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1 Introduction
The global climate system is complex and its response to future increases in anthro-
pogenic GHGs is poorly understood. Any rational policy choice must consider the
great uncertainty about the magnitude and timing of global warming’s impact on
economic productivity. Policy analyses will often begin with estimating the expected
social marginal cost of the an extra ton of carbon in the atmosphere. In 2010 the
U.S. Government Interagency Working Group on Social Cost of Carbon (IWG, 2010)
released an analysis of the social cost of carbon (SCC), and concluded that the 2010
SCC lies in the range $5 - $65 for the year 2010, with central price of $21. Only
recently, the Australian government has introduced a carbon tax of $23. These ex-
amples demonstrate an increasing awareness of policy makers about climate policy
and carbon pricing.

The IWG report relied on SCC studies in the climate and economics literature,
with Nordhaus (2008) and Anthoff et al. (2009) being particularly important for the
IWG. However, the IWG report, along with the majority of the literature, assumed
that the economy and climate systems evolve deterministically. More generally, no
study of the SCC models the stochastic nature of the climate and economic systems
in the manner typically used in modern macroeconomics. Such an analysis would
necessarily combine an advanced formulation of risk preferences consistent with em-
pirical evidence with policy decision making processes at a time scale compatible
with real world decision making. This is necessary for any realistic assessment of the
costs of anthropogenic perturbations of current and future climate.

One dimension of realism is the intrinsically uncertain nature of future states of
the economy. Analyses of any climate policy should account for its possible impacts
on economic decision makers who face economic risks. Many issues, such as how
GHG policies should react to economic fluctuations, can be studied only in models
with time periods of one year or less, not in models where the time step is measured
in decades.

Another dimension includes the uncertainty about the future evolution of the cli-
mate system. Several prominent studies (e.g., Nordhaus 2008) assume that damages
are a function of contemporaneous temperature. However, possible climate change
externalities are more complex. Many scientists are worried about climate change
triggering abrupt and irreversible events leading to significant and long-lasting dam-
ages (see, e.g., Kriegler et al. 2009). Some elements of the climate system which
might exhibit such a triggering effect are called tipping elements. In a prominent
study, Lenton et al. (2008) characterizes tipping points for some major elements
of the climate system. Examples of some tipping elements are: the weakening or
shut down of the North Atlantic thermohaline circulation (THC), the melting of the
Greenland ice sheet (GIS) and the West Antarctic ice sheet (WAIS), the die-back of
the Amazon rainforest (AMAZ) and the increasing frequency and amplitude of El
Niño-Southern Oscillation (ENSO).

While the likelihood of tipping points may be a function of contemporaneous
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temperature, their effects are long lasting and might be independent of future tem-
peratures. It is assumed that some of these tipping points might occur even in this
century, but also that their duration and post-tipping impact are uncertain (see
Lenton, 2011). A faithful representation of the possibility of tipping points for the
calculation of SCC would require a fully stochastic formulation of irreversibility, and
accounting for the deep layer of uncertainties regarding the duration of the tipping
process and also its economic impact.

The third component towards a more realistic assessment of the SCC is the mod-
eling of the cost of risk in a manner more compatible with empirical evidence about
social risk preferences. Since riskiness is inherent in the nature of tipping points, the
socio-economic effects of stochastic and irreversible climate change will be affected
by preferences about risks. We know from the equity premium literature that the
standard formulations of preferences might misspecify how people feel about risk.
Kreps and Porteus (1978) have argued that there could be value in early resolution
of uncertainty, and Epstein-Zin (1989) preferences have explored the implications of
this for asset pricing.

We account for all three components of a coherent analysis of climate policy
under intrinsic uncertainty. This study builds on Cai, Judd and Lontzek (2012b)
which combines standard features of DSGE models - productivity shocks, dynamic
optimizing agents, and short time periods - with DICE2007, a seminal and basic
Integrated Assessment Model (IAM). This study uses the computational framework
of Cai, Judd and Lontzek (2012b) to address basic questions about uncertainty and
the social cost of carbon. In particular, we present a dynamic stochastic model
which incorporates the mutual interplay between climate and economics. We model
a stochastic business cycle at the annual time scale, a stochastic tipping point system,
and use Epstein-Zin preferences to model social preferences.

In general, IAMs study the interplay between the climate and the economic sys-
tem. All large-scale IAMs have a complex representation of the climate system but
many consider economic activity as exogenously given by some pre-defined range of
scenarios. Examples are MAGICC (Wigley and Raper, 1997), ICAM (Dowlatabati
and Morgan (1993) and IMAGE (Batjes and Goldewijk, 1994). These models neglect
endogenous and forward-looking decisions and are unable to account for economic
reactions to climate policies. They cannot study dynamic decision-making in an
evolving and uncertain world. On the contrary, only a few models rely on solving an
intertemporal optimization problem assuming that climate and the economy are en-
dogenous and mutually dependent. Examples are DICE (Nordhaus, 2008), MERGE
( Manne and Richels 2005) and RICE (Nordhaus and Yang, 1996). It is the latter
class of models which is suitable for an uncertainty analysis in the climate policy
decision making process.

Uncertainty analysis is regarded as an elementary part of these IAMs. Unfortu-
nately, uncertainty analysis is mainly restricted to parametric uncertainty. Examples
are Nordhaus (1994), Nordhaus (2008) and Pizer (1999). For general reviews, see
Heal and Kriström (2002) and Pindyck (2007). Under parametric uncertainty, the
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modeler doesn’t know the value of key parameters, e.g., climate sensitivity or some
damage function parameter. The modeler has an idea about the distribution of these
parameters and conducts a Monte Carlo analysis with many simulations, each be-
ing itself a deterministic run of the model with a picked set of parameter values.
This method can provide valuable information about a possible range of the climate-
economy system, but it always assumes that economic actors have perfect knowledge
about all parameters. This approach focuses on the uncertainty of the "modeler",
rather than uncertainty faced by the "decision maker". It is unclear if the analysis
of parametric uncertainty should rely on certainty equivalent formulations, which
in many contexts are not reliable analyses of how risk-averse agents respond to un-
certainties in a dynamic world. More reliable analyses have recently been studied
by a much smaller part of the literature (e.g. Kelly and Kolstad (1999) and Crost
and Traeger (2011). These studies follow the stochastic approach, i.e. they assume
the realization of the world to be uncertain due to some random events. Crost &
Traeger (2011) e.g. formulate a stochastic IAM and find optimal control policies
which significantly differ from the pure Monte Carlo analysis. However, on a larger
scale IAM community has so far not produced a stochastic IAM flexible enough to
represent uncertainty in a quantitatively realistic manner. Most existing stochastic
dynamic optimization approaches to model uncertainty in IAM suffer from one or
more of the following features: 1) long duration of time periods (e.g., 5 or 10 years),
2) short time horizon or small number of periods (e.g., 2 periods), 3) reduced di-
mension of a full scale IAM (e.g., a two-dimensional version of the seven-dimensional
model), and finally 4) expandability of the model (e.g., the flexibility of the model
and computational method dealing with a deepened complexity of the state space).

Several studies build on DICE2007 (Nordhaus, 2008) and attempt to study opti-
mal climate policies under uncertainty. Examples include Kelly and Kolstad (1999)
and Bahn et al. (2008). However, just as in the DICE2007 model, these studies
assume 10-year time units. We argue that the representation of time should be
compatible with the frequencies of both the natural and social processes related to
climate change. Any IAM with 10-year time periods represents neither social nor
physical processes because nontrivial dynamics and feedbacks may occur in either
system during a single decade. Dynamic stochastic general equilibrium (DSGE) mod-
els in economics use relatively short time periods, always at most a year. Decadal
time periods as in DICE2007 are too long for serious, quantitative analysis of policy
questions. For example, if one wants to know how carbon prices should react to
business cycle shocks, the time period needs to be at most a year. No one would
accept a policy that takes ten years to respond to current shocks to economic con-
ditions. Cai, Judd and Lontzek (2012c) shows that annual time periods produce a
significantly different carbon price with the numbers given by DICE2007. Cai, Judd
and Lontzek (2012a) develops DICE-CJL, a continuous-time extension of DICE2007,
and then demonstrate that many substantive results depend critically on the time
step, strongly supporting our contention that short time periods are necessary for a
quantitatively reliable analysis.
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Other IAM analyses that examine uncertainty assume a very small number of
decision periods, often with very large time periods. For example, Webster et al.
(2012) models a 7-period horizon version of DICE with 50-year time units, while
the model of Fisher and Narain (2003) has only 2 periods. In general, while a small
number of decision periods might deliver some important qualitative insights of the
model, it is highly unlikely that such a model can capture the full dynamic evolution
of the climate and economic systems.

