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1 Introduction

Consider a group making a single binary decision via majority voting. We know that ma-

jority voting treats all voters equally and both options symmetrically, and that it responds

positively to changes in the preferences of the electorate (May, 1972), inducing voters to vote

sincerely. We also know, however, that it ignores the intensity of voters’ preferences and can

lead to decisions that do not maximize utilitarian welfare. Can this difficulty be resolved?

It is a classic question in political economy and has led to a classic line of inquiry: Could

a market for votes be the answer? Markets are designed to allocate goods to the individuals

who value them the most; why wouldn’t the same logic apply to a market for votes? A large

literature developed in the Sixties and Seventies, whether focusing on a market for votes

or on vote-trading when more than one decision is at stake: Buchanan and Tullock (1962),

Coleman (1966, 1967), Park (1967), Wilson (1969), Tullock (1970), Haefele (1971), Kadane

(1972), Riker and Brams (1973), Mueller (1973), Bernholtz (1973, 1974). The question has a

long history, but providing an answer has been difficult. The problem is a fundamental non-

convexity associated with vote trading: votes are intrinsically worthless; their value depends

on the influence they provide, and therefore on the holdings of votes by all other individuals.

Thus, demands are interdependent, and payoffs discontinuous at the point at which a voter

becomes pivotal. Both in a market for votes and in log-rolling games, traditional equilibrium

concepts such as competitive equilibrium or the core typically fail to exist. Writing in 1974,

Ferejohn concluded: "[W]e really know very little theoretically about vote trading. We

cannot be sure about when it will occur, or how often, or what sort of bargains will be

made. We don’t know if it has any desirable normative or efficiency properties" (p. 25).

Ferejohn’s early observation was echoed in later works (Schwartz (1977, 1981), Shubik and

van der Heyden (1978), Weiss (1988), Philipson and Snyder (1996)), and with very few
exceptions (Piketty (1994), Kultti and Salonen (2005)), the theoretical interest in voters

trading votes among themselves effectively came to an end. This paper is part of a larger

research project aimed at reopening the debate on competitive vote markets. We focus on a

competitive market because it is both the first tool of an economist and the paradigm of the

efficient market, and it is within this paradigm that we want to evaluate the early normative

recommendations for markets for votes.

We study the ex ante competitive equilibrium of a market for votes where voters can

trade votes for a numeraire before taking a single decision via majority rule. The choice
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is binary and the number of supporters of each alternative is known. The concept of ex

ante competitive equilibrium was introduced in Casella, Llorente-Saguer and Palfrey (2012):

it requires the market to clear in expectation, as opposed to clearing ex post, and allows

traders to express probabilistic demands. These two features reestablish the existence of

an equilibrium, while preserving the discipline imposed by market clearing: any mismatch

between demand and supply must be unsystematic and unexpected.1

Casella, Llorente-Saguer and Palfrey show that an equilibrium exists when each voter

has equal probability of favoring either alternative: without vote trading, the expected

outcome of the vote is a tie. In most circumstances, however, one of the two alternatives

is expected to win, and in many cases, lacking vote-trading, the sizes of the two opposing

groups are known. Consider for example a decision with a clear partisan bias fought over

by two opposing political parties; or taken by a committee where repeated interactions have

led to a clear understanding of members’ positions. What is often less clear is the intensity

with which preferences are held. In a general election, for example, it is this uncertainty

that translates into uncertainty about participation and explains the empirical importance

of getting-out-the-vote campaigns.2

It is this case, when the size of the majority is known but the intensity of preferences is

private information, that we study in this paper. Note that the existence of an ex ante equi-

librium cannot be taken for granted: in general, we expect that the non-convexity problems

associated with votes will be made worse by more precise information.3

We obtain two main results. First, we construct an ex ante equilibrium with vote trading

that exists for arbitrary electorate size andmajority/minority partition, as long as a condition

on the intensities of preferences is satisfied. The condition rules out the possibility that

multiple members of one group all have preferences that are much more intense (in a precise

sense) than any member of the opposite group. The ex ante likelihood that the condition

is satisfied depends on the distribution from which voters’ intensities are drawn, on the size

1Kultti and Salonen (2005) also propose a Walrasian approach to vote markets based on probabilistic
demands, but do not impose any market clearing condition.

