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1 Introduction

The government-bond market involves many distinct investor clienteles. For example, pension

funds invest typically in long maturities as a way to hedge their long-term liabilities, while banks’

treasury departments hold shorter maturities. Clientele demands vary over time in response to

demographic or regulatory changes. This time-variation can have important effects both on the

yield curve and on the government’s debt-issuance policy.

The UK pension reform provides a stark illustration of clientele effects. The Pensions Act of

2004 required pension funds to maintain their asset-liability ratio above a threshold. Moreover,

liabilities had to be marked to market using the yields of long-term inflation-indexed bonds. To

minimize variation in their marked-to-market asset-liability ratio, pension funds bought large quan-

tities of those bonds. This caused a steep decline in long rates. For example, in January 2006 the

inflation-indexed bond maturing in 2055 was yielding 0.48%, which was low relative to both the

historical average of long real rates and the short rates prevailing at that time.1 The steep decline

in long rates induced the UK Treasury to tilt debt issuance towards long maturities. For example,

bonds with maturities of fifteen years or longer constituted 58% of issuance during financial year

2006-7, compared to an average of 40% over the previous four years.2

While clientele considerations matter for the yield curve and the issuance of government debt,

they are largely absent from theoretical models. Indeed most models of bond-price determination

assume a representative agent, thus ruling out clienteles. Optimal issuance of government debt

is also studied mostly in representative-agent models, which overcome the Ricardian equivalence

result of Barro (1974) by assuming distortionary taxes.

In this paper we develop a model of the yield curve and optimal issuance of government debt

that emphasizes the role of clienteles. We focus on demographic rather than regulatory clienteles,

and model them as generations of agents at different stages of their life cycle in an overlapping-

generations economy. Assuming that agents are more risk-averse than log, we show that an increase

in the relative importance of the clientele with the longer investment horizon, i.e., the younger, has

two related effects: it renders long-term bonds more expensive, and it increases their optimal supply

by the government. Using a panel of OECD countries, we find empirical support for these links

between demographics, the slope of the yield curve, and the average maturity of government debt.

Our model delivers a number of additional results. We show that an optimal maturity structure

1Dimson, Marsh and Staunton (2002) compute a historical average of 2.3% for long real rates in the UK over
the 20th century, based on a maturity of approximately 20 years. The inflation-indexed bond maturing in 2009 was
yielding 1.47% in January 2006.

2The issuance numbers are from the website of the UK Debt Management Office. For a more detailed account
of the UK pension reform and its effects on yields and debt issuance, see Greenwood and Vayanos (2010). Another
illustration of clientele-driven issuance is the French Treasury’s first-time issuance of a 50-year bond in 2005, in
response to strong demand by pension funds.
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of government debt exists even in the absence of distortionary taxes, and is the tool through

which the government induces efficient risksharing across generations. One consequence of efficient

risksharing is that the government caters to clientele demand, e.g., increases issuance in a segment

of the yield curve in response to increased clientele demand in that segment. Catering could

also be a consequence of maximizing revenue from bond issuance. We show, however, that a

welfare-maximizing government caters to clientele demand to a more limited extent than a revenue-

maximizing one because catering affects the tax burden of future generations. A welfare-maximizing

government also limits issuance of long-term bonds to a level where these earn negative expected

excess returns relative to short-term bonds.3

Section 2 describes our overlapping-generations model, set in discrete time and infinite horizon.

Generations live for three periods, receive an endowment in the first period of their lives, consume in

the third period, and have CRRA preferences over consumption. They can invest their endowment

in a linear production technology and in non-contingent government bonds. The government can

levy non-distortionary taxes on agents’ endowments. In our baseline model, studied in Sections

2-4, the technology yields a riskless return and the one-period interest rate, which is equal to that

return because of no arbitrage, is stochastic only in one period. Without loss of generality, we take

that period to be period 2, which is the first period when three generations co-exist since the first

generation is born in period 0. We assume that the interest rate in period 2 can take two values, so

one- and two-period bonds complete the market from the perspective of agents trading in period 1.

We refer to one- and two-period bonds as short- and long-term, respectively. The assumptions of

a riskless technology and uncertainty only in one period simplify our analysis and deliver the main

insights. Section 5 relaxes these assumptions.

Section 3 examines how the term structure of interest rates in period 1 depends on clientele

demand and bond supply. An increase in the relative importance of the long-horizon clientele,

consisting of generation 1 born in period 1, relative to the short-horizon clientele, consisting of

generation 0 born in period 0, renders long-term bonds more expensive if agents are more risk-

averse than log. Indeed, under these preferences, agents with a long horizon value more highly

assets whose returns increase when interest rates decrease, and long-term bonds have this property.

Risk aversion larger than log is necessary for the intuitive clientele effects that we derive: the effects

reverse if risk aversion is smaller than log and vanish for log agents.

Section 3 shows additionally that a lengthening of the maturity structure in period 1, defined

as an increase in the supply of long-term bonds holding total debt value constant, renders long-term

bonds cheaper. Ricardian equivalence thus does not hold in our model. This is because supply

3Long-term nominal bonds earn positive expected excess returns relative to their short-term counterparts (e.g.,
Cochrane (1999)). Our model, however, is real so our results concern real bonds. We return to the implications of
our model for bond risk premia, and the link with the empirical evidence, after Proposition 4.6.
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changes and the accompanying offsetting tax changes concern different generations: supply changes

must be absorbed by generations 0 and 1, who are the only ones that can trade in period 1, but

tax changes concern future generations.

Section 4 determines the optimal maturity structure of government debt in period 1. Matu-

rity structure affects intergenerational risksharing. For example, if the government issues more

long-term bonds in period 1, it helps generation 1 insure against the risk of reinvesting at a low

interest rate in period 2. This insurance is provided by imposing more risk on future generations

through a more uncertain tax burden. The government’s optimal policy in period 1 is to issue

the quantity of long-term bonds that generations 0 and 1 would buy from future generations if

the latter were present in the market in period 1. Through this policy, the government induces

complete participation by all generations in period 1 and efficient risksharing.

If agents are more risk-averse than log, then an increase in the size of the long-horizon clientele

in period 1 (generation 1) increases the demand for insurance against a low interest rate in period

2. As a consequence, the optimal maturity structure involves more long-term debt. Note that in

lengthening maturity structure in response to an increase in the size of the long-horizon clientele,

the government is effectively catering to that clientele. Such catering, however, is limited, i.e., the

issuance of long-term bonds is smaller than the increased demand. This is because the insurance

provided to generation 1 imposes more risk on future generations. Note that when the interest

rate is low, fewer aggregate resources are available. Therefore, efficient risksharing requires that

generation 1 consumes less in that state. Since generation 1 is marginal in pricing bonds in period

1, long-term bonds earn negative expected excess returns relative to short-term bonds under the

optimal maturity structure.

Section 5 extends our baseline model to a stochastic interest rate in all periods, a risky pro-

duction technology, and a risky endowment of each generation. When stochastic shocks are small,

the equilibrium can be characterized in closed form. Under a risky technology, clientele demand

and bond supply affect the short-term interest rate, and this can reverse their effect on the prices

of long-term bonds. The effect on expected excess returns remains the same, and so do the main

properties of optimal maturity structure.

Section 6 tests our basic predictions on how clientele demand affects the yield curve and the

maturity structure of government debt. We focus on OECD countries, for which data on the

maturity structure of government debt are available. Our main demographic variable is the median

age of the population: an increase in median age can be interpreted as a decrease in the relative

importance of the long-horizon clientele. Since in our model generations live for three periods,

we use 10- and 30-year government bonds as empirical proxies for the short- and long-term bond,

respectively. Consistent with our model’s predictions in the empirically plausible case where agents
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are more risk-averse than log, we find that median age is positively related to the slope of the yield

curve, as measured by the 30-10 yield spread, and negatively related to the average maturity of

government debt.

This paper is related to the literature on optimal public debt policy. The benchmark in that

literature is the Ricardian equivalence result of Barro (1974): in a representative-agent model with

non-distortionary taxes, the level and composition of government debt are irrelevant. Ricardian

equivalence fails in the presence of distortionary taxes because debt can be used to smooth tax

rates across time and states of nature. Distortionary taxes imply an optimal time path for the

level of government debt, as shown in Barro (1979) and Aiyagari, Marcet, Sargent and Seppala

(2002), and an optimal composition of the government debt portfolio. Lucas and Stokey (1983)

derive the optimal portfolio in terms of Arrow-Debreu securities. Angeletos (2002) and Buera and

Nicolini (2004) show how the optimal outcome can be implemented with non-contingent bonds of

different maturities, provided that there are bonds of as many maturities as states of nature so that

markets are complete. Nosbusch (2008) derives the optimal maturity structure under incomplete

markets. Faraglia, Marcet and Scott (2010) extend the complete markets analysis of optimal

maturity structure to a framework with capital accumulation.4 Optimal maturity structure in our

model is determined by clienteles and intergenerational risksharing rather than distortionary taxes.

This yields insights that differ from and complement those of the distortionary-tax literature.

It is well known that Ricardian equivalence fails in models with overlapping generations. Gov-

ernment debt shifts taxes to future generations, as shown in Diamond (1965) and Blanchard (1985),

and this can be Pareto-improving when the economy is dynamically inefficient. Government debt

can also improve intergenerational risksharing, as shown in Fischer (1983) and Gale (1990). In

both papers generations live for two periods, and the introduction of one-period non-contingent

government bonds can be Pareto-improving. Gale shows additionally that two-period bonds can

yield even larger improvements.5 Our model differs because we allow for clienteles with different

investment horizons, study how changes in clientele demand affect bond prices and the optimal ma-

turity structure, and characterize the latter in terms of an equilibrium with complete participation

by all generations.6

4A separate strand of the literature considers optimal debt policy when debt contracts are nominal and the
government has control over inflation. The government can then use state-contingent inflation to smooth tax rates.
Prominent examples of this approach include Lucas and Stokey (1983), Bohn (1988), Calvo and Guidotti (1990,1992),
Barro (2002), Benigno and Woodford (2003), and Lustig, Sleet and Yeltekin (2008). Missale and Blanchard (1994)
show that with nominal debt contracts, the optimal maturity can be decreasing in the total size of the debt.

5Blanchard and Weil (2001) provide general conditions under which the government can use bonds of different
maturities to achieve Pareto improvements in a dynamically efficient economy. Weiss (1980) and Bhattacharya
(1982) show that the government can use state-contingent inflation to improve intergenerational risksharing when
debt contracts are nominal.

6Ball and Mankiw (2007) use the complete-participation equilibrium to characterize the optimal social security
system in a two-period overlapping-generations model. They show that an optimal social security system implements
the equilibrium that would prevail if all generations could trade risksharing contracts ex-ante. Social security and
debt maturity structure can be viewed as alternative mechanisms to improve intergenerational risksharing. We return
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The role of clienteles is emphasized in an early term-structure literature. According to the

preferred-habitat hypothesis of Culbertson (1957) and Modigliani and Sutch (1966), there are

investor clienteles with preferences for specific maturities and with limited ability to substitute

across the yield curve. More recently, Vayanos and Vila (2009) develop a formal model of preferred

habitat in which each maturity has its own clientele and substitution across maturities is performed

by risk-averse arbitrageurs. Greenwood and Vayanos (2012) build on that model to explore how

changes in debt supply affect bond yields and returns, and find empirically that an increase in

maturity-weighted debt to GDP predicts high excess returns of long-term bonds. Unlike these

papers, we model clienteles through CRRA preferences, dispense with arbitrageurs, and perform a

normative analysis of maturity structure.

Finally, our paper is related to a recent literature studying how private firms make capital-

structure decisions to cater to investor clienteles or sentiment (e.g., Stein (1996), Baker and Wurgler

(2002), Greenwood, Hanson and Stein (2010)). The government in our model caters to clienteles,

but to a limited extent because it internalizes the effect on future generations. Moreover, the

government affects asset prices, while firms in the catering literature are price takers.

2 Model

Time t is discrete and goes from 0 to ∞. There is a single good. In each period a new generation

is born and lives for three periods. Generation t, born in period t, is young in that period, middle-

aged in period t+1, and old in period t+2. It receives an endowment αt of the good when young

and consumes ct+2 when old. Utility over consumption is CRRA

u(c) ≡
c1−γ

1− γ
, (2.1)

and the coefficient of relative risk aversion γ is equal across generations. Each generation derives

its consumption by investing its net-of-tax endowment in a linear production technology and in

government bonds.

The technology yields a return that is riskless but can vary stochastically across periods. Be-

cause of no-arbitrage, this return is equal to the one-period interest rate, which can thus be stochas-

tic. We mainly focus on the case where the one-period interest rate is stochastic only in one period.

This case is simple analytically and conceptually, and delivers the main insights. For simplicity we

also assume that the endowment of each generation is riskless. Section 5 extends our analysis to

a stochastic interest rate in all periods, a risky production technology, and a risky endowment of

to this issue in Section 4.2.
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each generation.

The steady state of our model starts from period 2, which is the first period when three

generations coexist. We assume that the period when the interest rate is stochastic belongs to the

steady state, and without loss of generality we take it to be period 2. We set the gross one-period

interest rate in all other periods to R > 1, i.e., one unit invested in period t 6= 2 yields R units in

period t + 1. We denote the corresponding rate in period 2 by R2, and assume that it takes the

values R2,h and R2,ℓ < R2,h with probabilities p and 1− p, respectively. We use more generally the

subscript s = h, ℓ to denote the value of a variable in state s. The value of R2 is observed in period

2 but not in previous periods, and constitutes the only uncertainty in the model (until Section 5).

The endowment αt can depend on t. For simplicity we assume that αt is bounded above, but our

analysis can be extended to the case where αt grows at an asymptotic gross rate smaller than R.

The government issues non-contingent bonds and collects income taxes. Since only young

agents receive an income (endowment), taxes are only on them. For simplicity we set government

spending to zero; assuming positive spending would not affect our results. Bond issuance and

taxes can be negative, in which case they represent government investment in bonds and transfers

towards the agents, respectively.

We assume that only one-period bonds are available in periods t 6= 1, while one- and two-period

bonds are available in period 1. This entails no loss of generality relative to a more general maturity

structure. Indeed, in periods t 6= 1, agents face no uncertainty one period ahead. Therefore, bonds

of multiple maturities are redundant, and we can assume that only one-period bonds are available.

In period 1, the uncertainty one period ahead is described by two states. Therefore, two maturities

suffice to complete the market from the perspective of agents trading in period 1, and we take these

to be one and two periods.

We denote by τt the tax rate in period t and by bt the face value of one-period bonds available in

the same period. One-period bonds included in bt for t 6= 2 are only those issued by the government

in period t. One-period bonds included in b2 are both those issued by the government in period 2,

and two-period bonds issued in period 1 that become one-period in period 2. We denote by B1 the

face value of two-period bonds issued by the government in period 1 and by L1 the gross two-period

interest rate in the same period.

The choice of maturity structure concerns the mix (b1, B1) of one- and two-period bonds issued

by the government in period 1. The generations investing in bonds in that period are 0 and 1, and

maturity structure affects how risk is shared between them and generations t ≥ 2. We hence study

the choice of maturity structure in conjunction with the taxes in periods t ≥ 2, which can be made

state-contingent and can concern only the endowments of generations t ≥ 2. We treat taxes on

generations t ≤ 1 as exogenous, and for simplicity set them to zero. Since these taxes are zero, the

6



face value b0 of one-period bonds issued by the government in period 0 is also zero.

