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1 Introduction

Bandit models are sequential decision problems where, at each stage, a resource like time, effort

or money has to be allocated strategically between several options, referred to as the arms of the

bandit. When selected, the arms yield payoffs that typically depend on unknown parameters. Arms

that are not selected remain unchanged and yield no payoff. The key idea in this class of models is

that agents face a tradeoff between experimentation (gathering information on the returns to each

arm) and exploitation (choosing the arm with the highest expected value).

Over the past sixty years, bandit models have become an important framework in economic

theory, applied math and probability, and operations research. They have been used to analyze

problems as diverse as market pricing, the optimal design of clinical trials, product search and the

research and development activities of firms (Rothschild 1974; Berry and Fristedt 1985; Bolton and

Harris 1999; Keller and Rady 2010). To understand how firms set prices without a clear under-

standing of their demand curves, Rothschild (1974) posits that firms repeatedly charge prices and

observe the resulting demand. Setting prices too high or too low is costly for firms (experimenta-

tion), but allows them to learn about the optimal price (exploitation). In the optimal design of

clinical trials, Berry and Fristedt (1985) formulate the problem as: given a fixed research budget,

how does one allocate effort among competing projects, whose properties are only partially known

at a given point in time but may be better understood as time passes. In product search, customers

sample products to learn about their quality. Their optimizing behavior can be described as in

Bolton and Harris (1999, 2000). In these models, news about the quality of the product arrive

continuously. The situation where news arrive only occasionally, e.g. in the form of break-throughs

in research, is modeled by Keller et al. (2005, 2010).

An important assumption in the classical bandit literature is that the reward distributions of

arms that are not chosen do not evolve; they rest (Gittins, Glazebrook, and Weber 2011). This

assumption seems natural in many applications. Yet, in many other important scenarios, it seems

overly restrictive.1 Consider, for instance, the possibility of dynamic complementarities in human

capital production.2 Imagine a student who has the choice of whether or not to invest effort into her

school work. Today’s effort is rewarded by being more at ease with tomorrow’s course work, or the

ability to glean a deeper understanding from class lectures. As Cunha and Heckman (2010) note,

“learning begets learning.” Conversely, not doing one’s assignments today might give instantaneous

gratification, but makes tomorrow’s school work harder. More generally, this dynamic can be found

in the context of human capital formation when early investments in human capital increase the

expected payoff of future investments, while a lack of early investments has the reverse effect. These

dynamics require arms that evolve, even when they are not used.

As a second example, consider an unemployed worker looking for a job. With every job applica-

tion, she gathers both information about the job market and experience in the application process,

1. The importance of relaxing this assumption has been recognized early on in the seminal work of Whittle (1988),
who proposed clinical trials, aircraft surveillance and assignment of workers to tasks as potential applications.

2. Cunha et al. (2006) make a similar argument in a different context.
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which typically increases her chances of successful future job applications. Conversely, not actively

searching for a job may decrease the probability of finding a job in future applications. This could

be due to market penalties for unemployment spells, being disconnected from the changing charac-

teristics of the job market and the application process, or be considered a signal of low motivation

by potential employers.

Bandits whose inactive arms are allowed to evolve are known as “restless bandits.”3 Generally,

optimal strategies for restless bandits are unknown.4 However, when a certain indexability condition

is met, Whittle’s (1988) index can lead to approximately optimal solutions (Weber and Weiss 1990,

1991). This index plays the same fundamental role for restless bandits that Gittins’ (1979) index

has for classical ones: it decomposes the task of solving multi-armed bandits into multiple tasks of

solving bandits with one known and one unknown arm. The known arm yields constant rewards and

can be interpreted as a cost of investment in the unknown arm. Deriving conditions that identify

general classes of indexable restless bandit models is an important contribution – permitting more

complete analysis of decision problems in which choices jointly effect instantaneous payoffs as well

as the distribution of those payoffs in the future – and the subject of this paper.

The origins of this work are the classical bandit models of Bolton and Harris (1999), Keller

and Rady (2010), and Cohen and Solan (2013) that we extend to the restless case. In these

pioneering works, the reward from the unknown arm is Brownian motion, a Poisson process, or

a Levy process. The unobserved quantity is a Bernoulli variable called the “type” of the agent.

Optimal strategies are found by constructing explicit solutions of the Hamilton-Jacobi-Bellman

(HJB) equation, which is a non-linear second-order differential-difference equation. Our model

is an extension of these models containing them as special cases.5 Namely, we allow the same

generality of reward processes with both volatility and jumps, but make the reward distribution

dependent on the type of the agent and the history of past investments. The latter dependence

is mediated by a real valued variable that increases while the agent invests in the unknown arm

and decreases otherwise. In line with our motivating examples of human capital formation and

job search, we call this variable the agent’s human capital. The inclusion of human capital as a

state variable turns the HJB equation into a second order partial differential-difference equation.

It seems unlikely that explicit solutions to this equation can be found.

Using new insights from stochastic control theory, along with a monotonicity condition on

the restless arm (e.g. today’s investments make tomorrow’s investments more profitable, while a

lack of investment today decreases the profits of future investments), this paper establishes two

results. The first result is a separation theorem (theorem 1) that establishes the equivalence of

the optimal control problem with partial observations to a fully observed control problem called

the separated control problem. The fact that this equivalence holds is crucial for the solution of

3. Bandits where the active and passive action have opposite effects on payoffs are called bi-directional bandits
(Glazebrook, Kirkbride, and Ruiz-Hernandez 2006), and our model falls into this class.

4. Numerical solutions can be obtained by (possibly approximate) dynamic programming or a linear programming
reformulation of the problem (Kushner and Dupuis 2000; Powell 2007; Nino-Mora 2001).

5. However, these works focus on strategic equilibria involving multiple agents, whereas we only treat the single
agent case.
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the problem and is implicitly used in many works, including Bolton and Harris (1999); Keller and

Rady (2010); Cohen and Solan (2013). Standard formulations of the partially observable control

problem involving Zakai’s transform (Fleming and Pardoux 1982) or time changes (El Karoui and

Karatzas 1994) do not work for restless bandit problems. However, we show that the frameworks

of Fleming and Nisio (1966); Wonham (1968); Kohlmann (1982) can be used and extended to

general semimartingale observation processes. We describe these issues in detail since they are

rarely discussed in the context of bandit problems. In our second, and main, result (theorem 2),

we establish the optimality of stopping rules and characterize optimal strategies by an index that

formally coincides with Gittins’ index. This allows us to deduce comparative statics which imply

the indexability of our model in the sense of Whittle (1988). We provide a sketch of our approach

below.

The first sections of the analysis are dedicated to a rigorous setup of the stochastic control

problem in continuous time (sections 3.3-3.5). The bandit problem is first formulated as a problem

of stochastic optimal control under partial observations. The structure of our model requires a

strong measurability condition on controls to ensure that they do not depend on the unobserved

type, see section 3.3. The condition has been used in the early literature on optimal control (Fleming

and Nisio 1966; Wonham 1968; Kohlmann 1982) but came out of favor because it entails difficulties

in establishing the existence of optimal controls.

We are able to circumvent these difficulties by showing that regardless of the strong measur-

ability constraint, the partially observable problem is equivalent to a so-called separated problem

with full observations. In the separated problem, admissibility of controls can be defined as usual

and the existence of optimal controls is well-known. The separated problem is derived from the

partially observable one by replacing the unobserved quantity by its filter, which is its conditional

distribution given the past observations. Put differently, the filter is the belief of the agent in being

the high type. The equivalence of the partially observable and the separated problem is established

in theorem 1. Notice: the monotonicity condition is not needed there.

Our second, and main, result is that stopping rules are optimal. This result hinges on the

monotonicity condition and is established in theorem 2. Our proof is based on a direct investigation

of the sample paths of optimal strategies and an evaluation of the benefits of investing in the

unknown arm sooner rather than later. This interchange argument was originally developed by

Berry and Fristedt (1985) for classical bandit models, but the monotonicity assumption on the

payoffs is precisely what is needed to make a similar argument work in the more general setting of

restless bandits.

The result on optimal stopping means that it always better to invest first in the unknown

arm and then in the known arm instead of the other way round. Intuitively, this sequence of

investments matters for two reasons. First, investments in the unknown arm reveal information

about the distribution of rewards. The sooner this information becomes available, the better.

Second, early investments in the known arm deteriorate the rewards of later investments in the

unknown arm. By contrast, early investments in the unknown arm do not make the known arm
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any less profitable. It follows that agents find it optimal to invest in the unknown arm initially.

They then switch to the known arm and never start investing in the unknown arm again.6 The

time where this change occurs is a stopping time that depends on the history of obtained rewards.

Once the optimality of stopping rules is established, it follows easily that optimal strategies

can be characterized by an index rule. Formally, the index is the same as the one proposed in

the celebrated result by Gittins (1979) on classical bandits, but unused arms are allowed to evolve.

The explicit formula for the index yields comparative statics of the frontier with respect to the

parameters of the model. Most importantly, subsidies of the known arm enlarge the set of states

where the known arm is optimal, which means that our bandit model is indexable in the sense

of Whittle (1988). More generally, any arm of a multi-armed restless bandit that satisfies our

monotonicity condition is indexable. To our knowledge, this is the first time that a sufficient

condition for indexability of a general class of restless bandits with continuous state space and a

corresponding rich class of reward processes has been formulated.7

To explain the structure of optimal strategies, we consider how information is processed by the

agents in our model. We work in a Bayesian setting where the agent has a prior about being either

“high” or “low type.” Rewards obtained from the unknown arm depend on this type and are used

by the agent to form a posterior belief. The current levels of belief and human capital determine

at each stage whether it is optimal to invest in the unknown or known arm. Namely, there is a

curve in the belief–human capital domain such that it is optimal to invest in the unknown arm

if the current level of belief and human capital lies to the right and above the curve. Otherwise,

it is optimal to invest in the known arm. This follows from the index representation of optimal

strategies. The curve is called the decision frontier. It can be characterized as a level set of the

index or value function.

Similar to classical bandit model, the dynamics of belief and human capital depend on the

position relative to the decision frontier. There is an important, and potentially empirically relevant,

difference: below the frontier, agents do not obtain any new information, and their belief remains

constant, while their human capital decreases continually. In other words, not only is the safe arm

absorbing – it is depreciating; agents drift further and further away from the frontier. Empirically,

this implies that there are very few “marginal” agents. Programs (e.g. lower class size, school

choice, financial incentives) designed to increase student achievement at the margin are likely to

be ineffective unless: (1) they are initiated when students get close to the decision frontier, or (2)

force inframarginal students to invest in the unknown arm (e.g. some charter schools (Dobbie and

Fryer 2011)). Consistent with Cunha et al. (2006), our model predicts that, on average, the longer

society waits to invest the more aggressive the investment needs to be.

The situation is different for agents above the frontier. They continually obtain new information

about their type and update their posterior belief accordingly. At the same time, their level of

6. This argument is made rigorous in the proof of theorem 2.
7. Some sensor management models are indexable and have a continuous state space after their transformation

to fully observed Markov decision problems (Washburn 2008). However, this is not the case in their formulation as
partially observable control problems.
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human capital increases. In the long run, there are two possibilities. Either there is some point in

time where they hit the frontier. This happens when they encounter a series of bad outcomes from

the unknown arm and their belief level drops down far enough. In this case, they meet the same

fate as agents who originally started out below the frontier. Or they never reach the frontier. In this

case, they invest in the unknown arm forever and learn their true type in the limit. In fact, under

reasonable assumptions, investing in the unknown arm for an infinite amount of time is necessary

and sufficient for asymptotic learning to occur (see theorem 3). To summarize, agents of the low

type eventually end up choosing the known arm, which is optimal for them. However, high type

agents can get discouraged by bad luck and stop investing in the unknown arm, even though the

unknown arm would be optimal. Possible limit points of agents’ trajectories in the belief–human

capital space are depicted in Figures 1 and 2.

Our paper makes five contributions to the existing literature. First, we present an extension of

classical bandit models of investment under uncertainty motivated by dynamic aspects of resource

development. The model is new and has economic significance in a wide range of real world settings.

As an example, we present how our model can be used to describe the economics of investment

in education and discuss some potential policy implications. Second, we discover a new class of

indexable restless bandit models. While other classes of indexable bandits are known, they either

involve no learning about one’s type (Glazebrook, Kirkbride, and Ruiz-Hernandez 2006), do not

allow history-dependent payoffs (Washburn 2008), or work with very specific reward processes (e.g.

Markov chains on finite state spaces as in Nino-Mora (2001)). Third, we deal with the delicate

issue of setting up the partially observable control problem in continuous time. Recent standard

formulations of optimal control under partial observation do not apply in our setting. We rediscover

a framework that has been used mostly in the early control literature and show that it meets the

needs of both classical and restless bandit models. In addition to its importance to the theory of

optimal control, this is also a contribution to the bandit literature.