We argue that any reliable IAM should incorporate the ability to study the op-
timal decision making over a very long time horizon with several hundred decision
periods. A stochastic formulation of such a model necessitates a solution method us-
ing dynamic programming. As of today there are only a handful of models following
that approach. Lontzek and Narita (2011) study a continuous-time, infinite horizon
model integrating climate and the economy. A recent study by Lemoine and Traeger
(2012) applies discrete-time dynamic programming methods. Lemoine and Traeger
(2012) formulate a stochastic IAM with ambiguity and a tipping point allowing for
learning about a tipping threshold. Both models build on DICE2007 but examine
a lower-dimensional climate system for reasons of computational tractability. The
DICE’s six-dimensional state transition system is one in which all elements interact
and there is no lower dimensional system that is equivalent. Therefore, we argue that,
except for a measure zero set of initial conditions and impulses, a lower-dimensional
representation of a full dynamic system cannot capture the full spectrum of the DICE
results.

It is highly desirable to produce a DSGE IAM, incorporating stochastic evolution
of the climate and economic system. However, it is often argued that a complete
stochastic analysis of IAMs is not possible due to computational complexity. In fact,
in a recent report (EPA, 2010) the Environmental Protection Agency assesses that
currently the Integration of DSGE models with long-run inter temporal models, e.g.,
IGEM (Goettle et al. 2009), is beyond the scientific frontier.

A truly stochastic model would also enable a sound analysis of abrupt and irre-
versible climate change which so far has only been studied in very simple models.
Full-size versions of IAMs have only dealt with this topic by using probabilistic as-
sessment studies. For example, Nordhaus (2008) uses a certainty-equivalent approach
to tipping points and argues that the additional carbon tax resulting from tipping
points exhibits a ramp structure, i.e., it is initially mild but rises substantially over
time with global warming. A recent study by Lontzek, Cai and Judd (2012) uses
the same model as Nordhaus (2008) but uses a stochastic formulation of abrupt and
irreversible climate change and obtains a completely different result. The possibility
of a low-probability and low-impact tipping event results in a flat profile for the ad-
ditional carbon tax. This example demonstrates how implications for climate policy
depend on the appropriate model formulation of the underlying research question.
It is reasonable to assume that a fully stochastic version of any IAM will unveil new
and interesting results.

Novel findings for the SCC can be expected from using more flexible alternatives
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to the standard preference specifications. Jensen and Traeger (2011) e.g. study an
IAM with iid shocks to the rate of exogenous technological change. In a similar model,
Crost and Traeger (2011) study iid shocks to the damage function. Both studies find
that disentangling risk aversion and intertemporal substitution significantly affects
the optimal abatement decision.

We argue that, since riskiness is inherent in the nature of tipping points, the
socio-economic effects of stochastic abrupt and irreversible climate change will be
affected by preferences about risks. Hence, it is natural to combine Epstein-Zin
preferences (Kreps and Porteus 1978, Epstein and Zin 1989) with the risk of when
a tipping point will occur and how large the damage will be. It seems likely, that
including risk-sensitive preferences will surely imply greater willingness to pay to
avoid adverse climate change.

For this study we use DSICE (Cai, Judd and Lontzek, 2012b), a DSGE full-
dimensional extension of DICE2007. DSICE and DICE2007 are therefore comparable
which facilitates the comparison of our carbon tax numbers with the ones obtained,
e.g., by the U.S. Government Interagency Working Group on Social Cost of Carbon
(IWG, 2010). We include Epstein-Zin preferences as well as a multi-stage tipping
point. We are thus endowed with a model structure that has a more realistic descrip-
tion of risk preferences, the stochastic processes of damages and business cycle fluctu-
ations. We model stochastic and irreversible climate change as a low-probability and
low-impact event. Thus, we abstain from dramatic catastrophe assumptions such as
in the studies of fat-tailed catastrophic events by Weitzman. Whereas e.g. Weitzman
(2009) assumes a very high damage from a climate catastrophe, we follow rather a
conservative approach. In particular, we study a range of low to moderate impacts
of a tipping-point event. At the same time, in accordance to scientific findings, we
assume a gradual, stochastic post-tipping damage path which eventually makes the
tipping process last up to two centuries. Furthermore, we assume business cycle
shocks that are moderate and bounded. We solve DSICE with dynamic program-
ming using advanced computational methods. The solution to DSICE is reliable and
quickly obtained.

As in Lontzek, Cai and Judd (2012), we find that the threat of a tipping point in-
duces immediately stringent carbon pricing, even for low-probability and low-impact
tipping events. We find that including Epstein-Zin preferences into DSICE signif-
icantly increases the carbon tax. For example, larger values of the intertemporal
elasticity of substitution and the degree of risk aversion lead to higher carbon taxes.
Furthermore, in addition to stochastic and irreversible climate change, we also study
cases with significant uncertainty about the post-tipping damage impact. Climate
scientists (e.g. Schneider, 1983) argue that all uncertainties within the climate sys-
tem amplify the range of possible impacts on the economy and that damage to the
economy is associated with the highest range of uncertainty. We find that the un-
certainty about the damage is also a critical factor leading to a sharp increase in the
carbon tax. Furthermore, for low degrees of risk aversion (i.e. smaller than 2), the
carbon tax is not affected much by the variance of the uncertain damage. In contrast,
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high degrees of risk aversion significantly amplify the effect of damage uncertainty
on the carbon tax. We also investigate a disaster scenario. We find that if there is a
very unlikely tipping point event (about 0.1% probability of tipping until 2100), and
it is has major permanent but uncertain impact on productivity (mean is 20% and
volatility is 10%), today’s carbon tax of a highly risk-averse policy maker is $521.

We proceed as follows: Sections 2 and 3 discuss our modeling of the stochastic cli-
mate, stochastic economy and the preferences. Section 4 presents the DP framework
of the DSICE model with Epstein-Zin preferences, and then introduces the multi-
dimensional numerical dynamic programming method we use to solve it. Section 5
presents our results and Section 6 concludes.

2 Irreversible Climate Change
In order to implement the risk of a tipping point event into an IAM, we model a
hazard rate which, for any given combination of the state space in any year, gives us
the probability of the tipping event occurring in that year. Consequently, the tipping
point event becomes stochastic.

So far, most studies model abrupt climate change as a deterministic process. For
example, Mastrandrea and Schneider (2001) couple an older version of the DICE
model with a simple climate model which simulates the functioning of the THC.
Information obtained from the additional climate model is used to enhance the ex-
ponential component in the DICE damage function. This specification gives rise to
a steeper damage function (in terms of global warming) but is inconsistent with the
nature of the externality of an irreversible catastrophe. Nordhaus (2010) also models
sea level rise deterministically by increasing the curvature of the damage function.

Another branch of the literature on catastrophic climate change in IAMs (e.g.,
Yohe et al. 2004) models tipping point events as happening when a threshold tem-
perature is passed (or some other condition is met). In our view this approach (or
at least the simplest version of it) is not appealing because it implies that if we
have been at that threshold temperature level, then we can immediately infer (learn)
that we are safe as long as we stay at or below that level. Modeling abrupt climate
change with a known threshold location is a special case of our hazard function ap-
proach. In that special case (e.g., Keller et al., 2004) the hazard rate equals zero up
to the threshold temperature level and is equal to one beyond that level. In contrast,
knowing that there is a critical point but not knowing where it is would not imply a
hazard rate. The latter formulation implies that once we have reached a temperature
level with no tipping event, we conclude that there cannot be a tipping point at that
temperature level. This is not in the statistical nature of a hazard rate. Instead we
assume that even if a tipping point has not yet occurred, it may still occur later even
if there is no further warming, or even if there is cooling. This surely will affect the
optimal climate policy, as is shown by the following example.

