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ABSTRACT
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often made by economists when climate model output is used to simulate the future impacts of climate
change on an economic outcome of interest.
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1. Introduction

There is a long history of using weather measures as explanatory variables in statistical

models. For example, Fisher (1925) examined the effects of rainfall on wheat yields and

Wright (1928) used weather as an instrumental variable to identify a demand function for

oils. Because weather is exogenous and random in most economic applications, it acts like

a natural experiment and thus in some settings allows researchers to statistically identify

the causal effect of one variable on an economic outcome of interest (Angrist and Krueger,

2001). The relatively recent literature on the economic impacts of climate change has turned

the spotlight onto quantifying the effect of climate on a number of economic outcomes

of interest (e.g., agricultural yields, mortality rates, electricity and water demand). This

literature has often found a nonlinear relationship between climate and these outcomes,

with extremely warm temperatures being especially important (e.g., Schlenker and Roberts,

2009). Climate is a long average of weather at a given location. To identify the causal effect

of climate on these outcomes, the literature has generally relied on either climate normals

(i.e., long averages of observed weather in a cross sectional setting) or day-to-day (or year-to-

year) fluctuations in observed weather as explanatory variables across time and space. The

econometrician’s choice of a weather versus a climate measure as an explanatory variable

critically affects the interpretation of the estimated coefficients in the econometric model:

that is, whether the outcome is a true climate response or a short run weather elasticity.

Anyone who has ever struggled with station-level weather data is well aware of the

fact that since the beginning of weather monitoring in the 1800s, stations are born and die

and almost all have a large number of missing observations. Further, there is not necessar-

ily a weather station in each location of interest to the economist. In order to overcome

these issues, a number of gridded weather datasets have been developed; these provide com-

plete coverage over land by extrapolating existing weather information from monitors over

a grid. Although many of these datasets are free and easily imported into formats used by

economists, there are five pitfalls that empirical researchers should be aware of before using
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these datasets in econometric settings. First, while many of the gridded weather products

that are available reproduce very similar average temperatures for the majority of grid cells,

the derived deviations around the mean can be significantly different. Second, if one is in-

terested in creating a weather series for a geographic region, simply averaging non-missing

weather station data for stations in the region introduces measurement error, which has

well understood econometric consequences. Third, the correlation between weather vari-

ables (e,g., rainfall and temperature) across space varies significantly in sign and magnitude.

This can lead to the classic problem of indeterminate omitted variables bias in applications

that fail to control for the full suite of weather indicators. Fourth, weather indicators of-

ten display significant spatial correlation due to the underlying data generating process as

well as the extrapolation methods employed. This may lead to significant multicollinearity,

which in turn may lead to inflated standard errors on included weather variables. Finally,

because the weather stations used to construct the gridded products come in and out of

existence, there may be artificial variation and breakpoints in the temperature series, which

the econometrician needs to examine, especially when working on a small geographic region.

The majority of recent economic studies use the statistically estimated causal effect

of weather on the economic outcome of interest to simulate the future impacts of climate

change, based on the output of Global Climate Models (GCMs), on that outcome. GCMs1

are physics-based models that provide long run predictions of climate. These models are

sometimes also called AOGCMs [Atmosphere-Ocean GCMs], or simply, and most commonly,

climate models.

Economists are increasingly using weather data and climate model output in econo-

metric analyses to simulate future economic impacts of climate change. However, our ex-

perience has been that most economists have little or no understanding of GCMs and that

they often make critical mistakes in using their output. Thus, our goal here is to provide

economic researchers considering the use of weather and climate model output with a guide

1Early on these were known as General Circulation Models (see e.g., Phillips 1956).
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to what products are available and, most importantly, with a discussion of the most com-

mon mistakes and how to avoid them. We begin in the next section with an introduction

to weather data, including a summary of the types of datasets available. Next we provide a

more detailed discussion of the five common pitfalls mentioned earlier. This is followed by a

brief overview of GCMs – how they work and what output they provide as well as a number

of suggestions for further reading. Perhaps most importantly, we identify two common and

significant errors that often occur when GCM output is used to simulate the future impacts

of climate change on an outcome of interest, which are related to GCM model selection and

spatial and temporal aggregation of GCM output. We present a summary and conclusions

in the final section.

2. An Introduction to Weather Data

As noted in the introduction, the difference between weather and climate is basically a matter

of time. Weather is the condition of the atmosphere over a short period of time, while climate

is the behavior of the atmosphere over a relatively long period of time. Since roughly 1850,

weather outcomes have been measured and recorded through a global network of weather

stations and, more recently, satellites. Daily weather data at stations throughout the world

are freely available from the U.S. National Oceanic and Atmospheric Administration (NOAA

2011a). Additional raw station data (with varying degrees of spatial and temporal coverage

and temporal resolution) can be found at NOAA (2011b). However, these sources do not

provide a complete record because many countries regard their weather data as proprietary

and often charge exorbitant fees for such data (e.g., India), thus effectively limiting their

availability. Moreover, the spatial and temporal coverage of weather stations varies greatly

across the globe, with higher spatial density and longer time series at stations in countries

with historically higher incomes (e.g., the U.S. and the EU 15).
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2.1 Gridded Weather Data Products

Gridded weather data sets use interpolation across space and time to combine available

weather station data into a balanced panel of observations on a fixed spatial scale or grid.