Fourth, we present an unconventional approach to solve the bandit model. The work horse

of most of the bandit literature is either the Hamilton-Jacobi-Bellman equation or a setup using

time changes. However, these approaches are not well adapted to the generality of our model, in

particular the new dynamics. Our argument is based on an investigation of the sample paths of

optimal strategies. More specifically, we discretize the problem in time and show that any optimal

strategy can be modified such that the agent never invests after a period of not investing and

such that the modified strategy is still optimal. This interchange argument has been originally

developed by Berry and Fristedt (1985) for classical bandits. It turns out that the monotonic

dependence of the payoffs on the amount of past investment is exactly what is needed to generalize

the argument to restless bandits. Fifth, we provide a general bandit structure that encompasses

both the exponential bandit model of Keller, Rady, and Cripps (2005), where jumps can occur only

for high type agents, and the Poisson and Levy bandit models of Keller and Rady (2010, 2012) and

Cohen and Solan (2013), where it is assumed that one jump measure is absolutely continuous with

respect to the other.
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The paper is structured as follows. Section 2 provides a brief review of the bandit literature

in economics and applied math. Section 3.1 provides the model and section 3.2 connects our for-

mulation, using semimartingales, to classical bandit models. A precise formulation of the partially

observable problem is developed in section 3.3. The separated problem is defined in section 3.4 and

the equivalence of the two problems is established in section 3.5. In section 3.6, it is shown that

both problems are equivalent to optimal stopping. Furthermore, optimal strategies are character-

ized in terms of Gittins’ index. In sections 3.7 and 3.8, asymptotic learning and long term limits

of the belief process are studied. Finally, section 4 concludes.

2 A brief review of the multi-armed bandit literature

2.1 Models

Originally developed by Robbins (1952), bandit models have been used to analyze a wide range

of economic and applied math problems.8 The first paper where a bandit model was used in an

economic context is Rothschild (1974), in which a single firm facing a market with unknown demand

has to determine optimal prices. Subsequent applications of bandit models include partner search,

effort allocation in research, clinical trials, network scheduling and voting in repeated elections

(McCall and McCall 1987; Weitzman 1979; Berry and Fristedt 1985; Li and Neely 2012; Banks and

Sundaram 1992).

Classical bandits with reward processes driven by Brownian motion or a Poisson process were

first solved by Karatzas (1984) and Presman (1990). Subsequently, Bolton and Harris (1999, 2000)

and Keller e.a. (2005, 2010, 2012) derived explicit formulas for optimal strategies in the case where

the unobservable quantity is a Bernoulli variable and treated strategic interactions of multiple

agents. Cohen and Solan (2013) unified the formulas obtained for the single agent case and solved

a bandit model where the reward is driven by a Levy process with unknown Levy triplet.

Many extensions and variations of classical bandit problems have been proposed, including:

bandits with a varying finite or infinite numbers of arms (Whittle 1981; Banks and Sundaram

1992), bandits where an adversary has control over the payoffs (Auer et al. 2002/03), bandits

with dependent arms (Pandey, Chakrabarti, and Agarwal 2007), bandits where multiple arms can

be chosen at the same time (Whittle 1988), bandits whose arms yield rewards even when they

are inactive (Glazebrook, Kirkbride, and Ruiz-Hernandez 2006), and bandits with switching costs

(Banks and Sundaram 1994).

One of the most mathematically challenging extensions is to allow inactive arms to evolve.

Such bandits are often referred to as “restless bandits.”9 This term was coined in the seminal

paper of Whittle (1988). Beyond mathematical intrigue, there are many practical applications:

aircraft surveillance, sensor scheduling, queue management, clinical trials, assignment of workers to

8. Basu, Bose, and Ghosh (1990), Bergemann and Välimäki (2006), and Mahajan and Teneketzis (2008) are
excellent surveys of the literature on bandit models. The monographs by Presman and Sonin (1990), Berry and
Fristedt (1985) and Gittins, Glazebrook, and Weber (2011) contain more detailed presentations.

9. Some bandits with switching costs can be modeled as restless bandits (Jun 2004).

7



tasks, robotics, and target tracking (Ny, Dahleh, and Feron 2008; Veatch and Wein 1996; Whittle

1988; Faihe and Müller 1998; La Scala and Moran 2006). In aircraft surveillance, Ny, Dahleh, and

Feron (2008) discuss the problem of surveying ships for possible bilge water dumping. A group

of unmanned aerial vehicles can be sent to the sites of the ships. The rewards are associated

with the detection of a dumping event. The problem falls into the class of sensor management

problems where a set of sensors has to be assigned to a larger set of channels whose state evolves

stochastically. In queue management, Veatch and Wein (1996) consider the task of scheduling

a make-to-stock production facility with multiple products. Finished products are stored in an

inventory. Too small an inventory risks incurring backorder or lost sales costs, while too large

an inventory increases holding costs. In robotics, Faihe and Müller (1998) consider the behaviors

coordination problem in a setting of reinforcement learning: a robot is trained to perform complex

actions that are synthesized from elementary ones by giving it feedback about its success.

2.2 Optimality of stopping rules

For classical bandit models with one known and one unknown arm, the optimality of stopping

rules is a well known result (Berry and Fristedt 1985; El Karoui and Karatzas 1994). Several

approaches to establish this can be found in the literature. In one approach, the rewards of each

arm are fixed in advance and strategies are time changes. The reward that is obtained under a

strategy is the time change applied to the reward process. This setup, which has been proposed

by Mandelbaum (1987), allows a very simple formulation of the measurability constraints on the

strategies. However, it is not well-adapted to bandits with evolving arms. In a second approach, one

solves the Hamilton-Jacobi-Bellman (HJB) equation for the value function. When this succeeds,

the explicit form of the value function can be used to establish the optimality of stopping rules

(Bolton and Harris 1999; Keller, Rady, and Cripps 2005; Cohen and Solan 2013). However, in

our model, the dynamics of the reward distribution introduce an additional state variable, which

turns the HJB equation into a non-local partial differential equation which we cannot solve directly.

Moreover, it is not clear a-priori if the value function is a solution in a classical sense. Pham (1995,

1998) showed that under suitable assumptions, the value function is a viscosity solution of the HJB

equation. However, it remains open how this could be used to show that stopping rules are optimal.

The third approach is to rewrite the problem as a linear programming problem. This makes both

classical and restless bandit problems amenable to efficient numerical computations and can also

yield some qualitative insight (Nino-Mora 2001).10 The fourth approach (and the one we emulate)

is based on a direct investigation of the sample paths of optimal strategies and an evaluation of the

benefits of investing in the unknown arm sooner rather than later. While this interchange argument

was originally developed by Berry and Fristedt (1985) for classical bandit models, it turns out that

the monotonicity assumption on the payoffs is what is needed to make the argument work in the

more general setting of restless bandits.

10. Another numerical approach is dynamic programming/value function iteration.

8



2.3 Indexability

In the classical bandit model, Gittins (1979) characterized optimal strategies by an index that is

assigned to each arm of the bandit at each instant of time. The optimal strategy is to always

choose the arm with the highest index. The indices can be calculated for each arm separately,

which reduces the complexity of multi-armed bandits to that of two-armed bandits with one known

and one unknown arm.

In general, optimal strategies in restless bandit models do not admit an index representation.

However, a Lagrangian relaxation of the problem proposed by Whittle (1988) yields index strate-

gies that are approximately optimal (Weber and Weiss 1990, 1991). The corresponding “Whittle

index” (Whittle 1988) is the Lagrange multiplier in a constrained optimization problem and has

an economic interpretation as a subsidy for passivity or a fair charge for operating the arm. A

major challenge to the deployment of Whittle’s index is that it can only be defined when a certain

indexability condition is met. In this condition, each arm of the restless bandit is compared to a

hypothetical arm with known and constant reward. The indexability condition holds if the set of

states where the known arm is optimal is increasing in the reward from the known arm.11

The question of indexability of restless bandit models is subtle and not yet fully understood.

Gittins, Glazebrook, and Weber (2011) give an overview of various approaches to establish the

indexability of restless bandit models. Partial answers are known for bandits with finite or count-

able state spaces. Indexability of such models can be tested numerically in a linear programming

reformulation of the Markov decision problem (Klimov 1975). In another line of research, Nino-

Mora (2001) showed that indexability holds for restless bandits satisfying a partial conservation

law, which can be verified by running an algorithm. While this can be used to test the indexability

of specific restless bandit problems, it does not provide much qualitative insight into which restless

bandits are indexable. One would like to have conditions that identify general classes of indexable

restless bandit models – this is the subject of this paper.12

3 A Two-Armed Restless Bandit

3.1 Basic Building Blocks

Time t ∈ [0,∞) is continuous and there is one agent. Nature moves first and assigns a type

Θ ∈ {0, 1} and an initial human capital H0 to the agent.13 The agent does not know her type

but believes in being of the high type (Θ = 1) with probability P0. At each instant of time she

11. This is a monotonicity condition on the optimal strategy, which is not to be confounded with our monotonicity
condition on the payoffs and the evolution of human capital.

12. Some results in this direction have been obtained for various bandit models related to sensor management, see
the survey of Washburn (2008). Other classes of indexable problems are the dual speed problem of Glazebrook,
Nino-Mora, and Ansell (2002), the maintenance models of Glazebrook, Ruiz-Hernandez, and Kirkbride (2006), and
the spinning plates and squad models of Glazebrook, Kirkbride, and Ruiz-Hernandez (2006). The spinning plates
model is most similar to ours. It satisfies the same monotonicity condition as our model, but has a different reward
structure and assume perfect information.

13. To fix ideas, we refer to H as the human capital of the agent, but our model is not bound to this interpretation.
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decides what fraction of time to invest in the known and the unknown arm. Let Ut ∈ [0, 1] be her

investment decision at time t; Ut = 1 standing for investment in the unknown arm and Ut = 0

for investment in the known arm. Investments in the unknown arm increase her human capital,

whereas investments in the known arm allow it to depreciate. The resulting level of human capital

at time t is denoted by Ht. The rate at which human capital increases is denoted by α(1, Ht)

and the rate at which it decreases α(0, Ht). Thus the human capital process solves the (pathwise)

differential equation

dHt =
(
Utα(1, Ht) + (1− Ut)α(0, Ht)

)
dt. (1)

At each instant of time, the agent receives a random reward dRt that is characterized by the

following three quantities:

bt = Utβ(Θ, Ht) + (1− Ut)k, (drift)

ct = Utσ(Ht)
2, (volatility)

νt(dr) = UtK(Θ, Ht, dr) (jump measure)

(2)

Vaguely speaking, equations (2) describe the drift, volatility and jump measure of the reward

process;

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, µ(dt, dx) = νt(dx)dt (3)

are its semimartingale characteristics. These characteristics are defined with respect to some trun-

cation function χ : R→ R that we fix once and for all. χ is equal to the identity on a neighborhood

of zero and bounded, continuous. If the jump measure K(θ, h, dr) is finite, the truncation function

is not needed and can be set to zero for all purposes.

If follows that the payoff to the known arm is deterministic and equals k dt. The payoff to the

unknown arm is random and depends on the type and the level of human capital.14 Rewards are

discounted with a discount rate ρ > 0, and the agent tries to maximize her expected future rewards

E
(∫ ∞

0
ρe−ρtdRt

)
. (4)

Only the reward of the arm that is chosen is observable. Formally, the coefficients α, β, σ,K, k, ρ of

the model and the history of the processes U,H,R are known, but Θ is not.15 Investment decisions

Ut are restricted to depend on available information. Thus the agent’s problem is a control problem

with partial observations. A precise formulation of the problem is developed in section 3.3. When

α = 0 or b, c, ν do not depend on human capital, the model reduces to a classical bandit model.

Otherwise, it is a bandit with evolving arms or restless bandit.

To assure that the control problem is well-defined, we make the following assumptions on the

coefficients of the model.

14. The volatility does not depend on the type because the inference problem would be trivial in that case.
15. This is a key point of departure from Glazebrook, Kirkbride, and Ruiz-Hernandez (2006).
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Assumption 1 (Boundedness and regularity). The functions

α, β : {0, 1} × R→ R, σ : R→ R (5)

are measurable and K is a transition kernel from {0, 1}×R to R\{0}. Furthermore, the expressions

α(u, h), β(θ, h), σ(h),

∫
R

(
|r|2 ∧ |r|

)
K(θ, h, dr) (6)

are uniformly bounded and α(u, h) is Lipschitz continuous in h.

The uniform bounds on the coefficients and the Lipschitz condition ensure that human capital

process is well-defined and that the expectation in equation (4) exists. The integrability condition

on the jump measure implies that the reward process is a special semimartingale. This means that

it has a compensator, which is a predictable process of integrable variation that differs from the

reward process by a local martingale. Intuitively, the existence of a compensator means that agents

are able to form expectations about the infinitesimal increments of the reward process.

3.2 Relation to classical bandit models

In this section, we relate our model to a number of important classical bandit models. In these

models, the reward process is either Brownian motion with unknown drift (e.g. Bolton and Harris

(1999)), a Poisson process with unknown intensity (e.g. Keller and Rady (2010)), or more generally,

a Levy process with unknown Levy triple (e.g. Cohen and Solan (2013)). For consistency, we impose

our notation on the models that we discuss in this section.