2In U.S. Presidential elections, even voters who classify themselves as "undecided" also overwhelmingly
identify themselves as partisan. See for example Bartels and Vavreck, "Meet the Undecided", on Campaign
Stops, July 30, 2012 (http://campaignstops.blogs.nytimes.com/2012/07/30/meet-the-undecided/)

3See for example the discussion in Piketty (1994). Casella, Palfrey and Turban (2012) show that an ex
ante equilibrium with trade exists in the case of five voters, divided into two groups of sizes 3 and 2, under
a condition on the realized ranking of intensities. This finding allows them to run laboratory experiments
comparing a market for votes to centralized bargaining by group leaders. It opens, however, the question of
how robust the existence result may be in a more general model with arbitrary, known majority size.
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of the electorate, and on the sizes of the two groups. At small electorate sizes, we find such

likelihood to be high for standard intensity distributions—for example, if the minority is a

third of the electorate and the distribution of intensities is uniform, the equilibrium exists

with probability larger than 98 percent with nine voters, and larger than 99.9 percent with

21 voters. The stronger conclusion, however, concerns large electorates, where an ex ante

equilibrium exists with probability arbitrarily close to 1, for any intensity distribution.

Second, the equilibrium we characterize has strong properties that translate into a sys-

tematic bias in favor of the minority. In equilibrium, only the highest intensity member of

each group demands votes with positive probability; all other individuals offer their vote

for sale. But the two voters who are willing to buy do not demand one or a few votes,

rather they demand enough votes to single-handedly control a majority. The competition

for votes becomes a competition for dictatorship between the highest-intensity member of

the majority and the highest-intensity member of the minority, independently of the size of

the minority, and of the intensities of all other voters. In a sense, the market functions as

we should have expected: votes per se are worthless; what is traded is decision power, and

the market allocates it to the individuals who want it most. Still, this also means that the

frequency of minority victories reflects the relative intensity of the most intense minority

member, without taking into account the smaller size of the minority and the aggregate

group values. As a result, if the minority is very small or if the distribution of intensities

assigns low probability to large outliers, the minority wins too often, relative to utilitarian

efficiency. The bias can be strong enough that ex ante welfare is lower with a vote market

than in the absence of trade. Again, this is particularly clear in large electorates. In such

settings, if the minority is a non-negligible share of the total electorate, the highest intensities

of majority and minority voters converge to the upper bound of the support of the intensities

distribution, and thus are arbitrarily close. As a result, the minority is always expected to

win half of the time, for any distribution of intensities, and regardless of its share of the

electorate. The outcome is inefficient and inferior to simple majority voting with no vote

market. As we summarize in the title of this paper: in a large market, democracy—the power

of majority rule—is undone: the numerical superiority of the majority becomes irrelevant.

The equilibrium we construct echoes the equilibrium in Casella, Llorente-Saguer and

Palfrey (2012): a vote market leads individuals to either demand bundles of votes—in fact a

majority—or sell. It is an interesting conclusion, surprisingly robust to different assumptions

about the expected size of the opposing groups and the structure of information. But when
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the two groups’ sizes are known, the model delivers a number of additional predictions.

First, because in both groups most individuals are offering their vote for sale, demand for

additional votes is just as likely to arise from the majority as from the minority. Second, in

equilibrium, intra-group trade and super-majorities always arise with high probability, even

though votes command a positive price and the majority size is known. The intuition is

clear: high intensity individuals need to preempt sales to the opposite group by their own

weak allies. We believe that the predictions are empirically very plausible, but intra-group

trades are absent from all vote-buying models we are familiar with.4

The goals of our project can be clarified by briefly addressing three fundamental objec-

tions to vote markets. First, there is the philosophical objection to the very idea of a vote

market: votes just should not be traded because individual political rights and obligations in

a democracy cannot be sold or bought (for recent voices, see, for example, Tobin, 1970, Mar-

shall, 1977, Waltzer, 1989, Anderson, 1993, Sandels, 2012, Satz, 2012). We do not disagree,

even as we note that vote trading and vote buying most likely do occur, both in popular

elections and in committees.5 And yet, we may still want to ask what the results of a vote

market would be if one were allowed. Knowing how the institution would behave can only

help in evaluating the moral objection. Second, it is also argued, again from a normative

view, that vote markets are unacceptable because differences in income and wealth would

translate into different incentives to trade, reducing the political voice of poorer individuals.

Again, we agree in principle. But understanding the role that inequality would play is impos-

sible if we do not understand how a market for votes would work in an ideal (abstract) world

without inequality. This is the question we ask. Third, trades of votes create externalities

on individuals who are not part of the trades. Failing a full Coasian bargain, a market for

4Groseclose and Snyder’s (1996) conclusion that vote-buying leads to supermajorities has the same flavor.
Their paper studies vote-buying in a legislature by two competing outside buyers, as opposed to vote trading
among voters, and their result is due to the buyers taking turns in proposing a deal to the legislators, as
opposed to the one-shot market studied here.

