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ABSTRACT
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1 Introduction: Motivation and Model

Many economic optimization problems require weeks or months of CPU

time, or even more, to solve because of the “curse of dimensionality”. Par-

allelization is a natural approach to break the “curse of dimensionality”

because it allows you to use hundreds of hours of CPU time within one wall

clock hour if you have hundreds of CPUs working together. This paper uses

a user-friendly parallelization tool, Master-Worker (MW), on HTCondor to

show that dynamic programming problems can fully utilize the potential

value of parallelism on hardware available to most economists. It also is one

of the first large uses of parallel computation in dynamic programming.

Dynamic programming (DP) is the essential tool in solving problems of

dynamic and stochastic controls in economic analysis. Many DP problems

are solved by value function iteration, where the period t value function

is computed from the period t + 1 value function, and the value function

is known at the terminal time T . A set of discrete and approximation

nodes will be chosen and the period t value function at those nodes will be

computed and then we can use some approximation methods to approximate

the value function. For every approximation node, there is a time-consuming

optimization problem to be solved. Moreover, these optimization problems

are independent, allowing them to be solved efficiently in parallel.

This paper is constructed as follows. Section 2 gives an introduction

of HTCondor-MW system. Section 3 describes DP algorithms. Section 4

introduces two types of parallel DP algorithms in the HTCondor-MW sys-

tem. Section 5 and 6, respectively, give computational results of the parallel

DP algorithms in the HTCondor-MW system for solving multidimensional

optimal growth problems and dynamic portfolio optimization problems.

2 A Grid Platform

The HTCondor system is a high-throughput computing (HTC), open-source

software framework for distributed parallelization of computationally inten-

sive tasks on a cluster of computers. The HTCondor software is freely

available to all; see http://research.cs.wisc.edu/htcondor/index.html for de-

tails. HTCondor acts as a management tool for identifying, allocating and

managing available resources to solve large distributed computations. For
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example, if a workstation on a network is currently unused, HTCondor will

detect that fact, and send it a task. HTCondor will continue to use that

workstation until a higher-priority user (such as a student sitting at the key-

board) appears, at which time HTCondor ends its use of the workstation.

This is called “cycle scavenging” and allows a system to take advantage of

essentially free computing time. HTCondor can also be used on a dedicated

cluster.

The HTCondor team at the University of Wisconsin-Madison has devel-

oped several “flavors” of HTCondor, each fine-tuned for some specific type of

parallel programming. In this paper we use the HTCondor Master-Worker

(MW) system for parallel algorithms to solve DP problems. The HTCon-

dor MW system consists of two entities: a master process and a cluster of

worker processes. The master process decomposes the problem into small

tasks and puts those tasks in a queue. Each worker process first examines

the queue, takes the “top” problem off the queue and solves it. The worker

then sends the results to the master, examines the queue of unfinished tasks,

and repeats this process until the queue is empty. The workers’ execution is

a simple cycle: take a task off master’s queue, do the task, and then send the

results to the master. While the workers are solving the tasks, the master

collects the results and puts new tasks on the queue. This is a file-based,

remote I/O scheme that serves as the message-passing mechanism between

the master and the workers.

The MW paradigm helps the user circumvent the parallel programming

challenges, such as load balancing, termination detection, and the distribu-

tion of information across compute nodes. Moreover, computation in the

MW paradigm is fault-tolerant: if a worker cannot complete a task, due

to machine failure or interruption by another user, the master can detect

this and put that task back on the queue for another worker to execute.

The user can request any number of workers, independent of the number of

tasks. HTCondor can make use of a heterogeneous collection of computers,

where the fast computers will solve more tasks but slower computers can

still contribute.

HTCondor is an example of “High Throughput Computing” (HTC) and

is a valuable alternative to “High Performance Computing” (HPC). HPC is

typically associated with supercomputers. Its advantage is the specialized

communication hardware that allows for rapid communication among pro-
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cessors. However, a supercomputer program is assigned a large, but fixed,

number of processors; therefore, HPC can be efficient only if an algorithm

can keep large numbers of processors busy during the entire computation.

Algorithms that need different numbers of processors at different stages can-

not be implemented efficiently on HPC architectures. There are also access

problems with HPC. Due to the necessity of having a block of processors,

users must reserve time, and the lag time between requesting time and get-

ting access increases with the number of desired processors and requested

time. Moreover, economists face substantial bureaucratic hurdles in getting

access to supercomputer time because the people who control supercomput-

ers impose requirements that are met by few economists. In particular, the

authors have been told that DOE supercomputers available to the general

scientific community are not available to economists who want to analyze

policy issues, such as taxation problems.

In contrast, HTC is a paradigm with much greater flexibility and lower

cost. The marginal social cost of CPU time used in HTCondor is essentially

zero because it is using CPU time that otherwise would go unused. HTCon-

dor manages the number of processors being used in response to processor

availability and the needs of the computational procedure. If HTCondor

sees that a computation needs hundreds of processors, it will give the com-

putation what it needs if the resources are available, but if it later sees that a

computation needs only a dozen processors, it can free up unused processors

and allocate them to other computations. HTC is opportunistic, utilizing

any resource that becomes available and not forcing the user to make reser-

vations. The disadvantage of HTC is that interprocessor communication

will generally be slower. While this does limit the amount of parallelization

that can be exploited, HTC environments can still efficiently use hundreds

of processors for many problems. This paper shows that DP is that kind of

problem.