This approach deals with the problem of missing observations at a given station or missing

data because a station does/did not exist at a particular location. One such product, the

Parameter-elevation Regressions on Independent Slopes Model (PRISM, 2009), produces

monthly estimates of weather on a 2.5x2.5 mile scale for the contiguous United States. Each

grid approximates a weather measure for the spatial unit by interpolating the daily station

data while accounting for elevation, wind direction, rain shadows, and many other factors.

This elaborate procedure is possible in the US because there are several thousand weather

stations that produce and make available daily records for many different weather indicators.

The Climatic Research Unit at the University of East Anglia produces a global gridded

weather data set (CRU, 2013) that provides monthly estimates on a 0.5x0.5 degree scale.

This scale corresponds roughly to grids that are 35 miles across at the equator. Willmott,

Matsuura and Legates (2010) provide another gridded data product (often referred to as

the Delaware or UDEL dataset because it was produced by the University of Delaware),

which has the same spatial and temporal resolution as the CRU (2008) product, but uses

a somewhat different dataset and extrapolation algorithm. Most notably, the CRU product

provides data on both monthly minimum and maximum temperatures (i.e., the average of

all daily minimums and maximums), while the Delaware data set provides only the monthly

average temperature.2

Many data products include the number of stations and the dates of coverage for

each grid. The most pronounced absence of data is for poor regions whose governments do

not prioritize weather data collection and for regions with few inhabitants, such as deserts

or over oceans. In fact, there are some grids covering land areas that do not have a single

2The CRU dataset (version TS2.1) ended in 2002. The updated dataset version TS 3.2 extends coverage
through 2011. In early 2013, the Delaware dataset coverage ended in 2008, but it is currently being extended.
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weather station.

2.2 Data Assimilation

An alternative approach to the spatial extrapolation algorithms just discussed that climate

scientists have developed for filling in the holes for observationally sparse regions is data as-

similation, which produces data sets that the climate community generally calls reanalyses.

Data assimilation is the process by which observational data are combined with a physics-

based model (similar to a climate model, which is discussed later). The model increases the

extent of information from locations where observations exist to more data-sparse regions,

thus providing estimates of weather/climate for data-sparse regions that are based on phys-

ical laws described by the model as well as observations elsewhere. These types of data sets

have been used by applied economists studying the developing world (e.g. Guiteras, 2010,

Schlenker and Lobell, 2010, Hsiang et al., 2011), but they have not been widely adopted.

The process of data assimilation is not unlike an economist’s use of a structural model

to interpolate missing observations. Data assimilation seeks to minimize a loss function

subject to a large set of difference equations, which are derived from fundamental physical

principles (e.g., the conservation of energy). More recently, such reanalysis efforts have tried

to estimate the state of the global environment over a long sequence of periods by optimally

fitting a single dynamic model to all those periods simultaneously. This process is difficult

and costly, and thus only a few research centers offer regularly updated data sets. The

National Center for Environmental Prediction (NCEP) in the United States (Kistler et al.

2001) and the European Center for Medium-range Weather Forecasting (ECMWF, 2010)

produce the two most commonly used reanalysis products.

It is important to note that reanalysis output cannot be forced to perfectly match

observational data. This is because reanalysis output has both limited resolution and is

influenced by the GCM even when observations are present. Moreover, reanalysis is con-

ducted with models that, like economic models, are imperfect and contain systematic biases.
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Constraining these models with the data that are fed into them does not always correct sat-

isfactorily for the model’s built-in biased behavior. Although reanalysis provides estimates

that may be better than what would otherwise be available for regions where observations

are sparse or of poor quality, the reanalysis output for such regions is still basically a model

prediction, which is likely to be less accurate than for more observation-rich regions.

3. Five Potential Pitfalls

We turn next to a discussion of the five main pitfalls of using these weather data products in

econometric settings and how to avoid them. In order to examine these issues it is important

to understand that studies on the economic impacts of climate change on economic sectors

(e.g., agriculture) have used two distinct approaches to estimate response functions. First,

early studies relied on cross-sectional variation in weather or climate in different locations to

explain variation in the outcome variable of interest (e.g., Mendelsohn, Nordhaus and Shaw,

1994, Kelly, Kolstad and Mitchell, 2005). However, one limitation of the cross-sectional

approach is that there may be unobservable variables that vary across these spatial units,

which are likely correlated with the climate/weather indicator used. Therefore, recent stud-

ies have adopted a second approach that focuses on a panel data analysis, which controls

for space and time fixed effects. (e.g., Auffhammer, Ramanathan and Vincent, 2006, De-

schenes and Greenstone, 2007, Schlenker and Roberts, 2009). Fixed effects estimators rely

on variation across time within a spatial unit (e.g., a county) as the source of identifying

variation rather than variation across these spatial units. This means that the underlying

identification relates time series deviations from the location-specific mean in the climate

indicators to deviations in the outcome variable of interest.
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3.1 Pitfall 1: The Choice Of Weather Dataset