5There is a large empirical literature on vote-buying by candidates and parties in general elec-
tions. Studies of vote-buying among voters concentrate on committee votes. Building on political
science’s traditional focus on urban politics (for example, Goodman (1975)), Philipson and Sny-
der (1998) discuss indirect evidence of vote-buying in municipal decisions. A recent literature
attempts to quantify vote-buying in international organizations. See, for example, Kuzienko and
Werker (2006), Eldar (2008), Drexel et al. (2009), Dippel (2010), and Carter and Stone (2011).
There is some anecdotal evidence of vote-buying among voters in popular elections: for example,
http://www.slate.com/articles/news_and_politics/net_election/2000/10/want_to_sell_your_vote_not_so_fast.html,
or http://www.fbi.gov/louisville/press-releases/2011/salyersville-man-convicted-of-buying-votes-in-2010-
general-election.
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votes, even in its more favorable design, will not be fully efficient. Externalities, however,

do not imply that a market for votes should be expected to be inferior to simple majority

voting with no trading, since the latter is likely to be inefficient as well. The comparison

between the two then remains unsettled and interesting.

Finally, two other strands of literature should be mentioned. First, there is the important

but different literature on vote markets where candidates or lobbies buy voters’ or legisla-

tors’ votes: for example, Myerson (1993), Groseclose and Snyder (1996), Dal Bò (2007),

Dekel, Jackson and Wolinsky (2008) and (2009). These papers differ from the problem we

study because in our case vote trading happens within the committee (or the electorate).

The individuals buying votes are members, not external traders, groups or parties. Second,

vote markets are not the only remedy advocated for majority rule’s failure to recognize in-

tensity of preferences in binary decisions. The mechanism design literature has proposed

mechanisms with side payments, building on Groves-Clarke taxes (e.g., d’Apremont and

Gerard-Varet 1979). However, these mechanisms have problems with bankruptcy, budget

balance, and collusion (Green and Laffont 1980, Mailath and Postlewaite 1990). A recent

literature suggests combining insights from mechanism design into the design of voting rules.

Goeree and Zhang (2012) and Weyl (2012) propose allowing voters to purchase votes from

a central agency at a price equal to the square of the number of votes purchased, a scheme

with strongly desirable asymptotic properties. Casella (2005, 2012), Jackson and Sonnen-

schein (2007) and Hortala-Vallve (2012) propose mechanisms without transfer that allow

agents to express their relative intensity of preferences by linking decisions across issues.

Casella, Gelman and Palfrey (2006), Engelmann and Grimm (2012), and Hortala-Vallve and

Llorente-Saguer (2010) test the performance of these mechanisms experimentally and find

that efficiency levels are very close to theoretical equilibrium predictions, even in the presence

of some deviations from theoretical equilibrium strategies.

The rest of the paper is organized as follows. Section 2 presents the model; section 3

characterizes the ex ante equilibrium whose properties we discuss in the rest of the paper;

section 4 studies the expected frequency of minority victories and expected welfare, and

compares these measures to the equivalent measures in the absence of a vote market and in

the utilitarian first best. Section 5 discusses the robustness of the results to more general

assumptions on the stochastic process generating intensities and to an alternative rationing

rule. Section 6 concludes. The Appendix collects the proofs.
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2 The Model

A committee of size n (odd) must decide between two alternatives, A and B. The committee

is divided in two publicly known groups with opposite preferences: M individuals prefer

alternative A, and m prefer alternative B, with m = n −M < M . We will use M and

m to indicate not only the size of the two groups, but also the groups’ names. While the

direction of each individual’s preference is known, the intensity of such preference is private

information. Intensity is summarized by a value vi representing the utility that individual

i attaches to obtaining his preferred alternative, relative to the competing one: thus the

utility experienced by i as a result of the committee’s decision is vi if i’s preferred alternative

is chosen, and 0 if it is not. We will use intensity and value interchangeably. Individual

values are independent draws from a common and commonly known distribution F (v) with

support [0, 1]. We call v the vector of realized values.

Each individual is endowed with one indivisible vote. The group decision is taken through

majority voting. Prior to voting, however, individuals can purchase or sell votes among

themselves in exchange for a numeraire. The trade of a vote is an actual transfer of the vote

and of all rights to its use. We normalize each voter’s endowment of the numeraire to zero

and allow borrowing at no cost. The important point is that no voter is budget constrained

and all are treated equally. Individual utility ui is given by:

ui = viI + ti (1)

where I equals 1 if i’s preferred decision is chosen and 0 otherwise, and ti is i’s net monetary

transfer, positive if i is a net seller of votes, or negative if he is a net buyer.

