in one unknown.31 We solve each of these nonlinear equations in one unknown

α using Newton’s method.

∗ Use αg,t found above for all g to calculate (8) and update r̄t.

– Given αg,t for g = 1, . . . , G − 1, r̄t, kt+1, and exogenous shocks, we can now

compute each generation’s cash on hand in period t+1 as the sum of their labor

and capital income (plus or minus any government transfers) at time t+1.

• Note that for each age group g and each state (st, zt), t = 1, . . . , T , (18) implies

cg(s, z) =
{
βEz

[(
1 + r(s′, z′)

)
u′(cg+1(s

′, z′))
]

(A.1)

+ IβEz
[(
αg(s, z)(r̄(s, z)− r(s′, z′))− f(αg(s, z))

)
u′(cg+1(s

′, z′))
]}− 1

γ .

Denote the right-hand-side of (A.1) by yg and evaluate the expectation using Gaussian

quadrature.

• For each age group g, regress yg on (st, zt, δt) and a constant term using regularized least

30We use 4 nodes in the quadrature, using more does not change the results.
31As the starting point for Gauss-Seidel we use the α’s computed at time t-1.
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squares with Trikhonov regularization. Denote the estimated regression coefficients by

b̂
(p)
g .

• Check for convergence: If

1

G− 1

G−1∑
g=1

1

T

T∑
t=1

∣∣∣∣∣x(p−1)g − x(p)g
x
(p−1)
g

∣∣∣∣∣ < ε,

end. Otherwise, for each age group g update the coefficients as b
(p+1)
g = (1−ξ)b(p)g +ξb̂

(p)
g

and return to the beginning of the outer loop. We use ξ = 0.1 and ε ∈ [10−7, 10−13].

A.1.1 Accuracy Test Results

We now present the results of the two accuracy tests (out-of-sample deviations from the

exact satisfaction of the Euler equations and the Den Haan-Marcet statistic) described and

summarized in Sections 5.1 and 5.2.

A.2 Generational Risk-Inducing Policy

To ensure that our generational risk measures are, indeed, capturing generational risk, we

next simulate our base model, but with risk-inducing policy and with depreciation shocks

turned off to maximize the policy’s ability to exacerbate TFP shocks. In considering this

policy, bear in mind that it tends to persist because it’s tied to the wage, which is tied to

TFP, whose process is autocorrelated.

By construction, the risk-inducing policy differentially affects the young and old. It does

so by making the good times far less good for the young and far better for the old. For

example, if z and the capital stock are kept at their average values, the young receive a wage

of 1.657, pay 0.366 in taxes, and the old receive 0.471 in benefits. If times are good and z is

two standard deviations above the mean, the corresponding values are 1.761 for the wage,

0.503 for the tax on the young, and 0.647 for the old-age benefit. If times are bad and z is

two standard deviations below the mean, the wage, tax, and benefit amounts are now 1.553,

0.229, and 0.295, respectively. Notice that in this example, if viewed as the percentage of

the wage, the tax on the young is almost twice as large in the good state than in the bad

state. On the other hand, the old receive a benefit in the good state that is more than twice

as large than that in the bad state, while also enjoying a higher return on their investments.

The younger young and the older old are particularly affected. Indeed, we would expect

smaller correlations in percentage changes in consumption the further apart are agents in

age. Table A.3, which considers age group two, shows that this is precisely what happens.
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Min Mean Max

No Social Security 0.0000 0.0002 0.0005

Social Security 0.0001 0.0003 0.0005

No Social Security 0.0002 0.0013 0.0031

Social Security 0.0004 0.0009 0.0018

No Social Security 0.0000 0.0002 0.0003

Social Security 0.0001 0.0003 0.0006

No Social Security 0.0009 0.0024 0.0039

Social Security 0.0013 0.0026 0.0039

No Social Security 0.0012 0.0016 0.0018

Social Security 0.0015 0.0022 0.0027

Bond Market 0.0000 0.0001 0.0005

No Bond Market 0.0000 0.0000 0.0002

More Volatile TFP 0.0000 0.0006 0.0011

More Persistent TFP 0.0000 0.0001 0.0001

Very High Risk Aversion 0.0000 0.0000 0.0000

Risk-Inducing Policy

Sensitivity Analysis Models

Mean Absolute Euler Equation Deviations

Base Model

Base Model With Borrowing Costs

Base Model Without Bonds

Alternative Model

Alternative Model Without Bonds

Table A.1: Minimum, mean, and maximum across generations of the average, across time, of the absolute
value of the generation-specific, out-of-sample deviations from the perfect satisfaction of Euler equations.