We begin with the simplest case where the reward process is Brownian motion with unknown

drift. This model was introduced by Chernoff and Ray (1965) and subsequently extended by Bolton

and Harris (1999, 2000). Using our notation, the reward process in this model is

dRt = Utβ(Θ)dt+ (1− Ut)kdt+
√
UtσdWt, (7)

where W is Brownian motion independent of Θ. The square root in equation (7) permits an

interpretation of [0, 1]-valued controls Ut as fractions of time devoted to the unknown arm. Namely,

the process
∫ t

0

√
UsdWs is equal in distribution to the time changed process WTt , where Tt =∫ t

0 Usds is the accumulated amount of investment in the unknown arm (Kallsen and Shiryaev 2002,

theorem 1.5). The characteristics of the reward process in equation (7) are (B,C, µ) as in (3) with

bt = Utβ(Θ) + (1− Ut)k, ct = Utσ
2, νt = 0. (8)

The second case that we discuss is when the reward is a Poisson process with unknown intensity.

The first treatment of this model, by Presman and Sonin (1990), is extended by Keller and Rady

(2010). In their model, the probability that the agent receives a lump-sum payoff in the interval

[t, t + dt) is Utλ(Θ)dt, where λ is a non-negative function of Θ, and the distribution of lump-sum
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payoffs is given by a probability measure K on R\{0}. This statement can be made precise by

interpreting it as a specification of the characteristics of the reward process. They are (B,C, µ) as

in (3) with

bt = (1− Ut)k, ct = 0, νt(dr) = Utλ(Θ)K(dr). (9)

The last, and most general, case that we discuss are Lévy bandits (Cohen and Solan 2013).

The reward process in their model is driven by a Lévy process X whose Lévy triplet depends on

the unknown type Θ and is given by (β(Θ), σ,K(Θ, ·)). Under a strategy U , the agent obtains the

reward XTt from the unknown arm, where T is the time change

Tt =

∫ t

0
Usds. (10)

The reward from the known arm is k(t−Tt). The approach of defining reward processes using time

changes is due to Mandelbaum (1987). It allows for a clean definition of admissible strategies and

circumvents difficulties that arise when trying to add a strategy-dependent jump term to equation

(7). An alternative to using time changes is to specify the characteristics of the reward process.

They are given by (B,C, µ) as in equation (3) with

bt = Utβ(Θ) + (1− Ut)k, ct = Utσ
2, νt(dr) = UtK(Θ, dr). (11)

Taken together, the classical bandit models presented in this section can be formulated in a

convenient setting using semimartingale characteristics. This demonstrates that the only difference

between these models and ours is that the characteristics in our model depend not only on the type

of the agent, but also on an additional variable quantifying the amount of past investment.

3.3 The partially observable (p.o.) control problem

In this section, we describe: (a) what it means for the reward process R to be controlled by U and

(b) what it means for U to be non-anticipative and to depend only on observable quantities. In an

effort to make the paper self-contained, we err on the side of providing more detail.

The first issue (a) is straightforward. As discussed in the previous sections, we found it conve-

nient to specify the distribution of the reward process by its semimartingale characteristics. It is

well-known that specifying characteristics (B,C, µ) for R is equivalent to the following martingale

problem (see Jacod and Shiryaev (2003, theorem II.2.42)): for each f ∈ C2
b (R), the process

f(R)− f(R0)− f ′(R−) ·B − 1

2
f ′′(R−) · C −

(
f(R− + r)− f(R−)− f ′(R−)χ(r)

)
∗ µ (12)

is a martingale. (We use the notation · and ∗ of Jacod and Shiryaev (2003) to denote stochastic

integration with respect to semimartingales and random measures.) This brings us closer to the

stance of controlled Markov processes. The reward process itself is not Markov, but the three-

dimensional state-observation process (Θ, H,R) is, at least under constant control. It is well known
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that Markov processes can be specified by their generator. In our case, this would be a non-local

second order differential operator. The coefficients of this operator are closely related to the drift,

volatility and jump measure defined in equation (2). This puts our model in the framework of

partially observed controlled Markov processes.16 Yet another option is to formulate an SDE for

the reward process. To account for jumps, one could try to add a term dNt to the right-hand side

of equation (7), where N is a compound Poisson process whose jump intensity depends on the type

and the control. It follows that one needs to consider a family of compound Poisson processes to

allow for arbitrary controls. Then the equation turns into an SDE driven by non-linear Lévy noise

in the sense of Kolokoltsov (2010, theorems 3.7 and 3.11).

We now come to the second task (b) of defining what it means for U to be non-anticipative

and to depend only on observable quantities. This matter is rarely discussed in the applied bandit

literature. However, the theoretical literature shows that it can be a delicate issue. A basic

requirement is that the control process must be predictable with respect to the filtration generated

by the observation process. Ceci and Gerardi (1998) demonstrated that this requirement is sufficient

when the observation process is a counting process. Their result applies for example to the Poisson

and exponential bandit models of Keller, Rady, and Cripps (2005) and Keller and Rady (2010).

However, the above requirement is not stringent enough in general. For example, in our model,

it would be tempting to admit any control process U that is FH,R-predictable, where FH,R is the

filtration generated by the observable processes H and R. (Generally, we will write FX = (FXt )t≥0

for the filtration generated by a process X.) But the differential equation (1) for H shows that

U can be reconstructed from H, at least when α 6= 0 and under a continuity assumption like U

being càglàd. Then FU ⊆ FH,R holds automatically and it is pointless to require U to be FH,R-

predictable. Namely, any càglàd process U is FH,R-predictable, regardless of whether it depends

on the supposedly unobserved state or not. Similar problems arise when requiring U to be FR-

predictable since U can be reconstructed from the quadratic variation process of R.17

We use an approach popular in the early works in optimal control theory (Fleming and Nisio

(1966); Wonham (1968); Kohlmann (1982)). Namely, we require that Ut(ω) = Ut(ω
′) holds when-

ever the reward process satisfies Rs(ω) = Rs(ω
′) for all s < t. This is equivalent to defining the

control process as a functional of the reward process in the sense that U = F (R), where F is a

predictable process on Skorokhod space D(R). This space is the canonical space of càdlàg paths,

which are right-continuous functions [0,∞)→ R with left limits. It is natural to assume that every

sample path of the reward process is an element of this space. Under the strong measurability

condition on the control, we are not able to prove that the set of admissible controls is compact

and have to establish the existence of optimal controls in an indirect way. To this aim, we will

transform the partially observed problem into a problem of full observations called the separated

16. See also Kurtz and Ocone (1985) and Kurtz and Stockbridge (1998) who introduced a filtered martingale
problem characterizing the conditional distribution of the unobserved state process and Stockbridge (2005) who
proved a separation theorem in a similar setting.

17. Moreover, putting the reward process into a control-independent form by Zakai’s measure transform (Fleming
and Pardoux 1982) is not possible for general bandit models.
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problem. This will be done in section 3.4.

Before we can define control processes, we need to make precise in what way the law of the

reward process is determined by its characteristics. We follow the notation of Jacod and Shiryaev

(2003, chapter IV). P is called a solution of the martingale problem s (H, R | η;B,C, µ) if P is

a probability measure on the filtered space (Ω,F ,F) on which R,B,C, µ are defined such that P
coincides with η on H ⊆ F0 and R is a càdlàg (F,P)-semimartingale with characteristics (B,C, µ).

Existence, uniqueness and local uniqueness of the martingale problem are defined as usual.

We now define control processes as predictable processes on Skorokhod space D(R) and call

them admissible if a certain martingale problem associated to them is well-posed.18 Well-posedness

of the martingale problem is exactly what is needed to establish the equivalence to the separated

problem, as can be seen from the proof of lemma 2 (in Appendix A) where the filtering equation is

derived.

Definition 1 (Admissible control process). Let R be the coordinate process on Skorokhod space

(D(R),F ,F). A predictable [0, 1]-valued process F on this space is called an admissible control

process if for all θ ∈ {0, 1} and h0, r0 ∈ R, existence and local uniqueness holds for the martingale

problem s (F0, R | δr0 ;B,C, µ) on D(R), where B,C, µ,H are defined via equations (1), (2), (3)

with Θ = θ, U = F , and H0 = h0.

The next definition states that a p.o. control is a probability space endowed with U,Θ, H,R as

in the previous section such that the control can be written as U = F (R) for an admissible control

process F . The conditions P0 = p0 and H0 = h0 are called the initial conditions of the control.

Definition 2 (Partially observable control). Let B = (Ω,F ,F,P) be a stochastic basis endowed with

a {0, 1}-valued random variable Θ, a continuous process H and a càdlàg process R. Furthermore,

let F be an admissible control process and let U = F (R) be the composition of F with R. If P solves

the martingale problem s (F0, R | η;B,C, µ), where B,C, µ,H, η are defined via equations (1), (2),

(3) and

η(Θ = 1) = 1− η(Θ = 0) = p0, η(H0 = h0) = η(R0 = 0) = 1, (13)

then we call the tuple U = (B, U,Θ, H,R, p0, h0) a partially observable (p.o.) control with initial

conditions (p0, h0). We write Up.o.
p0,h0

for the set of all such U .

The set of p.o. controls is not empty. Indeed, any deterministic control process is admissible.

To see this, note that the characteristics (B,C, µ) are deterministic in this case. It is well-known

that this implies existence and local uniqueness of the martingale problem, see Jacod and Shiryaev

(2003, theorem III.2.16). We will now define the value of a p.o. control.

18. Klein and Rady (2011) require a similar condition in a multi-agent setting and give it the interpretation that
the solution can be obtained as a discrete-time limit. This interpretation is consistent with our definition since
piecewise constant control processes are admissible. Friedman and Yavin (1980) and Kohlmann (1982) make continuity
assumptions on controls to guarantee the well-posedness of the associated martingale problem. However, these
stronger assumptions are not necessary.
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Definition 3 (Value of p.o. control). The value of a p.o. control U ∈ Up.o.
p0,h0

is

Jp.o.(U) = E
(∫ ∞

0
ρe−ρtdRt

)
, (14)

where the expectation is taken with respect to P. The value function for the p.o. control problem is

V p.o.(p0, h0) = sup
{
Jp.o.(U) : U ∈ Up.o.

p0,h0

}
. (15)

Note that it follows from the bounds in assumption 1 that any control has finite and well-defined

value, see also lemma 1 below.

We end this section with a remark on the interpretation of [0, 1]-valued as opposed to {0, 1}-
valued controls. The interpretation of Ut as the fraction of time devoted to the unknown arm has

already been given in the discussion of time changes in section 3.2. This interpretation is possible

because of the linearity of the drift, volatility and jump measure in the control (see equations (2)).

Another interpretation of Ut is as a relaxed, i.e., measure valued or randomized, control. The

measure associated to Ut is Utδ1(du) + (1 − Ut)δ0(du), where δ1 and δ0 are Dirac measures on

{0, 1}. In general, one has to work with relaxed controls to get good existence results for optimal

strategies. It turns out that in our model, the additional generality provided by relaxed controls is

not necessary. Indeed, we will prove the existence of optimal non-relaxed controls in theorem 2.

3.4 The separated (se.) control problem

The p.o. control problem is modified in several ways to solve it. The first step is to transform it

into a so-called separated (se.) problem, which is standard in control theory. To derive the se. from

the p.o. problem, the unobserved type Θ is replaced by its filter Pt. The filter is the conditional

distribution of Θ given the observations up to time t. Since Θ is {0, 1}-valued, Pt can be represented

as a real number Pt ∈ [0, 1]. In economic terms, Pt is the posterior belief of the agent in being of

the high type. In the se. problem, the agent controls the fully observed process (P,H,R). Under

constant controls, this process is Markov, see Kurtz (1998). Under some regularity assumptions

on the generator of (P,H,R), it can be shown that optimal Markov strategies for the se. problem

exist (see Kurtz and Stockbridge (1998, 1999)).

The second step is to reduce the dimension of the state space by one. This is made possible by

the fact that the evolution of the reward process R depends on the values of Θ and H, but not on

the value of R itself. This can be seen from the characteristics of the reward process in equation (2).

Our model inherits this structure from classical bandit models where the evolution of the reward

process also does not depend on its current value. We will now explain how the state variable R

can be eliminated. The details of the argument can be found in the proof of lemma 2. First, note

that FR = FH,R because H is FU -adapted and U is FR-adapted. Taking FR-optional projections,

one obtains that the FR-characteristics of R can be expressed via (P,H), which is the FR-optional

projection of (Θ, H). Then also the characteristics of (P,H), which were originally expressed in
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terms of the characteristics of (P,H,R), can be expressed in terms of (P,H). It remains to express

the value of a strategy using (P,H) instead of (P,H,R). This can be done by replacing R by its

FR-compensator.

In the resulting optimization problem, the agent controls the Markov process (P,H). The

evolution of the human capital process H is the same as in the partially observable problem. The

evolution of the belief process P is described by the filtering or Kushner-Stratonovic equation

(Kushner 1967). This equation depends on the characteristics of the reward process via functions

φ1 and φ2, that are defined by the relations

σ(h)2φ1(h) = β(1, h)− β(0, h)−
∫
R

(
φ2(h, r)− 1

)
χ(r)

(
K(1, h, dr) +K(0, h, dr)

)
,

φ2(h, r) =
K(1, h, dr)(

K(1, h, dr) +K(0, h, dr)
)
/2
.