Although the economic implications of either approach (i.e., long-run versus short-run adap-

tation in panel versus cross-sectional studies) have been discussed elsewhere (e.g., Lobell

and Burke, Chapters 5+6, 2010), the practical issue of which weather data set to use has

received no attention in the literature. As we will show here, most gridded weather data sets

agree on the average value of weather variables across space (i.e., places that are on average

hot or cold), but they are not in full agreement about the timing or magnitude of deviations

from this mean, which is the source of identifying variation in panel data studies. This is

a more serious problem for areas with a small number of weather stations because the data

must be interpolated from stations that are further removed and hence might experience id-

iosyncratic shocks. We show this lack of correlation in the deviations using the three global

gridded weather data sets discussed earlier:

• The CRU data set (version TS2.1), which uses a statistical interpolation procedure

without reanalysis and gives monthly minimum and maximum temperature as well as

precipitation on a 0.5x0.5 degree grid (Mitchell and Jones, 2005).

• The Willmott, Matsuura and Legates (2010) UDEL data set, which uses a statistical

interpolation procedure without reanalysis and gives monthly average temperature as

well as precipitation on a 0.5x0.5 degree grid.

• The reanalysis data from NCEP/National Center for Atmospheric Research (NCAR)

(Kistler et al. 2001), which gives daily minimum and maximum temperature and total

precipitation on a non-uniform grid (1.875 degrees longitude, and roughly 1.90 degrees

latitude, although the latter is not evenly spaced).3

CRU and UDEL are statistically interpolated, while NCEP uses data assimilation

with a physical model as discussed earlier. We will focus here on two variables that are

available in all three data sets: average temperature and total precipitation. We calculate

3This data set is sometimes called the NCEP/NCAR/DOE (i.e., U.S. Department of Energy) reanalysis.
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country averages by taking a weighted average across grid cells that overlap a country’s

boundary for the months of the primary maize growing season (Sacks et al., 2010). We

define the growing season as extending from the first of the month in which it begins to

the end of the month when it ends because two of the three weather data sets provide

only monthly values. In this way we are able to average observations over the same time

period for all three data sets. Next, we calculate the weight given to each grid in a county

as the share of the country’s land area that the grid covers. This allows us to derive the

average temperature (the average between the minimum and maximum temperatures for

those datasets that report the minimum and maximum) as well as total precipitation by

country over the period 1960-1999. Several recent studies have used similar country-level

aggregates and averages (Dell et al. 2008, Schlenker and Lobell, 2010, Hsiang 2010).

3.1.1 Correlations of country level climate normals across data products

First, we compare average outcomes across locations by deriving average temperature and

precipitation over 1960-1999 to get one observation per country. We find that the correlation

between the data based on the statistical interpolation procedures (CRU and UDEL) for av-

erage temperatures is 0.998, while it is 0.990 between NCEP and either CRU or UDEL. For

total precipitation, the correlation between CRU and UDEL for average season-total precip-

itation is 0.985 and 0.882 between NCEP and CRU (and 0.883 between NCEP and UDEL).

This indicates that the three data sources provide similar estimates concerning which areas

of the world are hot and which are cold on average. This is a reassuring finding for studies

that rely on cross-sectional variation across countries. For both average temperature and

average precipitation, the correlation is slightly lower between the reanalysis data (NCEP)

and the two statistical interpolation techniques (CRU and UDEL).4

4We also examined a fourth dataset, NCC (Ngo-Duc et al., 2005), which is a hybrid of NCEP and CRU.
That is, it scales the NCEP reanalysis output using a constant monthly factor so that the 1948-2000 average
equals the CRU average. Not surprisingly, for our 1960-1999 sample, the correlation between NCC and CRU
for average season-total precipitation exceeds 0.99.

8



3.1.2 Correlations of country level annual fluctuations across data products

It is difficult to predict how weather variables change year-to-year when weather is not ob-

served in a specific location or time period. To illustrate this point, we construct annual

deviations from the country-specific mean in each data set over the 1960-99 period. This

provides us with a 40-year panel rather than a single cross section of normals. We find

that for average temperature, the correlation coefficients between models are significantly

lower compared to those discussed earlier. The pairwise correlation coefficients are: CRU

and UDEL: 0.917; NCEP and CRU 0.742; NCEP and UDEL: 0.724. For precipitation, the

correlation coefficients across datasets are even lower. This is likely due to the fact that pre-

cipitation is less smooth than temperature in space and time, which makes the extrapolation

algorithm employed more important.5 The pairwise correlation coefficients are: CRU and

UDEL: 0.698; NCEP and CRU: 0.299; and NCEP and UDEL: 0.269. While the correlations

are especially low when we compare deviations in the reanalysis data (NCEP) to the sta-

tistical interpolation methods (CRU and UDEL), the drop to a correlation coefficient below

0.7 for CRU-UDEL is significant as well, because both methods are statistical interpolation

routines using raw station data. So whether an outcome is above or below normal – and by

how much – depends crucially on which weather data set is being used.