Min Mean Max

No Social Security 6.240 12.292 21.285

Social Security 12.315 18.310 24.828

No Social Security 5.506 10.837 23.188

Social Security 5.598 10.184 16.851

The Den Haan-Marcet Statistic

Base Model

Alternative Model

Table A.2: The minimum, mean, and maximum values across generations of the Den Haan-Marcet statistic
in the base and alternative models.
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Age group 2 correlated with age 3 25 34 35 36 37 38 39 55 80

Correlation 1.000 0.998 0.921 0.806 0.419 -0.330 -0.731 -0.864 -0.976 -0.979

Correlations of Age Group Two's Percent Changes in Consumption with Those of Other Age Groups

No Stochastic Depreciation and No Bond Market

Table A.3: Correlations of age group two’s percent changes in consumption with percent changes in
consumption of other age groups.

Bohn, in several papers, and Bovenberg and Uhlig (2008) consider a different generational-

risk producing policy namely one that raises Social Security’s tax rate in bad times (negative

TFP shocks) and lower it in good times (positive TFP shocks) to maintain benefit levels.

This, obviously, makes bad (good) times worse (better) for workers while protecting retirees’

benefits.

Min Mean Max Min Mean Max

corr(% change in C worker i; % change in C worker j) -0.973 0.374 1.000 1.000 1.000 1.000

corr(% change in C retiree i; % change in C retiree j) 0.996 0.999 1.000 0.996 1.000 1.000

corr(% change in C agent i; % change in C agent j) -0.979 0.032 1.000 0.995 1.000 1.000

corr(% change in C agent i; % change in per capita C) -0.976 0.125 0.986 0.989 0.995 0.995

all agents: absolute % adjustment for perfect risk sharing 0.000 0.892 7.337 0.322 0.563 0.834

Measures of Generational Risk With Risk-Inducing Policy

No Stochastic Depreciation, With and Without Bond Market

No Bond Market Bond Market

Table A.4: Measures of generational risk with risk-inducing policy with and without bonds. The measures
are presented as summary statistics of pairwise correlations in percentage changes in consumption among
different age groups (first four rows) and absolute percentage adjustments needed to achieve full risk sharing
(last row).

Table A.4, which incorporates the risk-inducing policy, reports summary statistics of pair-

wise correlations in annual percentage changes in consumption between different age groups

among workers only, retirees only, and all agents.32 Second, it examines the correlation of

each agent’s annual percentage change in consumption with the annual percentage change in

per capita consumption. And third, it reports the absolute percent adjustments to achieve

perfect risk sharing among contemporaneous generations in the base model, analogous to

the results in Table 4 for the base model with Social Security. The results that are dramat-

ically different from those for the base model. Take row 4, for example, which shows the

minimum, mean, and maximum values of the correlation of each agent’s percentage change

32For each age group pair, g and g′, we correlate the pair’s percentage consumption changes between adja-
cent time periods across all 755 time periods during which they overlap. Hence, each correlation coefficient
is calculated based on the same number of observations.
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in consumption with per capita consumption. These three values, in the no-bond-market

case, are -0.976, 0.125, and 0.986. Recall that in the base case, the corresponding values all

equal 0.9 rounded to one decimal place. Hence, we see what we expect—larger measured

generational risk in the presence of larger generational risk.

The addition of bonds reverses this story. With bonds, the Table-A.4, row-4 values are

0.989, 0.995, and 0.995, indicating, as before, that in principle the bond market can be

effective in hedging generational risk. This is also clear from the last row in Table A.4.

Without bonds, the maximum adjustment needed to achieve full risk sharing among living

generations is 7.337 percent. With bonds, it’s far less, 0.834 percent.

