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1 Introduction

Characteristic-based models of demand are widely used for estimating elasticities and substitution

patterns in differentiated product markets. When relevant product attributes are not observed by

the practitioner, price can be correlated with the unobserved portion of consumers’ utility for that

product: producers charge more and consumers are willing to pay more for products with more

of the omitted attribute, holding all else constant. The positive correlation between price and the

unobserved portion of utility biases estimates of price elasticities upwards. This problem arises for

both aggregate (i.e., market-level) data and disaggregate (i.e., customer-level) data, and has been

documented empirically for CAT scanners (Trajtenberg (1989)), automobiles (Berry, Levinsohn, and

Pakes (1995) and Petrin (2002)), cable television choices (Goolsbee and Petrin (2004) and Crawford

(2000)), cereals (Nevo (2001)), yogurt and ketchup (Villas-Boas and Winer (1999)), and margarine

and orange juice (Chintagunta, Dube, and Goh (2005)).

The literature has responded to these findings in three distinct ways. The first is to integrate

out the unobserved attributes. The challenge here is that one must specify the distribution of the

demand errors conditional on observed characteristics and price. This is generally regarded as a

difficult object to model.

The second has been to invert out the demand errors and then directly condition on them.

Usually this is done by inverting the market share equations (Berry (1994), Berry et al. (1995),

Gandhi, Kim, and Petrin (2011)). A drawback for these inversions is that they are computationally

complex to program and time-consuming, and are also subject to propagated numerical errors from

the inversion (see e.g. Dube, Fox, and Su (2012) and Knittel and Metaxiglou (2008)). One can also

invert the demand error from the pricing equation but this requires stronger assumptions (Petrin

and Train (2010), Kim and Petrin (2010)).

The final approach is to assert that there is no endogeneity problem conditional on the set of

observed controls. For example, in some applications researchers observe household-level panels

repeatedly choosing from the same choice sets over time. In this case one can include fixed effects

directly in the estimation for goods whose physical characteristics are not changing over time. In

some data sets many of the promotional activities are also known, like when the product is on

display or promotion. Conditional on all of these factors some researchers then proceed as if there

were no problem or that it is so small given the observed factors that it is not empirically relevant.1

In this paper we develop a class of asymptotic tests that are easy to implement in standard

regression packages and have reasonable power against the “exogenous prices” hypothesis. Our

approach tests for an unobserved attribute by constructing a proxy for it that exploits the attribute’s

correlation with price, which is the source of the econometric problem (Petrin and Train (2010)).

We develop control function type tests in the spirit of Smith and Blundell (1986), Rivers and Vuong

1See Chintagunta, Dube, and Goh (2005) for suggestive evidence that even data with this detail still suffers from
omitted attributes.
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(1988), and Villas-Boas and Winer (1999).2

A major advantage of our testing approaches is their simplicity. In the simplest format, all of

the tests use least squares (or nonparametric regression) in an initial stage to obtain the proxies

that enter the control functions. The proxies are calculated as the difference between product price

and its predicted value given the relevant demand and/or supply factors that the econometrician

observes. Our procedure then includes the controls directly in the maximization of the likelihood

function and tests their significance, rejecting “exogenous prices” if they enter significantly. The

controls can enter additively or interactions between price and the controls can be included to look

for non-separability.

Our Monte Carlo results build in correlation between price and the unobserved attribute by

setting prices according to the standard inverse-elasticity rule, where demand depends in part on

the unobserved attribute. Our simplest test specifications correctly identify the price endogeneity

problem in almost every case.

We describe approaches to implementing the tests for three of the recent demand exercises

mentioned above, where prices are shown to be endogenous. Each of these exercises uses a different

kind of data, including aggregate (market-level) data (BLP), household-level cross-sectional data

(Goolsbee and Petrin (2004)), and household-level panel data (CDG). Our empirical application

applies the test to the cable and satellite dish demand specification from Goolsbee and Petrin

(2004) and rejects price exogeneity.3

Our work is related to recent developments in nonparametric identification of the unobserved

attribute in the discrete choice demand models (see Berry and Haile (2010) and Berry, Gandhi,

and Haile (2011)). One could develop a test for price endogeneity by using this nonparametrically

recovered unobserved attribute and combining it with more recent conditional mean tests or speci-

fication tests in general. There have been two main approaches in the literature. One approach is

to use smoothed conditional mean functions (e.g. Härdle and Mammen (1993), Fan and Li (1996),

Horowitz and Spokoiny (2001), Kitamura, Tripathi, and Ahn (2004) among others) and a second

approach is to formulate a conditional mean restriction as a dense set of unconditional mean restric-

tions (e.g. Bierens (1990) and his other works, Stinchcombe and White (1998), Andrews (1997),

Chen and Fan (1999), Li, Hsiao, and Zinn (2003), Song (2010) among others). These approaches

may have better power properties and also be less sensitive to parametric assumptions. We leave

them as future research and in this paper we focus on the classical tests based on parametric demand

model settings that are most commonly used by practitioners, such as the random coefficient logit

demand model.

The paper proceeds as follows. Sections 2 describes differentiated products demand models

and the endogeneity problem. Sections 3-5 describes the theory of the tests and their empirical

2The linear control function case is described in Heckman (1978) and Hausman (1978). The first use of the term
“control function” of which we are aware is in Heckman and Robb (1985) in the context of selection models.

3In the separate work (Kim and Petrin (2010)) we effectively run a variant of this test for the automobile demand
specification from BLP and the margarine demand specification from CDG.
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implementation. Sections 6-7 includes the Monte Carlos and the empirical example. Then we

conclude in Section 8. Technical details are added in Appendix.

2 Demand and Omitted Attributes

The problem of omitted attributes arises naturally within characteristics-based demand approxima-

tions. At the core of these approaches is a desire for parsimony; an unrestricted constant-elasticity-

of-demand system with J goods can have J2 or more parameters (for example). Characteristics’

based approaches achieve parsimony in two ways. They assume that demands for J goods can be

approximated by K << J characteristics of the goods, where the K factors serve as the basis for

utility. They also assume that consumers only derive utility from the characteristics of the actual

good that they purchase.

We analyze the specification problem that arises when the K factors used by the econometrician

exclude relevant characteristics. We operate in the generalized random coefficients setting from

Gandhi, Kim, and Petrin (2011) that allows for a non-separable error, with utility that consumer i

derives from product j in market m is given as

Uimj = cij +
∑K

k=1
xmjkβik − αipmj + βiξξmj +

∑K

k=1
γikxmjkξmj + γippmjξmj + ǫimj, (1)

with xmjk and pmj being characteristics and price and the outside good 0 normalized to Uim0 =

ǫim0.
4 In this setup coefficients are varying across individual observations according to (e.g.)

cij = cj0 +
∑L

l=1
cjldil + σcωic

βik = βk0 +
∑L

l=1
βkldil + σkωik

αi = α0 +
∑L

l=1
αldil + σpωip

where a vector of characteristics di (L × 1) can include demographics or other observed charac-

teristics of i and ωi = (ωic, ωi1, . . . ωiK , ωip) denotes a vector of unobserved consumer tastes for

the characteristics and the price (i.e., random shocks that generate the random coefficients), which

follows a known distribution such as standard normals.5 The idiosyncratic consumer-product spe-

cific shock ǫim = (ǫim1, ǫim2, . . . , ǫimJ )′ is independent across individuals i = 1, 2, . . . , N with joint

distribution denoted by fǫ(·) that is known up to a finite vector of parameters.

ξmj is a product-specific characteristic known to both consumers and producers in the market

but unobserved to the econometrician. We isolate it from the other characteristics because the

specification question asks whether ξmj enters utility for product j (i.e. whether βiξ 6= 0, γik 6= 0,

4Gandhi, Kim, and Petrin (2011) show that in the automobile data from Berry, Levinsohn, and Pakes (1995)
allowing for these interactions leads to an increase in price elasticities of 60% on average.

5The market index m can index for the same market observed repeatedly over time, a cross-section of markets at
a given point in time, or a combination of the two.
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or γip 6= 0). For notational simplicity let θ collect all the parameters in the model (1).6 Letting

(X, p) be the J × (K + 1) matrix of the entire set of characteristics with arbitrary row (X ′
j , pj),

ξ = (ξ1, . . . , ξJ)′, and Pimj(θ) the probability of i choosing j conditional on (X, p, ξ, d), and assuming

that ǫ and ω are independent each other and from (X, p, ξ, d), the choice probability Pimj(θ) is given

by

Pimj(θ) =

ˆ

1{Uimj > Uimk ∀k 6= j|X, p, ξ, di, θ}dFǫ(ǫ)dFω(ω) (2)

where Fǫ(·) and Fω(·) denote the distributions of ǫ and ω, respectively.

The error term in utility is given by

eimj = βiξξmj +
∑K

k=1
γikxmjkξmj + γippmjξmj + ǫimj .

When price is in part determined by the omitted attribute, which one can think of as the product-

market demand error, price is endogenous if βiξ 6= 0. For example, if sellers charge higher prices when

their products have more desirable omitted characteristics, the price will be positively correlated

with the demand error, biasing price elasticities upwards. When the interaction terms γik 6= 0 or

γip 6= 0, the econometric problem becomes more complicated, as there are two or more terms in the

error that are not independent of price.7

There have been two main approaches in estimation to deal with an unobserved demand attribute

that is correlated with price. We illustrate them with the conditional likelihood function for this

problem, given as

log LN (Y |X, p, ξ, d, θ) =
1

N

∑M

m=1

∑Nm

i=1

∑J

j=0
Yimj log Pimj(θ),

where N =
∑M

m=1 Nm and Yimj is an indicator variable that equals one if i is observed to choose j

at a market m.8 The first approach is to integrate out the unobserved attribute. This requires one

to specify the distribution of the demand errors conditional on observed characteristics and price -

Fξ|X,p(ξ|X, p) - and then integrate them out in the calculation of the choice probability given in (2).