The government’s budget constraint in period 1 is

b1
R

+
B1

L2
1

= 0. (2.2)

Government revenue is the sum of taxes on generation 1, which are zero, plus the revenue b1/R

from issuing one-period bonds and B1/L
2
1 from issuing two-period bonds. It is equal to the cost b0

of repaying the one-period bonds issued in period 0, which is zero.

The government’s budget constraint in period 2 is

α2τ2 +
b2 −B1

R2
= b1. (2.3)

Government revenue is the sum of taxes α2τ2 on generation 2, plus the revenue (b2 −B1)/R2 from

issuing one-period bonds. It is equal to the cost b1 of repaying the one-period bonds issued in

period 1. The government’s budget constraint in period t > 2 is similarly

αtτt +
bt
R

= bt−1. (2.4)

To eliminate Ponzi schemes by the government, we assume that debt must be bounded above, i.e.,

bt ≤ K (2.5)

for a bound K and for all t.

3 Supply and Demand Effects

In this section we characterize equilibrium in period 1. We derive the equilibrium term structure

and examine how it depends on bond supply and clientele demand.

3.1 Equilibrium Term Structure

In period 1, only generations 0 and 1 can trade bonds. We denote by B1,0 and B1,1, respectively,

the face values of two-period bonds that they hold. (Bond holdings are expressed in absolute terms
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and not as fraction of endowment.) Generation 0’s consumption in period 2 is

c2 = R2α0 +

(

L2
1

R2
−R

)

B1,0

L2
1

. (3.1)

The first term in the right-hand side is the consumption achieved by investing the endowment α0

in the linear production technology or in one-period bonds between periods 0 and 2. The second

term is the additional return from investing in two-period bonds, which become available in period

1. It is equal to the excess return of two- relative to one-period bonds between periods 1 and 2,

times the market value of two-period bonds held by generation 0. Generation 0 chooses its holdings

B1,0 of two-period bonds to maximize expected utility E[u(c2)] subject to (3.1). The first-order

condition is

E

[

u′(c2)

(

1

R2
−

R

L2
1

)]

= 0. (3.2)

Since u′(0) = ∞, (3.2) has a solution B1,0 for any two-period interest rate L1 satisfying no-arbitrage,

i.e., L2
1 ∈ (RR2,ℓ, RR2,h). Moreover, the solution is unique since utility is strictly concave.

Generation 1’s consumption in period 3 is

c3 = RR2α1 +
(

L2
1 −RR2

) B1,1

L2
1

. (3.3)

The first term in the right-hand side is the consumption achieved by investing the endowment α1 in

the linear production technology or in one-period bonds between periods 1 and 3. The second term

is the additional return from investing in two-period bonds. It is equal to the excess return of two-

relative to one-period bonds between periods 1 and 3, times the market value of two-period bonds

held by generation 1. Note that the relevant excess return for generation 1 is over two periods

because this generation consumes one period later than generation 0. The first-order condition is

E

[

u′(c3)

(

1−
RR2

L2
1

)]

= 0. (3.4)

The same argument as for (3.2) implies that (3.4) has a unique solution B1,1.

The two-period interest rate L1 is determined from the market-clearing condition

B1,0 +B1,1 = B1. (3.5)
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Proposition 3.1 shows that (3.5) has a unique solution L1 because the demand functions (B1,0, B1,1)

are increasing in L1, converge to −∞ when L2
1 goes to RR2,ℓ, and converge to ∞ when L2

1 goes to

RR2,h.

Proposition 3.1. There exists a unique equilibrium two-period interest rate L1 in period 1.

The equilibrium term structure in period 1 consists of the one-period interest rate R and the

two-period interest rate L1. Since supply and demand do not affect R, their effects on L1, on the

slope of the term structure, and on the expected excess return of two- relative to one-period bonds

are all in the same direction.

3.2 Bond Supply

Bond supply in period 1 can be measured by the face values b1 and B1 of one- and two-period

bonds, respectively. We hold total supply constant in market value terms, and examine how a

shift towards two-period bonds, i.e., a lengthening of the maturity structure, affects the two-period

interest rate L1. This amounts to increasing B1 holding b1/R +B1/L
2
1 constant.

Proposition 3.2. A lengthening of the maturity structure in period 1 raises the two-period interest

rate L1.

Intuitively, when B1 increases, generations 0 and 1 must absorb more two-period bonds, and

this gives them larger exposure to the risk that the one-period interest rate will increase in period

2. They are compensated for that risk through a decrease in the price of two-period bonds. The

two-period interest rate thus increases.

The effect of supply derived in Proposition 3.2 stands in contrast to the Ricardian equivalence

result of Barro (1974), derived in a representative-agent model with non-distortionary taxes. In

that model, supply changes can affect consumption and bond demand, but the effects are exactly

offset by those of the accompanying tax changes.7 In our model, however, supply and tax changes

concern different agents: supply changes must be absorbed by generations 0 and 1, who are the

only ones that can trade in period 1, but tax changes concern future generations.

7Supply effects can arise in representative-agent models with distortionary taxes. The mechanism driving these
effects, however, is different than in our model, and the effects themselves are typically in the opposite direction. In
particular, an increase in the supply of two-period bonds can increase their price, holding the one-period interest rate
constant. Indeed, when supply increases, the government must collect more taxes in states where the interest rate is
low because more resources are required in these states to eventually repay the two-period bonds. Because taxes are
distortionary, consumption is reduced in the low-interest rate states. As a consequence, two-period bonds, which are
more valuable in these states, become more attractive to the representative agent and their price increases.
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3.3 Clientele Demand

Clienteles in our model correspond to generations that are alive in any given period and differ in

their investment horizons. For example, the clienteles in period 1 are the young generation 1, with

a two-period investment horizon, and the middle-aged generation 0, with a one-period horizon. We

refer to them as the long- and short-horizon clientele, respectively. To examine how the mix of

these clienteles affects the term structure, we change the relative size of their endowments holding

the value of their aggregate endowment measured as of period 1 constant. Thus, an increase in the

size of the long-horizon clientele amounts to increasing α1 holding Rα0 + α1 constant.

Proposition 3.3. If γ > 1, then an increase in the size of the long-horizon clientele in period 1

lowers the two-period interest rate L1. The result is reversed if γ < 1.

According to the preferred-habitat hypothesis of Culbertson (1957) and Modigliani and Sutch

(1966), short-term bonds are demanded mainly by short-horizon investors, while long-term bonds

are demanded by long-horizon investors. Therefore, when generation 1 commands more resources,

two-period bonds should be in higher demand and thus more expensive. Proposition 3.3 confirms

this intuition when agents’ coefficient of relative risk aversion γ is larger than one. When γ < 1,

however, the effect is reversed, and when γ = 1 (logarithmic utility) the clientele mix has no

effect. Intuitively, when utility is logarithmic, agents behave myopically and their portfolio choice

is independent of the time when they need to consume. When instead γ 6= 1, generation 1 has a

hedging demand which depends on assets’ covariance with the interest rate in period 2. In the case

γ > 1, the hedging demand favors assets whose returns increase when the interest rate decreases.

Two-period bonds have this property, and hence generation 1 invests a larger share of its wealth

in these bonds than generation 0. In summary, our model can generate intuitive clientele effects,

while also highlighting that such effects can arise only when γ > 1. Clientele effects do not arise,

in particular, under logarithmic utility, an assumption commonly used in term-structure models.

4 Optimal Maturity Structure

The properties derived in Section 3 concern a general maturity structure, i.e., hold for any quantities

of one- and two-period bonds that the government issues in period 1. In this section we show that

there exists an optimal maturity structure and derive its properties.

4.1 Complete Participation

To set the stage for our analysis, we start with the benchmark case where all generations are

available to trade one- and two-period bonds in period 1. We also remove the government, setting
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bond supply and taxes to zero. This yields an equilibrium with complete participation and efficient

risksharing across generations. We then show that the government can use maturity structure and

taxes to induce this allocation when only generations 0 and 1 are available to trade in period 1.

The optimization problems of generations 0 and 1 are as in Section 3.1, so we only need to

consider those of generations t ≥ 2. Generation 2’s consumption in period 4 is

c4 = RR2α2 +R
(

L2
1 −RR2

) B1,2

L2
1

, (4.1)

and generation t > 2’s consumption in period t+ 2 is

ct+2 = R2αt +Rt−1
(

L2
1 −RR2

) B1,t

L2
1

, (4.2)

where B1,t denotes the face value of two-period bonds held by generation t ≥ 2. (As in Section

3.1, bond holdings are expressed in absolute terms and not as fraction of endowment.) The inter-

pretation of (4.1) and (4.2) is analogous to that of (3.1) and (3.3): the first term in the right-hand

side is the consumption achieved by investing the endowment in the linear production technology

or in one-period bonds, and the second term is the additional return from investing in two-period

bonds. The excess return of two- relative to one-period bonds is computed between periods 1 and

3, and brought forward to period t at the rate R. The first-order condition of generation t ≥ 2 is

E

[

u′(ct+2)

(

1−
RR2

L2
1

)]

= 0. (4.3)

The same argument as in Section 3.1 implies that (4.3) has a unique solution B1,t.

The two-period interest rate L1 under complete participation is determined by the market-

clearing condition

∞
∑

t=0

B1,t = 0. (4.4)

Eq. (4.4) differs from its counterpart (3.5) in Section 3.1 because the summation is over all gener-

ations, and the supply of two-period bonds is zero. Proposition 4.1 shows that (4.4) has a solution

L1.
8

Proposition 4.1. Under complete participation, there exists an equilibrium two-period interest rate

8We discuss uniqueness of the solution in Section 4.4.
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L1 in period 1.

Combining the first-order conditions (3.2), (3.4) and (4.3), and noting that there are two states

(h, ℓ), we find

u′(c2,h)

u′(c2,ℓ)
=

R2,h

R2,ℓ

u′(ct+2,h)

u′(ct+2,ℓ)
(4.5)

for all t ≥ 1, where the subscript s = h, ℓ denotes consumption in state s. Eq. (4.5) characterizes

intergenerational risksharing under complete participation. Risk is shared optimally, and the con-

dition for optimality is that the ratio across states of the marginal benefit from receiving the good

in period 2 is identical for all generations. Since generation 0 consumes in period 2, its marginal

benefit coincides with its marginal utility of consumption. The marginal benefit of generation t ≥ 1

is equal to the marginal utility of consumption times the return on investment from period 2 to

period t+ 2, which is when that generation consumes. This return is Rt−1R2, and its ratio across

states h and ℓ is R2,h/R2,ℓ. Since this ratio is identical for all generations t ≥ 1, so is the ratio

across states of the marginal utility of consumption. Thus, if one of generations t ≥ 1 consumes

more in state h than in state ℓ, so do all of them.

Since the one-period interest rate is higher in state h than in state ℓ, more aggregate resources

are available in that state. As a consequence, the consumption of all generations t ≥ 1 is higher in

state h. The consumption of generation 0, however, can be lower. The reason why this is consistent

with efficient risksharing is that while the marginal utility of generations t ≥ 1 is lower in state

h, their return from investment is higher. As a consequence, their marginal benefit from receiving

the good in period 2 can be higher in state h, in which case efficient risksharing requires that the

marginal utility of consumption of generation 0 is also higher. Put differently, it can be socially

efficient that generation 0 foregoes consumption in state h since investment in that state has high

return for future generations.

Whether or not generation 0 consumes more in state h than in state ℓ depends on the coefficient

of relative risk aversion γ. If γ is high, then the marginal benefit of generations t ≥ 1 from receiving

the good in period 2 is driven more by their marginal utility of consumption than by their return

on investment. Since their marginal utility is lower in state h, so is that of generation 0, meaning

that generation 0 consumes more in state h. The comparison is reversed for lower values of γ.

Proposition 4.2. Under complete participation, generations t ≥ 1 consume more in state h than

in state ℓ. Generation 0 consumes more in state h than in state ℓ if γ exceeds a threshold γ̄ > 1,

but the comparison is reversed if γ ≤ 1.

Figure 1 plots the consumption of all generations in states h and ℓ. We consider both the case
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of complete participation and that of autarky, where each generation invests all its endowment in

the linear production technology. We assume that endowments are constant (αt = 1 for all t),

the two states are equally likely (p = 0.5), and γ = 4. We interpret one period to last for 15

years and set the gross return R of the technology to (1 + 2.1%)15. The annual rate 2.1% is the

historical average of the long real interest rate in the US in the 20th century (Dimson, Marsh, and

Staunton (2002)). We assume that the return of the technology is 10% above its mean in state

h and 10% below in state ℓ. We plot consumption normalized by its expected value, R2. Under

autarky, only generations 1 and 2 are exposed to the return shock. Under complete participation,

by contrast, all generations share the risk. Consistent with Proposition 4.2, the consumption ct+2

of generations t ≥ 1 is higher in state h. Moreover, the parameter value γ = 4 is in the region

where the consumption c2 of generation 0 is also higher in state h.

We next determine equilibrium bond holdings. Under complete participation, generations 1

and 2 seek to hedge against the risk that their return on investment in period 2 will be low (state

ℓ). Generations t > 2, who have no exposure to that risk, provide them with insurance by selling

them two-period bonds. Since initial positions are zero, generations t > 2 short-sell two-period

bonds and use the proceeds to invest in one-period bonds. The investment in one-period bonds is

the reason why the consumption of these generations is low in state ℓ (Proposition 4.2).

Generation 0 could be an additional seller of two-period bonds because it has no exposure to

return risk. Generation 0, however, differs from generations 1 and 2 not only in risk exposure,

but also in investment horizon: that of generation 0 is one period, while that of generations 1 and

2 is two periods. If γ > 1, then a longer horizon implies larger investment in two-period bonds

(Proposition 3.3). Therefore, generation 0 invests less in two-period bonds than generations 1 and

2, which implies that generations 1 and 2 have to be buyers of these bonds. Generation 0 can be a

buyer or a short-seller; it is a short-seller if γ exceeds the threshold γ̄ > 1 since its consumption is

higher in state h than in state ℓ (Proposition 4.2). If instead γ ≤ 1, then a longer horizon implies

smaller investment in two-period bonds. Therefore, generation 0 invests more in two-period bonds

than generations 1 and 2, which implies that generation 0 has to be a buyer of these bonds and

consume more in state ℓ (Proposition 4.2). Generations 1 and 2 can be buyers or short-sellers of

two-period bonds.

Corollary 4.1. Under complete participation,

• Generations t > 2 short-sell two-period bonds.

• Generations 1 and 2 buy two-period bonds if γ ≥ 1.

• Generation 0 short-sells two-period bonds if γ ≥ γ̄, and buys them if γ ≤ 1.
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4.2 Inducing Complete Participation through Debt Maturity Structure

We now return to the case where only generations 0 and 1 can trade in period 1. We show that

although generations t ≥ 2 cannot trade in that period, there exists a choice of maturity structure

and taxes that results in efficient risksharing between them and generations 0 and 1. Through this

choice, the government can effectively induce complete participation.

Suppose that the government issues the aggregate quantity B∗
1 of two-period bonds that gener-

ations 0 and 1 buy under complete participation. Then, the two-period interest rate coincides with

that under complete participation. The same is true for the quantity of two-period bonds bought

by each of generations 0 and 1, and for these generations’ consumption. Generations t ≥ 2 can also

consume the same as under complete participation through a choice of state-contingent taxes that

meet the government’s budget constraint.