For example, the optimal mitigation policy in DICE2007 increases rapidly over
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time, with small efforts today but much greater effort at the end of the current cen-
tury. This “ramp” structure of mitigation policy implied by DICE2007-style models
arises because of the nature of the externality, i.e., a high atmospheric temperature
today reduces output today, but there is no direct impact on future damages, which
depend only on contemporaneous temperatures. However, by including the possibil-
ity of an stochastic and irreversible climate change, one actually changes the nature
of the climate externality. Figure 1 highlights the two aspects of the global warming
externality.

Figure 1: The nature of externality from abrupt and irreversible climate change
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Curve A represents the pre-tipping damage factor as a function of temperature
change (∆T ). It is monotonically increasing and convex. In a pre-tipping regime
any movement along A (i.e., a1 ↔ a2 ↔ a3) can occur, depending on the change in
global average temperature. As a consequence, the resulting damage rate D(∆T )
will exhibit a smooth pattern. The same logic applies in a post-tipping regime,
which is denoted by B. Any movement along B (i.e., b1 ↔ b2 ↔ b3) can occur,
depending on the change in global average temperature after a tipping point has
occurred. Now, assume that a tipping point has occurred at a2, which corresponds
to a global warming level of ∆T ∗ 1. In that case, the damage rate resulting from
the change in the climate system will be represented by B (i.e., a2 → b2). However,
the irreversible nature of abrupt climate change prevents a movement back to A in
case of global cooling and temperature levels below the realized tipping point level.
Instead the damage factor will remain to move along B.2 This stochastic aspect of a

1Note that our specification allows for a tipping point to occur even in a phase of global cooling.
This feature results from the stochastic nature of a hazard rate formulation of abrupt climate
change.

2For simplicity, we assume here the most rapid (abrupt) post-tipping impact path which matu-
rates after only one period. This assumption will be relaxed later.
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tipping point can only be captured by specifying a hazard rate and modeling abrupt
climate change as a jump process where the Markovian hazard rate only depends
on contemporaneous conditions. It cannot be captured by changing the shape (e.g.,
increasing the exponents) of the damage function of global warming.

Irreversibility of post-tipping impacts is a reasonable assumption for the time
horizons which are typically being considered in IAMs. Abruptness however, im-
plying a 1-period post-tipping transition scale is a very simplifying assumption that
cannot be confirmed by scientific studies. Lenton et al. (2008) e.g. characterizes
the transition scales for various tipping elements. While some tipping elements are
believed to exhibit a rapid transition of about 10 years (e.g. Arctic summer sea-ice),
other elements are believed to exhibit a rather slow transition of more than 300 years
(e.g. Greenland ice sheet). As a consequence, the shape of the post-tipping impact
path of the underlying tipping element will differ. In this study we to do not aim
at modeling one specific tipping element. Nevertheless, we want to allow for the
heterogeneity in transition scales. For this purpose, we are studying a wide range of
transition scales as part of a sensitivity analysis. In addition, we are assuming that
each transition scale is stochastic. Figure 2 illustrates the assumptions about the
tipping process in this study. We show two possible damage paths from a tipping
point event.

Figure 2: Possible Abrupt and Gradual Tipping Damage Paths
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Stage 1 represents the pre-tipping regime. Note that while the damage from
tipping in stage 1 is zero, there will still be some smooth damage from global warming
along the lines of the DICE model. First, consider the abrupt post-tipping damage
path (dashed black line). This path will constitute our benchmark case and serve
as point of comparison. It essentially assumes an instant full transition after the
tipping point. It implies that the full impact of tipping is realized immediately. In
order to approximate a gradual post-tipping impact path, we assume that it consists
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of ten sequential stages. Figure 2 depicts an example of a possible gradual post-
tipping damage path. Note the difference in the lengths of stages 2-10. We assume
that each stage occurs stochastically, given some expectation of the entire duration
of the gradual post-tipping damage path. In accordance with the literature, we will
study transitions of 25, 50, 100 and 200 years. Our multi-stage tipping process can
be thought of representing several consecutive stages of one single tipping element,
e.g., sea-level rise due to the melting of GIS. The GIS is a huge ice mass holding an
equivalent of about 7m of global sea level (Lenton, 2008). An additional 1 or 2°C of
global warming might suffice to trigger an irreversible meltdown of the GIS. Thus,
is is quite likely that a GIS tipping point could occur in this century. A tipping
of the GIS could lead to a global sea level rise of about 50-100 cm per century
(Lenton, 2008). Alternatively, the multi-stage tipping process could be thought of
representing a sequence of different sequential tipping point events. In a recent study
Lenton (2012) discusses the domino effect applied to tipping elements, arguing that
several tipping elements are sequential and one tipping point might trigger a cascade
of additional tipping.

3 A Stochastic IAM with Epstein-Zin Preferences
The DSICE model (Cai, Judd and Lontzek, 2012b) is a dynamic stochastic general
equilibrium model integrating climate and the economy. DSICE is basically a DGSE-
extension of the DICE-CJL model (Cai, Judd and Lontzek, 2012a), which itself is
a numerically stable version of DICE2007 with a flexible time-period length. This
version of DSICE incorporates both, uncertainty about the future state of climate and
the economy. A complete description of the DICE-CJL model with all equations as
well as parameters can be found in Cai, Judd and Lontzek (2012a). Furthermore, the
DSICE model with separable utility is described in Cai, Judd and Lontzek (2012b).
In this section we briefly describe the DSICE model focusing mainly on the stochastic
climate, the stochastic economy and Epstein-Zin preferences.

3.1 The Stochastic Climate

Let Mt = (MAT
t ,MUP

t ,MLO
t )> be a three-dimensional vector describing the masses

of carbon concentrations in the atmosphere, and upper and lower levels of the ocean.
These concentrations evolve over time according to:

Mt+1 = ΦMMt + (Et, 0, 0)> ,

where

ΦM =

 1− φ12 φ12ϕ1 0
φ12 1− φ12ϕ1 − φ23 φ23ϕ2

0 φ23 1− φ23ϕ2

 ,
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with ϕ1 = MAT
∗ /MUP

∗ and ϕ2 = MUP
∗ /MLO

∗ , where MAT
∗ , MUP

∗ and MLO
∗ are the

preindustrial equilibrium states of the carbon cycle system. The anthropogenic
sources of carbon are represented by the Et, which will be specified in the next
subsection.

The DICE climate system also includes temperatures in the atmosphere and
ocean, which are represented by the vector Tt = (TAT

t , T LO
t )>. The temperatures

dynamically evolve according to:

Tt+1 = ΦTTt +
(
ξ1Ft

(
MAT

t

)
, 0
)>
,

where the heat diffusion process between ocean and air is represented by the matrix

ΦT =

[
1− ξ1η/ξ2 − ξ1ξ3 ξ1ξ3

ξ4 1− ξ4

]
,

where ξ2 is the climate sensitivity parameter (we choose ξ2 = 3 in our examples of this
paper). Atmospheric temperature is affected by external forcing, FEX

t , and by the
interaction between radiation and atmospheric CO2, implying that total radiative
forcing at t is

Ft
(
MAT

)
= η log2

(
MAT/MAT

0

)
+ FEX

t

The impact of global warming on the economy is reflected by a convex damage
function of temperature in the atmosphere. This is a standard feature of the DICE
model family. As discussed in the introduction, we modify the standard damage
function by explicitly modeling the possibility of a climate shock (i.e. tipping point)
to account for the threat of abrupt and irreversible climate change. Each climate
shock occurs at a random time. Thus, the stochastic damage factor in DSICE is
given by

Ω
(
TAT
t , Jt

)
=

1− Jt
1 + π1TAT

t + π2(TAT
t )2

,

where the denominator represents the standard damage function from the DICE2007
model. In the numerator, Jt is a discrete Markov chain with nondecreasing values
over time, with Jt = 0 in the pre-tipping regime (stage 1) and 0 < Jt < 1 in all
subsequent stages of the post-tipping regime. Assume that all possible values of Jt
are 0 = J1 < J2 < · · · < Jn < 1, then the Markov chain probability transition
matrix from year t to year t + 1 is an upper-triangular matrix with nonnegative
elements: 

p1,1 p1,2 · · · · · · p1n
p2,2 · · · · · · p2n

. . . ...
...

pn−1,n−1 pn−1,n
1

 ,
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where its (i, j) element is the conditional transition probability from state Ji to Jj,
and

n∑
j=i

pi,j = 1,

for all i = 1, . . . , n. These nonnegative probabilities may be dependent on time t
and the contemporaneous surface temperature TAT

t . In principle, they could be a
function of the entire state and control space. The zero probabilities of the lower
part of the transition matrix represents the irreversibility of the tipping process. So
we call Jt the persistent climate damage state representing the irreversibility nature
of the tipping point. Since this tipping structure is sequential, the decision maker
faces always one tipping point stage at a time but has full information about the
tipping system transition matrix. In addition, the final state is an absorbing state.
In section 5 we will study an 11-stage tipping process and a 2-stage process as our
benchmark case.

