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I. Introduction

Robert Lucas begins his classic article "Understanding Business Cycles"

with the question, "Why is it that, in capitalist economies, aggregate

variables undergo repeated fluctuations about trend, all of essentially the

same character?" Many textbooks introduce macroeconomics with a graph of real

GNP together with a trend line, implying that the purpose of macroeconomic

theory is to explain the deviations of production from the trend. Implicit

both in Lucas's question and in a such a picture is the notion that output

fluctuations are transitory. Certainly this view is implicit in the standard

explanation of the business cycle: the natural rate of output grows at a more

or less constant rate while output fluctuations represent temporary deviations

from this natural rate.

The purpose of this paper is to question this conventional view. In

particular, we examine one simple implication for the univariate properties of

eccrmic time series. if fluctuations in output are dominated by temporary

deviations from the natural rate, then an innovation in output should not

substantially change one's forecast of output in, say, ten or twenty years.

Over a long horizon, the economy should return to its natural rate; the time

series for output should be trend-reverting.

Our examination of quarterly post-war United States data leads us to be

skeptical about this implication. In particular, we find that a one percent

innovation in real GNP should change one's forecast of GNP over a long horizon

by over one percent. While we find some evidence of short-run dynamics that
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makes SNP different from a random walk with drift, the long-run implications

of our estimates suggest that shocks to GNP are largely permanent.

Our goal here is to establish a stylized fact against which macroeconomic

theories can be measured. It is obviously imprudent to make definitive

judgments regarding theories on the basis of one stylized fact alone.

Nonetheless, we believe that the great persistence of output shocks is an

important and often neglected feature of the data that should more widely be

used for evaluating theories of economic fluctuations. Most of this paper is

aimed at establishing the high degree of persistence. In the last section we

briefly discuss the extent to which prominent theories of the business cycle

are consistent with our finding.

The research presented here builds on the work of Nelson and Plosser

[1982). These authors show that for a number of macroeconomic time series,

measured annually over periods of 60 to 120 years, one cannot reject the

existence of a unit root in the series' autoregressive representation. That

is, one cannot reject that some fraction of an innovation in the series is

permanent. Nelson and Plosser also argue for a simple MA(1) representation of

real output growth. Our work extends theirs in three ways.

First, we estimate general ARIMA models for real GNP growth. Pure

autoregressive and pure moving average models are highly restrictive.1 More

general ARIMA models with relatively few parameters may be better able to

capture the dynamics that characterize economic time series. Our results

1Schwert [1985) demonstrates that omitted moving average components can
have serious effects on tests for the presence of unit roots in time series,
and often are not well proxied by extra autoregressive terms.
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indeed suggest that mixed ARIMA models are preferred to pure autoregressive

models with the same number of parameters.

Second, we show how to test the null hypothesis that a time series is

stationary around a deterministic trend. In contrast, Nelson and Plosser test

and fail to reject the null hypothesis of non-stationarity. Our test thus

provides a natural complement to standard tests of non-stationarity.

Third, we try to direct attention away from the question of the existence

of a unit root in real GNP, and towards the question of its quantitative

importance for GNP behavior.2 As we show below, a time series can contain a

unit root while an innovation today has only little effect on one's long-run

forecast. Our results suggest not only that a unit root is present, but also

that it is essential to understanding economic dynamics.

2t has been pointed out to us that most economists would probably be more
uncertain about their forecast of GNP at a 100 year horizon than their
forecast at a 50 year horizon. It follows that most economists implicitly
believe that log GNP is not stationary around a trend, and perhaps that it has
a unit root. But the presence of a Unit root does not determine the answer to
our question.
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II. Methodology

Suppose real GNP falls one percent lower than onewould have expected

from its past history. How much should one change one's forecast of GNP for

ten or twenty years ahead?

In this section we address some methodological issues that arise in

formulating a convincing answer to this question.

Detrending and Differencing

The first feature of GNP or similar economic data that becomes apparent

to any user is that it has historically drifted upward. GNP was higher in

1960 than in 1950, still higher in 1970, and higher again in 1980. The

macroeconometrician must deal with this upward drift in some way. Perhaps the

most standard approach (e.g., Blanchard [1981)) is to detrend the data before

analysis.