(16)

The existence of such functions can be derived from Girsanov’s theorem (Jacod and Shiryaev 2003,

theorem III.3.11) applied to P1 � 1
2(P1 +P0), where for θ ∈ {0, 1}, Pθ is the measure P conditioned

on Θ = θ. The function φ1 accounts for differences in the drift and φ2 for differences in the jumps

of the reward process for high and low type agents, respectively. These differences vanish if and

only if equation (16) can be satisfied with φ1 = 0 and φ2 = 1. The meaning of φ1 and φ2 is

most clearly seen in the compound Poisson case where the jump measures K(θ, h, dr) are finite

and the truncation function χ can be set to zero, which eliminates the integral term in equation

(16). Note that we allow the jump measures K(1, h, dr) and K(0, h, dr) to have both singular and

absolutely continuous parts with respect to each other. Consequently, our model encompasses both

the exponential bandit model of Keller, Rady, and Cripps (2005), where jumps can occur only for

high type agents, and the Poisson and Levy bandit models of Keller and Rady (2010, 2012) and

Cohen and Solan (2013), where it is assumed that one jump measure is absolutely continuous with

respect to the other. Finally, note that φ1 and φ2 are independent of the choice of the truncation

function χ, as can be seen from Jacod and Shiryaev (2003, II.2.24).

In the following definition, the filtering equation is formulated in terms of the (FR,P)-characteristics

of P . For convenience, we introduce the following notation.

β(p, h) = pβ(1, h) + (1− p)β(0, h), K(p, h, dr) = pK(1, h, dr) + (1− p)K(0, h, dr). (17)

Definition 4 (Separated control). Let B = (Ω,F ,F,P) be a stochastic basis endowed with a pre-

dictable [0, 1]-valued process U , a càdlàg [0, 1]-valued process P and a continuous R-valued process H

such that H satisfies equation (1) and such that P is an (F,P)-semimartingale with characteristics

(B,C, µ) as in equation (3) with

b = −U
∫
R

(
q−χ(q)

)
(j∗K)(P−, H, dq), c = UP 2

−(1−P−)2φ1(H)2σ(H)2, ν = U(j∗K)(P−, H, dq).

(18)
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Here, the measure j∗K is defined by equation (17) and

∀g ∈ Cb(R) :

∫
R
g(q)(j∗K)(p, h, dq) =

∫
R
g
(
j(p, h, q)

)
1j(p,h,q)6=0K(p, h, dq), (19)

j(p, h, q) =
pφ2(h, q)

pφ2(h, q) + (1− p)
(
2− φ2(h, q)

) − p. (20)

If furthermore the initial conditions

P(P0 = p0) = P(H0 = h0) = P(R0 = 0) = 1 (21)

hold, then we call the tuple U = (B, U, P,H, p0, h0) a separated control with initial conditions (p0, h0)

and we write Use.
p0,h0

for the set of all such U .

Note that (18) implies that P is a local martingale, see Jacod and Shiryaev (2003, proposition

II.2.29). It is also bounded, so it is a martingale. Notice how the volatility and jumps of P go

to zero as P approaches the boundary of [0, 1]. Therefore the condition that P is [0, 1]-valued is

satisfied automatically, at least under some additional regularity assumptions on the coefficients

of the generator, see e.g. Simon (2000); Buckdahn et al. (2010); Filipovic, Tappe, and Teichmann

(2012).

Definition 5. The value of a se. control U ∈ Use.
p0,h0

is

J se.(U) = E

(∫ ∞
0

ρe−ρt
(
β(Pt−, Ht)Ut + k(1− Ut) + Ut

∫ (
r − χ(r)

)
K(Pt−, Ht, dr)

)
dt

)
, (22)

where the expectation is taken with respect to the measure P. The value function for the separated

control problem is

V se.(p0, h0) = sup
{
Jse.(U) : U ∈ Use.

p0,h0

}
. (23)

3.5 Equivalence of the p.o. and se. problem

In this section, we will prove the equivalence between the p.o. and the se. problem. This will be

our first result. It is based on a number of assumptions that we state next.

To transform p.o. controls into se. controls of the same value, we will construct a local martin-

gale and show via Girsanov’s theorem that its stochastic exponential is equal to the belief process

Pt = E(Θ|FRt ). Then it is not hard to calculate the characteristics of P and to verify that P

solves the filtering equation, which yields the desired se. control. To prove that the stochastic

exponential agrees with the belief process, it is necessary to establish the uniform integrability of

the stochastic exponential. Sufficient conditions for this are well-known in the literature (Novikov

1980; Cheridito, Filipović, and Yor 2005; Kazamaki 1977, 1978, 1994; Cherny and Shiryaev 2000;

Mémin 1978; Karatzas and Kardaras 2007; Protter and Shimbo 2008). We use a condition that is

based on Lépingle and Mémin (1978, Théorème IV.3).
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Assumption 2 (Novikov-style condition). There exist functions φ1, φ2 satisfying (16) such that

the expression

Φ(h) =
1

8
φ1(h)2σ(h)2 +

∫
R

(
1−

√
φ2(h, r)

(
2− φ2(h, r)

))
K(1/2, h, dr) (24)

is locally bounded in h.

Note that the expression in (24) remains invariant under interchanges of the measures P1 and P0

governing the reward process for high and low type agents. In such an interchange, φ1 is replaced

by −φ1 and φ2 by 2 − φ2. The interpretation of equation (24) is most obvious when the jump

measures K(1, h, ·) and K(0, h, ·) are finite, such that the truncation function χ can effectively be

set to zero, and when K(1, h, ·) is absolutely continuous with respect to K(0, h, ·). In this case,

Φ(h) =
1

8

(
β(1, h)− β(0, h)

σ(h)

)2

+
1

2

∫
R

(
1−

√
K(1, h, dr)

K(0, h, dr)

)2

K(0, h, dr). (25)

Thus Φ captures differences in the drift and jumps of the reward process for high versus low type

agents. Φ is also closely tied to the Hellinger process of the measures P1 and P0, as explained in

section 3.7.

The following assumptions are used to approximate se. controls by step controls. This amounts

to a discretization of the control problem in time (but not in space). The motivation for this

approximation is that for se. step controls, it is possible to construct p.o. step controls of the same

value through a recursive procedure.

Assumption 3 (Well-posedness of the filtering equation under deterministic control). For any de-

terministic process U and corresponding human capital process H satisfying equation (1), existence

and local uniqueness holds for the martingale problem s (F0, P | η;B,C, µ) under any initial condi-

tion η. Here, P is the coordinate process on D(R) and (B,C, µ) satisfy equation (3) with (b, c, ν)

as in equation (18). Furthermore, the process P is a.s. [0, 1]-valued under the solution measure.

Assumption 4 (Continuity of the coefficients). The expressions

β(θ, h), σ(h),

∫
R
g(r)K(θ, h, dr) (26)

are continuous in h for all θ ∈ {0, 1} and all functions g ∈ Cb(R) vanishing near the origin.

Theorem 1 (Separation theorem). Let assumptions 1–4 hold. Then the value functions of the

separated and the partially observed problem are finite and agree:

V (p0, h0) := V p.o.(p0, h0) = V se.(p0, h0) <∞. (27)

To establish the theorem, we use step controls that we define next. These are controls that are

constant on subsequent time intervals of a fixed length δ > 0.
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Definition 6 (Step controls). A step process with step size δ > 0 is a (càdlàg or càglàd) process

that is constant on all intervals (ti, ti+1), where ti = δi for i ∈ N. Up.o.,δ
p0,h0

is the set of p.o. controls

with initial condition (p0, h0) whose control process U is a {0, 1}-valued step process with step size

δ. The value function corresponding to this class of controls is denoted by V p.o.,δ(p0, h0). Use.,δ
p0,h0

and V se.,δ(p0, h0) are defined correspondingly.

The separation theorem follows from a sequence of lemmas that can be found in the appendix.

We now give a verbal proof of the theorem, highlighting the role that each individual lemma plays.

Proof of theorem 1. Step 1. All value functions are well-defined and finite by lemma 1.

Step 2. For every p.o. control, one can define a process P = E(Θ|FRt ) as the conditional

expectation of the type Θ given the past observations. It is shown in lemma 2 that P satisfies the

filtering equation (18) in the definition of se. controls. It follows that every p.o. control can be

interpreted as a se. control. Moreover, the p.o. and se. control have the same value. By taking

the supremum over all controls or step controls, one obtains that

V p.o.(p0, h0) ≤ V se.(p0, h0), V p.o.,δ(p0, h0) ≤ V se.,δ(p0, h0). (28)

Step 3. It remains to construct for every se. control a p.o. control of at least the same value.

By a standard argument in lemma 4, se. controls can be approximated arbitrarily well by se. step

controls. Formally, this is expressed by the equation

sup
δ
V se.,δ(p0, h0) = V se.(p0, h0). (29)

Thus it is sufficient to show that every se. step control corresponds to a p.o. control of at least the

same value. This is done in lemma 3. In this lemma, the p.o. control is constructed recursively

for each step of the control process by stitching together solution measures to the p.o. martingale

problem under constant control. This establishes the relation

V se.,δ(p0, h0) ≤ V p.o.,δ(p0, h0) (30)

Together with the results of the previous step this immediately implies that equality holds in (30).

By allowing arbitrarily small step sizes δ one obtains that the se. and p.o. value functions are finite

and agree:

V p.o.(p0, h0) ≤ V se.(p0, h0) = sup
δ
V se.,δ(p0, h0) ≤ sup

δ
V p.o.,δ(p0, h0) ≤ V p.o.(p0, h0) (31)

3.6 Equivalence to optimal stopping

The next step is to reduce the stochastic control problem to an equivalent stopping problem. That

is, there are optimal stopping controls as defined below.
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Definition 7. A control U is called a stopping control if the associated control process U is of the

form Ut = 1J0,T K(t) for a stopping time T .

The result hinges on the monotonicity condition that the expected rewards of the unknown arm

increase while the arm is operated and decrease otherwise. Since the amount of past investment in

the unknown arm is represented by the level of human capital, this is equivalent to assuming that

the average reward from investments in the unknown arm is a non-decreasing function of the level

of human capital. The infinitesimal version of this assumption can be stated as follows:

Assumption 5 (Monotonicity condition). The relation

α(0, h) ≤ 0 ≤ α(1, h) (32)

holds for all h ∈ R and the expression

β(θ, h) +

∫
R

(
r − χ(r)

)
K(θ, h, dr) (33)

is non-decreasing in θ, h ∈ {0, 1} × R.

We are now ready to state our main theorem. Recall that k is the reward from the known arm

and V = V p.o. = V se. (see theorem 1).

Theorem 2 (Optimal stopping). Let assumptions 1–5 hold. Then the following stopping times T ∗

are optimal.

1. T ∗ = inf{t ≥ 0 : V (Pt, Ht) ≤ k}.

2. T ∗ = inf{t ≥ 0 : G(Pt, Ht) ≤ k}, where G is defined by

G(p0, h0) := inf

{
s : sup

T
E
(∫ T

0
ρe−ρt(dRt − sdt)

)
≤ 0

}
= sup

T

E
(∫ T

0 ρe−ρtdRt

)
E
(∫ T

0 ρe−ρtdt
) . (34)

The suprema in the formula above are over all FP,H-stopping times T and the processes P , H, and

R are governed by the constant strategy Ut = 1 for all t.

G formally coincides with Gittins’ index. However, the payoff distribution of inactive arms can

evolve. This is not allowed in classical bandit models, which are the object of Gittins’ (1979) theory.

The first formula in equation (34) is a continuous time version of Weber’s (1992) modification of

Whittle (1980). The second formula is the continuous time version of the original formulation of the

index by Gittins and Jones (1974). Some references for the continuous time setting are El Karoui

and Karatzas (1994, 1997) and Bank and Küchler (2007).

An immediate consequence of theorem 2 is a characterization of optimal strategies by a curve

that is typically referred to as the decision frontier.
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Corollary 1. There is a curve in the (p, h)-domain such that it is optimal to invest in the unknown

arm if (Pt, Ht) lies to the right and above of the curve. Otherwise, it is optimal to invest in the

known arm.

Proof. The value function V is non-decreasing in its arguments by lemma 5 in the appendix

and bounded from below by the constant k. The desired curve is the boundary of the domain

{(p, h) : V (p, h) > k}. The characterization of optimal strategies via the position of (Pt, Ht)

relative to the curve follows from theorem 2.

Another consequence is the indexability of our bandit model in the sense of Whittle (1988).

This means that the set of states in the (p, h)-domain where the known arm is optimal increases in

the payoff k of the known arm. This property is obvious from equation (34).

Corollary 2. Our restless bandit model is indexable in the sense of Whittle (1988). More generally,

in a multi-armed bandit model, this holds for any arm that satisfies these assumptions.

Theorem 2 follows from a sequence of lemmas. Its proof is short and can serve as a guide to

how the lemmas are used. The core of the proof is lemma 7 where the optimality of stopping rules

is shown. It is a generalization of an argument originally developed by Berry and Fristedt (1985,

section 5.2) for classical bandits in discrete time. It turns out that our monotonicity assumption is

exactly what is needed to make the proof work for restless bandits. Once it has been established

that the problem is equivalent to optimal stopping, the characterization of optimal stopping times

via the value function and via Gittins’ index follow easily.