For any researcher, the critical measure of computational cost has two

components: the time between his submission of a job and when he receives

the results, and the time he needs to spend getting access to a computer

system. On this dimension, HTC may dominate HPC for any researcher,

but even more so for economists where HTC is not just an option but is the

only option.
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3 Dynamic Programming

In economics and finance, we often encounter a finite horizon optimal decision-

making problem that can be expressed in the following general model:

V0(x0, θ0) = max
at∈D(xt,θt,t)

E

{
T−1∑
t=0

βtut(xt, at) + βTVT (xT , θT )

}
,

where xt is a continuous state process with an initial state x0, θt is a discrete

state process with an initial state θ0, and at is an action variable (xt, θt and

at can be vectors), ut(x, a) is a utility function at time t < T and VT (x, θ)

is a given terminal value function, β is the discount factor (0 < β ≤ 1),

D(xt, θt, t) is a feasible set of at, and E{·} is the expectation operator.

The DP model for the finite horizon problems is the basic Bellman equa-

tion,

Vt(x, θ) = max
a∈D(x,θ,t)

ut(x, a) + βE{Vt+1(x+, θ+)},

for t = 0, 1, . . . , T − 1, where (x+, θ+) is the next-stage state conditional on

the current-stage state (x, θ) and action a, and Vt(x, θ) is called the value

function at stage t while the terminal value function VT (x, θ) is given.

3.1 Numerical DP Algorithms

In DP problems, if state variables and control variables are continuous, then

value functions must be approximated in some computationally tractable

manner. It is common to approximate value functions with a finitely pa-

rameterized collection of functions; that is, V (x, θ) ≈ V̂ (x, θ;b), where b is

a vector of parameters. The functional form V̂ may be a linear combination

of polynomials, or it may represent a rational function or neural network

representation, or it may be some other parameterization specially designed

for the problem. After the functional form is fixed, we focus on finding

the vector of parameters, b, such that V̂ (x, θ;b) approximately satisfies

the Bellman equation (Bellman, 1957). Algorithm 1 is the parametric DP

method with value function iteration for finite horizon problems with both

multidimensional continuous and discrete states. (More detailed discussion

of numerical DP can be found in Cai (2009), Judd (1998) and Rust (2008).)

In the algorithm, n is the dimension for the continuous states x, and d is the

dimension for discrete states θ ∈ Θ = {θj : 1 ≤ j ≤ D} ⊂ Rd, where D is
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Algorithm 1 Parametric Dynamic Programming with Value Function Iter-
ation for Problems with Multidimensional Continuous and Discrete States

Initialization. Given a finite set of θ ∈ Θ = {θj : 1 ≤ j ≤ D} ⊂ Rd
and the probability transition matrix P =

(
pj,j′

)
D×D where pj,j′ is

the transition probability from θj ∈ Θ to θj
′ ∈ Θ for 1 ≤ j, j′ ≤ D.

Choose a functional form for V̂ (x, θ;b) for all θ ∈ Θ, and choose the
approximation grid, Xt = {xit : 1 ≤ i ≤ Nt} ⊂ Rn. Let V̂ (x, θ;bT ) =
VT (x, θ). Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and
2.

Step 1. Maximization step. Compute

vi,j = max
a∈D(xi,θj ,t)

ut(x
i, θj , a) + βE{V̂ (x+, θ+;bt+1)},

for each xi ∈ Xt and θj ∈ Θ, 1 ≤ i ≤ Nt, 1 ≤ j ≤ D, where the
next-stage discrete state θ+ is random with probability mass function
Pr(θ+ = θj

′ | θj) = pj,j′ for each θj
′ ∈ Θ, and x+ is the next-stage

state transition from xi and may be also random.

Step 2. Fitting step. Using an appropriate approximation method, for each
1 ≤ j ≤ D, compute btj , such that V̂ (x, θj ;btj) approximates {(xi, vi,j):
1 ≤ i ≤ Nt} data, i.e., vi,j ≈ V̂ (xi, θj ;btj) for all xi ∈ Xt. Let bt ={
btj : 1 ≤ j ≤ D

}
.

the number of different discrete state vectors. The transition probabilities

from θj to θj
′

for 1 ≤ j, j′ ≤ D are given.

3.2 Approximation

An approximation scheme has two ingredients: basis functions and approx-

imation nodes. Approximation nodes can be chosen as uniformly spaced

nodes, Chebyshev nodes, or some other specified nodes. From the view-

point of basis functions, approximation methods can be classified as either

spectral methods or finite element methods. A spectral method uses globally

nonzero basis functions φj(x) such that V̂ (x;b) =
∑m

j=0 bjφj(x). Examples

of spectral methods include ordinary polynomial approximation, ordinary

Chebyshev polynomial approximation, shape-preserving Chebyshev polyno-

mial approximation (Cai and Judd, 2012b), and Chebyshev-Hermite approx-

imation (Cai and Judd, 2012c). In contrast, a finite element method uses
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local basis functions φj(x) that are nonzero over sub-domains of the ap-

proximation domain. Examples of finite element methods include piecewise

linear interpolation, shape-preserving rational function spline interpolation

(Cai and Judd, 2012a), cubic splines, and B-splines. See Cai (2009), Cai

and Judd (2010), and Judd (1998) for more details.