It may be obvious that detreriding the data is not well suited for our

purposes. Detrending forces the resulting series to be trend-reverting, so

that today's innovation has no ultimate effect on output. Thus detrending

presupposes the answer to our question at an infinite horizon.

Of course, it could still be the case that at a large but finite horizon

of 10 or 20 years, the detrended series displays a considerable effect of

today's innovation. However, in samples of typical size, detrending gives a

seriously biased answer to our question, even at a finite horizon, when the

time series actually has a unit root. A simple example illustrates this

pitfall. Suppose that Y, such as the log of GNP, followed a random walk

with drift:
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= a + Vt-i +

where a is the drift term, representing long-run growth. If one detrends

the t series and then estimates an AR(i) process, the coefficient is

seriously biased toward zero. With 100 observations, as might be the case

with post-war quarterly data, Mankiw and Shapiro [1985] show in a Monte Carlo

study that the median value of the autoregressive term is 0.91. If one used

this biased estimate to answer our question, one would note that (0.91)40 =

0.02 is a small number and erroneously conclude that innovations in t have

little information on t+40•

The same problem arises when using time as an explanatory var-iab1e in a

regression. As first noted by Frisch and Waugh [1933], including a time trend

-in a regression is numerically identical to detrending all the variables.

Hence, by the above argument, we avoid the use of time trends throughout this

paper.

A second response to the upward drift in log GNP is to difference the

series. The differenced series, the growth rate of real GNP, appears

stationary, allowing one to invoke asymptotic distribution theory. We

therefore begin with the d-ifferenced series as the primary data.

Two issues arise, however, in using differenced data. First, does

differencing the data presuppose the answer to our question? The answer is

no, as the following example illustrates. Suppose Vt follows an IMA(1,1)

process:

Vt - Vt_i = a + —

Then a unit impulse in Vt changes one's forecast of t+n by (1-8) regardless

of n. Hence, depending on the value of 8, news about current GNP could have a



large or small effect on one's forecast of GNP in ten years. Assum-ing a unit

root -is therefore consistent with both great and little long-run persistence.

Second, if V in fact does not have a un-it root but -is stationary arouni a

trend, does differencing the data bias our conclusions toward finding

excessive persistence? The answer is again, no. This result is discussed

below.

Impulse Response Functions

We model the change in log GNP as a stationary ARMA process. That is,

(1) 4(L) = 0(L)

where (L) = 1 - 41L - - ... - 4LP.

and 0(L) = I + 01L + 02L2 + ... + eqL.

This equation can be rearranged to arrive at the moving average representa-

tion (or impulse response function) for

(2) = 4(LY1 0(L) Ct

= A(L) Ct.

If the change in log GNP is stationary, then E A2 is finite, implying that
i=O

the limit of A as i approaches infinity is zero. In other words,

stationarity of the differenced series implies that an innovation does not

change one's forecast of growth over a long horizon.

We can derive the moving average representation for the level of Vt by

inverting the difference operator 1-L:



(3) = (1 — L)'1 A(L) c

= B(L) c,

where

1

(4) B1 = E A..

j=O

Of course, Vt need not be stationary, and thus B1 need not approach zero as I

approaches infinity. The value of B1 for large I is exactly what we wish to

estimate, since it measures the response of ''t+i to an innovation at time t.

The above representation keeps open the possibility that the level of log

GNP is stationary around a deterministic linear trend. In this case, the

moving average of the differenced representation has a unit root, that is,

0(L) = (1-L)9(L), where 9(L) is the moving average component of the process in

levels. Thus, if the level process is ARMA(p,q), then the differenced

process will be ARMA(p,q+1). (This implies that allowing for stationarity

requires at least one moving average parameter.3) Direct computation shows

that 8(L) = 4(L)1 9(L), as expected. Hence, modeling Mt as a stationary

ARMA process leaves open the question of whether t is stationary.