Proof of theorem 2. We make repeated use of the monotonicity assumption 5. A first conse-

quence of this assumption is the monotonicity in (p0, h0) and convexity in p0 of the value function.

These properties are established in lemma 5. The result is then used in lemma 6 to prove a sufficient

condition for the unique optimality of the unknown arm as an initial choice. Namely, when the

expected immediate (myopic) payoff is higher for the unknown than for the known arm, then it is

uniquely optimal to choose the unknown arm. This result is used in lemma 7 to prove that there

exist optimal stopping rules for the discretized control problem. The argument is a modification of

Berry and Fristedt (1985, theorem 5.2.2) that allows the reward to depend on the level of human

capital. Since it is already know from lemma 4 that controls can be approximated arbitrarily well

by step controls, it follows that the set of p.o. and se. controls can be restricted to stopping

controls without incurring any loss of value. Thus it has been established in the continuous time

setting that the value function is the supremum over the values of stopping controls. However, it

remains to show that optimal stopping controls exist. This is well-known for controlled Markov

processes, so the result is established with ease in lemma 8 for the se. problem. By lemma 9, an

optimal stopping rule for the se. problem yields also an optimal stopping rule for the p.o. problem.

The characterization of optimal stopping controls as in theorem 2.1 is immediate from the proof of

lemma 8. The equivalence to the formulas in theorem 2.2 is well-known, see e.g. Morimoto (1991,

theorem 2.1) or El Karoui and Karatzas (1994, proposition 3.4).
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3.7 Asymptotic learning

In this section, we calculate the limits of the belief process and formulate conditions for asymptotic

learning, which is defined as convergence of the belief process to the true type. The result builds

upon the theory of Hellinger processes as a means to characterize the mutual singularity or absolute

continuity of measures. In the following, for θ ∈ {0, 1} and 0 < p0 < 1, let Pθ denote the measure

P conditioned on Θ = θ.

Agents can learn their true type in two ways: either through a jump of the belief process to

Θ, or through convergence to Θ without a jump to the limit. Jumps of the belief process to zero

or one are possible only when the jump measures K(1, h, ·) and K(0, h, ·) are not equivalent. For

example, this is the case in the exponential bandits model of Keller, Rady, and Cripps (2005).

However, when the jump measures are equivalent, then learning can occur only gradually. This

kind of learning is characterized by the divergence of the Hellinger process h(1
2) of the measures P1

and P0. This process is closely related to the function Φ, which was defined in assumption 2 and can

be interpreted as the informativeness of the reward process about the type Θ. In fact, assumption

2 provides an upper bound on Φ and consequently on the Hellinger process. When there is also a

lower bound on Φ, then gradual convergence (without jumps to Θ) of the belief process to the true

type is equivalent to the amount of investment in the unknown arm going to infinity. This is the

content of the following theorem.

Theorem 3 (Asymptotic learning). Let assumptions 1 and 2 hold and let the initial belief be non-

doctrinaire in the sense that 0 < p0 < 1. Then the following statements hold a.s. under any

control.

(a) Let the measures K(1, h, ·) and K(0, h, ·) be equivalent for all h. Then learning in finite time

is impossible, i.e., 0 < Pt < 1 holds for all t ≥ 0. Moreover, asymptotic learning does not

occur if the agent invests only a finite amount into the unknown arm, i.e.,

{
∫∞

0 Utdt <∞} ⊆ {0 < P∞ < 1} P-a.s. (35)

(b) Let there be a lower bound on the informativeness of the reward process in the sense that

infh Φ(h) > 0 holds, where Φ(h) is defined in equation (24). Then asymptotic learning is

guaranteed if the agent invests an infinite amount in the unknown arm, i.e.,

{
∫∞

0 Utdt =∞} ⊆ {P∞ = Θ} P-a.s. (36)

(c) If the conditions of (a) and (b) are satisfied, then asymptotic learning occurs if and only if

the agent invests an infinite amount in the unknown arm:

{
∫∞

0 Utdt =∞} = {P∞ = Θ} P-a.s. (37)

The theorem is proven in the appendix. Note that theorem 3 holds under any strategy, not just
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under the optimal one. However, it can be combined with theorem 2 to the following statement

about asymptotic learning under optimal strategies: for any agent, asymptotic learning fails with

positive probability. However, it takes place with positive probability for high type agents starting

out above the frontier.19

3.8 Trajectories in the belief–human capital space

Let us restrict our attention to a range (hmin, hmax) of human capital that is invariant under the

evolution of human capital. This means that the process Ht never leaves the interval (hmin, hmax)

when H0 lies in this interval. We assume that conditions (a) and (b) of theorem 3 hold, which

implies that learning occurs only gradually as agents invest more and more into the unknown arm.

To exclude trivial cases, we also require the initial belief to be non-doctrinaire in the sense that

0 < p0 < 1 holds. We set out to describe the possible trajectories of an agent in belief–human

capital space (0, 1)× (hmin, hmax) and to explore the importance of dynamic human capital in that

context.

The results from the previous section together with the characterization of optimal strategies

in terms of the decision frontier imply that agents meet one of two fates: they either remain above

the frontier, in which case they learn their true type in the limit. Or they fall below the frontier at

some point, in which case they cannot learn their true type. A first consequence of this observation

is that in the long run, only high type agents are susceptible to making suboptimal investment

decisions. Namely, they might drop down below the frontier because of bad luck and stop learning

about their type. In contrast, all low type agents eventually choose the option they would also

choose if they knew their type. (Depending on the parameters of the model and on the level of

human capital of the agent, this might mean investing or not investing.) It follows that in the long

run, compared to a setting with full information, agents invest too little in the unknown arm. This

points to the importance of policies designed to increase investment in the unknown arm.

The effect of dynamic as opposed to static human capital on optimal investment is best seen

by looking at the limit (P∞, H∞) of the belief–human capital process as time goes to infinity. This

limit always exists as an element of [0, 1]× [hmin, hmax] because P is a bounded martingale and H

is an integral curve to a vector field (at least after a stopping time where the agent might change

her investment strategy).

In the case where human capital is dynamic in the strict sense that α(0, h) < 0 < α(1, h) holds

for h ∈ (hmin, hmax), agents never converge to the frontier. Instead, their human capital converges

either to hmin or hmax, depending on whether they stop investing in the unknown arm at some

point in time or not. However, in the static case where α(1, h) = α(0, h) = 0 holds and human

capital is constant, agents above the frontier hit the frontier with positive probability and remain

there forever.

19. This can be compared to the linear network structure in Acemoglu et al. (2011, example 1.1) where asymptotic
learning is guaranteed. This is because agents receive information at each stage regardless of whether they invest or
not.
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This consideration suggests that agents in the static human capital case accumulate at the

frontier. This statement can be given a precise meaning. Assume that there is a population of

agents whose initial belief and human capital is uniformly distributed. Moreover, assume that

agents have independent types such that learning from others is impossible. Alternatively, learning

could be precluded by making actions and rewards private information. Then all agents behave as

in the single player case. The distribution of the agents in the belief–human capital domain evolves

over time and converges to the distribution of (P∞, H∞). Figures 1 and 2 depict the decomposition

of this distribution into absolutely continuous and singular parts with respect to the Lebesgue

measure. Singular parts are highlighted. They correspond to areas of vanishing Lebesgue measure

where nevertheless, there is a positive fraction of agents in the long term limit. Thus highlighted

areas in the graphs can be interpreted as accumulation points of agents. Notice that the frontier

is highlighted in exactly the cases where human capital is constant. In all other cases, it is not

highlighted and in fact, never occurs as a limit.

Figures 1 and 2 differ by the position of the frontier relative to the boundary of the belief–human

capital domain. In figure 1, human capital can be so high (low) that the unknown (known) arm

is optimal for all agents, regardless of their type. In other words, human capital has a stronger

influence than the type. By contrast, in figure 2, the type has a stronger influence than human

capital, which makes the unknown (known) arm optimal for all high (low) type agents, regardless

of their level of human capital. The dominance of human capital or the type is determined by the

parameters of the model.

4 Conclusion

We discovered a class of restless bandit models of investment under uncertainty where payoffs are

allowed to depend on the history of past investments in a monotonic way. We argue that this

dynamic dependence is a defining feature of many economically important activities such as human

capital formation or job search. Agents in our model have imperfect information and learn through

observations of the reward process, which we allow to be a general semimartingale. We solve

the model by showing that stopping rules are optimal and can be characterized by an index that

formally coincides with Gittins’ index. Moreover, we characterize the learning process by giving

necessary and sufficient conditions for asymptotic learning.

Allowing arms in a bandit to evolve as in our model results in a stark empirical prediction –

there are very few truly “marginal agents” (in the classic sense). Instead, once agents stop investing

they drift to the boundary. In this case, optimal policies to foster human capital or unemployment

policies designed to keep individuals in the workforce may have very different characteristics than

optimal policy in standard life-cycle human capital or job search models. For instance, one could

imagine that if policies can be targeted to individuals, optimal policy might wait until agents are

close to the decision frontier and then subsidize investment in the risky arm if the probability that

they are high type is large enough. Conversely, if one has to make lumpy transfers (e.g. invest in
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a community or a school) then optimal policy may be more complicated. With a new indexable

class of restless bandit models, there are many potential avenues of future research.
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Figure 1: Absolutely continuous (opaque areas) and singular (bold lines and dots) parts of the
distribution of (P∞, H∞) when (P0, H0) is uniformly distributed. The dashed line is the decision
frontier. It intersects the left and right boundary of the (p, h)-domain because the parameters are
such that the effect of human capital dominates the effect of Θ. Note that agents accumulate at
the frontier when Ht is constant but move away from it when Ht is dynamic.
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Figure 2: Absolutely continuous (opaque areas) and singular (bold lines and dots) parts of the
distribution of (P∞, H∞) when (P0, H0) is uniformly distributed. The dashed line is the decision
frontier. It intersects the left and right boundary of the (p, h)-domain because the parameters are
such that the effect of Θ dominates the effect of human capital. Note that agents accumulate at
the frontier when Ht is constant but move away from it when Ht is dynamic.
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. 1978. “Correction: “On a problem of Girsanov” (Tôhoku Math. J. (2) 29 (1977), no. 4,
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5 Appendix A: Technical Appendix

Lemmas 1 through 3 are used to establish theorem 1 and lemmas 4 through 9 to establish theorem 2.

We will say that the discrete setting is in place when we are using the following notation.

Definition 8 (Discrete setting). For δ > 0 and i ∈ N let ti = iδ. For càdlàg processes P , H, R,

etc., we write Pi, Hi, Ri for Pti , Hti , Rti. For a càglàd process like U , we write Ui for the right limit

Uti+. The value of a p.o. step control with step size δ can be expressed as

Jp.o.(U) = E

( ∞∑
i=0

ζi
(
Uiγ(Θ, Hi) + (1− Ui)k

))
, (38)

where

ζi = (1− e−ρδ)e−ρiδ, γ(θ, h) =
1

1− e−ρδ
E
(∫ δ

0
ρe−ρtdRt

∣∣∣∣(Θ0, H0, R0) = (θ, h, 0), Ut ≡ 1

)
. (39)

Similarly, the value of a se. step control with step size δ is

Jse.(U) = E

( ∞∑
i=0

ζi
(
Uiγ(Pi, Hi) + (1− Ui)k

))
, (40)

where

γ(p, h) = pγ(1, h) + (1− p)γ(0, h). (41)

Lemma 1. Under assumptions 1, and 3, the value functions for the p.o. and se. problem are

well-defined and finite.

Proof. Step 1. We claim that the set of controls for the p.o. and se. problem, discretized or

not, is not empty. For the p.o. problem, it is sufficient to show that constant control processes F

are admissible. This is a consequence of Jacod and Shiryaev (2003, proposition III.2.42) stating

that existence and local uniqueness holds for the martingale problem associated to deterministic

characteristics. For the se. problem, assumption 3 implies the existence of controls with constant

control process. This proves the claim.

Step 2. Let U be a p.o. control and let (B,C, µ) be the characteristics of R. The uniform

bound on
∫

(|r|2∧|r|)K(θ, h, dr) in assumption 1 implies that the process (|r|2∧|r|)∗µ is increasing

and of integrable variation. It follows from Jacod and Shiryaev (2003, proposition II.2.29b) that

R is a special (F,P)-semimartingale. Therefore, there is a unique predictable process of integrable

variation A such that R−A is a local martingale. By the same proposition, A satisfies

dAt =

(
β(Θ, Ht)Ut + k(1− Ut) + Ut

∫ (
r − χ(r)

)
K(Θ, Ht, dr)

)
dt. (42)

The uniform bounds on β(θ, h) and
∫

(|r|2∧ |r|)K(θ, h, dr) imply that At has at most linear growth
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in t. Consequently,

Jp.o.(U) = E
(∫ ∞

0
ρe−ρtdRt

)
= E

(∫ ∞
0

ρe−ρtdAt

)
<∞. (43)

The bound on A is uniform in U . Therefore V p.o. is finite.

Step 3. Now let U be a se. control. The process P is bounded by assumption 3. It follows by

assumption 1 that the integrand in the definition of J se.(U) in (22) is bounded. Therefore J se.(U)

is finite. The bound is uniform in the control U and therefore V se. is finite.