3.2.1 Chebyshev Polynomial Approximation

Chebyshev polynomials on [−1, 1] are defined as Tj(x) = cos(j cos−1(x)),

while general Chebyshev polynomials on [xmin, xmax] are defined as Tj((2x−
xmin−xmax)/(xmax−xmin)) for j = 0, 1, 2, . . .. These polynomials are orthog-

onal under the weighted inner product: 〈f, g〉 =
´ xmax

xmin
f(x)g(x)w(x)dx with

the weighting function w(x) =
(

1− ((2x− xmin − xmax)/(xmax − xmin))2
)−1/2

.

A degree m Chebyshev polynomial approximation for V (x) on [xmin, xmax]

is

V̂ (x;b) =
m∑
j=0

bjTj
(

2x− xmin − xmax

xmax − xmin

)
, (1)

where b = {bj} are the Chebyshev coefficients.

If we choose the Chebyshev nodes on [xmin, xmax]: xi = (zi + 1)(xmax −
xmin)/2 + xmin with zi = − cos ((2i− 1)π/(2m′)) for i = 1, . . . ,m’, and

Lagrange data {(xi, vi) : i = 1, . . . ,m′} are given (where vi = V (xi)), then

the coefficients bj in (1) can be easily computed by the Chebyshev regression

algorithm (see Judd, 1998).

3.2.2 Multidimensional Complete Chebyshev Approximation

In a d-dimensional approximation problem, let the domain of the value func-

tion be

{
x = (x1, . . . , xn) : xmin

j ≤ xj ≤ xmax
j , j = 1, . . . , n

}
,

for some real numbers xmin
j and xmax

j with xmax
j > xmin

j for j = 1, . . . , n.

Let xmin = (xmin
1 , . . . , xmin

n ) and xmax = (xmax
1 , . . . , xmax

n ). Then we de-

note [xmin, xmax] as the domain. Let α = (α1, . . . , αn) be a vector of

nonnegative integers. Let Tα(z) denote the product Tα1(z1) · · · Tαn(zn) for

z = (z1, . . . , zn) ∈ [−1, 1]n. Let
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Z(x) =

(
2x1 − xmin

1 − xmax
1

xmax
1 − xmin

1

, . . . ,
2xn − xmin

n − xmax
n

xmax
n − xmin

n

)
for any x = (x1, . . . , xn) ∈ [xmin, xmax].

Using these notations, the degree-m complete Chebyshev approximation

for V (x) is

V̂m(x;b) =
∑

0≤|α|≤m

bαTα (Z(x)) , (2)

where |α| =
∑n

j=1 αj for the nonnegative integer vector α = (α1, . . . , αn).

So the number of terms with 0 ≤ |α| =
∑n

j=1 αi ≤ m is
(
m+n
n

)
for the

degree-m complete Chebyshev approximation in Rn.

3.3 Numerical Integration

In the objective function of the Bellman equation, we often need to compute

the conditional expectation of V (x+). When the random variable is contin-

uous, we have to use numerical integration to compute the expectation.

Gaussian quadrature rules are often applied in computing the integration.

3.3.1 Gauss-Hermite Quadrature

In the expectation operator of the objective function of the Bellman equa-

tion, if the random variable has a normal distribution, then it will be good

to apply the Gauss-Hermite quadrature formula to compute the numeri-

cal integration. That is, if we want to compute E{f(Y )} where Y has a

distribution N (µ, σ2), then

E{f(Y )} = (2πσ2)−1/2

ˆ ∞
−∞

f(y)e−(y−µ)2/(2σ2)dy

= (2πσ2)−1/2

ˆ ∞
−∞

f(
√

2σ x+ µ)e−x
2√

2σdx

.
= π−

1
2

m∑
i=1

ωif(
√

2σxi + µ),

where ωi and xi are the Gauss-Hermite quadrature withm weights and nodes

over (−∞,∞). See Cai (2009), Judd (1998), Stroud and Secrest (1966) for

more details.

If Y is log normal, i.e., log(Y ) has a distribution N (µ, σ2), then we can
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assume that Y = eX where X ∼ N (µ, σ2), thus

E{f(Y )} = E{f(eX)} .= π−
1
2

m∑
i=1

ωif
(
e
√

2σxi+µ
)
.

3.3.2 Multidimensional Integration

If we want to compute a multidimensional integration, we could apply the

product rule. For example, suppose that we want to compute E{f(X)},
where X is a random vector with multivariate normal distribution N (µ,Σ)

over Rn, where µ is the mean column vector and Σ is the covariance matrix,

then we could do the Cholesky factorization first, i.e., find a lower triangular

matrix L such that Σ = LL>. This is feasible as Σ must be a positive semi-

definite matrix from the covariance property. Thus,

E{f(X)} = ((2π)ndet(Σ))−1/2
ˆ
Rn
f(y)e−(y−µ)>Σ−1(y−µ)/2dy

=
(
(2π)ndet(L)2

)−1/2
ˆ
Rn
f
(√

2Lx+ µ
)
e−x

>x2n/2det(L)dx

.
= π−

n
2

m∑
i1=1

· · ·
m∑

in=1

ωi1 · · ·ωidf

(
√

2l1,1xi1 + µ1,

√
2(l2,1xi1 + l2,2xi2) + µ2, · · · ,

√
2

 n∑
j=1

ln,jxij

+ µn

)
, (3)

where ωi and xi are the Gauss-Hermite quadrature with m weights and

nodes over (−∞,∞), li,j is the (i, j)-element of L, and det(·) means the

matrix determinant operator.