Parameterizat ion

To estimate the ARMA process we must choose the parameterizat-ion, that

is, the number of AR and MA parameters. One approach, suggested by classical

3The autoregressive representation for the model includes an infinite
number of parameters which do not die out to zero. Schwert [1.985) shows that
even if the moving average component does not contain a unit root, long

autoregressive representations need not provide good approximations.
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statistical methods, -is to include as many parameters as are significant at

standard levels of inference. We report below the likelihood values for a

variety of parameterizations; simple likelihood ratio tests can be used to

compare any specification to any more general specification.

Another approach -is to choose the optimal parameterization using either

the Schwarz [1978) criterion or the Akaike [1974,1976] criterion.4 Both rules

involve choosing the parameterization with the maximum likelihood after

imposing a penalty for the number of parameters. The two rules differ -in the

size of the penalty. In particular, the Akaike criterion tells us to

minimize

-2 in L + 2 k,

where L is the likelihood, and k = p + q is the number of parameters. The

Schwarz criterion tells us to minimize

—2 ln L + k ln T

where T is the number of observations. Since our sample includes 152

observations and ln(152) is about five, the Schwarz criterion penalizes extra

parameters much more heavily.

Note that both criteria are based on the principle that for any given

number of parameters (p+q), a higher likelihood indicates a better model. A

robust strategy, therefore, is to prefer, given the total number of

parameters, the ARMA model th the greatest likelihood.

While we report the values of both the Schwarz and the Akaike criteria,

we do not rely exclusively on this strategy. First, there is not general

4See Neftci [1982] for a discussion of these criteria.
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agreement about which criterion is best. Second, it is not clear whether

these criteria will perform well for our purposes, since they were not

designed with our question in mind. We therefore report results for a variety

of parameterizations to gauge to what extent our conclusions are robust.

Estimation

A key problem in estimating a time series model with moving average

parameters is that innovations in the series are not identifiable, even if the

parameters of the model are known. Because the autoregressive representation

of the model is infinite, in any finite sample the innovation sequence depends

on pre-sample information. When the moving average roots are strictly less

than unity, the process is called invertible. In this case the dependence on

pre-sample information decreases through the sample and can be ignored

altogether in large samples. Simple approximate estimators for ARMA models

are available which exploit this fact, for example by assuming that all

pre-sample innovations are zero.

Unfortunately, these simple methods do not work well for ARMA processes

with moving average roots equal or close to unity. It is known that they tend

to produce estimates of the MA parameters whose roots are seriously biased

away from unity (see for example Davidson [1981) and Harvey [1981]).

Accordingly we use an exact maximum likelihood estimation method which

explicitly recognizes that the innovation sequence is unobservable. We use a

Kalman filter to build up the log likelihood function of the model as a sum of

conditional log likelihoods. Full details are given in Harvey [1981]; here we

summarize the approach.

If the change in log GNP, follows an ARMA(p,q) process, it can be

written as one element of a vector Markov process where a obeys
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(5) a. = Ta_1 + Rrt

T= 1

Gi
rn-i

0 . . . . 0
9m-1

Here the 4 are the AR parameters and the 8 are the MA parameters. m =

max(p,q4-1) and = 0 for i > q, q = 0 for I > p. The innovation process

is assumed to be Normal white noise with variance a2- is the first

element of so we have = z'a. where z' = [1 0 ... 0].

The steady-state distribution of a is Normal with mean a0 and variance

a2P0. In our application we subtract the sample mean from the data and set

a0 = 0. P0 is given by

(6) Vec (P0) = [I - T®T] 1Vec (RR')

Given a0 and P0. one can compute, for t = 1.. .T, the following

quantities. First, the one—step-ahead prediction of a. conditional on time

t - 1 information, is ai = Ta_1. Then = z'ai The

conditional variance-covar-iance matrix of the errors in the one-step--ahead

prediction of a is P =
TPt..1T' + RR', and the conditional variance of

the error in the one-step—ahead prediction of Yt is =
z'P1 _1•

Using the observation of one can compute the prediction error

itself, = Finally one updates for the next round, setting

a = ai + t_izvt/ft and = —

t_iz'F'.tI —1'-
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Once one has computed v and for the whole sample t = 1.. .T, one can

form the log likelihood function f or the sample as

(7) -(T/2)log(2ir) - (T12)log(a2) - ()log -

We maximize this likelihood function using a method of scoring with modified

step size (Berndt, Hall, Hall and Hausman [1974]). We compute an asymptotic

variance-covariance matrix for the parameters, r, as the inverse of the moment

matrix of the numerical derivatives of the conditional log likelihoods with

respect to the parameters. A model with parameter restrictions can be

estimated in a similar manner, and the likelihood ratio computed.