Lemma 2. Under assumptions 1 and 2, every p.o. control can be transformed into a se. control

with the same value, which implies

V p.o.(p0, h0) ≤ V se.(p0, h0), V p.o.,δ(p0, h0) ≤ V se.,δ(p0, h0). (44)

Proof. For a p.o. control (
(Ω,F ,F,P), U,Θ, H,R, p0, h0

)
(45)

we let P be the unique càdlàg process satisfying Pt = E(Θ|FRt ). We claim that

((Ω,F ,FR,P), U, P,H, p0, h0) (46)

is a se. control with the same value as the p.o. one. If the p.o. control is a step control, then the

se. control is a step control as well.

Step 1. If p0 equals zero or one, then Pt = p0 is constant and yields the desired se. control. In

the sequel, we assume that 0 < p0 < 1. Then the measure P can be conditioned on the type Θ of

the agent. For θ ∈ {0, 1}, this yields measures Pθ such that

Pθ(Θ = θ) = 1, P = p0P1 + (1− p0)P0. (47)

The process P is the FR-density process of the measure p0P1 relative to P, which can be seen from

the relation ∫
A
PtdP =

∫
A
E(Θ|FRt )dP =

∫
A

ΘdP = p0P1(A) for A ∈ FRt . (48)

Step 2. By Jacod and Shiryaev (2003, theorems II.2.42 and III.3.40), the process

Mf = f(R)− f(R0)− f ′(R−)
(
Uβ(P−, H) + (1− U)k

)
· t− 1

2
f ′′(R−)Uσ(H)2 · t

−
(
f(R− + r)− f(R−)− f ′(R−)χ(r)

)
∗
(
UK(P−, H, dr)dt

)
(49)

is an (FR,P)-martingale for any f ∈ C2
b (R). (The centered dot and the star denote integration with
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respect to a semimartingale and a random measure, respectively.) Similarly, the process

M̃f = f(R)− f(R0)− f ′(R−)
(
Uβ(1, H) + (1− U)k

)
· t− 1

2
f ′′(R−)Uσ(H)2 · t

−
(
f(R− + r)− f(R−)− f ′(R−)χ(r)

)
∗
(
UK(1, H, dr)dt

)
(50)

is an (FR,P1)-martingale for any f ∈ C2
b (R). The coefficients in equations (49) and (50) are related

by functions ψ1(p, h) and ψ2(p, h, r), which are defined for p > 0 by the relations

β(1, h) = β(p, h) + σ(h)2ψ1(p, h) +

∫
R

(
ψ2(p, h, r)− 1

)
χ(r)K(p, h, dr),

K(1, h, dr) = ψ2(p, h, r)K(p, h, dr).

(51)

The existence of ψ1 and ψ2 is guaranteed by assumption 2 and by the relations

ψ1(p, h) = (1− p)φ1(h), ψ2(p, h, r) =
φ2(h, r)

pφ2(h, r) + (1− p)
(
2− φ2(h, r)

) . (52)

Recall that by definition, φ2(h) ∈ [0, 2]. Consequently, the inequality

pφ2(h, r) + (1− p)
(
2− φ2(h, r)

)
≥ 2/n (53)

holds for p ≥ 1/n because the left-hand side is a convex combination of p and (1− p). Therefore,

(
ψ2(p, h, r)− 1

)2
=

(
2(1− p)(φ2(h, r)− 1)

pφ2(h, r) + (1− p)
(
2− φ2(h, r)

))2

≤ 1

n2

(
φ2(h, r)− 1

)2
(54)

holds for each p ≥ 1/n. This bound can equivalently be expressed in terms of the functions

y log(y)− y + 1 or 1−
√
y(2− y) instead of (y − 1)2 because the inequalities

y log(y)− y + 1 ≤ (y − 1)2 ≤ 4
(
y log(y)− y + 1

)
, (55)

1−
√
y(2− y) ≤ (y − 1)2 ≤ 2

(
1−

√
y(2− y)

)
(56)

hold for y ∈ [0, 2]. The first inequality in (55) stems from the fact that the concave function log(y)

lies below its tangent y − 1 at 1. The second inequality in (55) holds because the left- and right-

hand side, as well as their first derivatives, coincide at y = 1, whereas the second derivative of the

right-hand side is greater. The inequalities in (56) follow from the relations

(y − 1)2 = 1− y(2− y) =
(

1−
√
y(2− y)

)(
1 +

√
y(2− y)

)
. (57)

By assumption 2, there are constants Kn such that the inequalities

σ(h)2φ1(h)2 ≤ Kn,

∫ (
1−

√
φ2(h, r)

(
2− φ2(h, r)

))
K(1

2 , h, dr) ≤ Kn (58)
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hold whenever |h| ≤ n. Together with the bounds in (54)–(56), this implies that for any p ≥ 1/n

and |h| ≤ n, the bounds∫ (
ψ2(p, h, r) log

(
ψ2(p, h, r)

)
− ψ2(p, h, r) + 1

)
K(p, h, dr) ≤

∫ (
ψ2(p, h, r)− 1

)2
K(p, h, dr)

≤ 1

n2

∫ (
φ2(h, r)− 1

)2
K(p, h, dr) ≤ 2

n2

∫ (
1−

√
φ2(h, r)

(
2− φ2(h, r)

))
K(p, h, dr)

≤ 4

n2

∫ (
1−

√
φ2(h, r)

(
2− φ2(h, r)

))
K(1

2 , h, dr) ≤
4

n2
Kn, (59)

and

ψ1(p, h) ≤ φ2(h) ≤ Kn (60)

hold. Let Tn be the stopping time

Tn = inf{t ≥ 0 : Pt < 1/n or Pt− < 1/n or |Ht| > n} ∧ n. (61)

Moreover, let Ln be the local (FR,P)-martingale stopped at Tn given by

Ln = ψ1(P−, H)1J0,TnK ·Rc +
(
ψ2(P−, H, r)− 1

)
1J0,TnK ∗

(
µR − UtK(P−, H, dr)dt

)
, (62)

where Rc is the continuous local martingale part of the process R under the measure P and µR

is the jump measure of R. Then the stochastic exponential Dn = E(Ln) is a uniformly integrable

martingale by the bounds in equations (59) and (60) and Lépingle and Mémin (1978, Théorème

IV.3). Therefore Dn
Tn
P is a probability measure.

Step 3. Keeping track of the terms in Ito’s formula the same way as in the proof of Jacod and

Shiryaev (2003, theorem II.2.42) shows that

Mf =
∂f

∂r
(R−) ·Rc +

(
f(R− + r)− f(R−)

)
∗
(
µR − UK(P−, H, dr)dt

)
(63)

is the decomposition of Mf into its continuous and purely discontinuous local martingale parts.

Letting Mf,Tn be process Mf stopped at Tn, one obtains the formula

〈Mf,Tn , Ln〉 =
∂f

∂r
(R−)ψ1(P−, H)1J0,TnKUσ(H)2

+
(
f(R− + r)− f(R−)

)(
ψ2(P−, H, r)− 1

)
1J0,TnK ∗

(
UK(P−, H, dr)dt

)
. (64)

for the predictable quadratic covariation of Mf,Tn and Ln. A comparison of equations (49) and

(50) shows that

M̃f,Tn = Mf,Tn − 〈Mf,Tn , Ln〉 = Mf,Tn − 1

Dn
−
· 〈Mf,Tn , Dn〉. (65)

By Girsanovs’ theorem (theorem III.3.11), this process is an (FR, Dn
Tn
P)-martingale. It follows
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that the measures P1 and Dn
Tn
P solve the same martingale problem stopped at Tn. Namely, under

these measures, the stopped reward process RTn has semimartingale characteristics (BTn , CTn , µTn)

stopped at Tn, where (B,C, µ) satisfy equations (1), (2), (3) with Θ = 1. According to definition

1 of admissible controls, local uniqueness holds for this martingale problem. It follows that Dn
Tn
P

coincides with P1 on FRTn . The characterization of P as the density process of the measure p0P1

relative to P (see step 1) implies that P = p0D
n
Tn

holds on J0, TnK.
Step 4. It remains to calculate the (FR,P)-characteristics of the filter P . We first do this on

the interval J0, TnK, where P agrees with p0D
n and consequently satisfies P = P− · Ln. The jumps

of P on this interval are

∆P = P− ∆Ln = P−
(
ψ2(P−, H,∆R)− 1

)
1∆R 6=0 = j(P−, H,∆R)1∆R 6=0, (66)

where the function j is defined in equation (20). Since the jump measure ofR is (FR,P)-compensated

by UK(P−, H, dr)dt, the jump measure of P is compensated by the predictable random measure

µ = U(j∗K)(P−, H, dr)dt, (67)

where the push forward measure j∗K is defined in equation (19). The quadratic variation of P on

the interval J0, TnK is

C = 〈P c, P c〉 = P 2
−〈Ln,c, Ln,c〉 = P 2

−ψ1(P−, H)2〈Rc, Rc〉. = P 2
−(1− P−)2φ1(H)2Uσ(H)2 · t (68)

(As before, the centered dot denotes integration.) Since P Tn is an (FR,P)-martingale, Jacod and

Shiryaev (2003, proposition II.2.29) implies that its first characteristic is

B = −(r − χ(r)) ∗
(
U(j∗K)(P−, H, dr)dt

)
. (69)

Let us now use equations (67) to (69) as definitions of (B,C, µ) for all t. Moreover, for f ∈ C2
b (R),

let

Nf = f(P )− f(P0)− f ′(P−) ·B − 1

2
f ′′(P−) · C

−
(
f(P− + p)− f(P−)− f ′(P−)χ(p)

)
∗
(
U(j∗K)(P−, H, dp)dt

)
. (70)

Having calculated the characteristics of P on J0, TnK, we know that Nf,Tn is a martingale for each

n. Let

T = lim
n→∞

Tn = inf{t ≥ 0 : Pt− = 0 or Pt = 0}. (71)

It is easily seen that PTn a.s. converges to PT : if T is infinite or ∆PT = 0, this is true by definition;

otherwise, Tn = T holds for all n > 1/∆PT . Let t ≥ 0 and let S be an FR-stopping time. Then

the previous observation implies that Nf,Tn∧t
S converges a.s. to Nf,T∧t

S . This convergence holds

also in L1 because Nf,Tn∧t are uniformly bounded and the dominated convergence theorem can be
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applied. Therefore

E(Nf,T∧t
S ) = lim

n→∞
E(Nf,Tn∧t

S ) = 0. (72)

The stopping time S was chosen arbitrarily. Therefore Jacod and Shiryaev (2003, Lemma I.1.44)

implies that Nf,T∧t is a uniformly integrable martingale. Since this holds for all t, it follows that

Nf,T is a local martingale. By Jacod and Shiryaev (2003, lemma III.3.6), P vanishes on JT,∞J.
Moreover, the characteristics (B,C, µ) defined in equations (67) to (69) are constant when P−

vanishes. It follows that Nf coincides with Nf,T . Therefore, Nf is a local martingale for all

f ∈ C2
b (R). Thus we have shown that the characteristics of P are as in definition 4 of se. controls.

We conclude that the expression in equation (46) defines a se. control.

Step 5. It remains to show that the p.o. and se. strategy have the same value. This is easily

seen by taking FR-optional projections in equation (43), which transforms it into the expression in

equation (23).

Lemma 3. Under assumption 3, there exists for every se. step control a p.o. step control of at

least the same value, which implies the inequality V p.o.,δ ≥ V se.,δ.

Proof. We work in the discrete setting. To avoid confusion, we will mark objects of the se. problem

with a tilde. The se. control problem is that of controlling the discrete time Markov chain (P̃ti , H̃ti)

with ti = iδ. Controls are restricted to be {0, 1}-valued. It is well-known that optimal Markov

controls exist for such problems, see e.g. Seierstad (2009). We will prove the lemma by showing

that every se. step Markov control corresponds to a p.o. step control of the same value.

So we start with an optimal step Markov control Ũ and write its control process in the form

Ũt =
∑
i

fi(P̃ti , H̃ti)1(ti,ti+1]. (73)

We will construct the p.o. control on the space D(R3) with its natural filtration F, sigma algebra

F and coordinate process X = (Θ, H,R). For (u, θ, h, r) ∈ {0, 1}2 × R2, let Pu;θ,h,r be the unique

probability measure on F such that Θ is the constant process Θt = θ, H satisfies equation (1)

and the initial condition H0 = h, and R has semimartingale characteristics (2)–(3) and satisfies

R0 = r. By a straight-forward argument (see e.g. the proof of Jacod and Shiryaev (2003, Corollary

III.2.42)), Pu;θ,h,r depends measurably on (u, θ, h, r). This allows us to inductively define probability

measures Pn and càdlàg processes Pn on D(R3) as follows.