3.1.3 Across-country heterogeneity in correlations of annual fluctuations

The average correlations for both cross-section and panel data mask considerable hetero-

geneity by country. To illustrate this point, we construct weather shocks by weighting each

grid cell by the amount of maize that is grown within it (Monfreda et al., 2005), a com-

mon approach for examining the agricultural impacts of climate change. We find that the

pairwise correlation coefficients among weather deviations for season-total precipitation in

the United States are: CRU and UDEL: 0.963; NCEP and CRU: 0.758; and NCEP and

5For some reanalysis products precipitation is generated by the model even if precipitation observations
exist.
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UDEL: 0.714. The deviations are much more highly correlated than when all countries are

included, presumably because of the good observational network in the United States. In

contrast, precipitation shocks constructed over the maize growing area in Mexico have pair-

wise correlation coefficients of: CRU and UDEL: 0.726; NCEP and CRU: 0.069; and NCEP

and UDEL: 0.307. This illustrates that in regions with limited monitoring networks, which

is generally the case in the developing world, the weather shock used to identify response

coefficients in econometric estimation varies significantly depending on which data source is

used.

In summary, when economists are conducting panel studies that rely on deviations

from averages, they should be careful about which data source they use because measurement

errors - and related statistical concerns such as attenuation bias - are amplified by demeaning

explicitly or via fixed effects (Fisher et al., 2012). Conducting sensitivity checks by using

more than one data source can be helpful in determining whether the results are robust.

3.2 Pitfall 2: Averaging Daily Station-Level Data Across Space

Another pitfall of using weather data products in econometric estimation concerns averaging

station level data across space. Several economic studies that link economic outcomes to

weather (or control for weather) use inverse distance-weighted averages for the closest avail-

able weather stations (see e.g., Mendelsohn et al. 1994, Deschenes and Greenstone 2007).

As with the panel versus cross section data issue, such an approach works well for a cross

sectional analysis, but becomes problematic when fixed effects are included in a panel data

setting, especially when both location and time fixed effects are included. This is because

weather station data are notoriously spotty (i.e., not only do weather stations come in and

out of existence, they are also often turned off or values are simply not recorded). A time

series of inverse distance-weighted averages of weather station data is likely to include vari-

ation from the birth and death of stations and observations that are missing for a given

period. When location fixed effects remove average weather outcomes at the interpolated
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location, and temporal fixed effects are included, the remaining weather variation is greatly

diminished and the variation that is due to stations coming in and out of the sample can

potentially account for a significant share of the overall variance. For example, Fisher et al.

(2012) provide an example where the noise-to-signal ratio after removing location and tem-

poral fixed effects is 7:1, i.e., the measurement error greatly exceeds the variation that is used

in the identification, which is likely to result in significant attenuation bias in estimation.

A possible alternative to averaging weather station data that report weather indica-

tors on a given day is to first fill in missing weather station data by regressing it on the

closest surrounding stations and then to predict missing observations at a station (Schlenker

and Roberts 2009, Auffhammer and Kellogg 2011). Then the full weather record is derived

by interpolating a balanced panel of patched weather station data. This approach keeps

the set of stations that are used in the interpolation constant and ensures that the resulting

variation is not caused by variation in station coverage.

3.3 Pitfall 3: Correlation of Weather Variables

The third pitfall relates to the classic omitted variables problem. Many economic studies,

including (but not limited to) those estimating climate change impacts, have focused on

the impact of one weather variable in isolation, e.g., regressing income only on precipitation

shocks (Miguel et al., 2004). While precipitation shocks are exogenous and hence a plausible

instrument for income, it is important to note that to the extent that precipitation and

temperature are correlated, the coefficient on precipitation will measure the combined effect

of the two variables. This is particularly important in the climate change context if the

estimated coefficient is used to estimate climate change impacts under a climate influenced by

human activity. In order to obtain unbiased estimates of the effects of changes in precipitation

and temperatures, which are historically correlated, both variables must be included in the

regression equation, especially if the correlation is predicted to change in the future.

To underline the importance of this observed correlation between different climate
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indicators, Figure 1 shows the correlation coefficients between annual average temperature

and total precipitation for each of the CRU (version 2.1) time series (TS) grid cells for the

years 1960-1999. The map indicates clearly that the correlations vary greatly and that there

are regions with both significant positive and significant negative correlation between pre-

cipitation and temperature. This implies that if one controls for only one of the two weather

variables in a regression, the sign of the omitted variable bias will depend on the location

under study. Hot areas generally show negative correlation (as high as -0.7) because more

precipitation and the associated evaporation results in cooling and lower average tempera-

tures. On the other hand, a positive correlation is generally observed in cooler areas because

increased precipitation is associated with the import of warm and humid tropical air, and

cloud cover keeps the underlying surface warmer. It is noteworthy that some large and

not-so-large countries have areas of both negative and positive correlation (e.g., US, Russia,

France, Spain).