The challenge is in the specification of Fξ|X,p(ξ|X, p). It requires that one first know Fp|X,ξ(p|X, ξ),

the distribution of the vector of market prices conditional on all observed and unobserved product

characteristics, and then that one be able to recover Fξ|X,p(ξ|X, p) from Fp|X,ξ(p|X, ξ).

The second approach is to condition directly on the unobserved vector ξ by inverting it out

of the demand equations following Berry, Levinsohn and Pakes (1995) (or the generalization of it

in Gandhi, Kim, and Petrin (2011) when γik 6= 0 or γip 6= 0). While these approaches allow the

6For fixed parameter models (the coefficients do not vary across i), we have θ = (c′, β′, α, βξ, γ
′, γp)

′ and for
heterogeneous coefficients models in addition to these (mean) parameters, θ also includes the standard deviations (σ =
(σc, σ1, . . . , σK , σp)) of the random coefficients and other coefficients on demographics or other observed characteristics
of households.

7Here we focus on the endogeneity of price but other observable attributes can also be correlated with the unob-
served demand factor. Indeed the rejection of the price exogeneity in our test can arise due to the endogeneity of
other attributes. We view all of these as an evidence for the endogeneity or the omitted attribute.

8When only the aggregate (market-level) data is available, we replace Yimj with smj , the market share of product
j at a market m and let Pmj(θ) be the choice probability.
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researcher to avoid specifying Fξ|X,p(ξ|X, p), they are computationally complex to program and

time-consuming, and are also subject to propagated numerical errors from the inversion, which can

lead to non-convergence in the estimation step, as noted recently in the literature (e.g. Dube, Fox,

and Su (2012) and Knittel and Metaxiglou (2008)). We now turn to explaining our computationally

fast and simple tests which inform the researcher if he/she needs to worry about the presence of an

unobserved demand attribute.

3 Using Proxies to Test if Unobserved Attributes Enter Utility

In this section we develop test statistics - Wald and LM tests - that use proxies for the unobserved

attributes to test for their presence in utility. Our testing philosophy is easiest to understand if we

start by treating the unobserved attribute as if it were observed but omitted from the specification.

For expositional convenience we assume that the taste for the omitted attribute is common across

individuals, so βiξ = βξ, γi = γ, and γip = γp for all i.9

We refer to our test as the price endogeneity test because the null hypothesis presumes ξ does

not enter utility either in an additive and non-additive utility manner:

H0 : βξ = 0, γ = 0, and γp = 0. (3)

We then deem prices as exogenous if this null hypothesis is true.10 Both the Wald and the LM

formulation of the test of either hypothesis would be consistent under the alternative. In the former

case the terms related to the omitted attribute would be statistically significant in the unconstrained

specification. In the latter case where the constrained model is estimated without the omitted

attribute terms, the residual (Yimj −Pimj(θ)) from this setup would be significantly correlated with

these omitted terms.11

Since the omitted attribute is not observed, we propose feasible tests that are analogs to the

aforementioned tests but are instead based on using a proxy for the unobserved attribute. Letting

ξ̃mj denote the proxy for ξmj , consistency of the tests only requires that - under the alternative -

there is some dependence between ξmj and ξ̃mj′ for at least one j′, typically for j′ = j.

We exploit the source of the endogeneity problem to develop a proxy that should satisfy this

condition. Specifically, letting Zm = (Xm, Z2m), where Z2m denotes the supply-side factors observ-

able to econometrician, equilibrium prices pmj are in part determined by the demand shocks ξm

conditional on Zm:

Cov(pmj , ξmj′ |Zm) 6= 0 (4)

9Extensions allowing for the heterogeneous coefficients on the omitted attribute and/or the interaction terms are
straightforward using more parameters.

10If one only wanted to test for unobserved attributes that entered utility linearly then this null would become
H1

0 : βξ = 0.
11For the test of (3) with observed ξ one can use classical asymptotic tests such as Wald, LM, conditional mean

tests in nonlinear models, see e.g. Newey (1985) and Newey and McFadden (1994).
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where the covariance is typically largest for j′ = j. For our proxies we use the mean-squared

projection residuals of pmj on Zm:

ξ̃mj = pmj − E[pmj |Zm], (5)

as ξ̃m = (ξ̃m1, . . . , ξ̃mJ)′ from (5) will not generally be independent of ξmj .
12 In Section 5.1, we

provide a more technical discussion of the conditions under which the tests are consistent.

Our approach then replaces the unobserved ξmj in utility with some chosen functions of ξ̃m,

denoted as vj(ξ̃m), where vj(·) can be a vector function and v(·) = (v1(·), . . . , vJ (·))′. In practice

one can let vj(ξ̃m) = ξ̃mj , or one can include ξ̃mj as the leading term when vj(·) is a vector.

We approximate ξ̃mj with ξ̂mj , the difference between pmj and the estimated Ê[pmj |Zm]: ξ̂mj =

pmj − Ê[pmj |Zm], j = 1, . . . , J . We then replace ξmj with a function of ξ̂m, vj(ξ̂m) (in the simplest

case we choose vj(ξ̂m) = ξ̂mj). We discuss estimation of E[pmj |Zm] for a variety of data generating

processes in Section 4.

3.1 The Wald test

The Wald test includes the controls directly in the estimated specification. Letting λ denote the

parameter on the controls, the utility is specified for estimation as

Ũimj = cij +
∑K

k=1
xmjkβik −αipmj + λ′

jvj(ξ̃m) +
∑K

k=1
γ̃′

kvj(ξ̃m)xmjk + γ̃′
pvj(ξ̃m)pmj + ǫimj , (6)

with vj(ξ̃m) as the control functions. Under the null hypothesis of exogenous prices the coefficients

λ = (λ′
1, . . . , λ

′
J )′,13 γ̃ = (γ̃′

1, . . . , γ̃
′
K)′, and γ̃p are equal to zero because ξ̃m does not affect the

demand given (xm, pm, di). Therefore we test for the price endogeneity due to the unobserved

attribute by testing the null hypotheses

H̃0 : λ = 0, γ̃ = 0, and γ̃p=0. (7)

This is the feasible version of the test in (3).

For the formulation of the Wald statistic let θ̃ = (ϑ′, λ′, γ̃′, γ̃′
p)

′, where ϑ denotes all parameters

excluding (λ′, γ̃′, γ̃′
p)

′, and write the sample ML objective function that is used to estimate θ̃ as

log LN (ξ̃m, θ̃) =
∑M

m=1

∑Nm

i=1

∑J

j=0
Yimj log Pimj(v(ξ̃m), θ̃)/N .

Then we obtain the unconstrained parameter estimates
̂̃
θU that solve the sample analog equations

∂ log LN (ξ̂m,
̂̃
θU )

∂θ̃
≡ 1

N

∑M

m=1

∑Nm

i=1

∑J

j=0
Yimj

∂ log Pimj(v(ξ̂m),
̂̃
θU)

∂θ̃
= 0

12If the dependence of pmj on ξm conditional on Zm is not reflected in their conditional covariance - if they are
related by higher moments - then the test using the simple proxy (control) ξ̃m may not reject the null even when
the price is endogenous. If one suspected this were there are alternative ways of obtaining the controls robust to this
situation (e.g., Matzkin (2003), Altonji and Matzkin (2005), and Imbens and Newey (2003)).

13One can restrict λ1 = . . . = λJ depending on applications.
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where the conditional choice probability Pimj(v(ξ̂m), θ̃) is obtained based on the specification of

utility in (6) but with v(ξ̂m) replacing v(ξ̃m). The Wald tests ask whether the coefficients (λ̂′, ̂̃γ ′
, ̂̃γ ′

p)
′

from
̂̃
θU are statistically different from zero. The test statistic is

T̃M,N = N(λ̂′, ̂̃γ ′
, ̂̃γ′

p)Ṽ
−1
M,N (λ̂′, ̂̃γ′

, ̂̃γ′
p)

′

where ṼM,N is a consistent estimator of the asymptotic variance matrix of the ML estimator

(λ̂′, ̂̃γ′
, ̂̃γ ′

p)
′ that accounts for the estimated controls. T̃M,N follows the asymptotic χ2 distribu-

tion with the degree of freedom equal to the dimension of (λ′, γ̃′, γ̃′
p)

′. We derive the asymptotic

distribution of the test statistics in Section 5. For definition of ṼM,N see Theorem 5.1.

The Wald approach is attractive for three reasons. The test statistic is easy to compute, requir-

ing no additional calculation beyond standard likelihood function output, and significance of the

coefficients is equivalent to rejecting price exogeneity. The resulting estimates may be suggestive of

the direction and magnitude of the bias arising from the price endogeneity. Finally, the point esti-

mates can be used as starting values for the more complicated correction approaches. Good starting

values can be helpful when the objective function is non-linear in parameters, there are a large num-

ber of parameters, or there are possibly multiple local maxima, which are often characteristics of

these alternative approaches.

3.2 The LM test: Constrained Approach

The LM test imposes λ = 0, γ̃ = 0, and γ̃p = 0 during estimation and then tests to see if the score

function, which is the derivative of the likelihood with respect to the parameter θ̃- evaluated at the

constrained estimates -, is large in absolute value. From a practical standpoint the LM test is useful

because it does estimation in the constrained case, which can reduce the computational cost when

the number of parameters being tested is large. We start with the test for the price endogeneity

and then develop the test for non-additivity.

Again let θ̃ = (ϑ′, λ′, γ̃′, γ̃′
p)

′ and let D = dim((λ′, γ̃′, γ̃′
p)). Then let θ̃R be the constrained

parameter θ̃R = (ϑ′, 0′D)′ where 0D denotes a D × 1 vector of zeros. The maximum likelihood

estimator in the constrained case uses the sample analogs to the D population moments

E[
∑J

j=0
Yimj

∂ log Pimj(v(ξ̃m), θ̃R)

∂ϑ
] = 0.