3.2 The Stochastic Economy

Capital kt transits to the next period in a standard fashion:

kt+1 = (1− δ)kt + Yt(kt, TAT
t , µt, ζt, Jt)− ct,

where Yt denotes the stochastic production function. The latter accounts for the
costs of mitigation as a fraction of output. Furthermore, it includes the damage
resulting from global warming as well as both, an economic shock and a climate
shock:

Yt(kt, TAT
t , µt, ζt, Jt) = (1− θ1,tµθ2t )ζtAtk

α
t l

1−α
t Ω

(
TAT
t , Jt

)
,

where ζt is a discrete-time bounded mean-reverting continuous productivity shock
representing economic fluctuations (see Cai, Judd and Lontzek 2012b), and its tran-
sition function from stage t to t+ 1 is ζt+1 = gζ(ζt, ω

ζ
t ) where ωζt is an i.i.d. random

process. We assume that the economic shock and the climate shock are independent.
Given the stochastic production function, annual total carbon emissions are

stochastic and given by

Et (kt, µt, ζt) = σt(1− µt)ζtAtkαt l1−αt + ELand
t , (1)

where σt denotes the carbon intensity of output, µt denotes the fraction of mitigated
emission and ELand

t is an exogenous rate of emissions from biological processes.

3.3 Epstein-Zin Preferences

The standard separable utility function in the finite-horizon DICE2007-class of mod-
els is

u(ct, lt) =
(ct/lt)

1−ψ

1− ψ
lt,
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where ct denotes the consumption level and lt is total labor supply. It is assumed that
a social planner maximizes the present-discounted utility stream up to a terminal
time T . We will instead incorporate Epstein-Zin preferences into DSICE. There is
no simple utility function for Epstein-Zin preferences, so we will proceed to describe
the optimization problem in the standard recursive manner.

The dynamic optimization problem has seven continuous state variables: the
capital stock, k, the three-dimensional carbon system M, the two-dimensional tem-
perature vector, T, and the stochastic productivity state, ζ. Furthermore, J is the
discrete shock to the climate. The recursive formulation of the social planner’s ob-
jective is

Ut (k,M,T, ζ, J) = max
c,µ

{
(1− β)

(ct/lt)
1−ψ

1− ψ
lt +

β
[
E
{(
Ut+1

(
k+,M+,T+, ζ+, J+

))1−γ}] 1−ψ
1−γ

} 1
1−ψ

where ψ is the inverse of the intertemporal elasticity of substitution, µt is the mit-
igation rate of emissions, E {·} is the expectation operator, β is the discount factor
and γ is called the risk aversion parameter. The actual risk premia will depend
on interactions between ψ and γ. The special case of ψ = γ is the time separable
specification where both parameters represent both risk aversion and the elasticity
of substitution. In general, increasing γ will correspond to higher prices of risk.

Epstein-Zin preferences are flexible specifications of decision makers’ preferences
regarding uncertainty. They are special cases of Kreps-Porteus preferences, which
were designed to model preferences over the resolution of risk. Traeger (2012)
presents a nice exposition of the features of Epstein-Zin preferences and other in-
tertemporally separable preferences, and their value for analyzing the cost of carbon.

The key fact justifying the use of Epstein-Zin preferences is in the data on ag-
gregate risk preferences. We know from the literature on the equity premium that
the willingness to pay to reduce risk is far higher than implied by standard utility
functions. Therefore, we expect an increase in the optimal carbon tax in the face
of tipping point risk if we use empirically calibrated specifications of Epstein-Zin
preferences. As of today, Epstein-Zin preferences have not been analyzed in a full-
dimensional DSGE version of a major IAM, such as DICE2007. On top of this, we
account for an additional stochastic dimension by modeling abrupt and irreversible
climate change with a system of tipping elements.

4 The Dynamic Programing Problem
We solve the stochastic Integrated Assessment Model with Epstein-Zin preferences
numerically. This section shows the dynamic programing formulation of the model.
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Furthermore, we present the numerical algorithm and specifically focus on some
essential aspects of our computational method.

4.1 DP formulation

We simplify the mathematical expressions by letting

Vt (k,M,T, ζ, J) =
[Ut (k,M,T, ζ, J)]1−ψ

(1− ψ) (1− β)

denote the value function. We assume that the simple one-period utility function is

u(c, l) =
(c/l)1−ψ

1− ψ
l,

and then rewrite the dynamic programming problem in the following form:

Vt(k,M,T, ζ, J) = max
c,µ

u(ct, lt) +
β

1− ψ
×[

E
{(

(1− ψ)Vt+1

(
k+,M+,T+, ζ+, J+

)) 1−γ
1−ψ
}] 1−ψ

1−γ
,

s.t. k+ = (1− δ)kt + Yt(k, TAT, µ, ζ, J)− ct,
M+ = ΦMM + (Et (k, µ, ζ) , 0, 0)> ,

T+ = ΦTT +
(
ξ1Ft

(
MAT

)
, 0
)>
,

ζ+ = gζ(ζ, ωζ),

J+ = gJ(J,T, ωJ), (2)

for t = 0, 1, . . . , 599. The terminal value function V600 is the terminal value function
given in Cai, Judd and Lontzek (2012b). In the model, consumption c and emission
control rate µ are two control variables, (k,M,T, ζ, J) is 8-dimensional state vector at
year t (where M = (MAT,MUP,MLO)> is the three-layer CO2 concentration and T =
(TAT, T LO)> is the two-layer global mean temperature), and (k+,M+,T+, ζ+, J+) is
its next-year state vector.

4.2 The Dynamic Programming Algorithm

In dynamic programming problems, when the value function is continuous, it has
to be approximated. In this study, we use a finitely parameterized collection of
functions to approximate a value function, V (x, J) ≈ V̂ (x, J ; b), where x is the
continuous state vector (in DSICE, it is the 7-dimensional vector (k,M,T, ζ), J is
the discrete state vector (in DSICE, it is the persistent climate damage level), and
b is a vector of parameters. The functional form V̂ may be a linear combination of
polynomials, or it may represent a rational function or neural network representation,
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or it may be some other parameterization especially designed for the problem. After
the functional form is fixed, we focus on finding the vector of parameters, b, such
that V̂ (x, J ; b) approximately satisfies the Bellman equation. Numerical DP with
value function iteration can solve the Bellman equation approximately (Judd, 1998).
Thus, the Bellman equation (2) can be rewritten in a general form:

Vt(x, J) = max
a∈D(x,J,t)

ut(x, a) + βE
{
Vt+1(x

+, J+)
}
,

s.t. x+ = f(x, J, a, ωζ),

J+ = g(x, J, ωJ),

where Vt(x, J) is the value function at time t ≤ T (the terminal value function
VT (x, J) is given), (x+, J+) is the next-stage state, D(x, J, t) is a feasible set of a,
ωJ and ωζ are random variables, β is a discount factor and ut(x, a) is the utility
function at time t. The following is the algorithm of parametric DP with value
function iteration for finite horizon problems. Detailed discussion of numerical DP
can be found in Cai (2009), Judd (1998) and Rust (2008).

Algorithm 1. Numerical Dynamic Programming with Value Function Iteration for
Finite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xi,t : 1 ≤ i ≤ mt} for
every t < T , and choose a functional form for V̂ (x, J ; b), where J ∈ Θ. Let
V̂ (x, J ; bT ) ≡ VT (x, J). Then for t = T − 1, T − 2, . . . , 0, iterate through steps
1 and 2.