Since the process is Markov, it is straightforward to obtain the

impulse response function of the process from equation (1) given the

parameters. The impulse response at horizon k, Ak, is just

(8) Ak = ztTkR

To compute the impulse response at horizon k in levels, Bk, one simply uses

equation (4) and sums A for i = 0.. .k. This estimate of the impulse response

is a nonlinear function of the parameters, whose limit as k increases is

z'[l - T]1R.

Its asymptotic standard error can be estimated as V(d'rd) where d is the

vector of derivatives of the function with respect to the parameters. We

compute d numerically.
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III. Results

We estimate the ARMA process (1) for the differenced series and calculate

the implied impulse response function for the level of the series (B11s) using

real GNP data for the United States. We use post-war, seasonally adjusted,

quarterly data from 1947:1 to 1985:1. We consider all ARMA models for the

difference of log GNP with up to three AR parameters and three MA parameters.

There are thus sixteen models under consideration for GNP growth, the simplest

being white noise, the most complex the ARMA(3,3).

Table 1 presents the model selection criteria for the sixteen models.

The value of the likelihood function points toward the ARMA(2,2) model. Both

the ARMA(1,2) and the ARMA(2,1) are rejected in favor of this more general

alternative. Moreover, one cannot reject the ARMA(2,2) specification in favor

of an ARMA(2,3), an ARMA(3,2), or an ARMA(3,3). It appears that classical

statistical inference leads one to an ARMA(2,2) specification.

The Akaike and Schwarz criteria lead to different conclusions, however.

The Akaike criterion suggests an ARMA(2,3), and possibly more moving average

parameters than we have estimated. The Schwarz criterion, which penalizes

extra parameters more heavily, suggests the much more parsimonious ARMA(1,O)

specification.5 If we adopt the robust strategy of choosing the model with

the highest likelihood given the number of parameters k, we are led to adopt

the ARMA(1,O) for k=1, the ARMA(O,2) for k=2, the ARMA(O,3) for k=3, and the

5lnterest-ingly, this is the process that Deaton [1985} suggests for labor
income growth and Watson (1985] for GNP growth. Watson goes on to argue for
an unobservable components model that implies a restricted ARMA(2,2) repre-
sentat ion.
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ARMA(2,2) for k=4.

Table 1 also presents the maximum likelihood obtainable for each model,

under the constraint that the moving average parameters sum to minus one, or

equivalently that the limit of the impulse response function in levels is

zero. The Table shows that this constraint can be very strongly rejected when

it is imposed on the most parsimonious models we consider, with up to one

autoregressive parameter and two moving average parameters. The rejections

are weaker when we impose the constraint on higher order models; and in two

cases, ARMA(2,1) and ARMA(1,3), our unconstrained estimates obey the

constraint almost exactly. however, neither of these models is preferred,

given the number of their parameters, and it remains true that for our

preferred ARMA(2,2) model one can reject the unit root constraint at about the

6 percent level if one compares the likelihood ratio to the Chi-squared

distribution with one degree of freedom.

Table 2 presents the parameter estimates for the different unconstrained

models. Again, the ARMA(2,2) appears to describe the data well. Both the

second AR and the second MA parameters are significant, while additional

parameters that might be added are insignificant.

Table 3 presents the implied impulse response function for the level of

log GNP for each specification. While the particular parameter estimates in

Table 2 sometimes appear to differ substantially, the implied impulse response

functions in Table 2 appear almost unanimous. With two exceptions, the

impulse response increases above one and settles between 1.5 and 2.0 at about

the eighth quarter and remains there even at ten or twenty years. That is, a

one percent innovation in real GNP increases the univariate forecast of GNP by
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over one percent over any foreseeable horizon.