The constrained parameter estimates
̂̃
θR = (ϑ̂′, 0′D)′ solve the sample analog equations

∂ log LN (ξ̂m,
̂̃
θR)

∂ϑ
≡ 1

N

∑M

m=1

∑Nm

i=1

∑J

0=1
Yimj

∂ log Pimj(v(ξ̂m),
̂̃
θR)

∂ϑ
= 0. (8)

The LM test is based on the average value of the derivative of the likelihood with respect to θ̃

evaluated at the constrained parameter estimates:

∂ log LN (ξ̂m,eθ)

∂eθ

∣∣∣
eθ=

beθR

≡ 1
N

∑M
m=1

∑Nm

i=1

∑J
j=0 Yimj

∂ log Pimj(v(ξ̂m),eθ)

∂eθ

∣∣∣
θ=

beθR

.
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With abuse of notation, we often write ∂ log LN (ξ̂m,
beθR)

∂eθ
= ∂ log LN (ξ̂m,eθ)

∂eθ

∣∣∣
eθ=

beθR

and also others similarly.

Now construct a nonrandom matrix H (with the number of rows equal to the dimension of

(λ′, γ̃′, γ̃′
p)

′) such that Hθ̃ = 0 becomes the null hypothesis of the price exogeneity (7). Then by

construction we have H
̂̃
θR = 0. Let Γ̂(θ̃) = −∂ log LN (ξ̂m,θ̃)

∂eθ∂eθ′
. Then the LM test statistic for price

endogeneity is given by

L̃MM,N = N
∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃′
Γ̂(
̂̃
θR)−1H ′Ṽ −1

M,N (
̂̃
θR)HΓ̂(

̂̃
θR)−1 ∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃

where ṼM,N (
̂̃
θR) is a consistent estimator of the asymptotic variance matrix of

√
NHΓ̂(

̂̃
θR)−1 ∂ log LN (ξ̂m,

beθR)

∂eθ
.

Under the null hypothesis of (7), L̃MM,N follows the same asymptotic χ2 distribution with the

corresponding Wald test statistic. See Theorem 5.2 below for this result and also for the construction

of ṼM,N (
̂̃
θR).

4 Proxy Estimation Across Data Generating Processes

The purpose of estimating E[pmj |Zm] is to recover the proxy ξ̂mj = pmj − Ê[pmj |Zm]. This step can

be done by least squares using polynomials of Zm as regressors or by nonparametric series estimation

(e.g. Newey (1997)). For the Wald test to have power vj(ξ̂m) cannot be perfectly collinear with

Xmj and pmj . For the LM test to have power the score associated with the coefficients on vj(ξ̂m)

should not be perfectly collinear with the scores associated with the coefficients on Xmj and pmj .

A sufficient condition is that a variable excluded from Xmj in the instruments set is correlated with

prices (e.g., either characteristics of other products if they are assumed to be exogenous or other

observed supply-side factors).

The power of the test is increasing in Cov(ξmj , vj(ξ̂m)), which is determined by the variation that

is used to estimate E[pmj |Zm] and the restrictions placed on E[pmj |Zm] during estimation. This

variation comes from one or more of the following sources: within market at a given time, across

markets at a given time, or within/across markets over time. To make the discussion concrete,

we illustrate specification and estimation of E[pmj |Zm] with recent demand applications that make

use of different sources of variation: Goolsbee and Petrin (2004), who look at cable and satellite

television demand, Berry, Levinsohn, and Pakes (1995), who look at automobiles, and Chintagunta,

Dube, and Goh (2005), who look at margarine.

In Goolsbee and Petrin (2004), almost 30,000 households are observed in over 300 geographically

distinct television markets, and four alternatives are available to households in every market: (1)

antenna only, (2) expanded basic cable service, (3) expanded basic cable with a premium service

added, such as HBO, and (4) satellite dish. The price endogeneity problem arises because unobserved

factors like service or average channel quality are correlated with price but not observed by the

authors. With over 300 variants of each type of product, e.g. expanded basic cable, one can

separately estimate E[pmj |Zm] for each product using the cross-market variation (allowing the

9



coefficients of each function to differ for each type of product). Zm includes Xmj and may include

all of the other characteristics of other products in the market, and any other relevant demand and

cost factors.

Berry, Levinsohn, and Pakes (1995) observe over 100 market-level observations on prices, quan-

tities, and characteristics of automobiles sold in the U.S. for every year from 1971 to 1990. The price

endogeneity problem arises because, with only five included characteristics, additional unobserved

quality (e.g.) is correlated with price. With the automobile data, very few observations are avail-

able on the same nameplate (i.e. the same product) over time, because cars enter, exit, and change

quickly. Unlike the television case, this means some restrictions on E[pmj |Zm] across vehicles will

be necessary. Some possibilities include restricting parameters to be the same across: all products

and all years, all products within the same year, similar products within a year, or similar products

across years.

A second difference with the television case is that the number of potential arguments entering

E[ pmj |Zm] may be quite large; in one extreme case, every product’s characteristics may affect

every product’s price. In a multi-product multi-competitor market Pakes (1994) suggests a parsi-

monious approach that includes three regressors for each characteristic: the characteristic itself, the

sum of the characteristic across own-firm products (excluding that product), and the sum of the

characteristic across rival firm products.

Chintagunta, Dube, and Goh (2005) (CDG) observe weekly purchase histories of 992 households

between January 1993 and March 1995 collected using checkout-counter scanners. The market for

margarine is similar to that for television in the sense that there are only four choices in their

data: Blue Bonnet, I Can’t Believe It’s Not Butter, Parkay, and Shedd’s. However, unlike television

demand, the physical characteristics of the products are not changing over time. Instead, the price

endogeneity problem arises because weekly retail prices covary with demand-shifting marketing-mix

variables which may not be observed by the econometrician, including: whether the product is

on display, whether it is featured, changes in its shelf-space, the availability of coupons (in-store

or not), or promotions in complementary or substitute categories. CDG observe wholesale prices,

which affect retail prices but do not enter into consumer utility conditional on the retail price. Thus

one could use the residual from the regression of product’s retail price at time t on an intercept

and its wholesale price at time t. If Cov(pmj , ξmj |Zm) > 0, a large residual is suggestive of more

marketing-mix activities.

5 Asymptotic Distributions of Test Statistics

In this section we derive the asymptotic distributions of the Wald test and the LM test statistics.

Our asymptotic experiment is mainly in the number of markets M as M → ∞ while Nm (the

number of individuals in each market) can be finite or tend to infinity. In both cases note, however,

that N =
∑M

m=1 Nm also tends to infinity as M → ∞. We derive the asymptotic distribution of
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the Wald test statistic accounting for the estimated controls.14 The controls ξ̂m are obtained from

regressions of Pm on Zm as

ξ̃mj = pmj − Z
′
mπj , j = 1, . . . , J

where Zm = Zm or Zm can also include higher order terms of Zm. We can also extend this

(and results below) to nonparametric series estimation but the estimated standard errors under the

parametric regression will be equivalent to those that would be obtained under the nonparamet-

ric regression given approximation anyway (e.g. Newey (1997)), so we present our results in the

parametric flexible regression context.

Note that
√

M (π̂j −πj0) = ( 1
M

∑M
m=1 ZmZ

′
m)−1 1√

M

∑M
m=1 Z

′
mξ̃mj and we let

√
M(π̂j −πj0) →d

̟j where (̟1, . . . ,̟J ) follow a joint normal distribution. We write ξ̃mj(π) = pmj − Z
′
mπj , ξ̂mj =

ξ̃mj(π̂), and ξ̃mj = ξ̃mj(π0) for j = 1, . . . , J .

The regularity conditions below that validate the asymptotic distributions and the consistency

of the variance matrix estimators are fairly standard (see Newey and McFadden (1994) for example).

We collect a set of sufficient conditions that render the asymptotic χ2 distribution of T̃M,N here and

also that of L̃MM,N . We let π = (π′
1, . . . , π

′
J)′ and let ||A|| =

√
tr(A′A) for a matrix or a vector A.

Also let ΣZZ = plimM→∞
1
M

∑M
m=1 ZmZ

′
m and Σξ̃2

j ZZ
= plimM→∞

1
M

∑M
m=1 ξ̃2

mjZmZ
′
m.

Assumption 5.1 (i) {pm, Zm}m≤M are independently distributed across m and {Yim1, . . . , YimJ , di}m≤M
i≤Nm

are independently and identically distributed across i and are independently distributed across m;
(ii) E[||ξ̃m||4] < ∞ and E[||Zm||4] < ∞ for all m; (iii) ΣZZ is nonsingular.

Then under Assumption 5.1
√

M(π̂j − πj0) →d ̟j ∼ N (0,Σ−1
ZZ

Σξ̃2

j ZZ
Σ−1

ZZ
) for all j by the

Lindeberg-Feller CLT. We let θ̃0 denote the true value of θ̃.