Step 1. Maximization step. Compute

vi,j = max
a∈D(xi,Jj ,t)

ut(xi, a) + βE
{
V̂ (x+, J+; bt+1)

}
s.t. x+ = f(xi, Jj, a, ω

ζ),

J+ = g(xi, Jj, ω
J),

for each Jj ∈ Θ, xi ∈ Xt, 1 ≤ i ≤ mt.

Step 2. Fitting step. Using an appropriate approximation method, compute the bt
such that V̂ (x, Jj; bt) approximates (xi, vi,j) data for each Jj ∈ Θ.

We implement our numerical dynamic programming algorithm to solve the DSICE
model with Epstein-Zin preferences. The code is written in Fortran and uses the
methods presented in Judd (1998), Cai (2009), and Cai and Judd (2010, 2012a,
2012b, 2012c), and we use NPSOL (Gill, P., et al., 1994) as the optimization solver
in the maximization step. In particular, for each discrete state value, we choose
the degree four complete Chebyshev polynomials to approximate the value function.
The multidimensional tensor grid with five Chebyshev nodes on each continuous
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dimension in the continuous state ranges gives us our set of approximation nodes.
The continuous state ranges are constructed from the solution of the DICE-CJL
model (Cai, Judd and Lontzek, 2012a), a continuous-time reformation of DICE2007
(Nordhaus, 2008). The results of the maximization step at each of the approximation
nodes are used to compute the Chebyshev coefficients via a regression procedure. We
assume a one-year time period and iterate backwards for 600 years, beginning with
a terminal value function. See Cai, Judd and Lontzek (2012b) for a description of
how we construct the terminal value function and the continuous state ranges and
how we verify the accuracy of solutions given by our algorithm.

It is important to use one year instead of ten years as the time unit. Cai, Judd
and Lontzek (2012a, 2012c) shows that annual time periods produce a significantly
different carbon price with the numbers given by DICE2007 using ten-year time
periods. For the models with uncertain state variables, Cai, Judd and Lontzek
(2012b) also shows that annual time periods have a significantly higher carbon price
(about 24% higher in the first period) than ten-year time periods.

After computing the approximate value function at each time t for t = 0, 1, ..., 599,
we simulate the optimal path corresponding to a sequence of shocks, both economic
and climate. That is, given the current state along a path, we compute the optimal
decisions and then use the realized shock to compute next period’s state. We start
this process with the given initial continuous state and (ζ0, J0) = (1, 1), and run
it until the terminal time. The next section presents the statistical results of 1000
simulated paths of the optimal solution.

5 Numerical Examples
We now analyze how the optimal carbon tax is affected by different preference pa-
rameters combined with various tipping point events. We first solve a benchmark
case with standard parameter assumptions. Using the benchmark case, we explain
the major drivers of the carbon tax results in this paper. Later examples will devi-
ate from the benchmark case by assuming different parameter specifications as well
as different characteristics of the post-tipping impact and the tipping process itself,
allowing us to determine what are the critical factors behind our carbon tax results.

5.1 Parameter Choices

The parameters of the deterministic climate system in DSICE are the same as in the
original DICE2007 model and described in Cai, Judd and Lontzek (2012) in more
detail. We stay as close as possible to the climate aspects of DICE2007 model, and
focus on how productivity risks and preferences interact to compute the willingness
to pay for reducing GHG’s in order to avoid future climate damages.
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5.1.1 Parameters Describing Preferences

We cover a broad range of values for the degree of risk aversion γ and the reciprocal of
the intertemporal elasticity of substitution ψ, representing empirical work that aims
to estimate these parameters. Basal and Yaron (2004) finds γ = 10 and ψ = 2/3,
Vissing-Jørgensen and Attanasio (2003) finds γ between 5 and 10 and ψ < 1, and
Vissing-Jørgensen (2002) and Campbell and Cochrane (1999) also find cases of ψ > 1.
Nordhaus (2008) essentially chooses ψ = γ = 2. We therefore choose a range for γ
between 0.5 and 20 and for ψ between 0.5 and 2.

5.1.2 Parameters Describing The Tipping System

Kriegler et al. (2009) points out that the lack of data and limited understanding
of the underlying processes make it difficult to assess the likelihood of changes in
the earth system due to global warming. As of today, most probability assessments
of abrupt climate change come from expert elicitation surveys (e.g., Kriegler et al.
2009 and Zickfeld et al. 2007). In these elicitations, the experts are asked about
their beliefs about probabilities of a tipping point occurring at, or before some time
(typically the year 2100 or 2200) based on an emission scenario. These experts’
opinions reveal their probabilistic beliefs for a tipping point occurring within a time
frame under alternative assumptions about temperature changes within that specific
time frame.

The absence of precise knowledge about the physical system is not particularly
important for this problem. Decisions today must be based on current beliefs about
the climate system, and will reflect the imprecise nature of those beliefs. The only
assumption we are tacitly making is that these expert opinions are the ones held by
the social planner.

Zickfeld et al. (2007) presents experts’ subjective cumulative probabilities that
a collapse of THC will occur or be irreversibly triggered at or before 2100 under
alternative assumptions about temperature at 2100. The survey data obtained in
Zickfeld et al. (2007) on THC collapse reveal a huge range of assigned probabilities.
For example, some of these experts believe that even with an additional warming of
6◦C it is impossible for the THC to reach a tipping point by 2100. On the contrary,
one third of the experts believe that the probability is > 60% and two experts
even suggest 90%.3 For less global warming by 2100 these elicited probabilities are
accordingly lower. The average expert assigns about 18% chance of tipping at 4◦C by
2100 and 4% at 2◦C. A similar large range of experts’ opinions is obtained by Kriegler
et al. (2009) which presents the tipping probabilities for five tipping elements. For
the medium temperature corridor (i.e. a warming of 2 − 4◦C by 2200), this study
finds a range of roughly 50% for the THC, 80% for GIS, WAIS, and AMAZ, and
about 40% for ENSO. Overall, the numbers from both studies mirror a remarkably
huge range of expert opinions about the tipping point probabilities. This incongruity

3The probability numbers have been eyeballed from Zickfeld et al. (2007).
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in probability assessment among the experts makes the analysis of a tipping point
even more interesting from a uncertainty point of view.

In order to derive the hazard rates for our abrupt climate change examples, we
use the intrinsic information provided in the expert elicitation studies by Zickfeld et
al. (2007) and Kriegler et al. (2009). We follow the approach in Lontzek, Cai and
Judd (2012) which is the first study to incorporate the results of expert elicitation
study into a stochastic IAM. The approach in Lontzek, Cai and Judd (2012) is to
use the experts’ opinions on the cumulative probability of a tipping point occurring
by 2100 or 2200, and infer hazard rates for tipping elements from these opinions and
their assumptions about the temperature path. The resulting hazard rate becomes a
function of the contemporaneous temperature level (measured as the deviation from
preindustrial temperature).

5.2 Benchmark Case

We first examine the case of a tipping event with a most rapid post-tipping impact. In
fact, we assume that the entire post-tipping impact will be realized within one year.
This strong assumption should serve as a point of comparison when we extended
the duration of the entire post-tipping impact path in later examples. In addition,
for illustrative purposes, we first do not account for business cycle shocks, which we
include in a further step. Recall, that the two-stage probability transition matrix of
Jt from year t to year t+ 1 is [

1− pt pt
0 1

]
,

where its (i, j) element is the transition probability from stage i to j. The probability
of entering stage two, pt, depends positively on the surface temperature at time t.

pt = 1− exp
{
−ν max

{
0, (TAT

t − 1)
}}

, (3)

where ν is called the hazard rate parameter. Note, that pt is endogenous, depending
positively on the surface temperature at time t.