The two exceptions to this statement are of course the models which are

estimated to have unit moving average roots. The estimated ARMA(1,3) is

fairly persistent, with an impulse response of 1.6 even at a five—year

horizon, and 0.39 at ten years. However, the likelihood function for this

model is extremely flat, both locally as reflected in the enormous computed

standard errors, and globally as shown by the fact that coefficient values

similar to those estimated for the ARMA(1,2) process have a likelihood within

0.05 of the reported values. The estimated ARMA(2,1) dies away more rapidly,

but here again the likelihood function is relatively flat.

The evidence of persistence which we find in the quarterly post-war GNP

data -is robust to change in sample period and frequency of data. If we end

our sample in 1972, prior to OPEC and to the productivity slowdown, we

continue to find impulse response functions above one. (Indeed, the unit root

in the ARMA(2,1) process does not obtain in the pre-1972 period.) When we

examine post-war annual data, we cannot reject the hypothesis that the log of

real GNP is a random walk with drift. In this case, the impulse response is

unity at all horizons.
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IV. Econometric Issues

In recent years, economists have become more aware of various pitfalls in

applied time-series econometrics. Even apparently straightforward procedures

can suffer from severe problems of bias in samples of typical size.6 In this

section, therefore, we review the literature on the asymptotic and finite-

sample properties of our estimator, and present a very small Monte Carlo study

with 20 simulations of a process with a Unit root in the moving average

component.

There is a small recent literature analyzing the properties of maximum

likelihood estimates of ARMA model parameters (A-nsley and Newbold [1980],

Davidson [1981), Harvey [1981], Pesaran [1981), Sargan and Bhargava [1983]).

When the moving average roots are strictly less than unity, the maximum

likelihood estimator is consistent and asymptotically normal. When there are

unit roots, however, these results break down. Sargan and Bhargava [1983]

have shown that in the first-order moving average case with a unit parameter

there exists a local maximum of the likelihood function whose distance from

unity is of order (1/T) where T is the sample size; but this local maximum is

not distributed asymptotically normal. It has a probability mass at exactly

unity, and Sargan and Bhargava show how to compute this mass for any sample

Si ze.

These results can be understood intuitively by noting that in the

first-order moving average case, values for the parameter of r and (1/r) are

observationally equivalent. It follows that the likelihood function has

5See, for example, Flay-in [1983) and Mankiw and Shapiro [1986].
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turning points (local maxima or minima) at r = 1 and -1. Davidson [1981)

develops some intuition and discusses higher-order moving averages.

Other authors have conducted Monte Carlo simulations to characterize the

properties of the global maximum of the likelihood function in finite samples.

Ansley and Newbold [1980), Harvey [1981] and Davidson [1981] all report

finding a probability mass at exactly unity for this maximum, particularly

large when the true root is unity but also present when it is considerably

less than unity. It follows that, in Davidson's words, "the occurrence of

boundary estimates in empirical work with the exact maximum likelihood

estimator is very weak evidence of over-differencing." The rest of the

distribution of the estimator is roughly bell-shaped and centred on the true

value when this is less than unity.

Davidson reports some Monte Carlo results for a likelihood ratio test of

the hypothesis that the moving average root equals one. He finds that the

test rejects too infrequently (4 times out of 200) when the 5 percent

critical value of the CM-Squared distribution with one degree of freedom is

used.

Finally, Ansley and Newbold report Monte Carlo results for the computed

standard errors of the maximum likelihood parameter estimates. They find that

in samples of size 50 and 100 standard errors are often too small,

particularly when the true parameter values display near parameter redundancy

(that is, when an autoregressive root almost cancels with a moving average

root).

Our interest in this paper is in precisely the difficult case where there

may be a unit moving average root, and the time series may display near
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parameter redundancy. To get a sense of the behavior of our estimator under

the hypothesis that log GNP is in fact stationary, we ran a small Monte Carlo

experiment and applied our estimator to the first differences of 20 randomly

generated series, each with 150 observations, which follow an AR(2) in levels.

The first AR parameter was 1.366, and the second was -0.415, the values

estimated in Table 2 for the ARMA(2,1) process with a unit root.7 We

estimated an ARMA(2,2) 'in first differences, an overparameterized model. For

each series we conducted a likelihood ratio test of the hypothesis that the

moving average terms have a Unit root (sum to -1), and we estimated the

impulse response at horizon 80 with standard errors. The results are reported

in Table 4.