Assumption 5.2 (i)(a)
̂̃
θU →p θ̃0, (b)

̂̃
θR →p θ̃0 under the null (7); (ii) θ̃0 is in the interior of Θ̃;

(iii) Pimj(v(ξ̃m), θ̃) is twice continuously differentiable in θ̃ on some neighborhood Θ̃0 of θ̃0 (Θ̃0 ⊂ Θ̃);

(iv) Pimj(v(ξ̃m), θ̃) is Lipschitz in ξ̃m for all j; (v)
∂2 log Pimj(v(ξ̃m(π)),eθ)

∂eθ∂eθ′
is continuous in (θ̃, π) for

all w ∈ W, W denotes the support of W̃mi = (X ′
m, p′m, ξ̃′m, di)

′ and E[∂ log LN (eξm,eθ0)

∂eθ∂eθ′
] is nonsingular

for all M large enough; (vi) E[supeθ∈eΘ0,π∈Π0

||∂ log Pimj(v(ξ̃m(π)),eθ)

∂eθ∂eθ′
||] < ∞ for all j and m where Π0

denotes some neighborhood of π0; (vii) E[supeθ∈eΘ0,π∈Π0

||∂ log Pimj(v(ξ̃m(π)),eθ)

∂eθ
||4] < ∞ for all j and m;

(viii)
∂2 log Pimj(v(ξ̃m(π)),eθ)

∂eθ∂vj′ (ξ̃m)
is continuous in (θ̃, π) for all w ∈ W and E[ sup

eθ∈eΘ0,π∈Π0

||∂
2 log Pimj(v(ξ̃m(π)),eθ)

∂eθ∂vj′ (ξ̃m)
||2] <

∞ for all j, j′, and m.

To obtain the asymptotic distribution of the Wald test statistic we first derive the asymptotic

distribution of the unconstrained ML estimator that uses the estimated controls.

14Our asymptotic distributions here do not include simulation errors to approximate (e.g.) the distribution of
random coefficients. If one uses simulations to approximate the distribution of random coefficients, one can add an
additional variance term that arises from the simulation as in BLP.
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Lemma 5.1 Suppose Assumptions 5.1 and 5.2 hold.

Then
√

M(
̂̃
θU − θ̃0) →d N (0,Γ−1

0 (Γ0 ·limM→∞
M
N +V1)Γ

−1
0 ) where Γ0 = limM→∞ E[−∂ log LN (ξ̃m,eθ0)

∂eθ∂eθ′
],

V1 =
∑

j,k Λ0jCov(̟j ,̟k)Λ′
0k, and Λ0j = limM→∞ E[ΛN,M

j (θ̃0, ξ̃m)]

with ΛN,M
j (θ̃, ξ̃m) ≡∑M

m=1

∑Nm

i=1

∑J
j
′′
=0

Yimj′′
∑J

j′=1

∂2 log P
imj

′′ (v(ξ̃m),eθ)

∂eθ∂vj′ (ξ̃m)

∂vj′ (ξ̃m)

∂ξ̃mj

∂ξ̃mj

∂πj
/N.

See Appendix A.1 for the proof.

To obtain a consistent estimator of the variance matrix, we use Γ̂ = −∂ log LN (ξ̂m,
beθU )

∂eθ∂eθ′
for Γ0 and

V̂1 =
∑

j,k ΛN,M
j (

̂̃
θU , ξ̂m)Ĉov(̟j ,̟k)Λ

N,M
k (

̂̃
θU , ξ̂m)′ for V1 where Ĉov(̟j ,̟k) is obtained from

Ĉov(̟j ,̟k) = (
∑M

m=1
ZmZ

′
m/M)−1

(∑M

m=1
ξ̂mj ξ̂mkZmZ

′
m/M

)
(
∑M

m=1
ZmZ

′
m/M)−1.

When one assumes homoskedasticity across m and zero correlations of ξ̃mj across products j 6= k,

V1 can simplify to V1 =
∑J

j=1 Λ0j(ΣZZ)−1E[ξ̃2
mj ]Λ

′
0j .

Next we derive the asymptotic distribution of the Wald test statistic.

Theorem 5.1 Suppose Assumptions 5.1 and 5.2 (i)(a) and (ii)-(viii) hold. Then for the Wald

statistic we have T̃M,N = N(λ̂′, ̂̃γ ′
, ̂̃γ′

p)Ṽ
−1
M,N (λ̂′, ̂̃γ′

, ̂̃γ′
p)

′ →d χ2(dim((λ′, γ̃′, γ̃′
p)

′)) with ṼM,N = HΓ̂−1(Γ̂+

V̂1
N
M )Γ̂−1H ′ where

Γ̂ = −∂ log LN (ξ̂m,
̂̃
θU )

∂θ̃∂θ̃′
,

V̂1(θ̃) =
∑

j,k

ΛN,M
j (θ̃, ξ̂m)Ĉov(̟j ,̟k)Λ

N,M
k (θ̃, ξ̂m)′, V̂1 = V̂1(

̂̃
θU ),

ΛN,M
j (θ̃, ξ̃m) =

1

N

∑M

m=1

∑Nm

i=1

∑J

j′′=0
Yimj′′

∑J

j′=1

∂2 log Pimj′′(v(ξ̃m), θ̃)

∂θ̃∂vj′(ξ̃m)

∂vj′(ξ̃m)

∂ξ̃mj

∂ξ̃mj

∂πj
, and

Ĉov(̟j ,̟k) = (
∑M

m=1
ZmZ

′
m/M)−1

(∑M

m=1
ξ̂mj ξ̂mkZmZ

′
m/M

)
(
∑M

m=1
ZmZ

′
m/M)−1.

Proof. Note that we use the nonrandom matrix H such that Hθ̃ = 0 represents the null

hypothesis of the price exogeneity (7). Then with the variance-covariance matrix estimator of√
NH

̂̃
θU as ṼM,N = HΓ̂−1(Γ̂ + V̂1

N
M )Γ̂−1H ′, we obtain

T̃M,N = N(λ̂′, ̂̃γ ′
, ̂̃γ′

p)Ṽ
−1
M,N (λ̂′, ̂̃γ′

, ̂̃γ′
p)

′ = M · (Ĥ̃θU )′
{

HΓ̂−1(Γ̂
M

N
+ V̂1)Γ̂

−1H ′
}−1

H
̂̃
θU .

Therefore, by the continuous mapping theorem, T̃M,N →d χ2 with the degree of freedom equal

to the dimension of (λ′, γ̃′, γ̃′
p)

′ (i.e. the number of rows in H) because Lemma 5.1, Γ̂ →p Γ0,

and V̂1 →p V1 implies Z ≡
√

M
{

HΓ̂−1(Γ̂M
N + V̂1)Γ̂

−1H ′
}−1/2

H
̂̃
θU →d N (0, I) and T̃M,N is the

quadratic function of Z.

Next we show that the LM test statistic has the same asymptotic distribution of the correspond-

ing Wald test statistic.
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Theorem 5.2 Suppose Assumptions 5.1 and 5.2(i)(b) and (ii)-(viii) hold. Then for the LM statistic
we have

L̃MM,N = N
∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃′
Γ̂(
̂̃
θR)−1H ′Ṽ −1

M,N (
̂̃
θR)HΓ̂(

̂̃
θR)−1 ∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃
→d χ2(dim((λ′, γ̃′, γ̃′

p)
′))

where ṼM,N (
̂̃
θR) = HΓ̂(

̂̃
θR)−1(Γ̂(

̂̃
θR) + V̂1(

̂̃
θR) N

M )Γ̂(
̂̃
θR)−1H ′.

See Appendix A.2 for the proof.

5.1 Test Consistency

Here we further discuss the test consistency of price endogeneity. The Wald test is consistent as long

as plimM→∞(λ̂′, ̂̃γ ′
, ̂̃γ ′

p)
′ 6= 0 under the alternative against (7) i.e. plimM→∞T̃M,N = ∞ under the

alternative. Therefore the Wald test is consistent under the alternative as long as the unobserved

attribute that is correlated with price enters utility and the proxy is correlated with the unobserved

attribute.

The LM test is more involved. To understand the consistency of the LM test, we first need to re-

formulate the LM statistic as below. Note that
∑J

j=0 Pimj(·, θ̃) = 1 implies
∑J

j=0 Pimj(·, θ̃)
∂ log Pimj(·,eθ)

∂eθ
=

0. We therefore can write ∂ log LN (·,eθ)
∂eθ

= 1
N

M∑
m=1

Nm∑
i=1

J∑
j=0

(Yimj − Pimj(·, θ̃))
∂ log Pimj(·,eθ)

∂eθ
. Define

uimj(θ̃) = Yimj − Pimj(·, θ̃)

and also let uimj(
̂̃
θR) = Yimj − Pimj(v(ξ̂m),

̂̃
θR) with abuse of notation. Then the LM test statistic

can be written as

L̃MM,N =

N

(
1
N

M∑
m=1

Nm∑
i=1

J∑
j=0

∂ log Pimj(v(ξ̂m),
beθR)

∂eθ′
uimj(

̂̃
θR)

)
Γ̂(
̂̃
θR)−1H ′Ṽ −1

M,N (
̂̃
θR)HΓ̂(

̂̃
θR)−1

×
(

1
N

M∑
m=1

Nm∑
i=1

J∑
j=0

uimj(
̂̃
θR)

∂ log Pimj(v(ξ̂m),
beθR)

∂eθ

)
.

Recall that θ̃0 denotes the true value of θ̃. Then
∂ log Pimj(v(ξ̃m),eθ0)

∂eθ
must be uncorrelated with uimj(θ̃0)

because θ̃0 solves the moment condition

0 = E[
∂ log LN (ξ̃m, θ̃0)

∂θ̃
] = E[

1

N

M∑

m=1

Nm∑

i=1

J∑

j=0

uimj(θ̃0)
∂ log Pimj(v(ξ̃m), θ̃0)

∂θ̃
] (9)

and this is not equal to zero for any θ̃ 6= θ̃0. Therefore the LM statistic looks at the covariance

between
∂ log Pimj(v(ξ̂m),

beθR)

∂eθ
and uimj(

ˆ̃
θR) to detect the violation of this moment condition, which

plays the role of an evidence against the null hypothesis.

Let him(v(ξ̃m), θ̃) =
∑J

j=0
∂ log Pimj(v(ξ̃m),eθ)

∂eθ
uimj(θ̃) and let E[him(v(ξ̃m), θ̃)] = 1

N

M∑
m=1

Nm∑
i=1

E[him(v(ξ̃m), θ̃)].