4 Parallel Dynamic Programming

The numerical DP algorithms can be applied easily in the HTCondor MW

system for DP problems with multidimensional continuous and discrete

states. To solve these problems, numerical DP algorithms with value func-

tion iteration have the maximization step that is mostly time-consuming in

numerical DP. That is,

vi,j = max
a∈D(xi,θj ,t)

u(xi, θj , a) + βE{V̂ (x+, θ+;bt+1)},
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Algorithm 2 Type-I Parallel Dynamic Programming with Value Function
Iteration for the Master

Initialization. Given a finite set of θ ∈ Θ = {θj : 1 ≤ j ≤ D} ⊂ Rd.
Set bT as the parameters of the terminal value function. For t =
T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Separate the maximization step into D tasks, one task per θ ∈ Θ.
Each task contains parameters bt+1, stage number t and the corre-
sponding task identity for some θj . Then send these tasks to the
workers.

Step 2. Wait until all tasks are done by the workers. Then collect pa-
rameters btj from the workers, for all 1 ≤ j ≤ D, and let bt ={
btj : 1 ≤ j ≤ D

}
.

for each continuous state point xi in the finite set Xt ⊂ Rn and each discrete

state vector θj ∈ Θ, where Nt is the number of points of Xt and D is the

number of points of Θ. So there are Nt ×D small-size maximization prob-

lems. Thus, if the Nt×D is large (that is very possible in high-dimensional

problems), then it will take a huge amount of time to do the DP maximiza-

tion step. However, these Nt ×D small-size maximization problems can be

naturally parallelized in the HTCondor MW system, in which one or several

maximization problem(s) could be treated as one task.

4.1 Type-I Parallelization

When D is large but Nt has a medium size, we could separate the Nt ×D
maximization problems into D tasks, where each task corresponds to a dis-

crete state vector θj and all continuous state nodes set Xt. Algorithm 2 is the

architecture for the master processor, and Algorithm 3 is the corresponding

architecture for the workers.

4.2 Type-II Parallelization

If the number of nodes for continuous states, Nt, is large, or the maximiza-

tion step for each node is time-consuming, then it will be possible to break

the task for one θj into subtasks and maintain parallel efficiency. If the

fitting method requires all points {(xi, vi,j): 1 ≤ i ≤ Nt} to construct the
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Algorithm 3 Type-I Parallel Dynamic Programming with Value Function
Iteration for the Workers

Initialization. Given a finite set of θ ∈ Θ = {θj : 1 ≤ j ≤ D} ⊂ Rd
and the probability transition matrix P =

(
pj,j′

)
D×D where pj,j′ is

the transition probability from θj ∈ Θ to θj
′ ∈ Θ for 1 ≤ j, j′ ≤ D.

Choose a functional form for V̂ (x, θ;b) for all θ ∈ Θ.

Step 1. Get parameters bt+1, stage number t and the corresponding task
identity for one θj ∈ Θ from the master, and then choose the approx-
imation grid, Xt = {xit : 1 ≤ i ≤ Nt} ⊂ Rn.

Step 2. For this given θj , compute

vi,j = max
a∈D(xi,θj ,t)

u(xi, θj , a) + βE{V̂ (x+, θ+;bt+1)},

for each xi ∈ Xt, 1 ≤ i ≤ Nt, where the next-stage discrete state θ+ ∈
Θ is random with probability mass function P(θ+ = θj

′ | θj) = pj,j′

for each θj′ ∈ Θ, and x+ is the next-stage state transition from xi and
may be also random.

Step 3. Using an appropriate approximation method, compute btj such

that V̂ (x, θj ;btj) approximates {(xi, vi,j): 1 ≤ i ≤ Nt}, i.e., vi,j ≈
V̂ (xi, θj ;btj) for all xi ∈ Xt.

Step 4. Send btj and the corresponding task identity for θj to the master.
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Algorithm 4 Type-II Parallel Dynamic Programming with Value Function
Iteration for the Master

Initialization. Given a finite set of θ ∈ Θ = {θj : 1 ≤ j ≤ D} ⊂ Rd.
Choose a functional form for V̂ (x, θ;b) for all θ ∈ Θ, and choose the
approximation grid, Xt = {xit : 1 ≤ i ≤ Nt} ⊂ Rn. Set bT as the
parameters of the terminal value function. For t = T − 1, T − 2, . . . , 0,
iterate through steps 1 and 2.

Step 1. Separate Xt into M disjoint subsets with almost equal sizes:
Xt,1, . . . ,Xt,M , and separate the maximization step into M ×D tasks,
one task per (Xt,m, θj) with θj ∈ Θ, for m = 1, . . . ,M and j =
1, . . . , D. Each task contains the parameters bt+1, the stage num-
ber t and the corresponding task identity for (Xt,m, θj). Then send
these tasks to the workers.

Step 2. Wait until all tasks are done by the workers. Then collect all vi,j
from the workers, for 1 ≤ i ≤ Nt, 1 ≤ j ≤ D.

Step 3. Using an appropriate approximation method, for each θj ∈ Θ, com-
pute btj such that V̂ (x, θj ;btj) approximates {(xi, vi,j): 1 ≤ i ≤ Nt},
i.e., vi,j ≈ V̂ (xi, θj ;btj) for all xi ∈ Xt. Let bt =

{
btj : 1 ≤ j ≤ D

}
.

approximation, then each worker cannot do step 3 and 4 along with step

1 and 2 in Algorithm 3, as it has only an incomplete set of approximation

nodes xi for one given θj . Therefore, the fitting step is executed by the

master. Thus we have Algorithm 4 for the master process and Algorithm 5

for the workers.