Proposition 4.3. Suppose that only generations 0 and 1 can trade in period 1. Then, the gov-

ernment can achieve the same outcome as under complete participation by issuing the aggregate

quantity B∗
1 of two-period bonds that generations 0 and 1 buy under complete participation, and

levying appropriate state-contingent taxes {τ∗t }t≥2 on generations t ≥ 2.

Since the government issues the same quantity of two-period bonds as that sold by generations

t ≥ 2 under complete participation, it is effectively trading on behalf of these generations. Thus, the

government induces efficient risksharing by replicating the trades of private agents not present in

the market. Note that the government raises welfare by supplying the right quantity of two-period

bonds rather than by introducing these bonds into the market. Two-period bonds can exist even

in the government’s absence; the government’s role is to trade the right quantity of them.

To illustrate the government’s optimal policy, we return to the example used in Figure 1 of

Section 4.1. Under complete participation, generations 1 and 2 share their risk with generations 0

and t > 2 by buying two-period bonds from them. Moreover, generations 0 and 1 buy two-period

bonds in the aggregate, and the quantity bought is 0.7. Therefore, the government can induce

complete participation by issuing a quantity B∗
1 = 0.7 of two-period bonds.

Figure 2 depicts government debt and taxes in states h and ℓ for t ≥ 2. In state h, the

government makes a capital gain on its bond portfolio since it has issued two-period bonds. It

also taxes generation 2 (τ2,h > 0), which buys two-period bonds under complete participation and

consumes less in state h than under autarky. The government then invests its trading profits and tax

proceeds in one-period bonds, rolls them over, and pays out the interest that it earns as a transfer

to generations t > 2. Thus, transfers to generations t > 2 are constant over time (τt,h ≡ τh < 0 for

t > 2). Constant transfers are optimal because generations t > 2 have the same initial endowment,

CRRA preferences and investment opportunity set, and hence the same consumption profile under
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complete participation. Conversely, in state ℓ, the government makes a capital loss on its bond

portfolio, and makes a transfer to generation 2 (τ2,ℓ < 0). It then finances its trading losses and

transfer payments by issuing one-period bonds, rolls them over, and pays the interest by levying a

constant tax on generations t > 2 (τt,ℓ ≡ τℓ > 0 for t > 2).9

4.3 Uniqueness of Optimal Maturity Structure

Section 4.2 derives a maturity structure that induces complete participation and efficient riskshar-

ing. We next study more formally the optimization over maturity structures, and show that a

maturity structure is optimal if and only if it is as in Section 4.2.

A maturity structure is fully characterized by the quantity B1 of two-period bonds issued in

period 1; the quantity b1 of one-period bonds issued in that period is determined by the government’s

budget constraint (2.2). We study the choice of B1 in conjunction with the state-contingent taxes

{τt}t≥2. The policy (B1, {τt}t≥2) must satisfy the government’s budget constraints (2.2)-(2.4) and

the bound (2.5). We refer to such a policy as admissible.

We define optimality of a maturity structure by aggregating across agents gains and losses from

a policy change. To ensure that gains and losses are comparable across agents, we measure them in

monetary terms as of period 1. Consider a policy change from (B1, {τt}t≥2) to (B̂1, {τ̂t}t≥2), and

denote by ct+2 and ĉt+2 the consumption of generation t in the corresponding equilibria. Define

the gain Tt of generation t as the dollar amount that if invested in one-period bonds from period 1

to t+2 and subtracted from ĉt+2 would leave generation t with the same expected utility as under

ct+2. The gain of generation 0 is given by

Eu(c2) ≡ Eu(ĉ2 −RT0) (4.6)

since investing T0 in one-period bonds from period 1 to 2 yields RT0. Similarly, the gain of

generation t ≥ 1 is given by

Eu(ct+2) ≡ Eu(ĉt+2 −RtR2Tt) (4.7)

since investing Tt in one-period bonds from period 1 to t+2 yields RtR2Tt. The gain Tt is analogous

9Proposition 4.3 shows that the government can achieve the complete-participation allocation through a combi-
nation of debt maturity structure in period 1 and taxes on future generations t ≥ 2. An alternative mechanism
that achieves the same allocation is a social security system, provided that taxes in period 2 can also be imposed on
generations 0 and 1. Since, however, taxes are only on income in our model, and agents receive income only in the
first period of their lives, generations 0 and 1 cannot be taxed in period 2. Even under more general tax schemes and
income profiles, debt maturity structure has the advantage over social security to not require taxes on generations
0 and 1: the revenue is raised instead through the capital losses that these generations realize on their investments
in government bonds. Taxes could have the drawback of being distortionary (a consideration which is outside our
model).
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to the concept of compensating variation (e.g., Varian (1992)).

Definition 1. A maturity structure B1 is optimal if it is associated to an admissible policy (B1, {τt}t≥2)

such that the sum
∑∞

t=0 Tt of gains from switching to any other admissible policy (B̂1, {τ̂t}t≥2) is

non-positive.

Optimality in definition 1 is a stronger version of Pareto optimality: the maturity structure B1

is not optimal if the allocation corresponding to (B1, {τt}t≥2) is Pareto-dominated by the allocation

corresponding to (B̂1, {τ̂t}t≥2) combined with a set of transfers. The policy (B∗
1 , {τ

∗
t }t≥2) of Propo-

sition 4.3 corresponds to a standard competitive equilibrium with complete participation, and hence

to a Pareto optimal allocation among all feasible allocations, i.e., those satisfying the aggregate re-

source constraint. Since the allocation corresponding to (B∗
1 , {τ

∗
t }t≥2) is not Pareto-dominated by

any other allocation, B∗
1 is optimal according to Definition 1. Proposition 4.4 shows that the con-

verse is true as well, i.e., any optimal maturity structure must correspond to an equilibrium with

complete participation.

Proposition 4.4. A maturity structure is optimal if and only if it is equal to the aggregate quantity

B∗
1 of two-period bonds that generations 0 and 1 buy in a complete-participation equilibrium.

4.4 Properties of Optimal Maturity Structure

We next derive two key properties of the optimal maturity structure in our model. The first

concerns the effect of changes in the clientele mix. The second concerns the expected excess return

of long- relative to short-term bonds.

4.4.1 Clientele Effects

We consider a change in the clientele mix in period 1. As in Proposition 3.3, we change the relative

size of clienteles’ endowments holding the value of their aggregate endowment measured as of period

1 constant. Thus, an increase in the size of the long-horizon clientele, generation 1, relative to the

short-horizon clientele, generation 0, amounts to increasing α1 holding Rα0 + α1 constant. We

make the following technical assumption:

Assumption 1. The demand functions of generations t > 2 for two-period bonds under complete

participation are increasing in the two-period interest rate L1.

Assumption 1 ensures that the aggregate demand function for two-period bonds in the equilib-

rium with complete participation is a standard downward-sloping demand function: it is increasing
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in L1 and hence is decreasing in the bond price. This is because the demand functions of genera-

tions 0, 1 and 2 for two-period bonds are increasing in L1, as shown in Propositions 3.1 and 4.1.

A downward-sloping demand function ensures that the equilibrium with complete participation is

unique. Assumption 1 holds under the sufficient condition γ ≤ 1, and hence holds also for values

of γ larger than one.10

Proposition 4.5. Suppose that Assumption 1 holds. If γ > 1, then an increase in the size of the

long-horizon clientele in period 1:

• Raises the optimal supply B∗
1 of two-period bonds.

• Lowers the equilibrium two-period interest rate L1 that prevails when two-period bonds are in

supply B∗
1 .

The results are reversed if γ < 1.

Proposition 4.5 is closely related to Proposition 3.3, which examines how an increase in the

size of the long-horizon clientele affects the equilibrium two-period interest rate L1. Proposition 3.3

takes the supply of two-period bonds as fixed, while Proposition 4.5 examines both how the optimal

supply changes and how the equilibrium two-period interest rate changes taking into account the

change in supply. The effects are closely related. For example, Proposition 3.3 shows that if γ > 1,

then an increase in the size of the long-horizon clientele raises the aggregate demand of generations

0 and 1 for two-period bonds. Due to the higher demand, these generations buy a larger quantity

of two-period bonds in the equilibrium with complete participation, and the two-period interest

rate in that equilibrium decreases. This, in turn, implies Proposition 4.5: the optimal supply B∗
1

of two-period bonds in the equilibrium with incomplete participation increases, and the two-period

interest rate prevailing under B∗
1 decreases.

Propositions 3.3 and 4.5 reveal a similarity between welfare maximization and revenue max-

imization. Suppose that γ > 1. Holding maturity structure constant, an increase in the size of

the long-horizon clientele lowers the two-period interest rate L1 (Proposition 3.3). This prompts

the government to change the maturity structure by increasing the supply B∗
1 of two-period bonds

(Proposition 4.5). Hence, a welfare-maximizing government responds to demand shocks in a way

that appears consistent with maximizing revenue from bond issuance. The same is true when γ < 1

since the effects of demand shocks on L1 and B∗
1 are both in the opposite direction than when γ > 1.

Revenue maximization, suitably extended to account for the variance of revenue in addition

to the mean, is viewed as a relevant objective by many practitioners (Bernaschi, Missale and

Vergni (2009)). Our analysis identifies a similarity between revenue maximization and welfare

10The equilibrium with complete participation is unique in the example used in Figures 1 and 2, where γ = 4.
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maximization, pointed out in the previous paragraph, but also an important difference. A revenue-

maximizing government in our model would respond to an increase in the demand for two-period

bonds by increasing supply up to the point where the two-period interest rate remains unchanged.

This is because it equates the revenue from issuing two-period bonds to the expected revenue

from issuing one-period bonds and rolling over, and the latter does not depend on the demand

shock because the one-period interest rate is equal to the return of the production technology. By

contrast, a welfare-maximizing government lets the two-period interest rate decrease (Proposition

4.5). Thus, it does not fully accommodate the increase in demand, catering to clienteles to a

more limited extent than a revenue-maximizing government. This is because catering affects future

generations. Indeed, by increasing the supply of long-term bonds, the government helps the long-

horizon clientele insure against the risk of reinvesting at a low interest rate. This insurance, however,

is provided by imposing more risk on future generations through a more uncertain tax burden: high

taxes when the interest rate is low and low taxes when it is high.

4.4.2 Expected Excess Returns of Long-Term Bonds

We consider the expected excess return of two- relative to one-period bonds in period 1 over both

a one- and a two-period horizon. The two-period return is determined by the first-order condition

(3.4) of generation 1, which is investing over two periods. Generation 1 consumes less in state ℓ

than in state h under complete participation (Proposition 4.2). This is because productivity and

the one-period interest rate are lower in state ℓ, and hence fewer aggregate resources are available in

that state. Since two-period bonds dominate one-period bonds in state ℓ, they are a valuable hedge

and offer negative expected excess return over two periods. The one-period return is determined

by the first-order condition (3.2) of generation 0, which is investing over one period. If γ exceeds

the threshold γ̄ > 1, then generation 0 consumes less in state ℓ than in state h under complete

participation, and two-period bonds offer negative expected excess return over one period as well.

Proposition 4.6. Under the optimal maturity structure, the expected excess return of two- relative

to one-period bonds in period 1 is negative over a two-period horizon. The corresponding return

over a one-period horizon is negative if γ ≥ γ̄, but positive if γ ≤ 1.

It has been well documented that long-term nominal bonds earn positive expected excess

returns relative to their short-term counterparts.11 Our model, however, is real so our results

concern real bonds. Ang, Bekaert and Wei (2008) find that long-term real bonds in the US offer no

significant excess returns. In Section 6 we provide evidence consistent with their results: we find

that the average slope of the real term structure across the UK and the US is slightly negative.

11See, for example, Cochrane (1999). Campbell, Sunderam and Viceira (2013) find, however, that the expected
excess returns of nominal bonds have turned negative over the past 15 years.
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Hence, the result of Proposition 4.6 that long-term bonds earn negative expected excess returns is

not at odds with the data.

Proposition 4.6 identifies a difference between welfare maximization and revenue maximization,

which is related to the one in Section 4.4.1. Since the expected return of two-period bonds over a

two-period horizon is lower than of one-period bonds, a government could raise expected revenue

by issuing more long-term bonds. This raises the tax burden of future generations when interest

rates are low, which is also when these generations’ consumption is low. A welfare-maximizing

government internalizes the risk imposed on future generations and limits the supply of long-term

bonds below the level where their expected returns are equalized to those of short-term bonds.

5 Extensions

Our analysis so far assumes that the return of the linear production technology is riskless and that

the one-period interest rate, to which this return is equal because of no-arbitrage, is stochastic only

in one period. In this section we relax both assumptions. We also allow the endowment of each

generation to be risky.

5.1 Stochastic Interest Rate in All Periods

We first maintain a riskless return and endowment, but allow the one-period interest rate to be

stochastic in all periods t ≥ 2, i.e., in the steady state when three generations coexist. We denote

by Rt the gross one-period interest rate in period t ≥ 2, and assume that it takes the values Rt,h

and Rt,ℓ < Rt,h with probabilities pt and 1 − pt, respectively, where Rt,ℓ exceeds a lower bound

R > 1. For simplicity, we take Rt to be independent across periods. We assume that the interest

rate in periods 0 and 1 is equal to R, and set R0 = R1 ≡ R.

Without loss of generality, we assume that only one-period bonds are available in period 0,

while one- and two-period bonds are available in periods t ≥ 1. We denote by τt the tax rate in

period t and by bt the face value of one-period bonds available in the same period. One-period

bonds included in bt+1 are both those issued by the government in period t + 1, and two-period

bonds issued in period t that become one-period in period t+1. We denote by Bt the face value of

two-period bonds issued by the government in period t ≥ 1, and by Lt the gross two-period interest

rate in the same period. As in Section 2, we set τ0 = τ1 = 0, which imply b0 = 0.

The government’s budget constraint in period t ≥ 1 is

αtτt +
bt −Bt−1

Rt
+

Bt

L2
t

= bt−1. (5.1)
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Government revenue is the sum of taxes αtτt on generation t, plus the revenue (bt−Bt−1)/Rt from

issuing one-period bonds and Bt/L
2
t from issuing two-period bonds. It is equal to the cost bt−1 of

repaying the bonds that mature in period t − 1. We eliminate Ponzi schemes by the government

by assuming that debt must be bounded above, i.e.,

bt
Rt

+
Bt

L2
t

≤ K (5.2)

for a bound K and for all t.

As in Section 4, we can link optimal maturity structure to equilibrium with complete partic-

ipation. Complete participation requires that in any given period t ≥ 1 all generations t′ ≥ t − 1

are available to trade one- and two-period bonds. This includes the unborn generations t′ > t, but

not the old generations t′ < t− 1 that consume in periods up to t and cannot share risk concerning

a later period. As in Section 4.2, the government can effectively induce complete participation

through a choice of maturity structure and taxes. In particular, the government should issue in

period t the aggregate quantity B∗
t of bonds that generations t − 1 and t buy under complete

participation.

Proposition 5.1. Suppose that only generations t − 1 and t can trade in period t for all t ≥ 1.

Then, the government can achieve the same outcome as under complete participation by issuing for

t ≥ 1 the aggregate quantity B∗
t of two-period bonds that generations t−1 and t buy under complete

participation, and levying appropriate state-contingent taxes {τ∗t }t≥2 on generations t ≥ 2.