It is also important to note that climatic variables other than temperature and precip-

itation (e.g., relative humidity, solar radiation, wind speed and direction) may bias empirical

estimates through the classic omitted variables problem. The existence of these other vari-

ables and their correlation with temperature or precipitation may be location specific. For

example, in a panel regression with country and year fixed-effects and country-specific trends,

Hsiang (2010) finds that exposure to hurricane winds in Caribbean Basin countries is cor-

related over time with a country’s local surface temperature, with each one degree Celsius

increase in a country’s summer surface temperature being correlated with a 2.6 (+/-1.2)

meter per second increase in area-averaged wind exposure in that country. This increase

in wind exposure is substantial, since it raises expected hurricane damages by 20% (Hsiang

and Narita, 2012), suggesting potentially biased estimates of temperature impacts if wind

exposure is excluded from the analysis.

In summary, if temperature, precipitation and other atmospheric variables are corre-

lated, a study that seeks to extrapolate (based on an estimated response function) potential
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climate impacts must include all of these variables in order to obtain an unbiased estimate

of the effect of each variable.

3.4 Pitfall 4: Spatial Correlation

Climate variables are inherently correlated across space and time. While variation in weather

is often considered random across time, variation across space displays significantly less

randomness, especially at smaller spatial scales. This means that some of the weather or

climate variables that we use in econometric estimation are highly spatially correlated and

that estimates of standard errors will be biased unless steps are taken to correct for spatial

correlation.

To provide a sense of the degree of spatial correlation in these datasets, Figure 2

shows the average correlation of annual mean temperature at each CRU (version TS 2.1)

grid cell with the eight surrounding grid cells for the 1960-1999 period. As discussed earlier,

errors might propagate from one grid cell to the next for both interpolated station data

and data assimilation methods. If the model correctly accounts for all weather variables,

the spatial dependence of the regressors will not be a problem. Most economic studies

to date control only for temperature and precipitation. However, other weather variables

such as wind direction, humidity, and vapor pressure might also have an impact, and these

omitted variables are presumably spatially correlated as well. If they have a causal effect on

the outcome of interest, as for example, vapor pressure deficit (which is closely related to

relative humidity) has on crop yields (Roberts et al., forthcoming), then they become part

of the error term, which will then also be spatially correlated. Thus, it is imperative to take

this spatial correlation into account in econometric estimation.6

There are three main approaches to account for spatial correlation:

• Use a spatial weighting matrix. This is most efficient when the weighting matrix is

6This will generally result in significantly larger standard errors. For example, Schlenker and Roberts
(2009) find that accounting for spatial correlation increases standard errors by a factor of 6.
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known, but it will result in biased estimates if the weighting matrix is misspecified;

• Use the nonparametric approach provided by Conley (1991), which does not require

one to specify a weighting matrix; or

• Use a grouped bootstrap where years are resampled and replaced. This approach

requires that year-to-year fluctuations be random, but errors within a year can be

correlated.7

Finally, it is important to note that many of the gridded weather data sets we have

discussed simply interpolate station data. In data-sparse regions, several grids might be

linked to the same set of weather stations. This will lead to highly multicollinear weather

variables that do not allow for proper identification (especially in a panel setting where grid

averages are removed) because the remaining variation is simply due to the fact that slightly

different weights have been used for different weather stations.

In summary, one has to adjust for spatial correlation to obtain unbiased standard

errors and valid confidence bands.

3.5 Pitfall 5: Endogenous Weather Coverage

The final pitfall concerns why weather stations are observed in some areas and time periods

and not in others. One strand of the economics literature examines how the relationship

between weather variables and economic variables of interest might change due to large policy

changes, such as a country becoming independent, or an extreme exogenous shock, such as

a natural disaster (Kahn, 2005). The most obvious method for accounting for such changes

is the now standard difference-in-difference analysis. One concern with this approach is that

if the degree of measurement error varies between the pre and post intervention (or event)

date, the treatment effect estimate will very likely be biased because of classic attenuation

7However, in many areas of the world, the independence of year-to-year variation is questionable because
of planetary-scale climate oscillations, such as the El Nio-Southern Oscillation, which may be autoregressive
(Hsiang et al., 2011).
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bias concerns. However, if weather variables are measured consistently, the difference-in-

difference regression design will be free of this bias. Thus it is important that weather

station coverage not change with the policy change (or exogenous shock) because it could

introduce measurement error and result in a downward bias in the estimated coefficients in

the post-intervention period.8

To examine this issue in more detail, we downloaded daily data from the Global Sum-

mary of the Day database maintained by NOAA’s National Climatic Data Center (NOAA,

2011a), counted the number of days a weather station within a country had non-missing

observations, and summed it across all stations. This provides the total count of daily

station-level observations in a country. While most countries show an upward trend in this

measure over time, the results for some transition countries are striking. For example, Ro-

mania had an upward trend until it peaked at 67,727 station-days in 1988. Following the fall

of the iron curtain in 1989, the number decreased rapidly until it stabilized around 11,000

station-days in 2003-2007, decreasing coverage by a factor of six. This suggests that the

results from a difference-in-difference analysis of how, for example, farmers responded to

weather shocks before and after the fall of the iron curtain would have to be interpreted

with caution.