P0 = p0Pf0(p0,h0);1,h0,0 + (1− p0)Pf0(p0,h0);0,h0,0, P 0
t = EP0(Θ0|FRt ), (74)

Pn = Pn−1 ⊗tn Pfn(Pn−1
tn

,Htn );Θtn ,Htn ,Rtn
, Pnt = EPn(Θ0|FRt ). (75)

Here we have used the following notation: When P is a probability measure on D(R3) and (Qx)x∈R3

is a stochastic kernel from R3 to D(R3), then P⊗tQX is the unique probability measure on D(R3)

such that the law of the stopped process Xt is equal to P on Ft and such that the conditional law

of the time-shifted process (Xt+s)s≥0 given Xt = x is Qx. The notation is explained and relevant
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results are proven in Stroock and Varadhan (2006, 6.1.2, 6.1.3 and 1.2.10) for continuous processes.

The relevant results on Skorokhod space are Jacod and Shiryaev (2003, lemmas III.2.43-48), but

the notation is not used there.

The measures Pn and Pm agree on Ftn∧tm and the processes Pn and Pm a.s. agree on [0, tn∧tm].

Therefore there is a unique measure P that coincides with Pn on Ftn for all n. Furthermore, there

is a unique càdlàg process P that is a.s. equal to Pn on [0, tn] for all n. We define

Ut =
∑
i

fi(Pti , Hti)1(ti,ti+1] (76)

and claim that

U =
(
(D(R3),F ,F,P), U,Θ, H,R, p0, h0

)
(77)

is a p.o. control. So we have to verify that U can be written as a predictable functional of R. (We

say that a process can be written as a (predictable) functional of R if it coincides P-a.s. with F (R),

where F is an adapted (predictable) process on D(R).) We proceed by induction and claim that

for all n, the stopped processes U tn and Htn can be written as functionals of R. For n = 0 there

is nothing to prove. For the inductive step, we observe that U tn+1 and Htn+1 depend on U tn , Ptn ,

and Htn . These expressions can be written as functionals of R by the inductive assumption and

the claim follows. Therefore U can be written as a U = F (R), where F is a predictable process

on D(R). F is admissible because it is a step process. The process Θ is a.s. constant and can be

identified with a {0, 1}-valued random variable. H satisfies (1) and R has characteristics (2)-(3)

under P. Thus we have verified that (77) is a p.o. control. Then the proof of lemma 2 shows that

Û =
(
(D(R3),F ,FR,P), U, P,H, p0, h0

)
(78)

is a se. control with the same value. Since U is a step process, assumption 3 implies that (P,H)

has the same distribution as (P̃ , H̃). It follows that

J se.(Ũ) = J se.(Û) = Jp.o.(U). (79)

Lemma 4. Under assumptions 1, 3, and 4, se. controls can be approximated arbitrarily well by se.

step controls, which implies

V se.(p0, h0) = sup
δ
V se.,δ(p0, h0) (80)

Proof. It is sufficient to show the inequality ≤ in (80). The reverse inequality holds by definition.

Step 1. Let U ∈ Use.
p0,h0

be a se. control with control process U . The first step is to represent

the control process by the random measure

Q(dt, du) =
(
Utδ1(du) + (1− Ut)δ0(du)

)
dt. (81)
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Q is a predictable random measure on R≥0×{0, 1} whose marginal on R≥0 is the Lebesgue measure.

Conversely, for any such random measure there exists a representation as in (81) with a predictable

process U , see Jacod and Shiryaev (2003, II.1.7.(i) and I.3.13). Equations (1) and (18) characterize

the evolution of the process (P,H) and are equivalent to the following martingale problem: for all

f ∈ C2
b (R2), the process

f(Pt, Ht)− f(P0, H0)−
∫∫

[0,t]×{0,1}

(
∂f

∂h
(Ps−, Hs)

(
uα(1, Hs) + (1− u)α(0, Hs))

+
∂f

∂p
(Ps−, Hs)bs +

1

2

∂2f

∂p2
(Ps−, Hs)ct

+

∫
Rn

(
f(Ps− + q,Hs)− f(Ps−, Hs)−

∂f

∂p
(Ps−, Hs)χ(q)

)
µs(dr)

)
Q(ds, du) (82)

is a martingale. Moreover, the following initial condition holds:

P(P0 = p0) = P(H0 = h0) = 1 (83)

Step 2. Let M be the space of all probability measures on R≥0 × {0, 1} whose marginal on

R≥0 is the Lebesgue measure. We endow M with the topology of vague convergence, checked on

compactly supported continuous functions. This turns M into a compact metric space. Let M be

the Borel sigma algebra on M . We give M the natural filtration M = (Mt)t≥0 generated by 1[0,t] ·q
for q ∈M . The canonical space for the se. control problem is M ×D(R2). Elements of this space

will be denoted by (Q,P,H). We define a se. control rule to be a probability measure P on the

space M ×D(R2) that solves the martingale problem (82) and satisfies the initial condition (83).

The value of a se. control rule is defined as

E

(∫∫
[0,∞)×{0,1}

ρe−ρt
(
β(Pt−, Ht−)u+k(1−u)+u

∫ (
r−χ(r)

)
K(Pt−, Ht−, dr)

)
Q(dt, du)

)
, (84)

where the expectation is taken with respect to P. By the above considerations, any se. control in

the sense of definition 4 induces a se. control rule and vice versa. Therefore, the se. problem is

equivalent to maximizing (84) over all se. control rules.

Step 3. Let (p0, h0) ∈ {0, 1} × R and Q ∈ M . Then Q corresponds to a deterministic control

process U . Let D(R2) be Skorokhod space with its natural filtration F and sigma algebra F . By

assumption 3, there is one and only one solution measure SQ on F to the martingale problem

(82), (83). We claim that SQ is continuous in Q ∈ M . This follows from Jacod and Shiryaev

(2003, theorem IX.3.39). The verification of the conditions of the theorem is straight-forward

and goes along the lines of Jacod and Shiryaev (2003, theorem IX.4.8). The assumptions that

are needed are assumption 1 providing uniform bounds on the coefficients and establishing the

continuity of α, assumption 3 implying well-posedness of the martingale problem (82) for (P,H)

under the deterministic control process U , and assumption 4 establishing the continuity of β, σ,K
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in an appropriate sense.

Step 4. Let P be a se. control rule and let Z stand for (P,H). Using disintegration, P can be

written in the form

P(dQ, dZ) = PM (dQ)PD(R2)
Q (dZ). (85)

Then for PM -a.e. Q, the measure PD(R2)
Q is equal to the measure SQ from step 3. (We have used

assumption 3 here.) It is well-known that any measure valued control Q ∈M can be approximated

in the vague topology by a sequence ψn(Q) of measures of the form

ψn(Q)(dt, du) =
∞∑
i=1

(
Uni δ1(du) + (1− Uni )δ0(du)

)
1(tni ,t

n
i+1]dt, (86)

where ψn : M → M are M-adapted mappings. This result is known under the name chattering

lemma and can be found e.g. in Mazliak (1993, theorem 2.2) or Fleming (1989). Furthermore,

tni can be chosen of the form tni = iδn for some sequence of numbers δn > 0. Let PM,n be the

push-forward measure of PM under ψn. Moreover, let

Pn(dQ, dZ) = PM,n(dQ)SQ(dZ). (87)

Then each Pn corresponds to a se. step control Un ∈ Use.,δn

p0,h0
as explained in step 1. By the

result of step 3, SQ is continuous in Q. It follows that Pn → P weakly. The value of the control

given by the expression in equation (84) is continuous in P with the weak topology. Therefore

J se.(Un) → J se.(U). Thus we have shown that the value of a control rule can be approximated

arbitrarily well by the value of a step control.

Lemma 5. Under assumptions 1–5, the value function V (p0, h0) is convex non-decreasing in p0 and

non-decreasing in h0. The same statement holds about the discrete time value function V δ(p0, h0).

Proof. Step 1. Let U be a se. control with deterministic control process U . Then the martingale

property of P can be used to express the value of U as follows.

J se.(U) = p0 E
(∫ ∞

0
β(1, Ht)Ut + k(1− Ut) + Ut

∫ (
r − χ(r)

)
K(1, Ht, dr)

)
+

+ (1− p0)E
(∫ ∞

0
β(0, Ht)Ut + s(1− Ut) + Ut

∫ (
r − χ(r)

)
K(0, Ht, dr)

)
(88)

This expression is linear in p0 and non-decreasing in (p0, h0) by assumption 5.

Step 2. Now, let U be a general se. control. As described in the proof of lemma 4, U corresponds

to a measure P on the canonical space M×D(R2). Elements of this space will be denoted by (Q,Z).

Thus Q corresponds to a sample path of the control process U and Z is sample path of (P,H).

Using disintegration, P can be represented as follows.

P(dQ, dZ) = PM (dQ)PD(R2)
Q (dZ), (89)
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where SQ is the unique solution to the martingale problem associated to the deterministic control

Q, see step 3 in the proof of lemma 4. Let UQ be the se. control corresponding to the control rule

SQ. Then the value of U can be expressed as

J se.(U) =

∫
M
J se.(UQ)PM (dQ). (90)

Now step 1 implies that this is linear in p0 and non-decreasing in (p0, h0). By taking the supremum

over strategies in Use.,δ
p0,h0

and Use.
p0,h0

, respectively, one obtains that V se. and V se.,δ have the desired

monotonicity and convexity properties.

Lemma 6. Let assumptions 1–5 hold and assume the discrete setting. Then it is optimal to choose

the unknown (known) arm initially in the p.o. problem if and only if it is optimal to do so in the se.

problem. Furthermore, the unknown arm is uniquely optimal as an initial choice if γ(p0, h0) > k.

Proof. Step 1. We first prove the statement about the optimality of the unknown arm under the

condition γ(p0, h0) > k for the se. problem. We fix the initial condition (P0, H0) = (p0, h0) and

work in the discretized setting with step size δ > 0. The Bellman equation states that optimal

initial choices for the se. problem are characterized by the equation

U0 ∈ arg max
u∈{0,1}

uγ(p0, h0) + (1− u)k + e−ρδ E
(
V se.,δ(P1, H1)

∣∣∣U0 = u, P0 = p0, H0 = h0

)
. (91)

Thus the optimal initial choice for the se. problem depends on the sign of the quantity

γ(p0, h0)− k + e−ρδ E
(
V se.,δ(P1, H1)

∣∣∣U0 = 1, P0 = p0, H0 = h0

)
− e−ρδ E

(
V se.,δ(P1, H1)

∣∣∣U0 = 0, P0 = p0, H0 = h0

)
, (92)

which is the advantage of the unknown arm over the known arm (up to multiplication by a positive

constant). Let h+
0 be the value that H1 attains after an initial choice of the unknown arm and h−0

the value after an initial choice of the known arm. By assumption 5, the inequality h−0 ≤ h0 ≤ h+
0

holds. Furthermore, note that P1 = P0 under an initial choice of the known arm, as can be seen

from the characteristics of P in definition 4. Together with the monotonicity of the value function

in h0 and its convexity in p0, this can be used to show the following estimate:

E
(
V se.,δ(P1, H1)

∣∣∣U0 = 1, P0 = p0, H0 = h0

)
− E

(
V se.,δ(P1, H1)

∣∣∣U0 = 0, P0 = p0, H0 = h0

)
= E

(
V se.,δ(P1, h

+
0 )
∣∣∣U0 = 1, P0 = p0, H0 = h0

)
− V se.,δ(p0, h

−
0 )

≥ E
(
V se.,δ(P1, h

+
0 )
∣∣∣U0 = 1, P0 = p0, H0 = h0

)
− V se.,δ(p0, h

+
0 ) ≥ 0

(93)

It follows that (92) is strictly positive when γ(p0, h0) > s. In this case, the initial choice of the

unknown arm is uniquely optimal for the se. problem.

Step 2. Optimal choices for the p.o. problem are characterized by the same equation (91) as
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for the se. problem, with V se.,δ replaced by V p.o.,δ. These two value functions agree by theorem 1.

It follows that optimal choices for the p.o. and se. problem agree.

Lemma 7. Under assumptions 1–5, there exists for every p.o. step control a p.o. stopping control

that is at least as good.

Proof. We work in the discrete setting with δ > 0.

Step 1. We claim that the lemma is true when the discount sequence is truncated at stage n.

The truncated discount sequence is given by

ζi = (1− e−ρδ)e−ρiδ1i≤n. (94)

More generally, ζ could be a regular discount sequence of finite horizon n, see Berry and Fristedt

(1985, definition 5.2.1). We claim that there exists an optimal stopping control, i.e., a control

that never switches from known to the unknown arm. We prove the claim by induction on n. For

n = 0, there is nothing to prove. Now let ζ have horizon n + 1. Let U ∈ Up.o.,δ
p0,h0

be an optimal

control rule for the p.o. problem. (This exists because there are optimal se. step controls that

can be transformed into optimal p.o. controls by lemma 3.) Let U = F (R) be the control process

associated to U . The inductive hypothesis allows one to assume that for i ≥ 1, Ui never switches

from the known to the unknown arm. If U0 indicates the unknown arm, the proof is complete.

Otherwise U has the form

U0 = 0, Ui = 1 for i = 1, . . . , T, Ui = 0 for i = T + 1, . . .

The stage T where the strategy changes from the unknown to the known arm is a stopping time.