A maturity structure policy by the government is characterized by the quantity {Bt}t≥1 of

two-period bonds issued in periods t ≥ 1 and the state-contingent taxes {τt}t≥2 on generations

t ≥ 2. The policy ({Bt}t≥1, {τt}t≥2) must satisfy the government’s budget constraint (5.1) and

the bound (5.2). We refer to such a policy as admissible. The definition of optimality generalizes

Definition 1 in Section 4.3. Proceeding as in that section, we can show that a maturity structure

{B∗
t }t≥1 that induces complete participation is optimal.

Proposition 5.2. A maturity structure is optimal if and only if it equal to the aggregate quantity

{B∗
t }t≥1 of two-period bonds that generations 0 and 1 buy in a complete-participation equilibrium.

Solving for the equilibrium when the interest rate is stochastic in all periods can only be done

numerically. We can, however, derive closed-form solutions when the stochastic variation is small.

We define the mean-zero random variable ηt by ηt ≡ Rt−E(Rt), and denote its values (corresponding

to the two values of Rt) by ηt,h and ηt,ℓ < ηt,h. We assume that {ηt,h, ηt,ℓ}t≥2 are proportional to a

parameter η̄ > 0. For small η̄, we can compute the equilibrium under both complete and incomplete
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participation in closed-form, and show that the properties derived in Sections 3 and 4.4 continue

to hold.

Proposition 5.3. Suppose that interest-rate risk is small. Then, Propositions 3.2 and 3.3 (supply

and clientele effects under a general maturity structure) and Propositions 4.5 and 4.6 (clientele

effects and expected excess returns under an optimal maturity structure) hold.

5.2 Risky Production Technology and Demographic Uncertainty

We next relax the assumptions that the return of the linear production technology and the endow-

ment of each generation are riskless. Since the endowment of a generation can be interpreted

as the generation’s size, a risky endowment corresponds to demographic uncertainty. We set

ζt ≡ αt − E(αt), where αt is the endowment of generation t and ζt is a mean-zero random variable

observed in period t. We denote the gross return of the technology in period t by Rt, i.e., one unit

invested in the technology in period t yields Rt units in period t + 1, and use Rf
t to denote the

gross one-period interest rate. We assume that Rt = E(Rt)+ ηt+ θt+1, where the random variables

ηt and θt+1 are mean-zero and observed in periods t and t+ 1, respectively. Variables observed in

different periods are independent of each other, but variables observed in the same period can be

correlated. The expected return of the technology conditional on information available at the time

of investment is E(Rt) + ηt. When {ζt, ηt, θt+1}t≥1 are small, in the sense of Section 5.1, we can

solve for the equilibrium under incomplete participation in closed form.

Proposition 5.4. Suppose that endowment and productivity risk are small. Then, a lengthening

of the maturity structure in period t raises the expected excess return of two- relative to one-period

bonds, over both a one- and a two-period horizon. It raises the two-period interest rate Lt if

Var(ηt+1) +
E(Rt+1)

E(Rt)
Cov(ηt+1, θt+1) > 0, (5.3)

and the one-period interest rate Rf
t if

Cov(ηt+1, θt+1) > 0. (5.4)

A decrease in the size of the long-horizon clientele in period t has the same effects if γ > 1, and

the opposite effects if γ < 1.

A lengthening of the maturity structure in period t raises the expected excess return of two-

relative to one-period bonds for the same reasons as in Proposition 3.2. The two-period interest rate,

however, does not always increase because there can be a countervailing decrease in the one-period
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rate (an effect not present with a riskless technology, where no-arbitrage pins the one-period rate to

the technology’s return). The one-period rate decreases when the technology offers unexpectedly

low returns during times of high interest rates, i.e., θt+1 is negatively correlated with ηt+1. Indeed,

two-period bonds then correlate positively with an investment in the technology, and an increase

in their supply exposes agents to more risk. This induces a greater preference to invest in riskless

one-period bonds than in the technology, causing the one-period interest rate to decrease.

If γ > 1, then a decrease in the size of the long-horizon clientele in period t has the same effects

as in the previous paragraph. The effect on the expected excess return of two- relative to one-period

bonds arises for the same reasons as in Proposition 3.3. The one-period interest rate decreases when

θt+1 is negatively correlated with ηt+1 because agents with a longer horizon are then less averse

to investing in the technology. A decrease in the relative size of these agents can thus result in a

greater aggregate preference to invest in riskless one-period bonds than in the technology.

With a risky production technology or demographic uncertainty, the link between optimal ma-

turity structure and equilibrium with complete participation becomes more complicated. The gov-

ernment can generally achieve less intergenerational risksharing relative to a complete-participation

equilibrium in which all generations can invest at all times in the technology and can trade assets

that pay off contingent on endowment shocks. This is because the government’s risksharing tools

are limited, e.g., bonds are non-contingent. The optimal maturity structure can be characterized

through complete-participation equilibrium, as in Section 4, when the shock ηt+1 can only take two

values and is perfectly correlated with αt+1 and θt+1. In that case, all uncertainty is spanned by

shocks to the one-period interest rate. When, in addition, stochastic shocks are small, the clientele

effects derived in Proposition 4.5 continue to hold for the optimal supply of two-period bonds and

their expected excess return.

A final extension of our analysis is to assume that assets can be issued not only by the govern-

ment but also by private firms. Holding constant the asset side of the corporate sector’s balance

sheet, changes to the maturity structure of corporate debt, and to the mix of corporate liabilities

more generally, would not matter in our model because of the Modigliani-Miller theorem. Changes

to the mix of government liabilities matter, by contrast, because they are accompanied by changes

in taxes on future generations. Thus, only the maturity structure of government debt and not that

of corporate debt can be used to improve intergenerational risksharing.

6 Empirical Tests

In this section we test the basic predictions of our model. In the empirically plausible case where

the coefficient of relative risk aversion γ is larger than one, our model predicts that an increase
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in the size of the long-horizon clientele lowers long rates relative to short rates. This is shown

in Proposition 3.3 under a general maturity structure and in Proposition 4.5 under the optimal

maturity structure. Our model also predicts that an increase in the size of the long-horizon clientele

induces a welfare-maximizing government to raise the average maturity of its debt structure, as

shown in Proposition 4.5. These results hold in our baseline model and in the extensions studied

in Section 5.

Clienteles in our model are defined by demographic characteristics, i.e., young agents are the

long-horizon clientele and old agents the short-horizon one. Hence, a natural way to test our basic

predictions is to run the following two regressions for a panel of countries:

Slopeit = a+ bDemit + ui + eit,

Maturityit = c+ dDemit + vi + fit,

where i indexes countries and t time periods, Slopeit is the slope of the yield curve, i.e., the differ-

ence in yields between long- and short-term government bonds, Demit is a demographic variable

capturing the relative size of the long- and short-horizon clienteles, Maturityit is a variable cap-

turing the average maturity of government debt, and ui and vi are country effects. An appealing

feature of these regressions is that the demographic variable can plausibly be assumed exogenous.

6.1 Data Description

Our empirical analysis focuses on OECD countries, for which data on the maturity structure of

government debt are available. For a subset of these countries, we also observe yields on government

bonds. We sample the data annually because demographic variables are slow-moving.

We start with the sample of 30 countries that were members of the OECD at the beginning of

2010. We drop country-year observations where the country’s Standard and Poor’s credit rating is

below AA-. We do this to abstract from the credit component of bond yields, since our model is

not about sovereign default risk. Our filter eliminates the Czech Republic, Greece, Hungary, Korea,

Mexico, Poland, the Slovak Republic and Turkey from the sample. It also drops some country-year

observations for Iceland (2008-10), Ireland (2010), Italy (2006-10), and Portugal (2009-10).

Our main demographic variable is the median age of the population from the United Nations

Population Division for the period 1960-2010. Since in our model the young generation is the long-

horizon clientele, an increase in the median age can be interpreted as a decrease in that clientele’s

relative importance. We also use OECD Health Data for life expectancy at age 40 to control for

differences in life expectancy.12

12The importance of a generation in our model is measured by income, which is the product of population size
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Our measure of the maturity structure of government debt comes from two sources. For the

period 1980-2010, we use the weighted average maturity of marketable government debt series from

the OECD Central Government Debt Statistical Yearbook. In order to obtain the longest possible

time series we merge these data with comparable data for the period 1960-1979 from Missale

(1999). Data on maturity structure are available for all countries in our reduced sample, except for

Switzerland and Portugal. This leaves us with 20 countries.

In our model generations live for three periods, and so a period should be thought of as quite

long. If working life starts at around age 25, it would be natural to think of a period as lasting

around 15 to 20 years.13 Our empirical proxy for the long-term bond is the 30-year benchmark

government bond, and for the short-term bond is the 10-year benchmark government bond. We

thus measure slope using the 30-10 bond yield spread. The specific maturity choices are driven by

data availability: 30-year bonds is the longest maturity for which there are relatively consistent

data across OECD countries, and the benchmark status of the 10-year bond ensures more and

better price data than for the 15-year bond. We use data on nominal government bond yields from

Global Financial Data. Out of the sample of all OECD countries, only 10 countries have data on

30-year yields. In the case of the UK, we substitute the 30-year yield with the consol yield which

is available for a much longer time period. (Our results do not depend on this choice.)

Table 1 provides summary statistics for the entire sample, and Table 2 breaks them down by

countries. In both tables, Panel A refers to the sample of 10 countries used in the regression of

slope on median age, and Panel B to the sample of 20 countries used in the regression of maturity

on median age. Table 1 shows that there is substantial variation in our variables when we consider

the entire sample. Table 2 shows that there is also substantial cross-country variation.

While our model is real, our empirical measure of slope is constructed using nominal yields.

This choice is driven by data availability: only two countries in our sample, the UK and the US,

have direct measures of long-term real bond yields, and even for these countries the measures are

available only for recent years.

As a check for the validity of using nominal slope as a proxy for real slope, we examine the

period 1998-2010 for the UK and the US. This is the longest period for which both nominal and

real long-term yields are available. For the UK we use nominal and real spot rates published by

the Bank of England. The longest available maturity is 25 years, and we calculate nominal and

times income per capita. Our median-age measure is based on population size, and it would be desirable to also
account for income per capita. Unfortunately data on how wealth differs across generational cohorts are not available
for most OECD countries. Lack of data availability is also the reason why we do not include additional measures of
bond demand, such as foreign holdings, and measures of bond supply in our regressions.

13In our model only the young generation receives an income (endowment), while the evidence is that income
peaks at middle age, around age 50. We assume this income profile to draw a sharp distinction between the role of
debt maturity structure and social security in improving intergenerational risksharing. Introducing income for the
middle-aged generation would blur this distinction. We expect, however, that the main predictions of our model
would carry through provided that there is a cost of raising taxes (e.g., distortions). See Footnote 9.
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real slope using the 10- and 25-year maturities. For the US we use the 10-year and 30-year nominal

and real bond yields from Global Financial Data.

The correlation coefficient between nominal and real slope is 0.68. Excluding the crisis year

2008, which appears to be an outlier for the UK, the coefficient rises to 0.89. Figure 3 shows the

high correlation. A univariate regression of real slope on nominal slope produces a coefficient of 0.53

(t-statistic of 4.45), an intercept of -0.19 (t-statistic of -2.99), and an R-squared of 0.46. Excluding

2008, the respective numbers are 0.60 (8.81), -0.17 (-4.64), and 0.79. The high correlation between

nominal and real slope suggests that nominal slope is a good proxy for real slope.14

The average real slope across the UK and the US, i.e., the average y-coordinate of the points in

Figure 3, is -0.06%. The average nominal slope, i.e., the average x-coordinate, is 0.25%. Inflation

risk premia could be the reason why the average nominal slope is positive despite the average real

slope being negative.

6.2 Results

Our regression results are in Table 3, Panels A and B. The first column in each panel reports

results from a pooled OLS regression; the second column from a between regression, in which the

data for each country are averaged over time and regressed across countries; the third column from

a fixed-effects regression, derived by including country dummy variables; and the fourth column

from a random-effects regression. Standard errors in the OLS, fixed-effects, and random-effects

regressions are clustered by country.

Consider first Panel A, in which the slope of the yield curve is regressed on median age. Since

an increase in median age corresponds to a decrease in the relative importance of the long-horizon

clientele (the young generation), our model implies a positive regression coefficient. The coefficient

is indeed positive for all four regressions. It is significant at the 1% level for OLS and random

effects, and at the 5% level for the between regression. Figure 4 plots the country means of slope

and median age, and confirms visually the statistical significance of the between regression.

The fixed- and random-effects regressions produce coefficients of similar magnitude. This sug-

gests that the country-specific component of the error term is uncorrelated with the independent

variable, as assumed in the random-effects model. A Hausman specification test yields a p-value of

42.3%, confirming this impression and supporting random effects.

In addition to being statistically significant, our results are economically significant. Using,

for example, the point estimate from the random-effects regression, we find that a one-standard-

14A high correlation between nominal and real slope is also consistent with many of the leading inflation forecasting
models, e.g., the unobserved components model with stochastic volatility in Stock and Watson (2007), which generate
nearly identical inflation forecasts at the 10- and 30-year horizons. Thus, changes in inflation expectations should
have a small influence on the nominal 30-10 slope.
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deviation increase in median age is associated with an increase in slope of 19 basis points. This

corresponds to approximately one-third of the in-sample standard deviation of the slope variable.

Consider next Panel B, in which the average maturity of government debt is regressed on

median age. Since an increase in median age corresponds to a decrease in the relative importance

of the long-horizon clientele, our model implies a negative regression coefficient. The coefficient is

indeed negative in all four regressions. It is significant at the 5% level for OLS, fixed effects and

random effects, but insignificant for the between regression (p-value of 24%). Figure 5 plots the

country means of maturity and median age, and shows that the lack of statistical significance of

the between regression is driven by the UK. The results in Panel B are not affected if we restrict

the analysis to the sub-sample of countries used in Panel A.

The fixed- and random effects regressions produce coefficients of similar magnitude. A Haus-

man specification test yields a p-value of 85%, supporting the random-effects model. Using the

point estimate from the random-effects regression, we find that a one-standard-deviation increase

in median age is associated with an increase in maturity of 0.59 years. This corresponds to approx-

imately one-fourth of the in-sample standard deviation of the maturity variable. The results are

thus economically significant.

One possible concern with using median age as a measure of the relative size of the short-horizon

clientele is that differences in median age could partly reflect differences in life expectancy. That

is, high life expectancy could cause median age to be high without lowering the relative size of the

long-horizon clientele. As a robustness check, we replace median age in our regressions by median

age divided by life expectancy at age 40. The coefficients in Table 3 maintain their predicted sign,

with somewhat lower statistical significance.

7 Conclusion

We propose a clientele-based model of the yield curve and optimal maturity structure of government

debt. Clienteles are generations of agents at different stages of their lifecycle in an overlapping-

generations economy. An optimal maturity structure exists in the absence of distortionary taxes

and induces efficient intergenerational risksharing. If agents are more risk-averse than log, then

an increase in the long-horizon clientele raises the price and optimal supply of long-term bonds—

effects that we also confirm empirically in a panel of OECD countries. Moreover, under the optimal

maturity structure catering to clienteles is limited and long-term bonds earn negative expected

excess returns.