A.3 Sensitivity Analysis

To assess the robustness of our findings, we also simulate models with high risk aversion,

greater persistence of the TFP shocks or larger TFP shocks. Specifically, we consider risk

aversion of 15, a TFP process with an annual autocorrelation coefficient of 0.961 (recall,

the base model’s annual value is 0.814), and a TFP shock whose standard deviation is 5

times larger than in the base model. All models feature a bond market and no depreciation

shocks or Social Security. Table A.5 shows that increasing risk aversion to 15 has minimal

effect on both output variability and generational risk. On the other hand, increasing the

volatility or the persistence of the TFP process increases our realized utility measure of

generational risk. Table A.6 shows that this coincides with an increase in the variability of

output (and, thus, wages) beyond empirically relevant values. Table A.7 shows that each of

the above variants confirms our finding in sections 6.2 and 6.3 of very small generational risk

across contemporaneous generations in the presence of the bond market. The bond market,

even though its maturity is only one period, is remarkably robust in pooling risk among

contemporaneous generations.
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TFP Mean

More persistent 2 4.461 3.656

More volatile 2 6.620 5.002

Assumed 15 1.375 0.954

Assumed 2 1.282 0.992

Absolute Percent Adjustment to Achieve Average 
Realized Utility of Newborns Through Time

Models With More Volatile or Persistent TFP or Higher 
Risk Aversion

Risk 
Aversion

Standard 
Deviation 

Table A.5: Means and standard deviations of absolute percentage adjustments needed to achieve average
realized utility of newborns through time. All models feature a bond market and no depreciation shocks or
Social Security.

Model

Base model 15 3.662

More persistent TFP 2 8.739

More volatile TFP 2 18.644

Standard Deviation of Output Percent 
Deviations from the Mean

Risk 
Aversion

Standard 
Deviation (%)

Table A.6: Standard deviation of percentage deviations from the mean in output, with high risk aversion,
with higher persistence, or higher volatility in the TFP process. When the TFP process is more persistent,
its autocorrelation coefficient equals 0.99 on a quarterly basis (0.96 on an annual basis). When it is more
volatile, the standard deviation of its innovation is 5 times larger than that assumed in the base model. All
models include bonds and do not include depreciation shocks.

39



Generational Risk With More Volatile or More Persistent TFP Process, and High Risk Aversion

Assumed TFP More persistent TFP

Risk aversion 15 Risk aversion 2

Min Mean Max Min Mean Max

corr(% change in C worker i; % change in C worker j) 1.000 1.000 1.000 1.000 1.000 1.000

corr(% change in C retiree i; % change in C retiree j) 1.000 1.000 1.000 1.000 1.000 1.000

corr(% change in C agent i; % change in C agent j) 1.000 1.000 1.000 1.000 1.000 1.000

0.997 0.997 0.997 0.999 0.999 0.999

all agents: absolute % adjustment for perfect risk sharing 0.000 0.036 0.092 0.005 0.129 0.234

More volatile TFP Assumed TFP

Risk aversion 2 Risk aversion 2

Min Mean Max Min Mean Max

corr(% change in C worker i; % change in C worker j) 1.000 1.000 1.000 1.000 1.000 1.000

corr(% change in C retiree i; % change in C retiree j) 1.000 1.000 1.000 1.000 1.000 1.000

corr(% change in C agent i; % change in C agent j) 0.999 1.000 1.000 1.000 1.000 1.000

0.998 0.999 0.999 0.999 0.999 0.999

all agents: absolute % adjustment for perfect risk sharing 0.000 0.133 0.495 0.076 0.129 0.176

corr(% change in C agent i; % change in per capita C)

corr(% change in C agent i; % change in per capita C)

Table A.7: Measures of generational risk in the model with high risk aversion, or with high persistence
or volatility in the TFP process. All models feature a bond market, no depreciation shocks, and no Social
Security. The measures of generational risk include summary statistics of pairwise correlations in percentage
changes in consumption among different age groups (first four rows) and absolute percentage adjustments
needed to achieve full risk sharing (last row).
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