The number of runs is of course too small to draw any strong conclusions

from the table. However, the results are in line with those reported in the

literature. The likelihood ratio test of the unit root restriction does not

reject more often than it should under the null hypothesis. Furthermore, for

14 out of the 20 runs, the unrestricted estimate of the root is exactly unity

(to two decimal places). The unrestricted estimator has a probability mass at

this value for the root. When the moving average root is estimated equal to

unity, the impulse responses have extremely large standard errors. When it is

estimated away from unity, they typically have rather small standard errors

in two cases the implied confidence intervals are well away from the true

value. This result is consistent with Ansley and Newbold's findings.

7Hence, the assumed process is very close to the one Blanchard 11981]
and Kydland and Prescott [1980] suggest as an accurate representation of the
data.
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We conclude that while there are some statistical difficulties with our

estimator, there is no reason to think that these bias us towards rejecting

stationarity. In fact, they offer an explanation for the exact unit root

found in the ARMA(1,3) and ARMA(2,1) models for GNP growth. The major caveat

from the statistical literature, and our own small Monte Carlo study, is that

standard errors on parameters and impulse response functions may be too small

when there is near parameter redundancy.

Clearly it would be desirable to have some results on the distribution of

the likelihood ratio test statistic for a unit moving average root; this is a

topic which we hope to pursue in future research.
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V. Conclusion

We have estimated standard ARIMA processes for the log of real GNP using

the standard post-war quarterly time series. Yet the estimates have a

surprising implication: A one percent innovation in real GNP should change

one's forecast of real GNP by over one percent over a long horizon.8

This finding should be interpreted with caution. The existing

econometric literature and our small Monte Carlo experiment give us some

confidence in our estimation procedure. Vet work on the small sample

properties of ARIMA estimation, especially in the presence of unit roots, is

only in its infancy. Applying other statistical procedures, perhaps less

parametric, would be useful in determining more fully the sensitivity of our

finding to the estimation method.

The finding that a one percent innovation in GNP should change one's

long-run forecast of GNP by over one percent has important implications for

business cycle theory. In particular, this result is inconsistent with many

prominent theories in which output fluctuations are primarily caused by shocks

to aggregate demand. Both models based on misperceptions, such as that of

Lucas [1973), and models based on long-term nominal contracts, such as that

of Fischer [1977), imply that the deviations from trend caused by demand

shocks are transitory in nature. This implication does not appear consistent

with the time series properties of measured production.

8We are told that commercial forecasters have long known this result:
when forecasts are updated on the basis of new information, real GNP is
increased (or decreased) approximately proportionately at all horizons.
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One defense of such models is that they explain how demand shocks move

the economy away from the natural rate and that other mechanisms make the

deviation from the natural rate long-lived. Yet the utility of the natural

rate concept, which is central to these theories, is called into question if

the forces restoring equilibrium are very slow moving. There is little

content to the claim that economic forces return the economy to the natural

rate if that return takes substantially more than two decades.

One might also defend such models by claiming that they correctly explain

deviations around the natural rate while the output series we examine are

dominated by fluctuations in the natural rate itself. Certainly this is a

logical possibility. Yet if deviations around the natural rate account for a

relatively small amount of output fluctuations, such models are not useful for

understanding these fluctuations.9

Two lines of research appear more consistent with our results. The first

is real business cycles models. If shocks to the production function are the

driving force of output fluctuations, as in the model of Kydland and Prescott

1982), then news about output today may well convey information about output

over a long horizon. Perhaps future work could shed light on the validity of

these models by examining separately employment changes and productivity

changes.

The second type of theory consistent with our results is Keynesian theory

91t may be possible to reconcile our results with these theories by
abandoning the natural rate hypothesis. In particular, it may be possible to
add some propagation mechanism to make temporary misperceptions or nominal
rigidities have permanent effects.
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allowing for the possibility of secular stagnation. For example, the models

of Diamond [1984] and Weitzman [1982] exhibit multiple equilibria; if the

economy gets stuck in a "bad" equilibrium, there is no force driving the

economy back to a Pareto—dominating equilibrium. Since these models do not

determine which equilibrium is chosen, it is difficult to discuss dynamics.