As discussed in Section 2, we specify the hazard rates for the tipping events in
this study based on expert elicitation studies by Zickfeld et al. (2007) and Kriegler
et al. (2009). The hazard rates in our numerical examples are motivated by the
range of hazard rates that experts put on the various tipping events. Our objective
is not to model any specifically tipping element explicitly but rather to show how
that range of numbers is related to the SCC.
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Figure 3: Carbon tax in the benchmark scenario
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Figure 3 shows the statistical results of the simulation runs for the optimal carbon
tax policy for our benchmark scenario: ψ = 2, γ = 10, the hazard rate parameter
ν = 0.00574, and the damage level is 2.5% (i.e., Jt = 0.025 when the tipping event
happens). We depict the pre-tipping path, the earliest tipping sample path as well
as some relevant quantiles. Furthermore, we depict the basic deterministic carbon
tax scenario in which a tipping point does not exist. Thus, we can compare the cases
in which the economy is threatened by a tipping point with the case in which no
tipping point (and the associated risk and impact) exists. The upper envelope in
Figure 3 represents at each time t, the carbon tax if there has not yet been a tipping
event. We call this the pre-tipping carbon tax. In contrast, the lower envelope in
general represents the carbon tax in the post-tipping regime. Figure 3 also displays
the timing of some sample tipping events. For example, the first vertical drop (which
is at about 2027 in Figure 3) is the first tipping out of our 1000 simulations. By
the middle of this century about 5% of the simulated paths have generated a tipping
point and by the end of the 21st century more than 20% of the paths have exhibited a
tipping point. Furthermore, note that in the initial period (2005), the optimal carbon
tax is $54, while it is $37 in the case when the tipping point does not exist. Thus,
in face of a low probability - low impact event the immediate additional preventive
carbon tax is $17.

Figure 3 also resembles the two distinct aspects of the abrupt climate change
externality which have been discussed by Lontzek, Cai and Judd (2012). On the one
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hand, the DICE-like “ramp” structure of the carbon tax implies a rather low carbon
tax for low global warming but then it becomes more stringent over time when global
warming becomes more severe. This is shown by the no-tipping path in Figure 3. On
the other hand, the threat of an irreversible and abrupt climate change results in a
nearly constant additional carbon tax (i.e., the “ramp” is not the dominant feature.)
to delay the tipping point from occurring. This result is derived from the drop in
the carbon tax immediately after the tipping point event. Figure 3 implies a carbon
tax markup of about 25%. As in Lontzek, Cai and Judd (2012), we conclude that
the optimal carbon tax response to the threat of abrupt and irreversible climate
change depends on the dynamic pattern of the adverse impacts. If these impacts are
permanent, as it is the case here, the optimal policy is one with substantial carbon
taxation immediately.

The results in Figure 3 are based on the benchmark Epstein-Zin parameter, ψ = 2
and γ = 10. We have argued previously that riskiness is inherent in the nature
of tipping points. In the following, we therefore analyze how the optimal carbon
tax is affected by stochastic abrupt and irreversible climate change under different
preferences about risk and inter temporal substitution. Furthermore, we conduct
some other sensitivity analyses.

5.3 Perturbations of the Benchmark Case

5.3.1 Effect of Intertemporal Elasticity of Substitution

First, we consider the effect of a higher intertemporal elasticity of substitution on
the carbon tax and analyze the cases with ψ = 1.2 and ψ = 0.5. The general finding
from Figure 4 is that the carbon tax will increase as the intertemporal elasticity
increases (i.e., ψ decreases). This can be best seen in the initial period, where the
carbon tax almost doubles when moving from ψ = 2 to ψ = 1.2.
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Figure 4: Carbon Tax for different intertemporal Elasticity
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A further doubling of the tax in the initial period occurs when going from ψ = 1.2
to ψ = 0.5. Moreover, the difference between the pre-tipping path (100% quantile
line) and the post-tipping path (0% quantile line) is increasing as the intertemporal
elasticity increases. This additional preventive carbon tax around 2050 rises from
about $20 (ψ = 2) , to $40 (ψ = 1.2) and to about $160 (ψ = 0.5). The strong
effect of the IES on the carbon tax occurs because a low intertemporal elasticity
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of substitution, by definition, enhances the consumption-smoothing choices of the
decision maker. In DSICE, these choices are savings and mitigation. On the one
hand, more capital is built up to compensate for a potential loss in disposable output
in case of a tipping point. On the other hand, mitigation efforts are very high and
as a result, very few carbon emissions are released into the atmosphere.

5.3.2 Effect of Hazard Rates and Damage Level

While the previous example showed how the intertemporal elasticity of substitution
affects the carbon tax, this section studies how the carbon tax is affected by different
hazard rate parameters and damage levels. So far, we have considered a 2.5% impact
of a tipping point on the economy. This is within the lower bound of what is assumed
in the studies of catastrophic events. Only a few studies provide an estimate of the
loss in output from a tipping point catastrophe, such as the THC collapse. Keller et
al. (2004) estimate the loss in GDP from a tipping event in the range of 1% - 3%.
Other studies, such as Mastrandrea and Schneider (2001) and Nordhaus (1994) use
much higher estimates. In the DICE model catastrophic damages can amount up
to 30% of GDP (Nordhaus, 2008) and in PAGE (Hope, 2006) up to 5%. To study
the sensitivity of the carbon tax, we present the optimal carbon tax numbers for
much higher impact levels on the economy. In particular, 5% and 10%. Lontzek,
Cai and Judd (2012) have shown that the near constancy of the optimal anti-tipping
effort is retained for different levels, and argued that this additional carbon tax
does not depend on the magnitude of the damage but rather is inherent in the
stochastic structure of the jump process shock. In this example, we retain the inverse
of intertemporal elasticity of substitution at ψ = 2, and the risk-averse coefficient
at γ = 10. Figure 5 shows the carbon tax at the initial year for different hazard
rate parameters and damage levels. For example, the optimal carbon tax in face of a
10% damage and a hazard rate parameter of ν = 0.01 is $180, while it is only $45 in
face of a 2.5% damage and ν = 0.00228217. Two general insights can be drawn from
all four plots. First, the carbon tax increases more than proportionally with higher
damage levels and second, the carbon tax also increases if the hazard rate parameter
increases.
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Figure 5: Effect of Hazard Rate Parameter and Damage Level
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5.4 Putting a Price on a Disaster

So far we have considered tipping scenarios with a relatively low post-tipping impact.
Recall that, in our benchmark scenario the post-tipping damage is 2.5% while our
hazard rate parameter is ν = 0.00574. We have observed the flattening of the
additional carbon tax when the society accounts for a possible tipping point level.
Our benchmark parameter specification resembles a “low probability - low impact”
scenario for tipping points. Above, we also discussed cases with an impact level of
up to 10% and saw that higher impact levels drastically raise the carbon tax. While
an impact level of 10% is certainly not very low, it is still far below the levels of some
extreme-catastrophic scenarios analyzed in the literature (see e.g. Weitzman, 2009).

As an example of a very high impact from a tipping point, we run the case for J =
0.2, i.e., a permanent 20% impact level. At the same time, we substantially reduce
the hazard rate parameter to account for the most conservative lower assumptions
about tipping point probabilities. In particular, we assume ν = 0.0008, which results
in a hazard rate of about 0.1% at 2100. This specification attributes a rather thin-
tailed nature to our disaster case. Furthermore, we retain our benchmark preference
parameters, ψ = 2, and γ = 10. Figure 6 presents the optimal carbon tax in the face
of a single tipping event resulting in a permanent damage of 20%.
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Figure 6: Disaster Case
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The carbon tax in the first period is $124, compared to our benchmark tax of
$54, which resembles the combined effect of much higher damages and a much lower
hazard rate. This remarkably high increase in the carbon tax shows that the optimal
climate policy towards catastrophic events implies a very high price for delaying
(preventing) a low probability - low impact event. The pre-tipping carbon tax rises
to $369 by the end of this century and further exceeds $800 by 2160. Furthermore,
note that the earliest sample tipping point occurs at around 2035, while by 2100
only slightly more than 3% of the tipping paths exhibit a tipping point. Thus,
given a 97% chance that no tipping will occur within this century, it is still optimal
to increase today’s carbon tax from $54 to 124%. In a series of seminal studies,
(e.g. Weitzman, 2009), Weitzman has argued that under certain circumstances, the
probability of a catastrophic event calls for immediate stringent climate policies.
The qualitative nature of our results, is similar to Weitzman’s findings, despite our
much more moderate assumptions about the post-catastrophic impact levels. One
other crucial difference between these two approaches is that while Weitzman (2009)
conducts a prevention-focused analysis of the catastrophe, the hazard-rate structure
in our model implies a delay-focused climate policy.