Again note that E[him(v(ξ̃m), θ̃)] = 0 when θ̃ = θ̃0, so the LM test uses him(v(ξ̃m), θ̃) to detect a
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violation of θ̃ = θ̃0, which is equivalent to the violation of the population moment condition (9).

Further denote θ̃A
R = plimM→∞

̂̃
θR under the alternative hypothesis against (7). Then, the main

substantive condition for test consistency as we show in Theorem A.1 in Appendix A.3 is that we

require

lim
M→∞

||E[him(v(ξ̃m), θ̃A
R)]|| 6= 0 (10)

for some function v(ξ̃m) when prices are endogenous (i.e., the alternative hypothesis is true).15 This

means that for the test consistency v(ξ̃m) should be chosen such that it can detect the nonzero

correlation between
∂ log Pimj(v(ξ̃m),eθA

R
)

∂eθ
and uimj(θ̃

A
R) under the alternative hypothesis. Theorem A.1

in Appendix A.3 spells out the exact conditions under which the LM test is consistent.

Remark 1 To further understand how the LM test works, without loss of generality, let the 0-th
good be the outside good (i.e., ξm0 = 0, xm0 = 0, pm0 = 0, and Uim0 = ǫim0). From uim0(θ̃) =
−∑J

j=1 uimj(θ̃), it follows that

∑J

j=0

∂ log Pimj(·, θ̃)

∂θ̃
uimj(θ̃) =

∑J

j=1

∂ log Pimj(·, θ̃)

∂θ̃
uimj(θ̃) −

∑J

j=1

∂ log Pim0(·, θ̃)

∂θ̃
uimj(θ̃)

=
∑J

j=1

∂ log(Pimj(·, θ̃)/Pim0(·, θ̃))

∂θ̃
uimj(θ̃).

Define the part of the mean utility for the product j that is common across consumers as δmj(ξ̃m).
Then in particular we have

∑J

j=0

∂ log Pimj(v(ξ̂m),
̂̃
θR)

∂(λ′, γ̃′, γ̃′
p)

uimj(
̂̃
θR) =

J∑

j=1

∂{Pimj(v(ξ̂m),
̂̃
θR)/Pim0(v(ξ̂m),

̂̃
θR)}/∂δmj

Pimj(v(ξ̂m),
̂̃
θR)/Pim0(v(ξ̂m),

̂̃
θR)

(11)

× {vj(ξ̂m)′, xmj1vj(ξ̂m)′, . . . , xmjKvj(ξ̂m)′, pmjv(ξ̂m)′}uimj(
̂̃
θR),

which is the sum of the products of the omitted attributes (including interaction terms) and the
residuals scaled by “hazard rates” (normalized w.r.t. the outside good) of purchases with respect to
the mean utilities. Therefore the LM test rejects if the omitted attribute can significantly account for
any of the purchase decision residual (i.e., if their correlation is significant). Indeed (11) simplifies to
∑J

j=0
∂ log Pimj(v(ξ̂m),

beθR)
∂(λ′,eγ′,eγ′

p) uimj(
̂̃
θR) =

∑J
j=1{vj(ξ̂m)′, xmj1vj(ξ̂m)′, . . . , xmjKvj(ξ̂m)′, pmjv(ξ̂m)′}uimj(

̂̃
θR)

for the multinomial choice logit model (i.e., ǫ follows the type I extreme value distribution) without
random coefficients. Therefore in the simple logit case the LM test seeks the correlation between

the controls {vj(ξ̂m)′, xmj1vj(ξ̂m)′, . . . , xmjKvj(ξ̂m)′, pmjv(ξ̂m)′} and uimj(
̂̃
θR) to detect a violation

of the moment condition (9).

6 Monte Carlo Experiments

We construct Monte Carlo data for different situations with an unobserved attribute correlated with

price. A product is sold in each of several markets and its attributes and price vary by markets.

15Note that in (10) we allow for non-identically distributed data (e.g., the distributions of prices and/or
the unobserved attributes are different across markets). If the data is iid across i and m, (10) simplifies to
||E[him(v(ξ̃m), θA

R)]|| 6= 0.
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Each consumer lives in one market and either buys or does not buy the product offered in that

market. The utility that consumer i who lives in market m obtains from the product is

Uim = β0 + βixm + βξξm − αpm + ǫim,

where xm is a product attribute that is observed by the researcher, ξm is a product attribute that

is not observed by the researcher, and pm is the price of the product. βi, the random coefficient on

xm, is distributed N(βx, σ2
x), and ǫi is distributed as logit. Given these assumptions the share of

consumers buying the product in market m is given by

sm =

ˆ

exp(β0 + βixm + βξξm − αpm)

1 + exp(β0 + βixm + βξξm − αpm)
dF (βi)

where F (βi) denotes the distribution function of the random coefficient.

We first examine four different monte carlo cases with only the specification for marginal cost

varying across the cases (we add two cases of exogenous prices later). They are designed to generate

a wide range of correlations between price and the unobserved factor while maintaining a reasonable

range of prices and market shares. Price is set at a markup over marginal cost based on static profit

maximization:

pm = mcm − sm

∂sm/∂pm
.

In all specifications below xm enters marginal cost, as do two other variables which do not affect

demand: wm, which is a cost-shifter observed by the researcher, and am, which is a cost shock that

is not observed. Cases 1-4, in order, are given as:

[1] mcm = 10 + xm + ξm + wm + am

[2] mcm = 10 + xm + wm + am

[3] mcm = 10 + exp(xm + ξm + wm + am)

[4] mcm = 10 + exp(xm + wm + am).

In two of the four specifications ξm does not enter marginal costs, which unambiguously lowers

Corr(pm, ξm). In two cases cost factors enter marginal costs linearly, and in two cases they enter

exponentially. Each of the random variables xm, ξm, wm, and am is assumed to be an i.i.d. N(0, 0.5)

deviate. All parameters of the utility and cost functions are set equal to 1, except for the intercepts,

which equal 10, and the variance in taste for xm, which is equal to 0.5.

To evaluate whether the Wald test does not overreject the hypothesis of the exogenous price

when the null hypothesis is true, we also generate the demand data without an unobserved attribute

(i.e. βξ = 0). We consider two additional specifications of the marginal costs:

[5] mcm = 10 + xm + wm + am

[6] mcm = 10 + exp(xm + wm + am).
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The researcher is assumed to observe 20 purchase decisions per market for 200 markets, which

are used to construct the estimate for sm. The researcher does not observe ξm and am in each

market, instead seeing only xm, wm, and pm, and OLS is used to estimate the residuals ξ̂m =

pm− Ê[pm|xm, wm]. While it makes the test less powerful we assume the researcher mistakenly adds

a random coefficient, which is typical in many specifications. This adds a new parameter σ, the s.d.

of the additional error term, and leads to estimation of the utility function given by

Ũim = β0 + βixm + λξ̂m − αpm + σιm + ǫim, (12)

where ιm is distributed N(0, 1).

The demand parameters are estimated using maximum likelihood in two ways. First we exclude

ξ̂m from the specification to see how much bias the price endogeneity generates. We then follow

the Wald approach from Section 3.1, including ξ̂m directly in the likelihood function and testing

its coefficient λ for significance. For the standard errors from the Wald approach we bootstrap,

repeating estimation 500 times (that is, on 500 different datasets, each with 200 markets) and

using the variance of the parameter estimates across these 500 cases to construct estimates of the

distribution of parameters under the null and alternative hypotheses.

Table 1 summarizes the Monte Carlo data. Reported statistics are calculated for each sample

of 200 markets, and then are averaged over the 500 iterations. The first four columns are the

endogenous price specifications and the last two columns are the exogenous price specifications.

Prices range from approximately 10 to 14. For the linear marginal cost specifications the 10%-90%

range for shares is from 0.11 to 0.38 and for the exponential specifications they range from 0.02 to

0.19. Corr(pm, ξm) is respectively 0.55, 0.15, 0.40, and 0.03 for endogenous prices and 0 for the

exogenous price cases. The correlations are substantially higher in specifications 1 and 3 where the

unobserved demand attribute affects costs.

Table 2 reports the parameter estimates for the approach without ξ̂m and for the Wald-type test

specification from Section 3.1. The average of the parameter estimates and their standard deviation

across the 500 iterations are reported first for the specification without ξ̂m. Next, the six parameters

associated with the Wald test specification are reported, where the two new parameters are σ, the

standard deviation of the additional error term, and λ, the coefficient on ξ̂m. Test results for the

null hypothesis that λ = 0 are reported at the bottom. We discuss each case in turn.

6.1 Endogenous Prices

6.1.1 Case 1: Linear marginal costs

Case 1 has marginal costs linear in all of the demand and cost factors. The average correlation

between price and the unobserved attribute is 0.55. The constrained approach is severely biased

downward, with the price coefficient estimated to be 0.51, half of the true value of 1 (the standard

deviation is 0.03). The other estimates are similarly biased down to almost half of their true values.

When ξ̂m is included in the specification, λ enters with a coefficient of 0.62 and a standard

deviation of 0.10. The test rejects the null hypothesis in every one of the 500 replications at a size
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of 0.01. The average estimate of the price coefficients across the iterations is equal to 0.99, with a

standard deviation 0.09. The other averaged point estimates are similarly close to their true values.

6.1.2 Case 2: Unobserved demand attribute does not affect (linear) marginal cost

Case 2 has linear marginal costs, but ξm excluded, lowering the correlation between price and ξm

to 0.15. The constrained model continues to perform poorly, with the point estimate for the price

coefficient on average equal to 0.74 (with standard deviation 0.06). Other parameter estimates are

similarly biased down. λ enters with a coefficient that is on average equal to 0.39, and the test

rejects in over 99% of the 500 cases at the 0.01 significance level.