If it is quick to compute btj in the fitting step (e.g., Chebyshev poly-

nomial approximation using Chebyshev regression algorithm), then we can

just let the master do the fitting step like the type-II parallel DP algorithm.

However, if the fitting step is time-consuming, then the master could send

these fitting jobs for each discrete state θj to the workers, and then collect

the the new approximation parameters.

4.3 Sparsity

In many cases, the probability transition matrix is sparse and this fact can

be exploited to reduce communication cost. For example, suppose that

a worker is given the task to compute the value function for θj . When
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Algorithm 5 Type-II Parallel Dynamic Programming with Value Function
Iteration for the Workers

Initialization. Given a finite set of θ ∈ Θ = {θj : 1 ≤ j ≤ D} ⊂ Rd
and the probability transition matrix P =

(
pj,j′

)
D×D where pj,j′ is

the transition probability from θj ∈ Θ to θj
′ ∈ Θ for 1 ≤ j, j′ ≤ D.

Choose the approximation grid, Xt = {xit : 1 ≤ i ≤ Nt} ⊂ Rn, which
is the same with the set Xt in the master.

Step 1. Get the parameters bt+1, stage number t and the corresponding
task identity for one (Xt,m, θj) with θj ∈ Θ from the master.

Step 2. For this given θj , compute

vi,j = max
a∈D(xi,θj ,t)

u(xi, θj , a) + βE{V̂ (x+, θ+;bt+1)},

for all xi ∈ Xt,m, where the next-stage discrete state θ+ ∈ Θ is random
with probability mass function P(θ+ = θj

′ | θj) = pj,j′ for each θj
′ ∈ Θ,

and x+ is the next-stage state transition from xi and may be also
random.

Step 3. Send vi,j for these given xi ∈ Xt,m and θj , to the master process.

it computes the expectation in the objective function of the maximization

problems, it only needs access to the value functions for those θj
′

which can

reached from θj in one period. That is,

E{V̂ (x+, θ+;bt+1)} =
∑

1≤j′≤D, pj,j′ 6=0

pj,j′E{V̂ (x+, θj
′
;bt+1

j′ )}.

Therefore, when the master forms the description of a task for a worker,

it only needs to include those bt+1
j′ with nonzero transition probability pj,j′

(instead of the whole set of parameters, bt+1) in the tasks corresponding to

θj , i.e.,
{
bt+1
j′ : pj,j′ > 0, 1 ≤ j′ ≤ D

}
where pj,j′ = P(θ+ = θj

′ | θj), and

then send this subset of bt+1 to the workers in Step 1 of Algorithm 2 or 4.

This saves on master-worker communication costs.
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5 Application on Stochastic Optimal Growth Mod-

els

We consider a multi-dimensional stochastic optimal growth problem. We

assume that there are d sectors, and let kt = (kt,1, . . . , kt,d) denote the cap-

ital stocks of these sectors which is a d-dimensional continuous state vector

at time t. Let θt = (θt,1, . . . , θt,d) ∈ Θ = {θjt : 1 ≤ j ≤ D} ⊂ Rd denote

current productivity levels of the sectors which is a d-dimensional discrete

state vector at time t, and assume that θt follows a Markov process with

a stable probability transition matrix, denoted as θt+1 = g(θt, ξt) where

ξt are i.i.d. disturbances. Let lt = (lt,1, . . . , lt,d) denote elastic labor sup-

ply levels of the sectors which is a d-dimensional continuous control vector

variable at time t. Assume that the net production function of sector i

at time t is f(kt,i, lt,i, θt,i), for i = 1, . . . , d. Let ct = (ct,1, . . . , ct,d) and

It = (It,1, . . . , It,d) denote, respectively, consumption and investment of the

sectors at time t. We want to find an optimal consumption and labor sup-

ply decisions such that expected total utility over a finite-horizon time is

maximized, i.e.,

V0(k0, θ0) = max
kt,It,ct,lt

E

{
T−1∑
t=0

βtu(ct, lt) + βTVT (kT , θT )

}
,

s.t. kt+1,j = (1− δ)kt,j + It,j + εt,j , j = 1, . . . , d,

Γt,j =
ζ

2
kt,j

(
It,j
kt,j
− δ
)2

, j = 1, . . . , d,

d∑
j=1

(ct,j + It,j − δkt,j) =

d∑
j=1

(f(kt,j , lt,j , θt,j)− Γt,j) ,

θt+1 = g(θt, ξt),

where k0 and θ0 are given, δ is the depreciation rate of capital, Γt,j is the

investment adjustment cost of sector j, and ζ governs the intensity of the

friction, εt = (εt,1, . . . , εt,d) are serially uncorrellated i.i.d. disturbances with

E{εt,i} = 0, and VT (k, θ) is a given terminal value function. For this finite-

horizon model, Cai and Judd (2012c) solve some of its simplified problem.

An infinite-horizon version of this model is introduced in Den Haan et al

(2011), Juillard and Villemot (2011), and a nonlinear programming method

for dynamic programming is introduced in Cai et al. (2013a) to solve the
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multi-country growth model with infinite horizon.