Given that the known arm is chosen initially, the reward obtained at the first stage is deterministic

and does not contain any information about the type. Therefore, there is a modification of U that

does not depend on the outcome of the first stage. This makes it possible to define a control rule

U∗ that skips the first action of U . Formally, and in terms of t instead of i, U∗ can be defined as

U∗t = Ft+δ
(
(R0∨(t−δ))t≥0

)
. (95)

It is easy to verify that this is an admissible control process. Let U∗ be the corresponding p.o.

control. We claim that U∗ is at least as good as U . Let H and H∗ be the human capital processes

under the strategies U and U∗, respectively. Furthermore, let U0 be the control associated to

choosing the known arm all the time. The advantages of U∗ and U over U0 are

Jp.o.(U∗)− Jp.o.(U0) = E

(
T−1∑
i=0

ζi
(
γ(Θ, H∗i )− k

))
≥ E

(
T∑
i=1

ζi−1

(
γ(Θ, Hi)− k

))
(96)

Jp.o.(U)− Jp.o.(U0) = E

(
T∑
i=1

ζi
(
γ(Θ, Hi)− k

))
≥ 0. (97)
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The first inequality holds because choosing the known arm decreases ability, see assumption 5. The

second inequality holds because the optimal control U is at least as good as the control designating

the known arm at all stages. Therefore, the advantage of U∗ over U is

Jp.o.(U∗)−Jp.o.(U) ≥ E

(
T∑
i=1

(ζi−1 − ζi)
(
γ(Θ, Hi)− k

))
=
∞∑
i=1

(ζi−1− ζi) E
(
1i≤T

(
γ(Θ, Hi)− k

))︸ ︷︷ ︸
=:bi

.

(98)

The increment of bi is

bi+1 − bi = E
(
1i≤T

(
γ(Θ, Hi+1)− γ(Θ, Hi)

)
+ E

(
1i=T

(
k − γ(Θ, Hi+1

))
. (99)

The first summand on the right-hand side is non-negative for i = 1, 2, . . . because Hi increases while

the unknown arm is played. By the FRi+1-measurability of 1i=T and Hi+1, the second summand

can be written as

E
(
1i=T

(
k − γ(Θ, Hi+1)

))
= E

(
1i=T

(
k − γ(Pi+1, Hi+1)

))
= E

(
1i=T

(
k − γ(PT+1, HT+1)

))
.

Recall that it is optimal under strategy U to play the known arm at stage T + 1. Lemma 6 shows

that this implies k ≥ γ(PT+1, HT+1). This proves

bi+1 ≥ bi for i = 1, 2, . . . (100)

We also have
∞∑
i=1

ζibi ≥ 0 (101)

from equation (97). It is shown in Berry and Fristedt (1985, equation (5.2.8)) that (100) and (101)

imply

Jp.o.(U∗)− Jp.o.(U) =
∞∑
i=1

(ζi−1 − ζi)bi ≥ 0 (102)

when ζ is regular. In our case, ζ is regular because it is a truncated geometric discount sequence.

Thus we have constructed a strategy U∗ that is at least as good as the optimal strategy U and

never switches from the known to the unknown arm.

Step 2. To drop the assumption that the discount sequence has a finite horizon, one ap-

proximates an arbitrary geometric (or, more generally, regular) discount sequence ζ by truncated

discount sequences ζn with finite horizon. The argument can be found in the proof of Berry and

Fristedt (1985, theorem 5.2.2).

Lemma 8. Under assumptions 1–5, the stopping time T ∗ = inf{t : V (Pt, Ht) ≤ k} is optimal for

the se. problem.

Proof. Let (P,H) be the process governed by the constant control Ut = 1 in the sense of defi-
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nition 4. This is a Feller process by assumptions 1, 3, 4 and Jacod and Shiryaev (2003, theorem

IX.4.39). Let (P̃ , H̃) be the killed version of (P,H) with killing rate ρ, see Peskir and Shiryaev

(2006, section II.5.4). Then we define

f(p, h) = ρ
(
β(p, h) +

∫ (
r − χ(r)

)
K(p, h, dr)− k

)
, f(∂) = 0, (103)

where ∂ denotes the “cemetery point” of the killed process. Moreover, we define

It = i+

∫ t

0
f(P̃t, H̃t)dt (104)

and X = (P̃ , H̃, I). Then X is a Feller process on the state space

E = (R2 ∪ {∂})× R. (105)

Let (Px)x∈E denote the family of laws of X starting from the initial condition X0 = x. We associate

to it the following family of optimal stopping problems:

W (x) = sup
T

Ex(IT ), (106)

where the supremum is over the set of all FX -stopping times. Since the value function V is attained

as the supremum over stopping controls by lemma 7, one obtains that

W (p, h, i) = sup
T

Ep,h,i(IT ) = sup
T

Ep,h,0(IT ) + i

= sup
T

Ep,h,0
(∫ T

0
ρe−ρt

(
β(Pt, Ht) +

∫ (
r − χ(r)

)
K(Pt, Ht, dr)− k

)
dt

)
+ i

= V (p, h)− k + i (107)

for (p, h, i) ∈ R3. We define the stopping set D as in Peskir and Shiryaev (2006, equation (2.2.5))

by

D = {(p̃, h̃, i) ∈ E : W (p̃, h̃, i) ≤ i} =
(
{(p, h) ∈ R2 : V (p, h) ≤ k} ∪ {∂}

)
× R. (108)

The equality in (108) holds because W (∂, i) = i, which is obvious from the definitions. The

function W is lower semi-continuous because (P̃ , H̃, I) is Feller, see Peskir and Shiryaev (2006,

equation (2.2.80)). Therefore the set D is closed. Then the right-continuity of the filtration implies

that

T ∗ = inf{t ≥ 0 : Xt ∈ D} = inf{t : V (Pt, Ht) ≤ k} (109)

is a stopping time. Note that ∂ ∈ D, which implies P(T ∗ < ∞) = 1. Then Peskir and Shiryaev

(2006, Corollary 2.9) implies that T ∗ is optimal.

Lemma 9. Under assumption 3, there exists for each se. stopping control a p.o. stopping control
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with the same value.

Proof. The idea of the proof is very similar to that of lemma 3. To avoid confusion, we will mark

objects of the se. problem with a tilde. Let Ũ be a se. stopping control with control process Ũ .

By working on the canonical space M ×D(R2) for the se. problem (see the proof of lemma 4), we

can assume that the control process is FP̃ ,H̃ -predictable. Then up to a.s. equivalence, it can be

represented as Ũ = 1J0,S(P̃ ,H̃)K(t), where S is a stopping time on D(R2).

Let (D(R3),F ,F) be the canonical path space for X = (Θ, H,R). As in lemma 3, we let Pu,x
denote the law of X under the constant control Ut = u with initial condition X0 = x. Let

Q = p0P1,(1,h0,r0) + (1− p0)P1,(0,h0,r0) (110)

and let Q be the unique càdlàg process satisfying Qt = EQ(Θ|FRt ). Since the process H is deter-

ministic under Q, the stopping time S(Q,H) is actually an FR-stopping time on D(R3). It follows

that up to a.s. equivalence, it can be written as T (R), where T is a stopping time on D(R). Let

P = Q⊗T (R) P0,XT (R)
(111)

be the unique probability measure on D(R3) such that the law of the stopped process XT (R) is equal

to Q on FT (R) and such that the conditional law of the time-shifted process (XT (R)+s)s≥0 given

XT (R) = x is P0,x. Since the process 1J0,T (R)K is piecewise constant, it follows that it is admissible

in the sense of definition 1. Thus P defines a p.o. control

U =
(
(D(R3,F ,F,P),1J0,T (R)K,Θ, H,R, p0, h0)

)
. (112)

Lemma 2 applied to this control shows that the characteristics of P are as required in definition 4,

which means that

Û =
(
(D(R3,F ,F,P),1J0,T (R)K, P,H, p0, h0)

)
(113)

is a separated control with the same value as U . By the local uniqueness assumption 3, (P,H) is

equal in law to (P̃ , H̃). Therefore U is a p.o. stopping control with the same value as Û and Ũ .

Proof of theorem 3. Step 1. We calculate the Hellinger process h(1
2) of order 1

2 of the

measures P1 and P0, which are the measure P conditioned on Θ = 1 and Θ = 0, respectively. Let

P = E(Θ|FRt ) be the belief process. By equation (48), P/p0 is the density process of P1 relative

to P and (1− P )/(1− p0) is the density process of P0 relative to P. Let

ψ(u, v) =
u+ v

2
−
√
uv. (114)

and let µ(P,1−P )(dt, dx, dy) be the third characteristic of the two-dimensional process (P, 1 − P ).
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Let S be the first time that P or P− equals either zero or one,

S = inf
{
t ≥ 0 : Pt ∈ {0, 1} or Pt− ∈ {0, 1}

}
. (115)

By Jacod and Shiryaev (2003, lemma III.3.7), P is constant on JS,∞J. Therefore, on this interval,

〈P c, P c〉 is constant and µ(P,1−P ) has no charge. After canceling out the terms p0 and (1− p0), the

formula for h(1
2) given in Jacod and Shiryaev (2003, theorem IV.1.33) reads as

h(1
2) =

1

8

(
1

P 2
−
· 〈P c, P c〉 − 2

P−(1− P−)
· 〈P c, 1− P c〉+

1

(1− P−)2
· 〈1− P c, 1− P c〉

)
+ ψ

(
1 +

x

P−
, 1 +

y

P−

)
∗ µ(P,1−P )

=
1

8

(
1

P−
+

1

1− P−

)
· 〈P c, P c〉+ ψ

(
1 +

r

P−
, 1− r

1− P−

)
∗
(
U(j∗K)(P−, H, dr)dt

)
=

1

8
Uφ1(H)2σ(H)2 · tS

+ ψ

(
φ2(H, r)

P−φ2(H, r) + (1− P−)
(
2− φ2(H, r)

) , 2− φ2(H, r)

P−φ2(H, r) + (1− P−)
(
2− φ2(H, r)

))
1J0,SK ∗

(
UK(P−, H, dr)dt

)
=

1

8
Uφ1(H)2σ(H)2 · tS + U

∫ 1−
√
φ2(H, r)

(
2− φ2(H, r)

)
P−φ2(H, r) + (1− P−)

(
2− φ2(H, r)

)K(P−, H, dr) · tS

=
1

8
Uφ1(H)2σ(H)2 · tS + U

∫ (
1−

√
φ2(H, r)

(
2− φ2(H, r)

))
K(1/2, H, dr) · tS

= UΦ(H) · tS ,
(116)

where the function Φ has been defined in equation (24) and where the superscript S means that

the process is stopped at S.

Step 2. Let T be the first time that P reaches zero, see equation (71). We say that P jumps to

zero if PT− > 0 and claim that such jumps are not possible under the conditions of (a). To prove

this claim, note that the equivalence of the measures K(1, h, ·) and K(0, h, ·) implies the strict

inequality 0 < φ2(h, r) < 2. It follows that the process Ln defined in equation (62) has no jumps of

size −1 and the process Dn = E(Ln) does not jump to zero. If P had a jump to zero, then Tn = T

would hold for large enough n. But then Dn = P Tn/p0 would have a jump to zero, which is not

possible. This proves the claim. A similar argument, where the rôles of P0 and P1 are reversed,

shows that P cannot jump to one. It follows that for any stopping time τ , the following equations

hold P0- and P1-a.s., respectively:

{h(1
2)τ =∞} = {S ≤ τ, PS− = 0} = {Pτ = 0} = {Pτ = 0 or Pτ = 1} P0-a.s., (117)

{h(1
2)τ =∞} = {S ≤ τ, PS− = 1} = {Pτ = 1} = {Pτ = 0 or Pτ = 1} P1-a.s. (118)
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In equations (117) and (118), the first equality holds by Schachermayer and Schachinger (1999,

theorem 1.5). This theorem states that the divergence of the Hellinger process is equivalent to the

mutual singularity of the measures P1 and P0, but in such a way that the singularity is not obtained

by a sudden jump of the density process to zero or one. The second equality holds because such

jumps are not possible by the previous claim. For the third equality, see Jacod and Shiryaev (2003,

proposition III.3.5.(ii)). Together with assumption 2 bounding Φ, equations (117) and (118) imply

{
∫ τ

0 Utdt <∞} ⊆ {h(1
2)τ <∞} = {0 < Pτ < 1} P-a.s. (119)

This proves (a).

Step 3. Let τ be a stopping time. If S does not occur before τ and
∫ τ

0 Utdt =∞, then h(1
2)τ =∞

because of the lower bound infh Φ(h) > 0. Therefore,

{
∫ τ

0 Utdt =∞} ⊆ {h(1
2)τ <∞} ∪ {S ≤ τ}. (120)

Moreover, it follows from Schachermayer and Schachinger (1999, theorem 1.5) that

{h(1
2)τ <∞} ∪ {S ≤ τ} = {S ≤ τ, PS− = 0} ∪ {S ≤ τ} = {Pτ = Θ} P0-a.s., (121)

{h(1
2)τ <∞} ∪ {S ≤ τ} = {S ≤ τ, PS− = 1} ∪ {S ≤ τ} = {Pτ = Θ} P1-a.s. (122)

It follows that

{
∫ τ

0 Utdt =∞} ⊆ {Pτ = Θ} P-a.s., (123)

which proves (b). Finally, (c) follows from (a) and (b).
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