6.1.3 Case 3: Exponential marginal costs

Case 3 defines marginal cost to be exponential in all demand and cost factors. Since the cost

variables do not enter utility, in some markets the high prices lead to very low demand; on average

7% of markets have demand shares less than 1%. The non-linearity causes the correlation between

price and the unobserved demand attribute to fall to 0.40 (relative to the linear case of 0.55).

The constrained estimates are again severely biased downward. The average point estimate on

price is 0.63 and the standard deviation is 0.03, and other coefficients exhibit similar problems. The

Wald-type test again easily identifies the specification problem, rejecting at 0.01 significance level

in over 99% of cases. The Wald estimate for the price coefficient is on average 0.81 with standard

deviation 0.09.

6.1.4 Case 4: Unobserved demand attribute does not affect (exponential) marginal
cost

Case 4 defines marginal cost to be exponential in demand and cost factors with ξm excluded. With

non-linearity in costs this exclusion causes the correlation between price and the unobserved demand

attribute falls to 0.03.

The price coefficient in the constrained approach is again biased down. The test continues to

identify the unobserved attribute problem, rejecting at significance level 0.01 in 85% of cases and

at 0.10 level 93% of cases. The Wald-test specification has a price coefficient of 0.94 vs. 1, and the

other coefficients are respectively 9.2 vs 10, 1.0 vs 1.0, and 0.41 vs 0.5.

6.2 Exogenous Prices

6.2.1 Case 5: Linear marginal costs

In this case both estimation approaches produce estimates very close to their true values. Thus,

the Wald-type test does not reject the price exogeneity as expected. Here we are interested in the

actual size of the test. Table 2 shows that the size of test is very close to the significance level.

Under the null hypothesis (our DGP), the Wald-type test shows 1.2 % rejection of 500 cases with
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0.01 significance level and 9.4 % rejection with 0.10 significance level. Therefore the Wald-type test

does not overreject the null when the null hypothesis is true.

6.2.2 Case 6: Exponential marginal costs

In this case too both estimation approaches produce all estimates very close to their true values.

Under the null hypothesis, the Wald-type test has 1.2 % rejection of 500 cases with 0.01 signifi-

cance level and 9.0 % rejection with 0.10 significance level. Therefore the Wald-type test does not

overreject in this case too.

7 Demand for Television

Our empirical application applies the test to the model of demand for households’ choice among

television reception options from Goolsbee and Petrin (2004), who emphasize the importance of

omitted attributes. We estimate both the constrained model (without the attribute) and the Wald-

type test specification described in Section 3.1, where ξ̂m are included directly as new regressors in

the likelihood function.

7.1 Data and Demand Specification

The data and specification are very similar to Goolsbee and Petrin (2004) and Petrin and Train

(2010). The data come from two sources: Forrester Technographics 2001 and Warren Publishing’s

2001 Cable and Television Factbook. We restrict our analysis to a subsample of the 30,000 house-

holds from the original work, using 11,810 households that reside in 172 geographically distinct

television markets. Each market contains only one cable franchise, and four alternatives are avail-

able to households: (1) antenna only, (2) expanded basic cable service, (3) expanded basic cable

with a premium service added, such as HBO, and (4) satellite dish.

Estimated utility is given as

Ũimj = αpmj +
∑5

g=2
θgpmj1ig + β′

0xmj + γ′
jdi + σιicj + λj ξ̂mj + ǫimj .

xmj are the observed characteristics of the product and includes a product intercept term. ξ̂mj is

the proxy and has λj as its coefficient. The price effect varies across five income groups, with the

lowest income group taken as the base and the binary variable 1ig indicating whether household i is

in income group g.16 Demographic variables for household i are given by di and enter each choice

j with a separate coefficient vector γj . A random coefficient is included to allow for correlation

in unobserved utility over the three non-antenna alternatives: cj = 1 if j is one of the three non-

antenna alternatives and cj = 0 otherwise, ιi is an i.i.d. standard normal deviate, and σ is its

16The price coefficient for a household in the lowest income group is α while that for a household in group g > 1
is α + θg.
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standard deviation, reflecting the degree of correlation among the non-antenna alternatives. ǫimj is

i.i.d. extreme value.17

In the Forrester survey, respondents reported the type of television medium that they have.18

The Forrester survey also provides the demographic information they use, including family income,

household size, education, and type of living accommodations. Finally, the survey includes an

identifier for the household’s television market, which links households to their cable franchise

provider (whether they subscribe to cable or not).

The cable system information comes from Warren Publishing’s 2001 Television and Cable Fact-

book. The attributes we include, which vary over markets, are the channel capacity of a cable

system, the number of pay channels available, whether pay per view is available from that cable

franchise, the price of expanded basic service, the price of premium service, and the number of over-

the-air channels available. Many of the cable operators are owned by multiple system operators

(MSO’s) like AT+T and Time-Warner, and we include MSO dummy variables, one for each of the

two cable choices for each operator. Satellite prices do not vary geographically, and the price of

antenna-only is assumed to be zero.19 More complete details are provided in Goolsbee and Petrin

(2004).

7.2 Estimation of the control

We estimate the controls product by product using the cross-market variation from the 172 different

observations on each product. However, since price does not vary across geographic location for

antenna-only and satellite, we do not construct proxies for these products. We obtain the control

term for expanded basic by regressing its price on all of the product attributes listed above for

the product choices available in the market. In addition we include Hausman (1997)-type price

instruments, one for expanded basic and premium each. The price instrument for market m is

calculated as the average price in other markets that are served by the same multiple system

operator as market m, and is intended to reflect common costs of the multiple system operator.

The premium control term is constructed in a similar manner.

17The error specification in Goolsbee and Petrin (2004) is more flexible; they use a multivariate normal specification
in place of the logit error.

18Specifically, they report whether they have cable or satellite, and the amount they spend on premium television.
Respondents are classified as having premium if they reported that they have cable and spend more than $10 per
month on premium viewing, which is the average price of the most popular premium channel, HBO. We classified
respondents as choosing expanded basic if they reported that they have cable and they spend less than $10 per month
on premium viewing.

19For the price of satellite, we use $50 per month plus an annual $100 installation and equipment cost.
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7.3 Results

Table 3 gives the estimated parameters and standard errors for the two approaches.20 The first

column of Table 3 gives the constrained model while the second column includes ξ̂mj as new regres-

sors. The coefficients on the expanded basic and premium controls are reported first, followed by

the base price coefficient. Both controls enter significantly (i.e. we reject exogenous prices) and with

a positive sign, identifying the price endogeneity problem and suggesting that products with large

proxies possess desirable attributes omitted from the specification. Inclusion of the controls also

raises the magnitude of the estimated base price coefficient by 500%, from -0.02 to -0.09, consistent

with bias associated with a positive correlation between the unobserved attributes and prices.

8 Conclusion

In applications of differentiated product models all of the relevant product attributes may not be

observed by the econometrician. In this case price may be positively correlated with the unobserved

portion of consumers’ utility for that product: producers charge more and consumers are willing

pay more for products with more of the omitted attribute, holding all else constant. This positive

correlation biases estimates of price elasticities upwards, and evidence of it has been found in many

applications spanning a wide range of markets and differing data types. The problem can be

exacerbated when the interaction of price and the omitted attribute enters the consumer utility.

In this paper we develop a class of asymptotic tests for the price endogeneity. Our tests can

allow for the non-additive separability between price and the omitted attribute. They are easy

to implement in standard regression packages and have reasonable power against the “exogenous

prices” hypothesis. The tests include control function type tests of specification.

A major advantage of our testing approaches is their simplicity. They all use least squares or

nonparametric regression in an initial stage to obtain the proxies, followed by a second stage of

likelihood function maximization. The control function test includes the controls directly in the

maximization of the likelihood function and tests for their significance.

We describe approaches to implementing the tests for three of the recent demand exercises

mentioned above, where prices are shown to be endogenous. Each of these exercises uses a dif-

ferent kind of data, including aggregate (market-level) data (Berry, Levinsohn, and Pakes (1995)),

household-level cross-sectional data (Goolsbee and Petrin (2004)), and household-level panel data

20We bootstrap to account for the additional variance from estimating the expected price. Specifically, we add
a new term to the standard estimate of variance of the parameters. We calculate the new term by first drawing a
bootstrapped sample of prices and observed demand and supply factors from the 172 markets. We then estimate
Ê[pmj |Zm] and calculate the implied (new) controls, and then re-estimate the model with these controls. We repeat
this process and then compute the the variance in parameter estimates over the bootstrapped price samples, adding
this variance to the traditional formulas. The adjustment is important for the standard errors of the base price
coefficient, the coefficients for the residuals, and the coefficients of the product attributes, which increase between
50-100%. Karaca-Mandic and Train (2002) provide a formula for the asymptotic standard errors in this type of
two-step estimation; they find that in our application the formula gives standard errors that are very similar to those
obtained with the bootstrap procedure.
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(Chintagunta, Dube, and Goh (2005)). Our Monte Carlos draw on a formulation where prices are set

according to a non-linear in characteristics, inverse-elasticity rule. Our simplest test specifications

identify the price endogeneity problem in almost every case.
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Table 1
Summary of Data Generated in Monte Carlo Samples

True values: α = 1, β0 = 10, βx = 1, σx = 0.5
Case [1] [2] [3] [4] [5] [6]
Price Range

Mean 11.31 11.33 12.75 12.57 11.32 12.57
10%-90% 10.17-12.45 10.36-12.28 11.41-14.60 11.49-14.03 10.37-12.27 11.49-14.03