5.1 Dynamic Programming Model

The DP formulation of the multi-dimensional stochastic optimal growth

problem is

Vt(k, θ) = max
c,l,I

u(c, l) + βE
{
Vt+1(k+, θ+) | θ

}
,

s.t. k+
j = (1− δ)kj + Ij + εj , j = 1, . . . , d,

Γj =
ζ

2
kj

(
Ij
kj
− δ
)2

, j = 1, . . . , d,

d∑
j=1

(cj + Ij − δkj) =

d∑
j=1

(f(kj , lj , θj)− Γj) ,

θ+ = g(θ, ξt),

for t = 0, . . . , T − 1, where k = (k1, . . . , kd) is the continuous state vector

and θ = (θ1, . . . , θd) ∈ Θ = {(ϑj,1, . . . , ϑj,d) : 1 ≤ j ≤ D} is the discrete

state vector, c = (c1, . . . , cd), l = (l1, . . . , ld), and I = (I1, . . . , Id) are control

variables, ε = (ε1, . . . , εd) are i.i.d. disturbance with mean 0, and k+ =

(k+
1 , . . . , k

+
d ) and θ+ =

(
θ+

1 , . . . , θ
+
d

)
∈ Θ are the next-stage state vectors.

Numerically, V (k, θ) is approximated with given values at finite nodes, so

the approximation is only good at a finite range. That is, the state variable

must be in a finite range [k, k̄], then we should have the restriction k+ ∈
[k, k̄]. Here k = (k1, ..., kd), k̄ = (k̄1, ..., k̄d), and k+ ∈ [k, k̄] denotes that

k+
i ∈ [ki, k̄i] for all 1 ≤ i ≤ d. Moreover, we should add c > 0 and l > 0 in

the constraints.

5.2 Numerical Example

In the following numerical example, we see the application of paralleliza-

tion of numerical DP algorithms for the DP model of the multi-dimensional

stochastic optimal growth problem. We let T = 5, β = 0.8, δ = 0.025,

ζ = 0.5, [k, k̄] = [0.2, 3.0]d, f(ki, li, θi) = θiAk
ψ
i l

1−ψ
i with ψ = 0.36 and

A = (1− β)/(ψβ) = 1, for i = 1, . . . , d, and

u(c, l) =
d∑
i=1

[
(ci/A)1−γ − 1

1− γ
− (1− ψ)

l1+η
i − 1

1 + η

]
,
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with γ = 2 and η = 1.

In this example, we let d = 4. So this is a DP example with 4-dimensional

continuous states and 4-dimensional discrete states. Here we assume that

the possible values of θi and θ+
i are

ϑ1 = 0.85, ϑ2 = 0.9, ϑ3 = 0.95, ϑ4 = 1.0, ϑ5 = 1.05, ϑ6 = 1.1, ϑ7 = 1.15,

and the probability transition matrix from θi to θ+
i is a 7 × 7 tridiagonal

matrix:

P =



0.75 0.25

0.25 0.50 0.25

0.25 0.50 0.25

0.25
. . .

. . .

. . . 0.50 0.25

0.25 0.75


,

for each i = 1, . . . , 4, and we assume that θ+
1 , . . . , θ

+
d are independent of each

other. That is,

Pr[θ+ = (ϑi1 , . . . , ϑi4) | θ = (ϑj1 , . . . , ϑj4)] = Pi1,j1Pi2,j2Pi3,j3Pi4,j4 ,

where Piα,jα is the (iα, jα) element of P , for any iα, jα = 1, . . . , 7, α =

1, . . . , 4.

In addition, we assume that ε1, . . . , ε4 are i.i.d., and each εi has 3 discrete

values:

δ1 = −0.01, δ2 = 0.0, δ3 = 0.01,

while their probabilities are q1 = 0.25, q2 = 0.5 and q3 = 0.25, respectively.

That is,

Pr[ε = (δn1 , . . . , δn4)] = qn1qn2qn3qn4 ,

for any nα = 1, 2, 3, α = 1, . . . , 4. Moreover, ε1, . . . , ε4 are assumed to be

independent of θ+
1 , . . . , θ

+
4 .
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Therefore,

E{V (k+, θ+) | θ = (ϑj1 , . . . , ϑj4)}

=

3∑
n1,n2,n3,n4=1

qn1qn2qn3qn4

6∑
i1,i2,i3,i4=1

Pi1,j1Pi2,j2Pi3,j3Pi4,j4 × (4)

V (k̂+
1 + δn1 , . . . , k̂

+
4 + δn4 , ϑi1 , . . . , ϑi4),

where k̂+
α = (1− δ)kα + Iα, for any iα = 1, . . . , 7, α = 1, . . . , 4.

From the formula (4), it seems that we should compute the value function

V at a large number of points up to 34 ∗ 74 = 194, 481 in order to evaluate

the expectation. But in fact, we can take advantage of the sparsity of the

probability transition matrix P . After canceling the zero probability terms,

the evaluation of the expectation will need to compute the value function

at a number of points ranging from 34 ∗ 24 = 1, 296 to 34 ∗ 34 = 6, 561,

which is far less that the case without using the sparsity. Moreover, the

communication cost between the master and workers is also far less than

the case without using the sparsity.

The continuous value function approximation is the complete degree-6

Chebyshev polynomial approximation method (2) with 74 = 2401 Cheby-

shev nodes for continuous state variables, the optimizer is NPSOL (Gill, P.,

et al., 1994), and the terminal value function is chosen as

VT (k, θ) = u(f(k, e, e), e)/(1− β),

where e is the vector with 1’s everywhere. Here e is chosen because it is

the steady state labor supply for the corresponding infinite-horizon problem

and is also the average value of θ.