5.5 A Tipping Point with Uncertain Damage Level

Our examples have so far assumed we knew the post-tipping damage, but this is
unreasonable. We cannot precisely aggregate the multitude of sectoral and regional
impacts. Because we don’t know when a tipping point will occur, perhaps 2050, or
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2100, or later, the impact will depend on many characteristics of the climate system
and economy at that time. In fact, Steven Schneider’s popular “cascading pyramid
of uncertainties” implies that all possible uncertainties amplify the range of possible
impacts on the economy (Schneider, 1983). We next examine a specification where
we are uncertain about the impact of a tipping point conditional on when it occurs,
creating an additional layer of uncertainty

In our first example, we assume that if the tipping event occurs, then the damage
is random with

Jt =

{
0.05 + ς, with probability 50%,

0.05− ς, with probability 50%,
(4)

where 0 ≤ ς < 0.05 is called as the volatility of the uncertain damage level. Thus,
we have three values for Jt, one value before tipping and two after, where both of
the post-tipping values are absorbing states. Therefore, Jt is a three-state Markov
chain with the probability transition matrix 1− pt 0.5pt 0.5pt

0 1 0
0 0 1

 , (5)

at year t, where its (i, j) element is the transition probability from state i to j, and
pt is given in the formula (3).

In the previous sections we observed a strong effect of the intertemporal elasticity
of substitution on the carbon tax. Here, we investigate the joint effect between
risk aversion and the uncertain damage level on the carbon tax. We choose the
inverse of intertemporal elasticity of substitution as ψ = 2, the hazard rate parameter
ν = 0.00574. We assume that the tipping point has an uncertain damage level
according to equation (4). Figure 7 shows the numbers of carbon tax in the first
period for various risk-aversion coefficients and variances of the uncertain damage
level.
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Figure 7: Effect of Risk-Aversion Coefficient and Variance of Uncertain Damage
Level
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We see that when γ is small, the carbon tax has only a very minor increase as
the variance of uncertain damage level increases. However, for larger values of γ, the
carbon tax increases in a clearly visible amount as the variance increases. Therefore,
the effect of a rising uncertainty about future damage from abrupt climate change
is amplified with higher degrees of risk aversion. In models assuming DICE-like
separable preferences, it is rather the mean of the uncertain damage and not the
variance which affects the carbon tax. We observe this finding as well for low degrees
of risk aversion (i.e. smaller than 2).

However, with higher degrees of risk aversion, we see that the impact on the
carbon tax is proportional to the variance of the uncertainty. This is not surprising
since it fits into CAPM-style intuition. The simple CAPM logic tells us that price of
risk is related to its covariance with the aggregate endowment. Since the magnitude of
the damages is proportional to output, the damages are strongly related to output;
in fact, in this case the climate damage is the only stochastic element of output
conditional on the tipping event. Therefore, the covariance is unity and, as we
expect from CAPM logic, the carbon tax has a price of risk component linear in the
variance. Moreover, the sole effect of the risk-aversion coefficient γ is significant: it
increases much as γ increases from 2 to 10 or from 10 to 20, independent of which
variance of the uncertain damage level is chosen, even if the damage level is certain
at 5% (i.e., δ = 0).

In the previous example the average damage level was 5% and its volatility at
most 2.5%. We now return to the disaster case of the previous section and assume
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both a higher mean and more uncertain impact. In particular, we assume

Jt =

{
0.2 + ς, with probability 50%,

0.2− ς, with probability 50%,

where 0 ≤ ς < 0.2, while the probability transition matrix is the same with (5).
We choose the inverse of intertemporal elasticity of substitution as ψ = 2, and the
hazard rate parameter ν = 0.0008, which is the same as in the disaster case of the
previous subsection 5.4. Again, we study the effect of risk-aversion and volatility of
the uncertain damage level on the carbon tax.

Figure 8 shows that for any volatility of the uncertain damage level, the carbon
tax in the initial period significantly increases with higher risk-aversion.

Figure 8: Effect of Risk-Aversion Coefficient and Variance of Uncertain Damage
Level under Disaster Case
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As in the previous example, higher variance amplifies the effect of risk aversion on
the carbon tax. For example, when the variance is 1%, the carbon tax in the initial
period is $521 for γ = 15. This is much higher than the case with γ = 2 (in which
the carbon tax is only $67). Here again, if the risk-aversion coefficient is small (e.g.,
γ = 2), then higher variance brings about only almost no change in the carbon tax in
the initial period. The price of risk for this parameter setting as well as for standard
separable preferences is zero. However, if γ = 15, the carbon tax rises sharply from
$201 to $521 when the volatility increases from 0 to 10%. To sum up this example:
in face of a very unlikely tipping point event (about 0.1% probability of tipping at
2100), and uncertainty about its impact (mean of 20% and uncertainty is 10%), a
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risk-averse policymaker sets the carbon tax of the initial period at $521. Here, the
Epstein-Zin formulation of preferences is a key determinant of our finding in the
case of uncertain post-tipping damage. Standard DICE-like separable preferences
necessitate unrealistically extreme catastrophic scenarios (e.g. Weitzman, 2009) in
order to obtain results similar to ours.

5.6 Gradual Tipping Point Impact

So far, we have studied a simple two-stage tipping process to help us understand the
basic drivers of the carbon tax within our model. As we have argues in section 2,
tipping elements in the climate system exhibit heterogeneity with respect to their
assumed duration of the post-tipping impact paths. According to Lenton et al.
(2008) the durations can be as low as less than 10 years on the lower scale, but also
last high as more than 300 years. Therefore, a simple two-stage process assuming a
most rapid abrupt climate change is not a sensible representation of scientific accord.

In this section, we use DSICE to examine an eleven stage tipping process to study
how a sequence of tipping events affects the SCC. Here again, we do not focus on any
specific tipping elements, but rather study a range of different assumptions about
post-tipping damage and duration of the entire tipping process. We are therefore
able to match a broader range of beliefs about the nature of a tipping point scenarios
and analyze how they will affect the optimal climate policy in our model.

Since this tipping structure is sequential, the decision maker faces always one
tipping point stage at a time but has full information about the tipping system
transition matrix. We assume that only stage 1 is associated with an endogenous
tipping point probability (i.e. depending on contemporaneous temperature). Each
subsequent stage (i.e. stage 2 - final stage) are associated with an exogenous and
constant tipping point probability. To model this, we assume that Jt is a discrete
Markov chain with 11 possible values of 0, 0.01, 0.02, . . ., 0.1, and its probability
transition matrix from year t to year t+ 1 is

1− pt pt
1− qt qt

1− qt
. . .
. . . qt

1− qt qt
1


,

where pt is the transition probability entering stage 2 from the initial stage, given
in the formula (3), and qt is the transition probability entering stage i + 1 from the
stage i for i > 1. We let qt = 1 − eχ, and then calibrate χ to be in line with the
expected duration of the entire tipping process.

In this example, we choose χ = 0.2 so that the expected duration of the whole
tipping process is 50 years. Furthermore, we set the inverse of intertemporal elasticity
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of substitution is ψ = 2, the risk-averse coefficient is γ = 10. Also, similar to our
benchmark case, we assume that the hazard rate parameter at stage 1 is ν = 0.00574.
Figure 9 displays the optimal carbon tax for this application. As in the previous
examples, we do report the statistics of 1000 simulated paths of the carbon tax.