Share Range
Mean 0.22 0.23 0.09 0.10 0.23 0.10
10%-90% 0.11-0.34 0.10-0.38 0.01-0.16 0.02-0.19 0.12-0.35 0.02-0.17
% of markets with

shares < 0.01 0.0% 0.0% 7.4% 5.7% 0.0% 5.4%
shares < 0.10 5.8% 10.0% 57.1% 53.5% 5.8% 51.0%

Corr(pm, ξm) 0.55 0.15 0.40 0.03 0.00 0.00
Marginal Costs

Linear Yes Yes No No Yes No
Exponential No No Yes Yes No Yes
Include ξm Yes No Yes No No No

Cases [1]-[4] are with an omitted attribute (βξ = 1) and Cases [5]-[6] are with no omitted attribute

(βξ = 0). Reported numbers are the statistics for each of the samples with 200 markets averaged over the

500 Monte Carlo iterations.
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Table 2
Constrained Model and Wald-type Test Specification for Monte Carlo Data

200 markets, 20 observations per market, 500 iterations
True values: α = 1, β0 = 10, βx = 1, σx = 0.5

Case [1] [2] [3] [4] [5] [6]
Constrained Model
α 0.51 0.74 0.63 0.86 1.00 1.00

(0.03) (0.06) (0.03) (0.05) (0.01) (0.01)
β0 4.56 7.17 5.52 8.40 9.97 9.98

(0.38) (0.69) (0.43) (0.66) (0.09) (0.09)
βx 0.51 0.74 0.65 0.88 1.00 1.00

(0.06) (0.09) (0.07) (0.09) (0.02) (0.02)
σx 0.23 0.24 0.12 0.22 0.34 0.44

(0.45) (0.49) (0.33) (0.41) (0.25) (0.13)
Wald Test/Control Function
α 0.99 1.01 0.81 0.94 1.00 1.00

(0.09) (0.26) (0.08) (0.09) (0.01) (0.01)
β0 9.90 10.13 7.69 9.20 9.98 9.98

(1.11) (2.48) (0.95) (1.02) (0.12) (0.09)
βx 0.99 1.01 0.99 1.00 1.00 1.00

(0.12) (0.25) (0.13) (0.14) (0.02) (0.02)
σx 0.44 0.52 0.26 0.41 0.41 0.45

(0.23) (0.40) (0.19) (0.25) (0.11) (0.09)
σ 0.28 0.53 0.55 0.60 0.05 0.05

(0.20) (0.69) (0.35) (0.45) (0.04) (0.04)
Test statistic: λ 0.62 0.39 0.25 0.08 0.00 0.00

(0.10) (0.15) (0.07) (0.07) (0.01) (0.01)
Rejection rate at:
size=0.01 100% 99.2% 99.6% 85.2% 1.2% 1.2%
size=0.10 100% 99.4% 99.6% 93.2% 9.4% 9.0%

Cases [1]-[4] are with an omitted attribute (βξ = 1) and Cases [5]-[6] are with no omitted attribute

(βξ = 0). Average parameter estimate and standard deviation (in parentheses) across 500 iterations.

For the size of tests, 500 iterations are used to estimate the distribution of λ under the null hypothesis

(estimates not reported here).
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Table 3
TV Reception Choice

Constrained Approach and the Wald-type Test Specification
Alternatives: 1. Antenna only, 2. Expanded Basic cable, 3. Premium cable, 4. Satellite Dish
Variables enter alternatives in parentheses and are zero in other alternatives.
Explanatory variable Constrained Wald-type Test

Approach Specification
(Standard errors in parentheses)

Control for expanded-basic cable price (2) .0805 (.0416)
Control for premium cable price (3) .0873 (.0418)
Price, in dollars per month (1-4) -.0202 (.0047) -.0969 (.0400)
Price for income group 2 (1-4) .0149 (.0024) .0150 (.0025)
Price for income group 3 (1-4) .0246 (.0030) .0247 (.0031)
Price for income group 4 (1-4) .0269 (.0034) .0269 (.0035)
Price for income group 5 (1-4) .0308 (.0036) .0308 (.0038)
Number of cable channels (2,3) -.0023 (.0011) .0026 (.0029)
Number of premium channels (3) .0375 (.0163) .0448 (.0233)
Number of over-the-air channels (1) .0265 (.0090) .0222 (.0111)
Whether pay per view is offered (2,3) .4315 (.0666) .5813 (.1104)
Education level of household (2) -.0644 (.0220) -.0619 (.0221)
Education level of household (3) -.1137 (.0278) -.1123 (.0280)
Education level of household (4) -.1965 (.0369) -.1967 (.0372)
Household size (2) -.0494 (.0240) -.0518 (.0241)
Household size (3) .0160 (.0286) .0134 (.0287)
Household size (4) .0044 (.0357) .0050 (.0358)
Household rents dwelling (2-3) -.2471 (.0867) -.2436 (.0886)
Household rents dwelling (4) -.2129 (.1562) -.2149 (.1569)
Single family dwelling (4) .7622 (.1523) .7649 (.1523)
Alternative specific constant (2) 1.119 (.2668) 2.972 (1.057)
Alternative specific constant (3) .1683 (.3158) 2.903 (1.487)
Alternative specific constant (4) -.2213 (.4102) 4.218 (2.386)
Error components, standard deviation (2-4) .5087 (.6789) .5553 (.8567)
Log likelihood at convergence -14660.84 -14635.47
Number of observations: 11810

For each of the seven largest multiple system operators we include separate indicators for expanded

basic and for premium.
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Appendix

A Asymptotic Distributions of Test Statistics

A.1 Proof of Lemma 5.1

Proof. The unconstrained ML estimator solves the first order condition ∂ log LN (ξ̂m,
beθU )

∂eθ
= 0. Define

Γ̂(θ̃, π) = −∂ log LN (ξ̃m(π),eθ)

∂eθ∂eθ′
, Γ0(θ̃, π) = limM→∞ E[−∂ log LN (ξ̃m(π),eθ)

∂eθ∂eθ′
], Γ̂(θ̃) = Γ̂(θ̃, π̂), and Γ0 =

Γ0(θ̃0, π0). The asymptotic distribution of
√

M(
̂̃
θU − θ̃0) is obtained from the asymptotic expansion

of

√
M(
̂̃
θU−θ̃0) = Γ̂−1(θ̃∗)

{
√

M
∂ log LN (ξ̃m, θ̃0)

∂θ̃
+

√
M(

∂ log LN (ξ̂m, θ̃0)

∂θ̃
− ∂ log LN (ξ̃m, θ̃0)

∂θ̃
)

}
+op(1),

(13)

which is obtained from the element-by-element mean value expansions of the first order condition
∂ log LN (ξ̂m,

beθU )

∂eθ
= 0 around θ̃0 where θ̃∗ lies between

̂̃
θU and θ̃0. Therefore the asymptotic variance

of
√

M(
̂̃
θU − θ̃0) contains two variance terms that are from (i) the ML estimation and (ii) the

estimation of the controls.

Note that under Assumptions 5.1, 5.2 (i)(a), (v), and (vi), by the uniform law of large numbers

and the continuity, we obtain

Γ̂(θ̃∗) →p Γ0 (14)

because

∥∥∥Γ̂(θ̃∗) − Γ0

∥∥∥ ≤
∥∥∥Γ̂(θ̃∗) − Γ0(θ̃

∗, π̂)
∥∥∥+

∥∥∥Γ0(θ̃
∗, π̂) − Γ0

∥∥∥

≤ sup
eθ∈eΘ0,π∈Π0

∥∥∥Γ̂(θ̃, π) − Γ0(θ̃, π)
∥∥∥ +

∥∥∥Γ0(θ̃
∗, π̂) − Γ0

∥∥∥ = op(1) (15)

where the first term in (15) converges to zero by the uniform LLN under Assumption 5.2 (vi) and the

second term in (15) converges to zero because of the continuity of Γ0 (which is implied by Assumption

5.2 (v) and (vi) due to the dominated convergence theorem) and because (θ̃∗, π̂) →p (θ̃0, π0).

To derive the variance term due to the second term inside {·} bracket in (13), we approximate

the second term in (13) using a first order mean value expansion,

√
M

(
∂ log LN (ξ̂m, θ̃0)

∂θ̃
− ∂ log LN (ξ̃m, θ̃0)

∂θ̃

)
(16)

=
1

N

M∑

m=1

Nm∑

i=1

J∑

j′′=0

Yimj′′

J∑

j′=1

∂2 log Pimj′′(v(ξ̃m(π̂∗)), θ̃0)

∂θ̃∂vj′(ξ̃m)

J∑

j=1

∂vj′(ξ̃m(π̂∗))

∂ξ̃mj

∂ξ̃mj
(π̂∗)

∂πj

√
M(π̂j − πj0)

+op(1)

where π̂∗ lies between π̂ and π0.
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Define ΛN,M
j (θ̃, ξ̃m) = 1

N

∑M
m=1

∑Nm

i=1

∑J
j′′=0 Yimj′′

∑J
j′=1

∂2 log Pimj′′ (v(ξ̃m),eθ)

∂eθ∂vj′ (ξ̃m)

∂vj′ (ξ̃m)

∂ξ̃mj

∂ξ̃mj

∂πj
. Then

we can rewrite (16) as

√
M(

∂ log LN (ξ̂m, θ̃0)

∂θ̃
− ∂ log LN (ξ̃m, θ̃0)

∂θ̃
)

=

J∑

j=1

ΛN,M
j (θ̃0, ξ̃m(π̂∗))̟j + op(1) →d N (0,

∑

j,k

Λ0jCov(̟j ,̟k)Λ
′
0k) = N (0, V1)

where Λ0j = limM→∞ E[ΛN,M
j (θ̃0, ξ̃m)] and the asymptotic normality result holds by the continuous

mapping theorem and by the Lindeberg-Feller CLT under Assumption 5.1. In the above we can

show ΛN,M
j (θ̃0, ξ̃m(π̂∗)) →p Λ0j by following similar steps to (14) under Assumptions 5.1 and 5.2.