5.3 HTCondor-MW Results

We use the master algorithm 2 and the worker algorithm 3 to solve the

optimal growth problem. There are seven possible values of θi for each

i = 1, . . . , 4, and each task consists of updating the value function at one

specific θj ; therefore, the total number of HTCondor-MW tasks for one value

function iteration is 74 = 2401. Furthermore, we use seven approximation

nodes in each continuous dimension to construct a degree six complete poly-

nomial; therefore, each task computes 2401 small-size maximization prob-
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Table 1: Statistics of Parallel DP under HTCondor-MW for the growth
problem

Wall clock time for all 3 VFIs 8.28 hours
Wall clock time for 1st VFI 0.34 hours
Wall clock time for 2nd VFI 3.92 hours
Wall clock time for 3rd VFI 4.01 hours
Total time workers were up (alive) 16.9 days
Total cpu time used by all workers 16.5 days
Number of (different) workers 50
Average Number Present Workers 49
Overall Parallel Performance 98.6%

lems as there are 2401 Chebyshev nodes.

Under HTCondor, we assign 50 workers to do this parallel work. Table

1 lists some statistics of our parallel DP algorithm under HTCondor-MW

system for the growth problem after running 3 value function iterations

(VFI). The last line of Table 1 shows that the parallel efficiency of our

parallel numerical DP method is very high (up to 98.6%) for this example.

We see that the total cpu time used by all workers to solve the optimal

growth problem is nearly 17 days, i.e., it will take nearly 17 wall clock days

to solve the problem without using parallelism. However, it takes only 8.28

wall clock hours to solve the problem if we use the parallel algorithm and

50 worker processors.

Table 2 gives the parallel efficiency with various number of worker pro-

cessors for this optimal growth model. We see that it has an almost linear

speed-up when we add the number of worker processors from 50 to 200. We

see that the wall clock time to solve the problem is only 2.26 hours now if

the number of worker processors increases to 200.

Parallel efficiency drops from 99% to 92% when we move from 100 pro-

cessors to 200. This is not the critical fact for a user. The most important

fact is that requesting 200 processors reduced the waiting time from sub-

mission to final output by 1.6 hours. Focussing on the user’s waiting time

is one of the values of the HTC approach to parallelization.
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Table 2: Parallel efficiency for various numbers of worker processors
# Worker Parallel Average task Total wall clock
processors efficiency wall clock time (second) time (hour)

50 98.6% 199 8.28

100 97% 185 3.89

200 91.8% 186 2.26

6 Application to Dynamic Portfolio Problems with

Transaction Costs

We consider a dynamic portfolio problem with transaction costs. We assume

that an investor begins with some initial wealth W0, invests it in several

assets, and manages it at every time t so as to maximize the expected

utility of wealth at a terminal time T . We assume a power utility function

for terminal wealth, u(W ) = W 1−γ/(1 − γ) where γ > 0 and γ 6= 1. Let

R = (R1, . . . , Rn)> be the random one-period return of n risky assets, and

Rf be the return of the riskless asset. The portfolio share for asset i at

the beginning of period t is denoted xt,i, and let xt = (xt,1, . . . , xt,n)>. The

difference between wealth and the wealth invested in stocks is invested in

bonds. At the beginning of every period, the investor has a chance to re-

balance the portfolio with a proportional transaction cost rate τ for buying

or selling stocks. Let δ+
t,iW denote the amount of asset i purchased, expressed

as a fraction of wealth, and let δ−t,iW denote the amount sold, where δ+
t,i, δ

−
t,i ≥

0, for periods t = 0, . . . , T − 1.

We assume that the riskless return Rf and the risky assets’ return R may

be dependent on a discrete time stochastic process θt (could be a vector),

denoted by Rf (θt) and R(θt) respectively, for t = 0, . . . , T − 1. Then the
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dynamic portfolio problem becomes

V0(W0, x0, θ0) = max
δ+,δ−≥0

E {u(WT )} , (5)

s.t. Wt+1 = e>Xt+1 +Rf (θt)(1− e>xt − yt)Wt,

Xt+1,i = Ri(θt)(xt,i + δ+
t,i − δ

−
t,i)Wt,

yt = e>(δ+
t − δ

−
t + τ(δ+

t + δ−t )),

xt+1,i = Xt+1,i/Wt+1,

θt+1 = g(θt, ξt),

t = 0, . . . , T − 1; i = 1, . . . , n,

where e is the column vector with 1’s everywhere, Xt+1 = (Xt+1,1, . . . , Xt+1,n)>,

δ+
t = (δ+

t,1, . . . , δ
+
t,n)>, and δ−t = (δ−t,1, . . . , δ

−
t,n)>. Here, Wt+1 is time t + 1

wealth, Xt+1,i is time t + 1 wealth in asset i, ytWt is the change in bond

holding, and xt+1,i is the allocation of risky asset i.