In summary, when using any of the gridded data products available, it is crucial to

determine whether the underlying station data have changed over time (i.e., before and after

a major shock or event).

4. Climate Models and Their Output

If the econometrician has successfully estimated the causal dose-response relationship be-

tween socio-economic outcomes and historical weather or climate data, often the logical next

step is to use that estimated relationship to predict future impacts due to anthropogenic cli-

8This issue is closely related to the discussion about spatial correlation that is due to different interpolation
methods over a sparse data matrix.
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mate change. This step requires making forecasts of future climate under the assumption of

heightened atmospheric concentrations of greenhouse gases, which is usually accomplished

by employing output from a spatially-explicit physics-based model of the global climate,

which, as discussed in the Introduction, is known as a Global Climate Model or GCM. This

section provides an overview of GCMs and discusses some of the major potential pitfalls of

using these models in the simulation of future economic impacts of climate change.

4.1 Components and Properties of GCMs

Although GCMs have several components that are parameterized using statistical proce-

dures, the core of every GCM is a set of deterministic mathematical equations that describe

the laws of motion for a fluid. These laws were derived in fluid mechanics laboratories over

centuries and GCMs use numerical approximations of these laws. To solve these equations,

GCMs approximate the atmosphere and ocean, which are continuous fluids, with some form

of numerical discretization. The simplest way to visualize this procedure (though it is less

sophisticated than what is typically used in current practice) is a three-dimensional grid

of boxes, each of which possesses several state variables, for example temperature or air

pressure, which vary across space from one box to the next and evolve over time, but are

uniform within each box.9 Given a three-dimensional structure of these state-variables at

time t, a GCM solves for the variables’ structure at time t+1 using the model’s numerical

representation of fluid-mechanical laws. Following an initialization that specifies the struc-

ture of these variables in the very first time period, GCMs iteratively repeat this calculation

for time-steps of about 30 minutes, gradually constructing a projection for the future state

of the world. 10

GCMs typically take forecasts of human activity as exogenous. To make climate

9The Intergovernmental Panel on Climate Change (IPCC 2011a) provides a brief description and graphic
to illustrate this structure.

10For introductory materials on the structure of these models, see Tebaldi C. and Knutti, R. (2010) and
Section 8.1.3 of IPCC (2007). For more advanced descriptions consult Warner (2011) or IPCC (2007).
Donner, Schubert and Somerville (2011), Weart (2008) and Weart (2011) provide detailed histories of GCM
development.
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projections across different GCMs comparable, modelers simulate future climate outcomes

under a set of standardized scenarios that exogenously prescribe a time series of future

greenhouse gas emissions, aerosols, and other short-lived pollutants based on demographic,

economic and regulatory assumptions.11

When the emissions scenario is held fixed, GCMs differ primarily in their numeri-

cal representations of the climate’s state and its various processes. Having discretized the

atmosphere and ocean with grid-cells (the aforementioned boxes) of various resolutions12,

GCMs selectively represent processes that occur on spatial scales smaller than these grid-

cells - known as sub-grid scales - using parameterizations, which are formulations that are

not based as directly on the known laws of physics as are the resolved fluid dynamics, but in-

corporate a greater degree of empiricism or theoretical construction. For example, chemical

reactions, vegetation responses, cloud formation, and rainfall are all sub-grid scale processes

whose numerical representations may vary across GCMs (Section 8.2 in IPCC, 2007). Un-

like the core fluid-mechanical equations that have a standard representation in a discretized

global model, there is no standard representation of these sub-grid scale processes, and thus

the improvement of their representation in GCMs continues to be an active area of research.

There have been various community efforts to try to accelerate advances in this area by

comparing the performance of models, most notably the Coupled Model Intercomparison

Project or CMIP (see Meehl et al, 2007), and conducting studies that attempt to score the

forecast ability, known as skill, of different models along various dimensions (see Reichler

and Kim (2008) and Sections 8.3 and 8.4 of IPCC (2007)). Different models have different

skill, and thus we advise economics researchers who are studying specific regions or processes

and are interested in selecting a GCM projection to first consult the appropriate literature

as well as specialists in the field.13

11These assumptions and their resulting scenarios were established in the IPCC’s Special Report on Emis-
sions Scenarios (SRES) (IPCC, 2000) and are summarized in IPCC (2011b).

12See the supplemental tables to Reichler and Kim (2008) or IPCC Scientific Basis Table 8.1 [http://
www.ipcc.ch/publications_and_data/ar4/wg1/en/ch8s8-2.html] for a concise summary of these climate
model properties.