Figure 9: Carbon Tax with an Eleven-Stage Tipping Process
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Figure 9 shows that the qualitative nature of the carbon tax path for the 11-stage
tipping process is very similar to the one of the 2-stage process. As in the previ-
ous examples, the no-tipping path shows a carbon tax of $37 in 2005. The optimal
pre-tipping carbon tax in 2005 is about $86. This is more than twice as much, but
not surprising since we now assume a stage 11 - damage of 10%. Furthermore, the
pre-tipping carbon tax rises to about $250 by the end of the century and by an addi-
tional $250 at 2150. The expected duration of the entire stochastic tipping process
is 50 years. Our 1000 simulations show the fastest transition of 18 years and the
slowest transition of 132 years (the sample mean duration is 49.4 years). Here again,
we are taking account of scientific uncertainty regarding the nature of tipping point
events. Furthermore, we observe from Figure 10 how our assumption of an endoge-
nous tipping probability in stage 1 and exogenous probability thereafter translates
in the optimal carbon tax numbers. Once, stage two is reached, the decision maker
cannot longer prevent the subsequent stages from occurring. Therefore, a sequence
of adverse cascading events is triggered and additional mitigation efforts aiming at
preventing such an cascade are eliminated. Stages 3 - 11 are unavoidable. It is stage
2 which we want to delay. Note, the asymptotic path of the 25% quantile (blue dot-
ted line) toward the 0% quantile. It reflects the fact that after stage 2 (the vertical
drop) is reached, it takes about 50 years for the final stage (stage 11) to occur.
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Since it is the expected stochastic damage that matters for the carbon tax in
each period we next solve the model for twelve different parameter settings. We
study three different maximal damage levels: 2.5%, 5% and 10%. Furthermore, we
study four different expected durations of the multi-stage tipping process: 25, 50,
100 and 200 years, since the tipping process has been triggered. Figure 10 depicts
the pre-tipping carbon tax in 2005 for these twelve runs.

Figure 10: Effect of Damage Level and Expected Duration of Tipping Process an
Eleven-Stage Tipping Process
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We see that the 2005 optimal carbon tax is increasing with the final-stage maximal
damage level. It is also increasing with a shorter expected duration of the entire
tipping-process.

Note further, that the optimal carbon tax (200 periods) at 10% damage is about
the same as the carbon tax (50 periods) at 5% damage. The same holds for the
carbon tax (200 periods) at 5% damage and the carbon tax (50 periods) at 2.5%
damage. These findings confirm our intuition that it is the combination of the post-
tipping damage and the duration of the tipping process which drives the optimal
additional carbon tax in a pre-tipping regime.

Comparing the 10% damage line (red) in Figure 10 with the blue line at 10%
damage in Figure 5, we can provide numbers for the reduction in the additional
carbon tax when moving to a multi-step tipping process of different expected duration
of the entire process. First, recall that the 2005 pre-tipping additional carbon tax is
$98 ($37 for no tipping path vs. $135 for the two-step tipping path). This number
reduces to $64 when moving to a 11-stage process with 25 years of expected transition
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to stage 11. Furthermore, the additional pre-tipping carbon tax reduces to $64 (50
years of expected transition) and $49 (100 years). Finally, even if the expected
duration of the post-tipping carbon tax is 200 years, the additional pre-tipping carbon
tax in 2005 is still $20. Of course, if we reduce the stage 11- damage from 10% to
5% and 2.5%, the additional pre-tipping carbon tax decreases. Nevertheless, for an
expected duration of 200 years and a 2.5% damage from the final stage of the tipping
process, we find that the optimal carbon tax today is about $41, which is more than
a 10% increase to the deterministic case without a tipping process.

5.7 Stochastic Economic Productivity

Decision makers face at least two kinds of uncertainty: uncertainty about future
economic productivity as well as uncertainty about future climate impacts. We next
show how economic productivity shocks interact with climate change dynamics.

First, we investigate solely the effect of economic shocks on the carbon tax. We
disregard the tipping point for a moment. In the example, we assume that the eco-
nomic shock ζt is a bounded mean-reverting process given in Cai, Judd and Lontzek
(2012b): its reverting rate is 0.1, its long-run mean is 1, the standard deviation of the
conditional productivity shock is 2%, and ζt is contained in the interval [0.92, 1.08].
We use our benchmark taste parameters: ψ = 2 and γ = 10, in this example. Figure
11 shows the (relative) difference in the carbon tax to the deterministic model under
a long persistence and the benchmark preference parameters. The upper and lower
envelopes of our simulations result in roughly a 10% change in the carbon tax. In
all simulations, the carbon tax fluctuates between +15% and −15% relative to the
mean, with a standard deviation of about 1.7%, a modest amount of volatility.
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Figure 11: Effect of Economic Shock
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Second, we present the results of the economic shock uncertainty and the tipping
point uncertainty combined. Figure 12 shows the carbon tax for the case with the
benchmark tipping point with 5% damage level and the business cycle uncertainty
having the same parameters with the above example.
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Figure 12: Effect of Economic Shock
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The carbon tax in this example exhibits both features from the “tipping only”
and “business cycle only” examples. The constancy in the additional carbon tax from
tipping is retained as well as the relatively mild fluctuations of the carbon tax. The
latter point can be seen when looking at the positions of the quantiles. As opposed
to Figure 3, the optimal carbon taxes for the different quantiles in the post-tipping
regime no longer overlap in this example, i.e., they still fluctuate after a tipping point
has occurred.

These two examples indicate that the total uncertainty is essentially the sum of
the two separate processes in DSICE when we assume a very simple structure to the
economic system. Future extensions will incorporate features of endogenous growth
and more persistent economic shocks, both of which could produce more interesting
interactions between the economic and climate systems.

6 Conclusion
This study has analyzed the optimal level and dynamic properties of the carbon
tax in face of stochastic and irreversible climate change and its interaction with
economic factors, including business cycle fluctuations and preferences about risk.
The underlying model entails several ingredients which we consider essential for a
sound analysis of climate policy under catastrophic risk. First, we model a low-
probability tipping point process as jump processes with a temperature-dependent
hazard rate and a stochastic duration of the entire process. Second, we account for
the intrinsically uncertain nature of future states of the economy and incorporate
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the cyclicality of business conditions into the optimal decision making process of
the policy maker. Third, we model the cost of risk in a manner more compatible
with empirical evidence about social risk preferences. Riskiness is inherent in the
nature of tipping points, and the socio-economic effects of stochastic, sequential and
irreversible perturbations to the climate system will be affected by preferences about
risks. While these features are familiar model components in economics, it is the joint
modeling of them within a DSGE version of a widely accepted IAM, that attributes
to the novelty of this study.

In particular, we use DSICE (Cai, Judd and Lontzek, 2012b), a DSGE full-
dimensional extension of DICE2007. DSICE and DICE2007 are therefore compa-
rable, which facilitates the comparison of our carbon tax numbers with the ones
obtained, e.g., by the U.S. Government Interagency Working Group on Social Cost
of Carbon (IWG, 2010). In contrast to other approaches in the literature to study
a stochastic version of DICE2007, we are endowed with an annual-frequency, full-
dimensional, stochastic IAM with intrinsic uncertainty about annual economic pro-
ductivity and stochastic climate components. We solve DSICE with dynamic pro-
gramming using advanced computational methods. The solution to DSICE is reliable
and quickly obtained. Furthermore, the advanced computational architecture behind
DSICE will enable us to study much more complex and higher-dimensional exten-
sions of the model presented in this study.

We find that the threat of a tipping point induces significant and immediate
increases in the social cost of carbon, even for low-probability and low-impact tipping
events. We find that incorporating Epstein-Zin preferences into DSICE in a manner
that is compatible with the evidence on risk aversion and the intertemporal elasticity
of substitution significantly increases in the carbon tax. For example, larger values
of the intertemporal elasticity of substitution and the degree of risk aversion lead to
higher carbon taxes. Furthermore, in addition to stochastic and irreversible climate
change, we also study cases with significant uncertainty about post-tipping damages.
We find that uncertainty about the damage is also a critical factor leading to a sharp
increase in the carbon tax. Furthermore, for low degrees of risk aversion (i.e. smaller
than 2), the carbon tax is not affected much by the volatility of the uncertain damage.
In contrast, high degrees of risk aversion significantly amplify the effect of damage
uncertainty on the carbon tax. We also investigate a disaster scenario that is unlikely
(about 0.1% probability of tipping at 2100), but with large and uncertain impacts
(mean is 20% and volatility is 10%), today’s carbon tax of a highly risk-averse policy
maker is $521.

This application of DSICE also shows that it is quite feasible to solve dynamic
stochastic IAMs with current numerical algorithms and computational hardware.
Past analyses have been hampered by both software and hardware limitations, but
advances over the past twenty years now make it possible to examine important eco-
nomic questions without making unappealing assumptions for the sake of tractability.
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