Our model emphasizes a new and empirically relevant determinant of maturity structure:

changes in demand in different segments of the yield curve, generated by clienteles. The literature
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has emphasized that an additional important determinant is the government’s desire to manage its

balance-sheet risk and smooth tax rates. Combining the two determinants, by introducing distor-

tionary taxes in our model, could yield a richer theory of optimal maturity structure and be an

interesting extension of our work. It could also be interesting to develop a calibrated version of

our model and give precise quantitative prescriptions on how maturity structure should respond to

changes in clientele demand. This might require extending the lives of generations to more than

three periods. Finally, while our model concerns demographic clienteles, it could be interesting to

also study regulatory clienteles. This would require modeling financial institutions, such as pension

funds, and the agency problems that give rise to regulation.
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APPENDIX

Proof of Proposition 3.1: We first show that the demand functions (B1,0, B1,1) are increasing

in L1. Setting (ω1, y2, y2,h, y2,ℓ) ≡ (R/L2
1, 1/R2, 1/R2,h, 1/R2,ℓ) and using (3.1), we can write (3.2)

as

E
{

u′
[

R2α0 + (y2 − ω1)B1,0

]

(y2 − ω1)
}

= 0

⇔ p
[

R2α0 + (y2,h − ω1)B1,0

]−γ
(y2,h − ω1) + (1− p)

[

R2α0 + (y2,ℓ − ω1)B1,0

]−γ
(y2,ℓ − ω1) = 0,

(A.1)

where the second step follows because utility is CRRA. Solving (A.1), we find

B1,0 = R2α0
1− Y

Y (y2,ℓ − ω1) + ω1 − y2,h
, (A.2)

where

Y ≡

[

p(ω1 − y2,h)

(1− p)(y2,ℓ − ω1)

]
1

γ

.

Differentiating (A.2) with respect to ω1, we find

∂B1,0

∂ω1
= R2α0

(y2,h − y2,ℓ)
∂Y
∂ω1

− (1− Y )2

[Y (y2,ℓ − ω1) + ω1 − y2,h]
2 . (A.3)

Since ∂Y/∂ω1 > 0, (A.3) implies that ∂B1,0/∂ω1 < 0. Therefore, B1,0 is increasing in L1. When L2
1

converges to RR2,ℓ, and so ω1 converges to y2,ℓ, (A.2) implies that B1,0 converges to −∞. When

L2
1 converges to RR2,h, and so ω1 converges to y2,h, (A.2) implies that B1,0 converges to ∞.

Using (3.3) and (3.4) we can similarly compute B1,1:

B1,1 = Rα1
R2,h − ZR2,ℓ

Z(1− ω1R2,ℓ) + ω1R2,h − 1
, (A.4)

where

Z ≡

[

p(ω1R2,h − 1)

(1− p)(1− ω1R2,ℓ)

]
1

γ

.
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Differentiating (A.4) with respect to ω1, we find

∂B1,1

∂ω1
= Rα1

(R2,ℓ −R2,h)
∂Z
∂ω1

− (R2,h − ZR2,ℓ)
2

[Z(1− ω1R2,ℓ) + ω1R2,h − 1]2
. (A.5)

Since ∂Z/∂ω1 > 0, (A.5) implies that ∂B1,1/∂ω1 < 0. Therefore, B1,1 is increasing in L1. When

L2
1 converges to RR2,ℓ, and so ω1R2,ℓ converges to one, (A.4) implies that B1,1 converges to −∞.

When L2
1 converges to RR2,h, and so ω1R2,h converges to one, (A.4) implies that B1,1 converges

to ∞. Since B1,0 + B1,1 is increasing in L1, and takes values from −∞ to ∞, (3.5) has a unique

solution L1.

Proof of Proposition 3.2: An increase in B1 holding b1/R + B1/L
2
1 constant has no effect on

tax rates. Therefore, (3.1)-(3.4) imply that the only effect on (B1,0, B1,1) is through L1. Since

B1,0 +B1,1 is increasing in L1, (3.5) implies that L1 is increasing in B1.

Proof of Proposition 3.3: We first show that an increase in the size of the long-horizon clientele,

i.e., an increase in α1 holding Rα0+α1 constant, raises the aggregate demand for two-period bonds

B1,0 +B1,1 if γ > 1, and lowers it if γ < 1. Because of CRRA utility, the quantities

φ1,0 ≡
B1,0/L

2
1

Rα0
,

φ1,1 ≡
B1,1/L

2
1

α1
,

characterizing the fraction of wealth that generations 0 and 1 invest in two-period bonds in period

1, are independent of α0 and α1. Therefore, an increase in α1 holding Rα0 + α1 constant raises

B1,0 + B1,1 if and only if φ1,1 > φ1,0. To compare φ1,1 and φ1,0, we substitute (3.1) and (3.3) into

(4.5), written for t = 1. (Eq. (4.5) holds for generations 0 and 1 in Section 3, and for all generations

in Section 4.1.) Because of CRRA utility,

1 + φ1,0(
L2
1

RR2,h
− 1)

1 + φ1,0(
L2
1

RR2,ℓ
− 1)

=

(

R2,h

R2,ℓ

)1− 1

γ 1 + φ1,1(
L2
1

RR2,h
− 1)

1 + φ1,1(
L2
1

RR2,ℓ
− 1)

.

Therefore, the quantity

1 + φ1,0(
L2
1

RR2,h
− 1)

1 + φ1,0(
L2
1

RR2,ℓ
− 1)

1 + φ1,1(
L2
1

RR2,ℓ
− 1)

1 + φ1,1(
L2
1

RR2,h
− 1)

− 1 =
(φ1,1 − φ1,0)

(

L2
1

RR2,ℓ
−

L2
1

RR2,h

)

[

1 + φ1,0(
L2
1

RR2,ℓ
− 1)

] [

1 + φ1,1(
L2
1

RR2,h
− 1)

]
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has the same sign as

(

R2,h

R2,ℓ

)1− 1

γ

− 1.

Since R2,h > R2,ℓ, the sign of φ1,1 − φ1,0 is the same as of γ − 1. Since B1,0 +B1,1 is increasing in

L1, (3.5) implies that an increase in α1 holding Rα0 +α1 constant lowers L1 if and only if it raises

B1,0 +B1,1, i.e., if and only if γ > 1.

Proof of Proposition 4.1: Eqs. (3.3), (3.4), (4.1), (4.3) for t = 2, and CRRA utility imply that

B1,2

α2
=

B1,1

Rα1
. (A.6)

Therefore, B1,2 has the properties of B1,1 shown in the proof of Proposition 3.1: it is increasing in

L1, converges to −∞ when L2
1 converges to RR2,ℓ, and to ∞ when L2

1 converges to RR2,h. Using

(4.2) and (4.3), and proceeding as in the proof of Proposition 3.1, we can compute B1,t for t > 2:

B1,t = R−(t−3)αt
1− Z

Z(1− ω1R2,ℓ) + ω1R2,h − 1
, (A.7)

where Z is defined in the proof of Proposition 3.1. The demand function B1,t is not always increasing

in L1, but converges to −∞ when L2
1 converges to RR2,ℓ, and to ∞ when L2

1 converges to RR2,h.

Since
∑∞

t=0 Bt takes values from −∞ to ∞, (4.4) has a solution L1.

Proof of Proposition 4.2: Since utility is CRRA, we can write (4.5) as

c2,h
c2,ℓ

=

(

R2,h

R2,ℓ

)− 1

γ ct+2,h

ct+2,ℓ
. (A.8)

Eq. (3.1) implies that

c2,h
c2,ℓ

=
R2α0 +

(

1
R2,h

− R
L2
1

)

B1,0

R2α0 +
(

1
R2,ℓ

− R
L2
1

)

B1,0

. (A.9)
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Moreover,

ct+2,h

ct+2,ℓ
=

∑∞
t=1

ct+2,h

Rt−3

∑∞
t=1

ct+2,ℓ

Rt−3

=
RR2,hα1 +R2,hα2 +

∑∞
t=3

αt

Rt−1 −
(

1−
RR2,h

L2
1

)

B1,0

RR2,ℓα1 +R2,ℓα2 +
∑∞

t=3
αt

Rt−1 −
(

1−
RR2,ℓ

L2
1

)

B1,0

, (A.10)

where the first step follows because
ct+2,h

ct+2,ℓ
is identical for all t ≥ 1, and the second from (3.3), (4.1),

(4.2) and (4.4).

If B1,0 ≥ 0, then (A.10) implies that
ct+2,h

ct+2,ℓ
> 1 for t ≥ 1. If B1,0 < 0, then (A.9) implies that

c2,h
c2,ℓ

> 1, and hence (A.8) implies that
ct+2,h

ct+2,ℓ
> 1 for t ≥ 1.

Since
ct+2,h

ct+2,ℓ
> 1 for t ≥ 1, (A.8) implies that

c2,h
c2,ℓ

> 1 for γ exceeding a threshold γ̄ > 1.

Suppose next that γ ≤ 1. If B1,0 > 0, then (A.9) implies that
c2,h
c2,ℓ

< 1. If B1,0 ≤ 0, then we can

use (A.10) to write the right-hand side of (A.8) as

(

R2,h

R2,ℓ

)1− 1

γ

ct+2,h

R2,h

ct+2,ℓ

R2,ℓ

=

(

R2,h

R2,ℓ

)1− 1

γ Rα1 + α2 +
1

R2,h

∑∞
t=3

αt

Rt−1 −
(

1
R2,h

− R
L2
1

)

B1,0

Rα1 + α2 +
1

R2,ℓ

∑∞
t=3

αt

Rt−1 −
(

1
R2,ℓ

− R
L2
1

)

B1,0

.

Since this is smaller than one, (A.8) implies that
c2,h
c2,ℓ

< 1.

Proof of Corollary 4.1: Eqs. (4.2) and ct+2,h > ct+2,ℓ imply that B1,t < 0 for t > 2. If γ ≥ γ̄,

then (3.1) and c2,h > c2,ℓ imply that B1,0 < 0. If γ ≤ 1, then (3.1) and c2,h < c2,ℓ imply that

B1,0 > 0. Suppose finally that γ ≥ 1 and one of (B1,1, B1,2) is non-positive. Eq. (A.6) implies

that both of (B1,1, B1,2) are non-positive. Since γ ≥ 1, generation 0 invests a smaller fraction of its

wealth in two-period bonds than generation 1 (proof of Proposition 3.3), and hence B1,0 ≤ 0. The

non-positivity of (B1,0, B1,1, B1,2), together with the negativity of B1,t for all t > 2 is inconsistent

with (4.4), a contradiction. Therefore, both of (B1,1, B1,2) are positive.

Proof of Proposition 4.3: Suppose that the government issues a quantity B∗
1 of two-period bonds.

Since the demand functions of generations 0 and 1 are the same as under complete participation,

the two-period interest rate is also the same. As a consequence, each of generations 0 and 1 has the

same investment in two-period bonds and the same consumption as under complete participation.

Generations t ≥ 2 can also have the same consumption as under complete participation through an

appropriate choice of state-contingent taxes that we denote by {τ∗t }t≥2. Since the budget constraint
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of generation 2 under incomplete participation is

c4 = RR2α2(1− τ2), (A.11)

(4.1) implies that the taxes that leave that generation with the same consumption as under complete

participation are given by

RR2α2 +R
(

L2
1 −RR2

) B1,2

L2
1

= RR2α2(1− τ∗2 )

⇔ α2τ
∗
2 =

(

R

L2
1

−
1

R2

)

B1,2. (A.12)

Likewise, since the budget constraint of generation t > 2 under incomplete participation is

ct+2 = R2αt(1− τt), (A.13)

(4.2) implies that the taxes that leave that generation with the same consumption as under complete

participation are given by

R2αt +Rt−1
(

L2
1 −RR2

) B1,t

L2
1

= R2αt(1− τ∗t )

⇔ αtτ
∗
t = Rt−3R2

(

R

L2
1

−
1

R2

)

B1,t. (A.14)

To determine whether the policy (B∗
1 , {τ

∗
t }t≥2) satisfies (2.5), we compute bt using the government’s

budget constraints (2.2)-(2.4) and the initial condition b0 = 0. For t ≥ 2,

bt = Rt−2

(

1−
RR2

L2
1

)

B∗
1 −Rt−2R2α2τ

∗
2 −

t
∑

t′=3

Rt+1−t′αt′τ
∗
t′ . (A.15)

Using
∑∞

t′=2 B1,t′ = −B∗
1 , we can write (A.15) as

bt = −Rt−2

(

1−
RR2

L2
1

) ∞
∑

t′=2

B1,t′ −Rt−2R2α2τ
∗
2 −

t
∑

t′=3

Rt+1−t′αt′τ
∗
t′

= −Rt−2

(

1−
RR2

L2
1

) ∞
∑

t′=t+1

B1,t′

= −

(

1−
RR2

L2
1

)

1− Z

Z(1− ω1R2,ℓ) + ω1R2,h − 1

∞
∑

t′=t+1

αt′

Rt′−t−1
, (A.16)
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where the second step follows from (A.12) and (A.14), and the third from (A.7). Eq. (A.16) implies

that bt is bounded.

Proof of Proposition 4.4: We first derive an intertemporal budget constraint for the government

and a resource constraint. Writing (A.15) for an admissible policy (B1, {τt}t≥2) and dividing by

Rt−2R2, we find

bt
Rt−2R2

=

(

1

R2
−

R

L2
1

)

B1 − α2τ2 −
1

R2

t
∑

t′=3

αt′τt′

Rt′−3
. (A.17)

Summing (3.1), (3.3) divided by R2, (A.11) divided by RR2, and (A.13) divided by Rt+1R2 for all

t′ = 3, .., t, we find

c2+
1

R2

t
∑

t′=1

ct′+2

Rt′−1
= R2α0+Rα1+α2(1−τ2)+

1

R2

t
∑

t′=3

αt′(1− τt′)

Rt′−3
+

(

1

R2
−

R

L2
1

)

(B1,0+B1,1). (A.18)

Combining (A.17) and (A.18), and using (3.5), we find

c2 +
1

R2

t
∑

t′=1

ct′+2

Rt′−1
= R2α0 +Rα1 + α2 +

1

R2

t
∑

t=3

αt′

Rt′−3
+

bt
Rt−2R2

. (A.19)

Taking the limit when t → ∞, and noting that the limit of the last term in the right-hand side is

non-positive because of (2.5), yields the resource constraint

c2 +
1

R2

∞
∑

t=1

ct+2

Rt−1
≤ R2α0 +Rα1 + α2 +

1

R2

∞
∑

t=3

αt

Rt−3
. (A.20)

Taking the limit when t → ∞ in (A.17) yields likewise the government’s intertemporal budget

constraint

α2τ2 +
1

R2

∞
∑

t=3

αtτt
Rt−3

−

(

1

R2
−

R

L2
1

)

B1 ≥ 0. (A.21)

We next show that B∗
1 is an optimal maturity structure. We proceed by contradiction, and

suppose that there exists an admissible policy (B̂1, {τ̂t}t≥2) to which a switch from (B∗
1 , {τ

∗
t }t≥2)

generates a positive sum
∑∞

t=0 Tt of gains. Denote by ĉt+2 and c∗t+2 the consumption of generation
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t in the corresponding equilibria. The allocation {čt+2}t≥0 defined by

č2 ≡ ĉ2 +R

∞
∑

t=1

Tt, (A.22)

čt+2 ≡ ĉt+2 −RtR2Tt for t ≥ 1, (A.23)

yields the same utility as {c∗t+2}t≥0 for generations t ≥ 1 because of (4.7), and higher utility for

generation 0 because of (4.6) and
∑∞

t=0 Tt > 0. This is a contradiction because {c∗t+2}t≥0 is Pareto

optimal among all feasible allocations. To show Pareto optimality and the contradiction, we denote

the risk-neutral probabilities for states s = h, ℓ under complete participation by

π1,h ≡

L2
1

R2,ℓ
−R

L2
1

R2,ℓ
−

L2
1

R2,h

,

π1,ℓ ≡ 1− π1,h,

respectively. We also use (3.1), (3.3), (4.1) and (4.2) to write the optimization problem of generation

t ≥ 0 under complete participation as maximizing utility within the budget set Bt, where

B0 ≡
{

c2 : π1,hc2,h + π1,ℓc2,ℓ ≤ R2α0

}

,

B1 ≡

{

c3 : π1,h
c3,h
R2,h

+ π1,ℓ
c3,ℓ
R2,ℓ

≤ Rα1

}

,

B2 ≡

{

c4 : π1,h
c4,h

RR2,h
+ π1,ℓ

c4,ℓ
RR2,ℓ

≤ α2

}

,

Bt ≡

{

ct+2 : π1,h
ct+2,h

R2R2,h
+ π1,ℓ

ct+2,ℓ

R2R2,ℓ
≤ αt

(

π1,h
R2,h

+
π1,ℓ
R2,ℓ

)}

for t > 2.