13For researchers seeking intuition for the numerical setup of GCMs, they can download a one-dimensional
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4.2 Differences in Model Predictions

There are over 20 well-known climate models, all with readily available output.14 This section

discusses how the choice of GCM affects estimates of climate impacts. In their survey of

economic assessments of climate change impacts, Burke et al. (2011) found that 50% of the

studies used the model developed by the Hadley Centre to calculate economic climate change

impacts across a variety of sectors, of which 17% used only the Hadley model. Among health

impact studies, 38% relied on the Hadley model alone. However, there is no evidence that

the Hadley model or, in fact, any other model should be the preferred climate model to

use. This is supported by the fact that for some climate indicators, such as precipitation,

the predictions for certain regions vary dramatically across models. In the extreme, some

models predict wetter summers for West Africa and others predict drier summers all using

the same SRES scenarios.

One way to address the challenge of having to choose one GCM is to use model or

ensemble averages (e.g., Tebaldi and Knutti, 2007). This decreases the reliance on a single

model. However, we believe it is important to either report the impacts for a number of

climate models separately or to average them and indicate the variability in impacts across

models. This is not difficult to do and, given the low costs of data storage on personal

computers and the access to free bandwidth for most academics, there is no reason not to.

Alternatively, if predicted changes within a study area vary more across than within climate

models, then presenting a set of uniform scenarios might be informative and also highlight

the sensitivity of the results.

climate model tutorial built by the Goddard Institute of Space Studies for teaching purposes (http://icp.
giss.nasa.gov/education/geebitt/). More ambitious researchers can download and run a full open source
GCM, the Community Earth System Model, produced by the National Center for Atmospheric Research
(http://www.cesm.ucar.edu/models/cesm1.0/).

14Climate projections from GCMs running IPCC’s Special Report on Emissions Scenarios are available
free of charge, and model output can be downloaded from the IPCC’s data distribution website (http://
www.ipcc-data.org/) or the CMIP data distribution website (https://esg.llnl.gov:8443/index.jsp).
For summaries of climate projections from GCMs running SRES scenarios, see IPCC (2007) chapter 10
for global summaries and chapter 11 for regional summaries. The IPCC also provides an interactive data
visualization application online (http://www.ipcc-data.org/ddc_visualisation.html).
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We next turn to a set of issues that arise when one tries to match the time and spatial

scale of the GCM to that of the econometric model for simulation purposes.

4.3 Aggregation Bias

As described earlier, GCMs effectively divide the earth’s surface into a discrete grid, where

there is variation in climate across discrete grid cells, but climate statistics are homogenous

within each cell. For example, if one uses a climate model that provides output on a monthly

basis, it is assumed that temperatures within the month and among all locations within the

grid cell are constant.15 Such temporal and spatial aggregation might be inappropriate and

produce biased impact estimates. While many models are being run at a resolution that

is higher than 2x2 degree (for the next IPCC (AR5) report), most of the economic impact

studies in the existing literature use model output at a 2x2 degree or coarser resolution.

While a 2x2-degree cell may be small from the perspective of the global climate, it is not

small from the perspective of human systems. For example, a 2x2-degree grid spacing at the

equator is equivalent to a grid width of 222 kilometers (138 miles). It is not hard to imagine

that a stretch of this length will have vastly varying climates (e.g., driving east from San

Diego’s coastal climate to El Centro’s dry and hot desert climate). This aggregation issue

becomes especially problematic if the underlying topography is mountainous or located near

the ocean.

4.3.1 Quantifying Aggregation Bias

To examine the severity of this aggregation bias, we compare average temperatures predicted

by the Hadley III GCM to a fine-scaled (2.5x2.5 mile grid) weather data set (PRISM, 2009)

for the 48 contiguous United States (see Figure 3). Figure 3 shows quite clearly that this

bias is most significant in mountainous areas, which are also usually less populated areas.

At the extremes, we see that the bias can reach +25◦C at some mountaintops. This is not

15Some models have within-grid deterministic variation, but this is a relatively recent effort.
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surprising because surface temperatures tend to fall about 7◦C per 1000m in elevation, which

means that mountains are much colder than areas at lower elevations in the same grid cell.

The aggregation bias exists not only for remote mountainous regions but also for heavily

populated areas, which are often located near oceans. In fact, figure 3 indicates that the

entire western seaboard has biases, and that those biases are significantly greater than any

predicted warming. The average absolute difference in temperature across the entire United

States is 3.0◦C and the root mean squared error is 4.0◦C, which are both significantly larger

than the average predicted changes by the end of the century under the SRES forced climate

change scenarios. This means that if one simply interprets GCM output at a grid cell as an

unbiased forecast of climate at any location in that grid cell, the bias may be a much larger

driver of projected impacts than actual warming.

Moreover, while the severity of the aggregation bias varies by location, it also varies

by the climate indicator one is using. For example, if we use the annual mean temperature

rather than the average daily maximum July temperature, the absolute error reduces to

1.8◦C, and the root mean squared error to 2.4◦C. Thus the magnitude of the bias varies by

location and indicator used.

This bias is especially relevant for studies of the economic impacts of climate change.