Yet one suspects that if a shock of some sort moves the economy from one

equilibrium to another, it will tend to stay at the new equilibrium rather

than returning to the old one. If so, this new line of Keynesian research may

be consistent with our empirical findings.
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Table 1
Model Selection Criteria, Am Real GNP

Number of
AR

Parameters

(p) 0

Number of MA

1

Parameters (q)

2 3

0 —1193.477

(—1193.477)
(—1193.477)

—1212.637

(—1210.637)
(—1207.613)

[807.128]

—1221.169
(—1217.169)
(—1211.121)
[-974.566]

—1224.237
(—1218.237)
(—1209.165)
[—1072.266)

1 —1218.853

(—1216.637)
(—1213.829)

-1219.319

(—1215.319)
(—1209.271)
[—1194.539]

-1222.498
(—1216.498)
(—1207.426)
[-1214.709]

—1224.595
(—1216.595)
(—1204.499)
(—1224.595]

2 —1219.694

(—1215.694)
(—1209.646)

-1223.056
(—1217.056)
(—1207.984)
[-1223.056]

—1228.046
(-1220.046)
(—1207.950)
[—1224.473)

—1230.468
(—1220.468)
(—1205.348)
[—1227.642)

3 —1222.731

(-1216.731)
(—1207.659)

-1225.568

(-1217.568)
(—1205.472)
[—1225.321]

—1230.059

(-1220.059)
(—1204.939)
[—1225.784]

—1231.760
(-1219.760)
(—1201.616)
[—1230.947]

For each model, we report -2lnL

(Akaike Criterion = -2lnL + 2k)

(Schwarz Criterion = -2lnL + kinT)

[—21n L of model restricted to have a unit moving average root]



Model Parameter
Table 2
Estimates, ln Real GNP

Standard errors are in
5 percent level.

parentheses. Asterisk indicates significance at

Model

p,q 1 l 2 93

01 0.306*

(0.073)

0,2 0.332*
(0.070)

0.243*
(0.082)

0,3 0.379*

(0.075)

0.346*

(0.075)

0.180*
(0.081)

1,0 0.391*
(0.068)

1,1 0.479*
(0.186)

-0.102
(0.216)

1,2 0.263
(0.262)

0.090
(0.263)

0.207
(0.112)

1,3 0.931
(0.444)

0.339
(1.025)

2.464
(1.848)

—3.803
(1.250)

2,0 0.362*
(0.075)

0.074
(0.082)

-- -- --

2,1 1.366*
(0.070)

—0.415*
(0.073) (0.094)

2,2 0.585*
(0.1757)

-0.529*
(0.148)

-0.279
(0.159)

0.688*
(0.111)

2,3 0.183
(0.249)

-0.489*
(0.166)

0.170
(0.257)

0.743*
(0.116)

0.244
(0.142)

3,0 0.372*
(0.076)

0.126
(0.089)

—0.140
(0.078)

—— -— -—

3,1 1.051*

(0.228)

—0.120

(0.143) (0.083) (0.235)

3,2 0.572*
(0.153)

—0.667*
(0.183)

0.152
(0.118)

—0.224
(0.131)

0.804*
(0.150)

3,3 0.155

(0.250)

.0.706*

(0.080)

0.301

(0.186)

0.206

(0.274)

0.959*

(0.055)

0.075

(0.249)



Table 3
Model Impulse Responses, in Real GNP

Model
1 2 4 8 16 20 40 80

p,q

0,1 1.306

(0.073)

1.306

(0.073)

1.306

(0.073)

1.306

(0.073)

1.306

(0.073)

1.306

(0.073)

1.306

(0.073)

1.306

(0.073)

0,2 1.332

(0.070)

1.575

(0.124)

1.575
(0.124)

1.575

(0.124)

1.575

(0.124)

1.575

(0.124)

1.575

(0.124)

1.575

(0.124)

0,3 1.379

(0.075)

1.725

(0.125)

1.905

(0.172)

1.905

(0.172)

1.905

(0.172)

1.905

(0.172)

1.905

(0.172)

1.905
(0.172)

1,0 1.391

(0.068)

1.545

(0.122)