Since c∗2 maximizes the utility of generation 0 within B0, č2, which yields higher utility, is outside

B0. Likewise, since c∗t+2 maximizes the expected utility of generation t ≥ 1 within Bt, čt+2, which

yields the same utility, is weakly outside Bt. Combining the corresponding inequalities, we find

∑

s=h,ℓ

π1,s

(

č2,s +
1

R2,s

∞
∑

t=1

čt+2,s

Rt−1

)

>
∑

s=h,ℓ

π1,s

(

R2α0 +Rα1 + α2 +
1

R2,s

∞
∑

t=3

αt

Rt−3

)

. (A.24)

Eq. (A.24) contradicts the resource constraint (A.20). Indeed, (A.20) holds for {ĉt+2}t≥0, since

this allocation corresponds to the admissible policy (B̂1, {τ̂t}t≥2). Moreover, because of (A.22) and
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(A.23), (A.20) holds also for {čt+2}t≥0.

We finally show that an optimal maturity structure must equal B∗
1 . Consider an optimal

maturity structure B1 and an associated admissible policy (B1, {τt}t≥2). The ratio across states

of marginal utilities must be equal across all generations t ≥ 2; otherwise, it would be possible

to generate a positive sum of gains by reallocating taxes across two generations so that one is

kept equally well off and the other becomes better off. Moreover, the government’s intertemporal

budget constraint (A.21) holds with equality; otherwise the government would be accumulating a

growing surplus that it could instead distribute to the agents and raise their utility, contradicting the

optimality of B1. Consider next an infinitesimal change (dB1, {dτt}t≥2) that preserves admissibility

and the equality in (A.21). Eqs. (4.6) and (4.7) imply that

dT0 =
E [u′(c2)dc2]

REu′(c2)
, (A.25)

dTt =
E [u′(ct+2)dct+2]

RtE[u′(ct+2)R2]
for t ≥ 1. (A.26)

Using (3.1) and (A.25), and recalling the definition ω1 ≡ R/L2
1, we find

dT0 =
E

{

u′(c2)
[(

1
R2

− ω1

)

dB1,0 − dω1B1,0

]}

REu′(c2)
= −

dω1B1,0

R
, (A.27)

where the second step follows from (3.2). Using (3.3) and (A.26) for t = 1, we find

dT1 =
E {u′(c3) [(1− ω1R2) dB1,1 − dω1R2B1,1]}

RE[u′(c3)R2]
= −

dω1B1,1

R
, (A.28)

where the second step follows from (3.4). Using (A.11) and (A.26) for t = 2, we find

dT2 = −
E [u′(c4)α2R2dτ2]

RE[u′(c4)R2]
, (A.29)

and using (A.13) and (A.26) for t > j, we find

dTt = −
E [u′(ct+2)αtdτt]

Rt−2E[u′(ct+2)R2]
. (A.30)

Since B1 is an optimal maturity structure, the sum
∑∞

t=0 dTt should be zero; if it were negative,
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the opposite infinitesimal change would make it positive. Therefore, (A.27)-(A.30) imply that

−
dω1(B1,0 +B1,1)

R
−

E [u′(c4)α2R2dτ2]

RE[u′(c4)R2]
−

∞
∑

t=3

E [u′(ct+2)αtdτt]

Rt−2E[u′(ct+2)R2]
= 0

⇔ −
dω1B1

R
−

E

[

u′(ct+2)R2

[

α2dτ2 +
1
R2

∑∞
t=3

αtdτt
Rt−3

]]

RE[u′(ct+2)R2]
= 0, (A.31)

for all t ≥ 2, where the second step follows from (3.5) and because the ratio across states of marginal

utilities is equal across all generations t ≥ 2. Differentiating (A.21), we find

α2dτ2 +
1

R2

∞
∑

t=3

αtdτt
Rt−3

=

(

1

R2
− ω1

)

dB1 − ω1dB1. (A.32)

Substituting (A.32) into (A.31), we find

E
[

u′(ct+2)(1− ω1R2)
]

= 0 (A.33)

for all t ≥ 2. Eq. (A.33) can be interpreted as a first-order condition for generations t ≥ 2 under

complete participation. To make this interpretation precise, we consider a representative agent who

has CRRA utility with coefficient of relative risk aversion γ, and consumes in period 4 the present

value of the consumption stream of generations t ≥ 2:

C =
∑

t≥2

ct+2

Rt−2
= RR2

(

α2 +
1

R2

∞
∑

t=3

αt

Rt−3

)

−R(1− ω1R2)B1, (A.34)

where the second step in (A.34) follows from (A.11), (A.13) and (A.21). Because of CRRA utility,

the common ratio across states of marginal utilities of generations t ≥ 2 is equal to the ratio of

marginal utilities of the representative agent. Therefore, the first-order condition (A.33) holds for

the representative agent as

E
[

u′(C)(1− ω1R2)
]

= 0,

and implies that if the representative agent were to invest in one- and two-period bonds in period

1 subject to the budget constraint

C = RR2

(

α2 +
1

R2

∞
∑

t=3

αt

Rt−3

)

+R(1− ω1R2)B̂1, (A.35)
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then he would choose a quantity B̂1 = −B1 of two-period bonds. As a consequence, the two-

period interest rate L1 clears the market with complete participation by all generations, i.e., in the

equilibrium of Section 4.1. Indeed, (4.3) implies (A.33), and (4.1) and (4.2) imply that (A.34) holds

with
∑∞

t=2 B1,t instead of −B1. Since the representative agent’s demand for two-period bonds is

uniquely determined,
∑∞

t=2 B1,t = −B1 ≡ −(B1,0 +B1,1). Therefore, (4.4) is met, and B1 = B∗
1 .

Proof of Proposition 4.5: We consider a change from α1 to α1 + ǫ holding Rα0 + α1 constant.

Differentiating (4.4) with respect to ǫ and treating L1 as a function of ǫ, we find

∂

∂ǫ
(B1,0 +B1,1) +

dL1

dǫ

∂

∂L1

∞
∑

t=0

B1,t = 0

⇒
dL1

dǫ
= −

∂
∂ǫ
(B1,0 +B1,1)
∂

∂L1

∑∞
t=0 B1,t

, (A.36)

where the first step follows because ǫ does not affect B1,t for t ≥ 2. The numerator in (A.36) has

the same sign as γ − 1, as shown in the proof of Proposition 3.3. The denominator is positive

because the demand functions B1,t for t ≥ 0 are increasing in L1: for t ∈ {0, 1} this is shown in

the proof of Proposition 3.1, for t = 2 it is shown in the proof of Proposition 4.1, and for t > 2 it

follows from Assumption 1. Therefore, dL1

dǫ
has the same sign as 1− γ.

Differentiating B1,0 +B1,1 with respect to ǫ and treating L1 as a function of ǫ, we find

d

dǫ
(B1,0 +B1,1) =

∂

∂ǫ
(B1,0 +B1,1) +

dL1

dǫ

∂

∂L1
(B1,0 +B1,1)

=
∂

∂ǫ
(B1,0 +B1,1)

∂
∂L1

∑∞
t=2 B1,t

∂
∂L1

∑∞
t=0 B1,t

, (A.37)

where the second step follows from (A.36). The numerator and denominator in (A.37) are positive

because the demand functions Bt for t ≥ 0 are increasing in L1. Therefore,
d
dǫ
(B1,0 +B1,1) has the

same sign as ∂
∂ǫ
(B1,0 +B1,1) and hence as γ − 1. The comparative statics in the proposition follow

from B∗
1 = B1,0 + B1,1, and because the equilibrium two-period interest rate L1 under incomplete

participation and B∗
1 coincides with that under complete participation.

Proof of Proposition 4.6: Eqs. (3.4) and c3,h > c3,ℓ, which follows from Proposition 4.2 for

the complete-participation equilibrium and from Propositions 4.3 and 4.4 for the optimal maturity

structure, imply that L2
1 < RE(R2). If γ ≥ γ̄, then (3.2) and c2,h > c2,ℓ imply that E

(

L2
1

R2

)

< R. If

γ ≤ 1, then (3.2) and c2,h < c2,ℓ imply that E
(

L2
1

R2

)

> R.
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Proof of Proposition 5.1: To determine the consumption of generation t in period t+ 2 under

complete participation, we denote by wt′,t generation t’s wealth in period t′ = 0, .., t+2 and by Bt′,t

the face value of two-period bonds held by generation t in period t′ = 1, .., t + 1. The dynamics of

wt′,t are

wt′,t = αt1{t′=t} +Rt′−1wt′−1,t +

(

L2
t′−1

Rt′
−Rt′−1

)

Bt′−1,t

L2
t′−1

, (A.38)

where t′ = 0, .., t + 2, w−1,t = B−1,t = B0,t ≡ 0, and 1S is equal to one if condition S is satisfied

and zero otherwise. Solving (A.38) between 0 and t+ 2, we find

ct+2 = wt+2,t = RtRt+1αt +
t
∑

t′=1

(

t+1
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,t +

(

1

Rt+2
−

Rt+1

L2
t+1

)

Bt+1,t.

(A.39)

The first-order condition of generation t with respect to Bt′,t is

Et′

[

u′(ct+2)

(

t+1
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

]

= 0 (A.40)

for t′ = 1, .., t, and

Et+1

[

u′(ct+2)

(

1

Rt+2
−

Rt+1

L2
t+1

)]

= 0 (A.41)

for t′ = t + 1, where Et′ denotes expectation conditional on information available in period t′.

A complete-participation equilibrium consists of two-period interest rates {Lt}t≥1 and holdings

{Bt′,t}t′=1,..,t+1 of two-period bonds for each generation t ≥ 0 such that the market for two-period

bonds clears in each period, i.e.,

∞
∑

t=t′−1

Bt′,t = 0 (A.42)

for all t′ ≥ 1.

Suppose next that participation is incomplete, i.e., only generations t − 1 and t can trade in

period t for all t ≥ 1. Suppose that the government issues a quantity B∗
t of two-period bonds in
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period t ≥ 1 and levies a tax

αtτ
∗
t = αt − wt,t (A.43)

on generation t ≥ 2. The tax (A.43) leaves generation t with wealth

αt − αtτ
∗
t = wt,t,

in period t, which is the same as under complete participation. Hence, the demand function of

generation t for two-period bonds is also the same. Since the supply of two-period bonds in period t

is the same as the quantity that generations t− 1 and t buy under complete participation, the two-

period interest rate is also the same. As a consequence, each generation has the same investment

in two-period bonds and the same consumption as under complete participation.

To determine whether the policy ({B∗
t }t≥1, {τ

∗
t }t≥2) satisfies (5.2), we compute bt using the

government’s budget constraint (5.1) and the initial condition b0 = 0. For t ≥ 2,

bt +
RtB

∗
t

L2
t

=

t−1
∑

t′=1

(

t
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

B∗
t′ −

t
∑

t′=2

(

t
∏

t′′=t′

Rt′′

)

αt′τ
∗
t′ . (A.44)

Using
∑∞

u=t′+1 Bt′,u = −B∗
t′ , we can write (A.15) as

bt +
RtB

∗
t

L2
t

=−

t−1
∑

t′=1

(

t
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

) ∞
∑

u=t′+1

Bt′,u −

t
∑

t′=2

(

t
∏

t′′=t′

Rt′′

)

αt′τ
∗
t′

=−
∞
∑

u=2

min{t−1,u−1}
∑

t′=1

(

t
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,u −
t
∑

t′=2

(

t
∏

t′′=t′

Rt′′

)

αt′τ
∗
t′

=−

t
∑

u=2

u−1
∑

t′=1

(

t
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,u −

t
∑

t′=2

(

t
∏

t′′=t′

Rt′′

)

αt′τ
∗
t′

−

∞
∑

u=t+1

t−1
∑

t′=1

(

t
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,u. (A.45)
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Replacing t in (A.38) by u, and solving between 0 and u, we find

wu,u = αu +

u−2
∑

t′=1

(

u−1
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,u +

(

1

Ru
−

Ru−1

L2
u−1

)

Bu−1,u

= αu +
1

Ru

u−1
∑

t′=1

(

u
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,u. (A.46)

Eqs. (A.43) and (A.46) imply that

αuτ
∗
u = −

1

Ru

u−1
∑

t′=1

(

u
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,u. (A.47)

Eq. (A.47) implies that for u = 2, .., t,

−

u−1
∑

t′=1

(

t
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,u = −

u−1
∑

t′=1

(

u
∏

t′′=t′+2

Rt′′

t
∏

t′′=u+1

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,u

=

(

t
∏

t′′=u

Rt′′

)

αuτ
∗
u . (A.48)

Eq. (A.47) also implies that for u > t,

E
Q
t

[

αuτ
∗
u

∏u−1
t′′=t+1Rt′′

]

=−

t−1
∑

t′=1

(

t
∏

t′′=t′+2

Rt′′

)

(

1−
Rt′Rt′+1

L2
t′

)

Bt′,u

− E
Q
t

[

1
∏t′

t′′=t+1 Rt′′

u−1
∑

t′=t

(

1

Rt′+1
−

Rt′

L2
t′

)

Bt′,u

]

, (A.49)

where E
Q denotes expectation under the risk-neutral probabilities under complete participation.

(As in the proof of Proposition 4.3, the risk-neutral probabilities conditional on information avail-

able in period t for states s = h, ℓ in period t+ 1 are

πt,h ≡

L2
t

Rt+1,ℓ
−Rt

L2
t

Rt+1,ℓ
−

L2
t

Rt+1,h

,

πt,ℓ ≡ 1− πt,h,
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respectively.) Noting that

E
Q
t

[

1
∏t′

t′′=t+1 Rt′′

u−1
∑

t′=t

(

1

Rt′+1
−

Rt′

L2
t′

)

Bt′,u

]

= E
Q
t

[

1
∏t′

t′′=t+1 Rt′′

u−1
∑

t′=t

[

E
Q
t′

(

1

Rt′+1
−

Rt′

L2
t′

)]

Bt′,u

]

= 0

and using (A.48) and (A.49), we can write (A.45) as

bt +
RtB

∗
t

L2
t

=

∞
∑

u=t+1

E
Q
t

[

αuτ
∗
u

∏u−1
t′′=t+1 Rt′′

]

. (A.50)

Because of CRRA utility, consumption must be non-negative, and hence wt,t is also non-negative.