6.1 Dynamic Programming Model

The DP model of the multi-stage portfolio optimization problem (5) is

Vt(W,x, θ) = max
δ+,δ−≥0

E
{
Vt+1(W+, x+, θ+)

}
,

for t = 0, 1, . . . , T − 1, while the terminal value function is VT (W,x, θ) =

W 1−γ/(1−γ). Given the isoelasticity of VT , we know that the value function

can be rewritten as

Vt(Wt, xt, θt) = W 1−γ
t ·Ht(xt, θt),

for some functionsHt(xt, θt), whereWt and xt are respectively wealth and al-

location fractions of stocks right before re-balancing at stage t = 0, 1, . . . , T ,
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and

Ht(x, θ) = max
δ+,δ−

E
{

Π1−γ ·Ht+1(x+, θ+)
}
, (6)

s.t. δ+ ≥ 0, δ− ≥ 0,

x+ δ+ − δ− ≥ 0,

y ≤ 1− e>x,

θ+ = g(θ, ξt),

where HT (x, θ) = 1/(1− γ), and

y ≡ e>(δ+ − δ− + τ(δ+ + δ−)),

si ≡ Ri(θ)(xi + δ+
i − δ

−
i ),

Π ≡ e>s+Rf (θ)(1− e>x− y),

x+
i ≡ si/Π,

for i = 1, . . . , n and t = 0, 1, . . . , T − 1. See Cai, Judd and Xu (2013b) for a

detailed discussion of this dynamic portfolio optimization problem.

Since Wt and xt are separable, we can just assume that Wt = 1 dollar

for simplicity. Thus, at time t, δ+ and δ− are the amounts for buying and

selling stocks respectively, y is the change in bond holding, s is the next-

stage amount vector of dollars on the stocks, Π is the total wealth at the

next stage, and x+ is the new fraction vector of the stocks at the next stage.

In this model, the state variables, x and x+, are continuous in [0, 1]n.

6.2 Numerical Examples

We choose a portfolio with n = 6 stocks and one riskless bond. The investor

wants to maximize the expected terminal utility after T = 6 years with the

terminal utility, u(W ) = W 1−γ/(1−γ), with γ = 4. At the beginning of each

year t = 0, 1, . . . T − 1, the investor has a chance to rebalance the portfolio

with a proportional transaction cost rate τ = 0.002 for buying or selling

stocks. We assume that the stock returns are independent each other, and

stock i has a log-normal annual return, i.e., log(Ri) ∼ N (µi−σ2
i /2, σ

2
i ) with

µi = 0.07 and σi = 0.25, for i = 1, . . . , n. We assume that the bond has a

riskless annual return exp (rt), while the interest rate rt is a discrete Markov

chain, with rt = 0.01, 0.02, 0.03, 0.04 or 0.05, and its transition probability
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matrix is

P =


0.7 0.3

0.3 0.4 0.3

0.3 0.4 0.3

0.3 0.4 0.3

0.3 0.7

 .

We use the degree-4 complete Chebyshev polynomials (2) as the approx-

imation method, and choose 5 Chebyshev nodes on each dimension, so that

we can apply the Chebyshev regression algorithm to compute the approxi-

mation coefficients in the fitting step of numerical DP algorithms. Thus, the

number of approximation nodes is 56 = 15, 625 for each discrete state, so

the total number of small-size maximization problems for one value function

iteration is 5× 56 = 78, 125. We use the product Gauss-Hermite quadrature

formula (3) with 5 nodes for each dimension, so the number of quadrature

nodes is 56 = 15, 625 for each discrete state. Therefore, after using the

sparsity of the probability transition matrix, the computation of the expec-

tation in the objective function of the maximization problem (6) includes

2 × 56 = 31, 250 or 3 × 56 = 46, 875 evaluations of the approximated value

function at stage t+ 1 for each approximation node. We use NPSOL as our

optimization solver for solving the maximization problem (6) .

6.3 HTCondor-MW Results

We apply Algorithm 4 and 5 to solve the high-dimensional dynamic port-

folio problem. Each HTCondor-MW task solves 25 small-size maximization

problems, implying that each value function iteration is broken into 3,125

MTCondor-MW tasks. Our HTCondor program requested 200 workers, and

was given 194 processors on average.

Table 3 lists some statistics of our parallel DP algorithm under HTCondor-

MW system for the portfolio problem with six stocks and one bond with

stochastic interest rates. The parallel efficiency of our parallel numerical DP

method is 94.2% for this example, even when we use 200 workers. More-

over, the total cpu time used by all workers to solve the dynamic portfolio

optimization problem is more than 27 days, i.e., it will take more than 27

days to solve the problem using a single core. However, it takes only about

3.6 wall clock hours to solve the problem if we use the type-II parallel DP

algorithm and 200 worker processors. This reduction in “waiting time” cost
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Table 3: Statistics of Parallel DP under HTCondor-MW for the 7-asset
portfolio problem with stochastic interest rate

Wall clock time for all 6 VFIs 3.6 hours
Wall clock time for 1st VFI 4.8 minutes
Wall clock time for 2nd VFI 43.4 minutes
Wall clock time for 3rd VFI 40.6 minutes
Wall clock time for 4th VFI 41.5 minutes
Wall clock time for 5th VFI 42.9 minutes
Wall clock time for 6th VFI 43.7 minutes
Total time workers were up (alive) 29.3 days
Total cpu time used by all workers 27.4 days
Number of (different) workers 200
Average Number Present Workers 194
Overall Parallel Performance 94.2%

to a researcher makes it possible to solve problems that essentially cannot

be solved on a laptop.

7 Conclusion

This paper presents the parallel dynamic programming methods in HTCon-

dor Master-Worker system. That system can be used to solve very demand-

ing high-dimensional dynamic programming problems efficiently. While we

only used DP examples, the simple structure of parallelization used for DP

problems is similar to parallelization strategies that can be used for many

other economic problems, such as computing high-dimensional dynamic gen-

eral equilibrium problems. HTCondor Master-Worker is clearly a powerful

tool with many potential applications for economists.
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