These studies generally parameterize a response function between for example, electricity

demand and temperature, using observations from a weather station-based dataset and ob-

served electricity demand. In order to calculate the counterfactual electricity demand under

a scenario with climate change, one must have a baseline climate and a counterfactual cli-

mate. However, if one uses an average of observed gridded weather products as the baseline

climate and predictions of climate from a GCM as the counterfactual climate at a future

date, the resulting estimated impacts will be due to both the simulated warming and the

bias displayed in Figure 3. If the response function is nonlinear in weather/climate, as has

been shown to be the case in agriculture (e.g., Schlenker and Roberts, 2009) and electric-

ity demand (e.g., Auffhammer and Aroonruengsawat 2011 & 2012), then this bias may be
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amplified or offset depending on the nature of the non-linearity. However, in either case,

the resulting impact estimates will be biased. We next turn to a simple approach, which

overcomes this issue.

4.3.2 Correcting Aggregation Bias

The literature has suggested several ways to correct such biases. In addition to using cli-

mate models with finer resolutions, the most commonly used approach is based on regression

methods, whereby the researcher establishes a correlation between the historical grid values

from the GCM and local station-based data and then uses this fitted regression relation-

ship with future values of GCM output to arrive at downscaled GCM predictions.16 Fowler

et al. (2007) provide a review of the main approaches used in practice and compare their

performance at selected locations. They note that there is a large literature examining the

performance of different downscaling approaches for different regions and climate variables.

They conclude that there is no single best approach for all variables (e.g., maximum tem-

perature, rainfall, wind speed) and locations. Moreover, they find that downscaled versions

of all GCMs at a desired temporal resolution covering all regions of interest are simply not

available. If one is interested in daily values, which are important for many economic appli-

cations, including agriculture and electricity demand, then a downscaled version of a climate

model delivering daily output is needed. Such data sets are available for some regions, such

as California (Cayan, 2009), or at coarser time resolution nationally (e.g., Maurer et al, 2007)

and globally (e.g., Maurer 2009).

In the absence of an appropriate downscaled dataset for the region and time resolution

of interest, the most common practice is to derive predicted changes for each (coarse) GCM

grid and then add these to an average of the historic baseline data used in the parameteriza-

tion of the response function, thereby preserving within-GCM grid variation. This approach

subtracts out the location-specific bias only if this bias is stationary in time. However, this

16Innovations on this basic approach have involved non-linear estimation, neural networks, and Bayesian
methods.
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approach shifts the historic time-series at a location by the predicted change, leaving its

variance unchanged. If researchers are concerned about predicted changes in the mean and

the variance, then the fine-scaled historic deviations from location-specific averages can be

rescaled by the ratio of the predicted variance at the GCM grid in the future relative to

the baseline. It should be noted, however, that there is much less consensus among models

concerning the predicted changes in the variance than in the mean.

In summary, it is crucial that economists not simply use GCM output as a direct

forecast of future climate when estimating impacts relative to a weather station-based base-

line climate. One simple solution is to simply add the predicted change in weather to the

baseline climate when calculating impacts.

5. Conclusions

This article has reviewed the most common gridded weather products and outlined five

pitfalls when using them as regressors in econometric models. More specifically, we have

emphasized that weather anomalies (deviations from normal) vary greatly between data

sources, and are highly correlated between weather measures and across space. Researchers

need to address these issues when constructing and using weather shocks. Simply averaging

weather stations without correcting for missing values will result in anomalies that consist

largely of noise. We have also discussed the basic features of Global Climate Models and

examined issues related to spatial scale when using these models in the estimation of the

economic impacts of climate change.

In closing, we want to emphasize that when using gridded datasets of historical or

future climate, it is important to recognize that both types of datasets are very different from

observed weather. Moreover, although historical gridded data products are very convenient

because they often provide highly disaggregated weather for large geographic regions over

long time periods, this increased coverage comes at a cost. That is, the birth and death of
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weather stations, the frequent occurrence of missing values, and the spatial correlation in-

troduced by extrapolation algorithms, all create potential biases in the estimated coefficients

and standard errors if one uses these weather products as independent variables in econo-

metric analyses. In addition, when using Global Climate Model output as a counterfactual

of future climate, the choice of model has significant implications for the sign and magnitude

of the estimated impacts. This means it is important to account for the location-specific

biases of each model in order to avoid causing further biases in estimates of the economic

impacts of climate change.
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Figure 1: Correlation between Annual Average Temperature and Total Precipitation in
Each Grid Cell (CRU TS 2.1 Data 1960-1999)

Source: Authors’ calculations.
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Figure 2: Correlation of Average Annual Temperature at CRU Grid with Surrounding Eight Grid
Cells (CRU TS 2.1 Data 1960-1999).

Source: Authors’ calculations.
Notes: We have chosen a highly nonlinear scale (correlation to the power of 100) because all
correlations are extremely close to one.
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Figure 3: Aggregation Bias: Hadley Grid Averages versus PRISM Grid Averages in Each PRISM
Grid (1961-1999)

Source: Authors’ calculations.
Notes: The figure plots the difference in the average daily maximum temperature in the month of
July in the years 1960-1999 between the GCM (Hadley III), which has the coarser resolution, and
the fine scale weather grid (PRISM 2009). A positive number indicates that the GCM grid average
exceeds the PRISM average, which is based on interpolated station data.
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