Therefore, (A.43) implies that αtτ
∗
t ≤ αt and (A.50) implies that

bt +
RtB

∗
t

L2
t

≤

∞
∑

u=t+1

E
Q
t

[

αu
∏u−1

t′′=t+1 Rt′′

]

. (A.51)

The right-hand side of (A.51) is bounded because αt is bounded and Rt exceeds a lower bound

larger than one. Therefore, (5.2) holds.

Proof of Proposition 5.2: We first derive a resource constraint analogous to (A.20). Writing

(A.44) for an admissible policy ({Bt}t≥1, {τt}t≥2) and dividing by
∏t

t′′=0Rt′′ , we find

bt +
RtBt

L2
t

∏t
t′′=0 Rt′′

=
t−1
∑

t′=1

1
∏t′+1

t′′=0 Rt′′

(

1−
Rt′Rt′+1

L2
t′

)

Bt′ −
t
∑

t′=2

αt′τt′
∏t′−1

t′′=0Rt′′
. (A.52)

The consumption of generation t in the equilibrium with incomplete participation is

ct+2 = RtRt+1αt(1− τt) +

(

1−
RtRt+1

L2
t

)

Bt,t +

(

1

Rt+2
−

Rt+1

L2
t+1

)

Bt+1,t. (A.53)

(Eq. (A.53) can be derived from (A.39) by setting Bt′,t = 0 for all t′ < t and replacing αt by

αt(1 − τt).) Dividing (A.53) by
∏t+1

t′′=0 Rt′′ , summing over t′ = 0, .., t, and using Bt = Bt,t−1 +Bt,t
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for t ≥ 1 (market clearing for two-period bonds) and B0,0 = 0, we find

t
∑

t′=0

ct′+2
∏t′+1

t′′=0 Rt′′
=

t
∑

t′=0

αt′(1− τt′)
∏t′−1

t′′=0 Rt′′

+

t
∑

t′=1

(

1
∏t′

t′′=0 Rt′′

)

(

1

Rt′+1
−

Rt′

L2
t′

)

Bt′ +
1

∏t+1
t′′=0 Rt′′

(

1

Rt+2
−

Rt+1

L2
t+1

)

Bt+1,t.

(A.54)

Writing (A.52) for t+ 2 instead of t, subtracting it from (A.54), and using τ0 = τ1 = 0, we find

t
∑

t′=0

ct′+2
∏t′+1

t′′=0 Rt′′
=

t
∑

t′=0

αt′
∏t′−1

t′′=0 Rt′′
+

t+2
∑

t′=t+1

αt′τt′
∏t′−1

t′′=0 Rt′′

−
1

∏t+1
t′′=0Rt′′

(

1

Rt+2
−

Rt+1

L2
t+1

)

Bt+1,t+1 +
bt+2 +

Rt+2Bt+2

L2
t+2

∏t+2
t′′=0 Rt′′

. (A.55)

We next take the limit of (A.55) when t → ∞. Because of CRRA utility, consumption must be

non-negative, and hence αtτt ≤ αt. Therefore, the limit of the second term in the right-hand side

of (A.55) is non-positive. Moreover, the term

(

1

Rt+2
−

Rt+1

L2
t+1

)

Bt+1,t+1

which is the capital gain of generation t+ 1 on its investment in two-period bonds in period t+ 1

must be bounded below, otherwise the generation’s consumption would be negative. Therefore, the

limit of the third term in the right-hand side of (A.55) is non-positive. Since, in addition, the limit

of the fourth term is non-positive because of (5.2), we find the resource constraint

∞
∑

t=0

ct+2
∏t+1

t′=0 Rt′
≤

∞
∑

t=0

αt
∏t−1

t′=0 Rt′
. (A.56)

We next show that {B∗
t }t≥1 is an optimal maturity structure. Our definition of optimality

generalizes Definition 1 by replacing (B1, B̂1) by ({Bt}t≥1, {B̂t}t≥1) and computing the gain Tt as

Eu(ct+2) ≡ Eu

(

ĉt+2 −
t+1
∏

t′=1

Rt′Tt

)

. (A.57)
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To show that {B∗
t }t≥1 is optimal, we proceed by contradiction, and suppose that there exists an

admissible policy ({B̂t}t≥1, {τ̂t}t≥2) to which a switch from ({B∗
t }t≥1, {τ

∗
t }t≥2) generates a positive

sum
∑∞

t=0 Tt of gains. Denote by ĉt+2 and c∗t+2 the consumption of generation t in the corresponding

equilibria. The allocation {čt+2}t≥0 defined by

č2 ≡ ĉ2 +R1

∞
∑

t=1

Tt, (A.58)

čt+2 ≡ ĉt+2 −

(

t+1
∏

t′=1

Rt′

)

Tt for t ≥ 1, (A.59)

yields the same utility as {c∗t+2}t≥0 for generations t ≥ 1 because of (A.57), and higher utility for

generation 0 because of (A.57) and
∑∞

t=0 Tt > 0. This is a contradiction because {c∗t+2}t≥0 is Pareto

optimal among all feasible allocations. To show Pareto optimality and the contradiction, we write

the optimization problem of generation t under complete participation as maximizing utility within

the budget set Bt, where

Bt ≡

{

ct+2 : E
Q

(

ct+2
∏t+1

t′=0 Rt′

)

≤ E
Q

(

αt+2
∏t−1

t′=0Rt′

)}

.

Since c∗2 maximizes the utility of generation 0 within B0, č2, which yields higher utility, is outside

B0. Likewise, since c∗t+2 maximizes the expected utility of generation t ≥ 1 within Bt, čt+2, which

yields the same utility, is weakly outside Bt. Combining the corresponding inequalities, we find

E
Q

(

∞
∑

t=0

čt+2
∏t+1

t′=0Rt′

)

> E
Q

(

∞
∑

t=0

αt
∏t−1

t′=0Rt′

)

. (A.60)

Eq. (A.60) contradicts the resource constraint (A.56). Indeed, (A.56) holds for {ĉt+2}t≥0, since

this allocation corresponds to the admissible policy (B̂1, {τ̂t}t≥2). Moreover, because of (A.58) and

(A.59), (A.56) holds also for {čt+2}t≥0.

Proof of Proposition 5.3: We first study the equilibrium under incomplete participation. We

look for an equilibrium in which the two-period interest rate in period t ≥ 1 is given by

L2
t = RtE(Rt+1) + µtη̄

2 + o(η̄2), (A.61)

where µt is a deterministic function of t, and o(ǫ) denotes small relative to ǫ. Using (A.61) and the
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definition of ηt, we find

1−
RtRt+1

L2
t

= 1−
Rt [E(Rt+1) + ηt+1]

RtE(Rt+1) + µtη̄2
+ o(η̄2)

= −
ηt+1

E(Rt+1)
+

µtη̄
2

E(Rt)E(Rt+1)
+ o(η̄2), (A.62)

and

1

Rt+2
−

Rt+1

L2
t+1

=
1

E(Rt+2) + ηt+2
−

Rt+1

Rt+1E(Rt+2) + µt+1η̄2
+ o(η̄2)

=
1

E(Rt+2)

[

1−
ηt+2

E(Rt+2)
+

η2t+2

[E(Rt+2)]
2

]

−
1

E(Rt+2) +
µt+1η̄2

Rt+1

+ o(η̄2)

= −
ηt+2

[E(Rt+2)]
2 +

η2t+2

[E(Rt+2)]
3 +

µt+1η̄
2

E(Rt+1) [E(Rt+2)]
2 + o(η̄2). (A.63)

Substituting (A.62) and (A.63) into (A.53), and using the definition of ηt, we find

ct+2 =Rt [E(Rt+1) + ηt+1]αt(1− τt) +

[

−
ηt+1

E(Rt+1)
+

µtη̄
2

E(Rt)E(Rt+1)

]

Bt,t

+

[

−
ηt+2

[E(Rt+2)]
2 +

η2t+2

[E(Rt+2)]
3 +

µt+1η̄
2

E(Rt+1) [E(Rt+2)]
2

]

Bt+1,t + o(η̄2). (A.64)

Using (A.64) and the fact that (ηt+1, ηt+2) are mean-zero, independent of each other, and indepen-

dent of information available in period t, we find

E [u(ct+2)] =u(c0t+2) + u′(c0t+2)

{

µtη̄
2Bt,t

E(Rt)E(Rt+1)
+

[

Var(ηt+2)

[E(Rt+2)]
3 +

µt+1η̄
2

E(Rt+1) [E(Rt+2)]
2

]

Bt+1,t

}

+
1

2
u′′(c0t+2)

{

Var[Rt(1− τt)] [E(Rt+1)]
2 α2

t

+Var(ηt+1)

[

Bt,t

E(Rt+1)
− E[Rt(1− τt)]αt

]2

+
Var(ηt+2)B

2
t+1,t

[E(Rt+2)]
4

}

+ o(η̄2), (A.65)

where

c0t+2 ≡ E[Rt(1− τt)]E(Rt+1)αt.

Maximizing the objective (A.65) with respect to (Bt,t, Bt+1,t), and using the fact that utility is
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CRRA, we find the first-order conditions

µtη̄
2

E(Rt)E(Rt+1)
=

γVar(ηt+1)

E(Rt) [E(Rt+1)]
2 αtE(1− τt)

[

Bt,t

E(Rt+1)
− E(Rt)αtE(1− τt)

]

+ o(η̄2),

(A.66)

Var(ηt+2)

[E(Rt+2)]
3 +

µt+1η̄
2

E(Rt+1) [E(Rt+2)]
2 =

γVar(ηt+2)Bt+1,t

E(Rt)E(Rt+1) [E(Rt+2)]
4 αtE(1− τt)

+ o(η̄2). (A.67)

Eqs. (A.66) and (A.67) yield bond demands, which we can substitute into the market-clearing

condition Bt = Bt,t−1 +Bt,t and solve for µt. The demand Bt,t can be computed from (A.66), and

the demand Bt,t−1 from (A.67) written for t− 1 instead of t. We find that

µt =
γVar(ηt+1)

{

Bt − E(Rt)E(Rt+1)
[

E(Rt−1)αt−1E(1−τt−1)
γ

+ αtE(1− τt)
]}

η̄2 [E(Rt+1)]
2 [E(Rt−1)αt−1E(1− τt−1) + αtE(1− τt)]

+ o(1). (A.68)

Propositions 3.2 and 3.3 follow from (A.68). To show Proposition 3.2, we note that an increase in Bt

holding bt/Rt+Bt/L
2
t constant (so that there is no effect on τt) raises µt and Lt because of (A.61) and

(A.68). To show Proposition 3.3, we note that an increase in αt holdingRt−1αt−1(1−τt−1)+αt(1−τt)

constant, which in order zero amounts to holding E(Rt−1)αt−1E(1− τt−1) + αtE(1− τt) constant,

lowers the numerator in (A.68) if γ > 1 and raises it if γ < 1. Therefore, (A.61) and (A.68) imply

that µt and Lt decrease if γ > 1 and increase if γ < 1.

We next study the equilibrium under complete participation. Using (A.39) and the fact that the

sequence {ηt}t≥2 is independent and mean-zero, and proceeding as in the incomplete-participation

case, we find

E [u(ct+2)] = u(c0t+2)

+ u′(c0t+2)

{

t
∑

t′=1

(

t+1
∏

t′′=t′+2

E(Rt′′)

)

µt′ η̄
2Bt′,t

E(Rt′)E(Rt′+1)
+

[

Var(ηt+2)

[E(Rt+2)]
3 +

µt+1η̄
2

E(Rt+1) [E(Rt+2)]
2

]

Bt+1,t

}

+
1

2
u′′(c0t+2)







t−2
∑

t′=1

(

t+1
∏

t′′=t′+2

E(Rt′′)

)2
Var(ηt′+1)B

2
t′,t

[E(Rt′+1)]
2 + Var(ηt)

[

E(Rt+1)Bt−1,t

E(Rt)
− E(Rt+1)αt

]2

+Var(ηt+1)

[

Bt,t

E(Rt+1)
− E(Rt)αt

]2

+
Var(ηt+2)B

2
t+1,t

[E(Rt+2)]
4

}

+ o(η̄2), (A.69)
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where

c0t+2 ≡ E(Rt)E(Rt+1)αt.

Maximizing the objective (A.65) with respect to {Bt′,t}t′=1,..,t+1, and using the fact that utility is

CRRA, we find the first-order conditions

(

∏t+1
t′′=t′+2 E(Rt′′)

)

µt′ η̄
2

E(Rt′)E(Rt′+1)
=

γ
(

∏t+1
t′′=t′+2 E(Rt′′)

)2
Var(ηt′+1)Bt′,t

E(Rt)E(Rt+1) [E(Rt′+1)]
2 αt

+ o(η̄2) (A.70)

for t′ = 1, .., t − 2, and

E(Rt+1)µt−1η̄
2

E(Rt−1)E(Rt)
=

γVar(ηt)

[E(Rt)]
2 αt

[

E(Rt+1)Bt−1,t

E(Rt)
− E(Rt+1)αt

]

+ o(η̄2), (A.71)

µtη̄
2

E(Rt)E(Rt+1)
=

γVar(ηt+1)

E(Rt) [E(Rt+1)]
2 αt

[

Bt,t

E(Rt+1)
− E(Rt)αt

]

+ o(η̄2), (A.72)

Var(ηt+2)

[E(Rt+2)]
3 +

µt+1η̄
2

E(Rt+1) [E(Rt+2)]
2 =

γVar(ηt+2)Bt+1,t

E(Rt)E(Rt+1) [E(Rt+2)]
4 αt

+ o(η̄2), (A.73)

Eqs. (A.70)-(A.73) yield bond demands. We can substitute these demands into the market-clearing

condition (A.42), which we can write as

∞
∑

t′=t−1

Bt,t′ = 0 (A.74)

by inverting t and t′, and solve for µt. The demand Bt,t can be computed from (A.72), the demand

Bt,t−1 from (A.73) written for t − 1 instead of t, and the demand Bt,t′ for t
′ > t from (A.70) and

(A.71) after inverting t and t′ = 1, .., t − 1. We find

µt = −
γVar(ηt+1)E(Rt)

[

E(Rt−1)αt−1

γ
+ αt +

αt+1

E(Rt)

]

η̄2E(Rt+1)

[

E(Rt−1)αt−1 + αt +
∑∞

t′=t+1
αt′∏t′−1

t′′=t
E(Rt′′ )

] + o(1). (A.75)
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Propositions 4.5 and 4.6 follow from (A.75). To show Proposition 4.5, we note that

B∗
t =Bt,t−1 +Bt,t

=
µtη̄

2 [E(Rt+1)]
2 [E(Rt−1)αt−1 + αt]

γVar(ηt+1)
+ E(Rt)E(Rt+1)

[

E(Rt−1)αt−1

γ
+ αt

]

+ o(1)

=E(Rt)E(Rt+1)



−

E(Rt−1)αt−1

γ
+ αt +

αt+1

E(Rt)

E(Rt−1)αt−1 + αt +
∑∞

t′=t+1
αt′∏t′−1

t′′=t
E(Rt′′ )

[E(Rt−1)αt−1 + αt]

+
E(Rt−1)αt−1

γ
+ αt

]

+ o(1)

=

E(Rt)E(Rt+1)

[

− αt+1

E(Rt)
[E(Rt−1)αt−1 + αt] +

[

E(Rt−1)αt−1

γ
+ αt

]

∑∞
t′=t+1

αt′∏t′−1

t′′=t
E(Rt′′ )

]

E(Rt−1)αt−1 + αt +
∑∞

t′=t+1
αt′∏t′−1

t′′=t
E(Rt′′ )

+ o(1),

(A.76)

where the second step follows from using (A.72) and (A.73), and the third from (A.75). The first

statement of Proposition 4.5 follows from (A.76) and the second from (A.75).