1.628

(0.169)

1.643

(0.184)

1.643

(0.184)

1.643

(0.184)

1.643

(0.184)

1.643
(0.184)

1,1 1.377

(0.077)

1.557

(0.121)

1.685

(0.207)

1.721

(0.262)

1.723

(0.268)

1.723

(0.268)

1.723

(0.268)

1.723

(0.268)

1,2 1.354

(0.072)

1.653

(0.133)

1.753

(0.216

1.761

(0.235)

1.761

(0.235)

1.761

(0.235)

1.761

(0.235)

1.761

(0.235)

1,3 2.270

(1.032)

5.916
(3.778)

5.126

(11.201)

3.849

(23.177)

2.171

(38.788)

1.630

(43.768)

0.390

(55.041)

0.024

(58.266)

2,0 1.362

(0.075)

1.567

(0.120)

1.720
(0.206)

1.770

(0.260)

1.773

(0.257)

1.773

(0.267)

1.773

(0.267)

1.773

(0.267)

2,1 1.366

(0.102)

1.451

(0.222)

1.332

(0.473)

0.941

(0.920)

0.444

(1.444)

0.305

(1.586)

0.046

(1.860)

0.001
(1.919)

2,2 1.306

(0.073)

1.645

(0.124)

1.523

(0.183)

1.530

(0.123)

1.491

(0.148)

1.494

(0.143)

1.493

(0.144)

1.493

(0.144)

2,3 1.352
(0.074)

1.671

(0.124)

1.669

(0.181)

1.667

(0.154)

1.653

(0.157)

1.652

(0.159)

1.651

(0.159)

1.651

(0.159)

3,0 1.372

(0.076)

1.637

(0.135)

1.625

(0.215)

1.554

(0.228)

1.558

(0.222)

1.558

(0.222)

1.558

(0.222)

1.558

(0.222)

3,1 1.346

(0.078)

1.589

(0.136)

1.544

(0.212)

1.124

(0.324)

1.144
(0.340)

1.142

(0.322)

1.138

(0.332)

1.138
(0.332)

3,2 1.348

(0.071)

1.683

(0.124)

1.688

(0.210)

1.703

(0.193)

1.677

(0.204)

1.674

(0.203)

1.675

(0.201)

1.675
(0.201)

3,3 1.361

(0.080)

1.669

(0.131)

1.755

(0.223)

1.756

(0.252)

1.771

(0.249)

1.781

(0.249)

1.792

(0.250)

1.791

(0.250)

Standard errors are in parentheses.



Notes: This table reports the results of estimating an ARMA(2,2) in first
differences for 20 randomly generated series, each with 150
observations, which are AR(2) in levels with parameters 1.366 and
-0.415. The impulse responses are at a horizon of 80 periods.

Table 4
Monte Carlo Study of Maximum Likelihood Estimator

Unrestricted
Run -2*(Log L)

Restricted

L)

Likelihood
Ratio Test
Statistic

Impulse
Response

Standard
Error

1 429.02 429.02 0.00 0.01 (2.19)

2 413.82 417.06 3.24 1.06 (0.05)

3 381.09 381.09 0.00 0.01 (2.94)

4 428.82 428.82 0.00 0.00 (1.06)

5 419.64 420.80 1.16 0.70 (0.29)

6 426.86 426.86 0.00 0.00 (1.74)

7 447.33 447.33 0.00 0.01 (2.64)

8 414.11 414.72 0.61 0.21 (0.22)

9 425.59 525.61 0.02 0.12 (0.43)

10 442.31 442.35 0.04 1.10 (0.28)

11 400.64 400.64 0.00 0.00 (3.47)

12 443.02 443.83 0.81 0.99 (0.45)

13 419.22 419.22 0.00 0.01 (1.67)

14 446.70 446.70 0.00 0.01 (2.53)

15 403.59 403.59 0.00 0.00 (3.15)

16 395.30 395.30 0.00 0.15 (6.40)

17 382.09 382.09 0.00 0.04 (4.25)

18 416.64 416.64 0.00 0.01 (2.83)

19 442.89 442.89 0.00 0.12 (0.66)

20 405.04 405.04 0.00 0.40 (0.23)