Then by
√

M ∂ log LN (ξ̃m,eθ0)

∂eθ
→d N (0,Γ0 · limM→∞

M
N ) (due to the Lindeberg-Feller CLT under

Assumption 5.2 (vii)), (14), the Slutsky theorem, and the continuous mapping theorem, from (13)

we obtain √
M(
̂̃
θU − θ̃0) →d N (0,Γ−1

0 (Γ0 · lim
M→∞

M

N
+ V1)Γ

−1
0 ). (17)

A.2 Asymptotic Distribution of the LM test

Proof. We show that the feasible LM test statistic has the same asymptotic distribution with the

corresponding Wald test statistic.

Element-by-element mean value expansions of ∂ log LN (ξ̂m,
beθR)

∂eθ
around θ̃0 yield

√
M

∂ log LN (ξ̂m,
̂̃
θR)

∂θ̃
=

√
M

∂ log LN (ξ̂m, θ̃0)

∂θ̃
+

∂ log LN (ξ̂m, θ̃∗)

∂θ̃∂θ̃′

√
M(
̂̃
θR − θ̃0) + op(1) (18)

where θ̃∗ lies between
̂̃
θR and θ̃0. Note that H(

̂̃
θR − θ̃0) = 0 by construction of H. Write Γ̂(θ̃∗) =

−∂ log LN (ξ̂m,eθ∗)

∂eθ∂eθ′
. Then by multiplying HΓ̂(θ̃∗)−1 to both sides of (18), it follows that

√
MHΓ̂(θ̃∗)−1 ∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃

=
√

MHΓ̂(θ̃∗)−1 ∂ log LN (ξ̂m, θ̃0)

∂θ̃
+ op(1) =

√
MHΓ−1

0

∂ log LN (ξ̂m, θ̃0)

∂θ̃
+ op(1)

=
√

MHΓ−1
0

(
∂ log LN (ξ̃m, θ̃0)

∂θ̃
+ (

∂ log LN (ξ̂m, θ̃0)

∂θ̃
− ∂ log LN (ξ̃m, θ̃0)

∂θ̃
)

)
+ op(1)

by the similar argument with (14) and the Slutsky theorem. Therefore, under the null hypotheses

(7),
√

MHΓ̂(θ̃∗)−1 ∂ log LN (ξ̂m,
beθR)

∂eθ
follows the same asymptotic distribution with

√
MH(

̂̃
θU − θ̃0) and

we obtain from (17)

√
MHΓ̂(

̂̃
θR)−1 ∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃
→d N (0,HΓ−1

0 (Γ0 lim
M→∞

M

N
+ V1)Γ

−1
0 H ′) (19)
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by the Lindeberg-Feller CLT and the continuous mapping theorem and because Γ̂(
̂̃
θR) →p Γ0, Γ̂(θ̃∗) →p

Γ0. Then by (19), Γ̂(
̂̃
θR) →p Γ0, V̂1(

̂̃
θR) →p V1, and the continuous mapping theorem it follows

that

L̃MM,N = N
∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃′
Γ̂(
̂̃
θR)−1H ′Ṽ −1

M,N(
̂̃
θR)HΓ̂(

̂̃
θR)−1 ∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃

=




√

MHΓ̂(
̂̃
θR)−1 ∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃





′

·
{

HΓ̂(
̂̃
θR)−1(Γ̂(

̂̃
θR)

M

N
+ V̂1(

̂̃
θR))Γ̂(

̂̃
θR)−1H ′

}−1

×




√

MHΓ̂(
̂̃
θR)−1 ∂ log LN (ξ̂m,

̂̃
θR)

∂θ̃



→d χ2(dim((λ′, γ̃′, γ̃′

p)
′)).

Therefore, L̃MM,N follows the same asymptotic distribution of the Wald test statistic T̃M,N

under the null hypothesis of the price exogeneity.

A.3 Consistency of the LM test

Define hM,N (v(ξ̃m), θ̃) = 1
N

∑M
m=1

∑Nm

i=1 him(v(ξ̃m), θ̃) and E[him(v(ξ̃m), θ̃)] = 1
N

M∑
m=1

Nm∑
i=1

E[him(v(ξ̃m), θ̃)].

Assume the following to show the consistency of the LM test.

Assumption A.1 (i)
̂̃
θR →p θ̃A

R under the alternative hypothesis against (7); (ii)-(viii) each corre-

sponding Assumption 5.2 (ii) to (viii) holds replacing θ̃0 with θ̃A
R and Θ̃0 with Θ̃A where Θ̃A denotes

a neighborhood of θ̃A
R.

Theorem A.1 Suppose Assumptions 5.1 and A.1 hold. Then the LM test L̃MM,N is consistent

under limM→∞ ||E[him(v(ξ̃m), θ̃A
R)]|| 6= 0.

Proof. Under the alternative hypothesis against (7), using a mean value expansion, we obtain

√
MhM,N (v(ξ̂m),

̂̃
θR) =

1√
N

M∑

m=1

Nm∑

i=1

(him(v(ξ̃m), θ̃A
R) − E[him(v(ξ̃m), θ̃A

R)]) ×
√

M√
N

(20)

+
√

M(hM,N (v(ξ̂m), θ̃A
R) − hM,N (v(ξ̃m), θ̃A

R)) (21)

+
∂hM,N (v(ξ̂m), θ̃A∗)

∂θ′
√

M(
̂̃
θR − θ̃A

R) +
√

ME[him(v(ξ̃m), θ̃A
R)], (22)

where θ̃A∗ lies between
̂̃
θR and θ̃A

R . Now we analyze each term one by one below.

For (21) applying the mean value expansion around π0, we obtain

√
M(hM,N (v(ξ̂m), θ̃A

R) − hM,N (v(ξ̃m), θ̃A
R)) =

∂hM,N (v(ξ̃m(π∗)), θ̃A
R)

∂π′
√

M(π̂ − π0) (23)

where π∗ lies between π̂ and π0. Let ΓπA = limM→∞ E[
∂hM,N (v(ξ̃m(π∗)),eθA

R
)

∂π ]. We then have
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√
M(hM,N(v(ξ̂m), θ̃A

R) − hM,N (v(ξ̃m), θ̃A
R)) = Γ′

πA̟ + op(1)

by Assumption 5.1 and because under E[supπ∈Π0
||∂him(v(ξ̃m(π)),eθA

R
)

∂π ||2] < ∞ for m (which holds

under Assumption A.1 (viii)), we have
∂hM,N (v(ξ̃m(π∗)),eθA

R
)

∂π →p ΓπA by the uniform Law of Large

numbers and because E[
∂hM,N (v(ξ̃m(π)),eθA

R
)

∂π ] is continuous at π = π0 (which is implied by Assumption

A.1 (viii) due to the dominated convergence theorem).

Next to analyze the first term in (22) let the inverse of the asymptotic variance matrix of

the unconstrained estimator
̂̃
θU be B = Γ0(Γ0 · limM→∞

M
N + V1)

−1Γ0 and define a matrix M =

I − B−1/2H ′(HB−1H ′)−1HB−1/2. Then the asymptotic distribution of the constrained estimator
̂̃
θR is given by

√
M(
̂̃
θR − θ̃A

R) →d N (0, B−1/2MB−1/2) ≡ Z2A (see p. 2217-2220 of Newey and

McFadden (1994)). Then we obtain

∂hM,N(v(ξ̂m), θ̃A∗)

∂θ̃′

√
M(
̂̃
θR − θ̃A

R) = Γ′
θAZ2A + op(1)

where
√

M(
̂̃
θR − θ̃A

R) →d Z2A and ΓθA = limM→∞ E[
∂hM,N (v(ξ̂m),eθA∗)

∂eθ
] because under Assumption

A.1 (vi)-(v), we have
∂hM,N (v(ξ̂m),eθA∗)

∂eθ
→p ΓθA by the uniform Law of Large numbers, because

E[
∂hM,N (v(ξ̃m(π)),eθR)

∂eθ
] is continuous at θ̃R = θ̃A

R and π = π0 (which is implied by Assumption A.1

(vi)-(v) due to the dominated convergence theorem), and because θ̃A∗ →p θ̃A
R and π̂ →p π0.

Next we consider the term in (20). Note that under E[||him(v(ξ̃m), θ̃A
R)||4] < ∞ for all m (which

holds under Assumption A.1 (vii)), by the Lindeberg-Feller CLT, we have

∑M

m=1

∑Nm

i=1
(him(v(ξ̃m), θ̃A

R) − E[him(v(ξ̃m), θ̃A
R)])/

√
N →d Z1A ≡ N (0, VhA)

where VhA = limM→∞
1
N

∑M
m=1

∑Nm

i=1 E[{him(v(ξ̃m), θ̃A
R) − E[him(v(ξ̃m), θ̃A

R)]} · {him(v(ξ̃m), θ̃A
R) −

E[him(v(ξ̃m), θ̃A
R)]}′]. Combining these results, we obtain

√
MhM,N (v(ξ̂m),

̂̃
θR) = Z1A

√
M√
N

+ Γ′
πA̟ + Γ′

θAZ2A +
√

ME[him(v(ξ̃m), θ̃A
R)] + op(1)

= Op(1) +
√

ME[him(v(ξ̃m), θ̃A
R)].

Therefore, we obtain ||
√

MhM,N (v(ξ̂m),
̂̃
θR)|| → ∞ if limM→∞ ||E[him(v(ξ̃m), θ̃A

R)]|| 6= 0 under the

alternative against (7). This implies L̃MM,N → ∞ under the alternative if limM→∞ ||E[him(v(ξ̃m), θ̃A
R)]|| 6=

0. Therefore the LM test for price endogeneity is consistent.
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