To show Proposition 4.6, we note that (A.61) implies that the expected return of two- relative

to one-period bonds over a two-period horizon is

L2
t −RtE(Rt+1) = µtη̄

2 + o(η̄2), (A.77)

and over a one-period horizon is

E

[

L2
t

Rt+1

]

−Rt = E

[

RtE(Rt+1) + µtη̄
2

E(Rt+1) + ηt+1

]

−Rt+o(η̄2) =
1

E(Rt+1)

[

µtη̄
2 +

Var(ηt+1)Rt

E(Rt+1)

]

+o(η̄2).

(A.78)
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Eq. (A.75) implies that µt < 0 and

µtη̄
2 +

Var(ηt+1)Rt

E(Rt+1)
= −

γVar(ηt+1)E(Rt)
[

E(Rt−1)αt−1

γ
+ αt +

αt+1

E(Rt)

]

E(Rt+1)

[

E(Rt−1)αt−1 + αt +
∑∞

t′=t+1
αt′∏t′−1

t′′=t
E(Rt′′ )

] +
Var(ηt+1)Rt

E(Rt+1)
+ o(1)

=
Var(ηt+1)E(Rt)

E(Rt+1)



−
γ
[

E(Rt−1)αt−1

γ
+ αt +

αt+1

E(Rt)

]

E(Rt−1)αt−1 + αt +
∑∞

t′=t+1
αt′∏t′−1

t′′=t
E(Rt′′ )

+ 1



 + o(1)

=

Var(ηt+1)E(Rt)

[

(1− γ)
[

αt +
αt+1

E(Rt)

]

+
∑∞

t′=t+1
αt′∏t′−1

t′′=t
E(Rt′′ )

]

E(Rt+1)

[

E(Rt−1)αt−1 + αt +
∑∞

t′=t+1
αt′∏t′−1

t′′=t
E(Rt′′ )

] + o(1).

Therefore, the sign of expected excess returns over a one- and a two-period horizon is as in Propo-

sition 4.6.

Proof of Proposition 5.4: We assume that the values of {ζt, θt}t≥1 are proportional to η̄, as

are those of {ηt}t≥1. We denote the investment of generation t in the technology in period t′ by

xt′,t. Generalizing (A.53), we find that the consumption of generation t in the equilibrium with

incomplete participation is

ct+2 =Rf
t R

f
t+1αt(1− τt) + (Rt −Rf

t )R
f
t+1xt,t + (Rt+1 −Rf

t+1)xt+1,t

+

(

1−
Rf

t R
f
t+1

L2
t

)

Bt,t +

(

1

Rf
t+2

−
Rf

t+1

L2
t+1

)

Bt+1,t. (A.79)

We look for an equilibrium in which the one- and two-period interest rates in period t ≥ 1 are given

by

Rf
t = E(Rt) + ηt − ξtη̄

2 + o(η̄2), (A.80)

L2
t = Rf

t E(R
f
t+1) + µtη̄

2 + o(η̄2), (A.81)

where (ξt, µt) are deterministic functions of t. Using Rt = E(Rt)+ηt+θt+1, (A.62), (A.63), (A.79)-

(A.81), the fact that (ηt+1, θt+1) are independent of (ηt+2, θt+2), and the fact that (ηt+1, θt+1, ηt+2, θt+2)
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are mean-zero and independent of information available in period t, we find

E [u(ct+2)] =u(c0t+2) + u′(c0t+2)

{

[

ξtη̄
2
E(Rt+1) + Cov(ηt+1, θt+1)

]

xt,t +
µtη̄

2Bt,t

E(Rt)E(Rt+1)

ξt+1η̄
2xt+1,t +

[

Var(ηt+2)

[E(Rt+2)]
3 +

µt+1η̄
2

E(Rt+1) [E(Rt+2)]
2

]

Bt+1,t

}

+
1

2
u′′(c0t+2)

{

Var[Rf
t αt(1− τt)]

[

E(Rf
t+1)

]2
+ Var(θt+1) [E(Rt+1)]

2 x2t,t

− 2Cov(ηt+1, θt+1)

[

Bt,t

E(Rt+1)
− E[Rtαt(1− τt)]

]

E(Rt+1)xt,t

+ Var(ηt+1)

[

Bt,t

E(Rt+1)
− E[Rtαt(1− τt)]

]2

+Var(θt+2)x
2
t+1,t − 2Cov(ηt+2, θt+2)

xt+1,tBt+1,t

[E(Rt+2)]
2 +

Var(ηt+2)B
2
t+1,t

[E(Rt+2)]
4

}

+ o(η̄2),

(A.82)

where

c0t+2 ≡ E[Rf
t αt(1− τt)]E(R

f
t+1).

Maximizing the objective (A.82) with respect to (xt,t, Bt,t, xt+1,t, Bt+1,t), and using the fact that

utility is CRRA, we find the first-order conditions

ξtη̄
2
E(Rt+1) + Cov(ηt+1, θt+1) =

γ

E(Rt)E(αt)E(1− τt)

×

{

Var(θt+1)E(Rt+1)xt,t − Cov(ηt+1, θt+1)

[

Bt,t

E(Rt+1)
− E(Rt)E(αt)E(1− τt)

]}

+ o(η̄2),

(A.83)

µtη̄
2

E(Rt)E(Rt+1)
=

γ

E(Rt)E(Rt+1)E(αt)E(1− τt)

×

{

−Cov(ηt+1, θt+1)xt,t +
Var(ηt+1)

E(Rt+1)

[

Bt,t

E(Rt+1)
− E(Rt)E(αt)E(1− τt)

]}

+ o(η̄2), (A.84)
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ξt+1η̄
2 =

γ

E(Rt)E(Rt+1)E(αt)E(1− τt)

{

Var(θt+2)xt+1,t − Cov(ηt+2, θt+2)
Bt+1,t

[E(Rt+2)]
2

}

+ o(η̄2),

(A.85)

Var(ηt+2)

[E(Rt+2)]
3 +

µt+1η̄
2

E(Rt+1) [E(Rt+2)]
2 =

γ

E(Rt)E(Rt+1) [E(Rt+2)]
2
E(αt)E(1− τt)

×

{

−Cov(ηt+2, θt+2)xt+1,t +
Var(ηt+2)Bt+1,t

[E(Rt+2)]
2

}

+ o(η̄2). (A.86)

The market-clearing conditions are Bt = Bt,t−1 + Bt,t for two-period bonds and bt = bt,t−1 + bt,t

for one-period bonds, where bt,t′ denotes the face value of one-period bonds held by generation t′

in period t. The latter face values are given by

αt(1− τt) = xt,t +
bt,t

Rf
t

+
Bt,t

L2
t

, (A.87)

αt−1(1− τt−1)R
f
t−1 + xt−1,t−1(Rt−1 −Rf

t−1) +Bt−1,t−1

(

1

Rf
t

−
Rf

t−1

L2
t

)

= xt,t−1 +
bt,t−1

Rf
t

+
Bt,t−1

L2
t

,

(A.88)

where the left-hand side of (A.87) and (A.88) is the income that generation t and t−1, respectively,

enter period t with, and the right-hand side represents how this income is divided into an investment

in the technology and in one- and two-period bonds. Using (A.80), (A.81), (A.87) and (A.88), we

can write the market-clearing condition for one-period bonds as

bt = E(Rt)

[

E(αt)E(1− τt) + E(Rt−1)E(αt−1)E(1− τt−1)− (xt,t + xt,t−1)−
Bt,t +Bt,t−1

E(Rt)E(Rt+1)

]

+o(1).

Substituting (xt,t, Bt,t, xt,t−1, Bt,t−1) from (A.83)-(A.86) into the market-clearing conditions for one-

and two-period bonds, we find

ξt = γ
Var(θt+1)Z1,t −

Cov(ηt+1,θt+1)
[E(Rt+1)]2

[

Z2,t +
E(Rt)E(Rt+1)

γ
E(αt)E(1− τt)

]

η̄2E(Rt) [E(Rt−1)E(αt−1)E(1− τt−1) + E(αt)E(1− τt)]
, (A.89)

µt = γ

Var(ηt+1)
[E(Rt+1)]2

[

Z2,t −
E(Rt)E(Rt+1)

γ
E(Rt−1)E(αt−1)E(1− τt−1)

]

− Cov(ηt+1, θt+1)Z1,t

η̄2 [E(Rt−1)E(αt−1)E(1− τt−1) + E(αt)E(1− τt)]
,

(A.90)
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where

Z1,t ≡ E(Rt−1)E(αt−1)E(1− τt−1) + E(αt)E(1− τt)−
bt

E(Rt)
−

Bt

E(Rt)E(Rt+1)
,

Z2,t ≡ Bt − E(Rt)E(Rt+1)E(αt)E(1− τt).

Consider next the effect of increasing Bt holding bt/R
f
t + Bt/L

2
t constant, which in order zero

amounts to holding bt/E(Rt) +Bt/(E(Rt)E(Rt+1)) constant. Consider also the effect of increasing

αt holding Rt−1αt−1(1 − τt−1) + αtE(1 − τt) constant, which in order zero amounts to increasing

E(αt) holding E(Rt−1)E(αt−1)E(1− τt−1)+E(αt)E(1− τt) constant. Eqs. (A.77) and (A.78) imply

that the effects on expected excess returns, over both a one- and a two-period horizon, are identical

to those on µt. Eqs. (A.80) and (A.81) imply that the effects on the two-period interest rate Lt

are identical to those on −ξtE(Rt+1) + µt. Eq. (A.80) implies that the effects on the one-period

interest rate Rf
t are identical to those on −ξt. Eqs. (A.89) and (A.90) imply that these effects are

as in the proposition.
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Panel A: Slope regression sample Panel B: Maturity regression sample

Slope (%) Median age (years) Maturity (years) Median age (years)

Mean 0.29 36.5 6.0 34.6

Median 0.35 37.2 5.5 35.1

St. Dev. 0.59 4.1 2.6 4.0

Min -2.01 27.8 0.0 25.5

p5 -0.83 28.6 2.5 27.6

p95 1.04 42.5 11.4 40.6

Max 2.42 44.7 14.5 44.1

Number of observations: 235 Number of observations: 642

Table 1: Summary statistics

Slope refers to the difference in nominal yields between 30-year and 10-year benchmark government 

bonds. Median age refers to the median age of the population. Maturity refers to the average maturity 

of government debt.
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Panel A: Slope regression sample

Belgium BEL 13 0.48 0.21 40.0 0.9

Canada CAN 35 0.35 0.24 34.0 3.8

France FRA 13 0.51 0.24 38.7 0.9

Germany DEU 23 0.38 0.39 40.2 2.2

Italy ITA 13 0.45 0.26 39.9 1.2

Japan JPN 12 0.85 0.18 42.9 1.2

Spain ESP 11 0.54 0.30 38.3 0.9

Switzerland CHE 13 0.83 0.58 40.0 1.2

United Kingdom GBR 51 -0.13 0.88 36.0 1.8

USA USA 51 0.17 0.45 31.8 2.9

Number of countries: 10

Australia AUS 36 5.3 1.3 32.7 3.0

Austria AUT 29 6.2 0.9 37.3 2.1

Belgium BEL 20 3.4 1.1 35.4 1.2

Canada CAN 50 6.9 2.0 31.4 4.8

Denmark DNK 32 4.5 1.2 37.4 1.9

Finland FIN 19 3.7 0.4 38.3 2.5

France FRA 20 6.3 0.4 37.5 1.5

Germany DEU 43 5.1 0.8 37.9 2.7

Iceland ISL 15 4.2 0.6 32.8 1.2

Ireland IRL 48 8.3 2.2 29.2 2.6

Italy ITA 46 5.2 2.7 35.8 3.1

Japan JPN 11 5.4 0.4 42.4 1.1

Luxembourg LUX 11 3.1 2.8 37.7 0.6

Netherlands NLD 50 7.0 1.5 33.2 4.0

New Zealand NZL 18 4.3 0.3 34.3 1.5

Norway NOR 24 4.8 1.6 36.3 1.5

Spain ESP 48 5.7 3.4 33.4 3.4

Sweden SWE 24 4.0 1.4 38.0 1.5

United Kingdom GBR 48 11.3 1.4 35.9 1.7

USA USA 50 4.6 0.9 31.7 2.9

Number of countries: 20

Table 2: Summary statistics by country

Median age

(st.dev.)

Country

Country

Panel B: Maturity regression sample

Median age

(st.dev.)

Country code Number of 

observations

Slope in %

(mean)

Country code

Slope in %

(st.dev.)

Median age

(mean)

Number of 

observations

Maturity

(mean)

Maturity

(st.dev.)

Median age

(mean)
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(OLS) (Between) (Fixed effects) (Random effects)

Median age 0.0469*** 0.0611** 0.0389 0.0456***

(3.94) (2.80) (1.63) (2.64)

Constant -1.421** -1.890* -1.129 -1.316*

(2.95) (2.26) (1.29) (1.93)

Number of observations 235 235 235

Number of groups 10

R-squared 10.7% 49.5% 26.5%

Hausman test: prob>chi2 42.3%

(OLS) (Between) (Fixed effects) (Random effects)

Median age -0.167** -0.172 -0.146** -0.147**

(2.08) (1.23) (2.48) (2.51)

Constant 11.74*** 11.55** 11.02*** 10.68***

(4.29) (2.32) (5.39) (4.98)

Number of observations 642 642 642

Number of groups 20

R-squared 6.4% 7.7% 59.6%

Hausman test: prob>chi2 85.0%

Absolute value of t- or z-statistics, computed with clustered standard errors, in parentheses

* significant at 10%; ** significant at 5%; *** significant at 1%

Table 3: Regression results
Panel A reports results from panel regressions of the slope of the government bond yield curve (measured as the difference between the 

30-year and 10-year yields) on the median age of the population (in years).  Panel B reports results from panel regressions of the

average maturity of government debt (in years) on the median age of the population. Groups refer to individual countries.

Panel B: Regressions of debt maturity on median age

Panel A: Regressions of slope on median age
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Figure 1: Complete participation vs. autarky. The figure is drawn for constant endowments (αt = 1 for all
t), equally likely states (p = 0.5), coefficient of relative risk aversion γ = 4, average gross return
of the linear production technology R = (1 + 2.1%)15, and realized return 10% above R in state
h and 10% below in state ℓ. Consumption is normalized by its expected value, R2.
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Figure 2: Taxes and supply of one-period bonds. The figure is drawn for the same parameter values as
Figure 1.
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Figure 3: Real and nominal yield curve slopes. This graph plots country-year observations for the slope
of the real yield curve for the United Kingdom (GB, from the Bank of England) and the United
States (US, from Global Financial Data) against the slope of the nominal yield curve. The sample
period is 1998-2010. The graph also includes a fitted regression line.
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Figure 4: Slope of the yield curve and median age. This graph plots the sample means of the difference
between 30-year and 10-year government bond yields for each country (from Global Financial
Data) against the sample means of the median age for each country (from the United Nations
Population Division).
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Figure 5: Maturity of government debt and median age. This graph plots the sample means of the maturity
of government debt for each country (from the OECD and Missale (1999)) against the sample
means of the median age for each country (from the United Nations Population Division).
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