With two alternatives and a single voting decision, voting sincerely is always a weakly

dominant strategy, and we restrict our attention to sincere voting equilibria: after trading,

each individual casts all votes in his possession, if any, in support of the alternative he prefers.

Our focus is on the vote trading mechanism. We are interested in a competitive spot market

for votes.

We allow for probabilistic (mixed) demands for votes. Let S = {s ∈ Z ≥ −1} be the
set of possible pure demands for each agent, where Z is the set of integers, and a negative
demand corresponds to supply: agent i can offer to sell his vote, do nothing, or demand any

positive integer number of votes. The set of strategies for each voter is the set of probability

measures on S, ∆S, denoted by Σ. Elements of Σ are of the form σ : S → R where, for each

6



voter,
P

s∈S σ (s) = 1 and σ (s) ≥ 0 for all s ∈ S.

If individuals adopt mixed strategies, the aggregate amounts of votes demanded and

of votes offered need not coincide ex post. A rationing rule R maps the profile of voters’

demands to a feasible allocation of votes. We denote the set of feasible vote allocations

by X =
©
x ∈ Zn+

¯̄P
xi = n

ª
. The rule R is a function from realized demand profiles to

the set of probability distributions over vote allocations: R : Sn → ∆X. We require:

R(s)(x) = 0 if: ∃i ∈ {1, .., n}|xi > 1 + si and si ≥ 0; or ∃i ∈ {1, .., n}|xi = 0 and si ≥ 0; or
∃i ∈ {1, .., n}|xi /∈ {0, 1} and si = −1; we require: R(s)(x) = 1 if

P
si = 0 and x = 1 + s.

In words, no voter with positive demand can be required either to buy more votes than he

demanded, or to sell his vote; no voter who offered his vote for sale can be required to buy

votes, and all demands must be respected if they are all jointly feasible.

The particular mixed strategy profile, σ ∈ Σ, and the rationing rule, R, imply a proba-

bility distribution over the set of final vote allocations that we denote as rσ,R (x). For every

possible allocation, we denote by ϕi,x the probability that the committee decision coincides

with voter i’s favorite alternative. Thus, given some strategy profile σ, the rationing rule R,

a vote price p, and equation (1), the ex ante expected utility of voter i is given by:

Ui (σ,R, p) =
X
x∈X

rσ,R (x) [ϕi,xvi − (xi − 1) p] (2)

Each individual makes his trading and voting choices so as to maximize (2).

3 The Equilibrium

We borrow the concept of ex ante competitive equilibrium from Casella, Llorente-Saguer and

Palfrey (2012), (CLP from now onward). To allow for the existence of mixed strategies,

the traditional requirement of market balance is substituted with the weaker condition that

market demand and supply coincide in expectation. The discipline imposed by market equi-

librium is softened to the requirement that deviations from market balance be unsystematic

and unpredictable.

With two opposing groups of known and different sizes, best response strategies will

generally differ between the two groups. As a result, even when demands are anonymous, if

the equilibrium exists, it will convey information about the direction of preferences associated

to each demand, and individual strategies will take that information into account. In the
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spirit of rational expectations models, we call an equilibrium fully revealing if either: (1)

the equilibrium price, together with the set of others’ equilibrium strategies and market

equilibrium, fully convey to voter i the direction of preferences associated to each demand;

or (2) the information conveyed is partial but voter i has a unique best response, identical

to his best response under full information. Thus in a fully revealing equilibrium the price

and individual strategies are identical to what they would be with full information. Define

σ∗i (v) as individual i’s equilibrium strategy when all preferences are known, where v stands

for the vector of realized intensity values. Then:

Definition 1 The vector of strategies σ∗ and the price p∗ constitute a fully revealing ex ante
competitive equilibrium relative to rationing rule R if the following conditions are satisfied:

1. For each agent i, σ∗i satisfies

σ∗i ∈ argMax
σi∈Σ

Ui

¡
σi, σ

∗
−i, R, p

∗¢
2. In expectation, the market clears, i.e.,

nX
i=1

X
s∈S

σ∗i (s) · s = 0

3. Given {σ∗−i, p∗} and the knowledge that the equilibrium is fully revealing,

σ∗i = σ∗i (v) for all i.

In equilibrium, individuals select strategies that maximize their expected utility, given

the strategies used by others and the price. Demands are interdependent and best-respond

to others’ demands. In a market for votes, such interdependence is inevitable because the

value of a vote depends on the full profile of votes allocation.6 In competitive equilibrium

theory, it is found in analyses of contributions to public goods (for example, Arrow and

Hahn. 1971, pp.132-6). In the present setting, with two opposite groups of different sizes,

the interdependence of demands plays a second important role. Together with the price,

it supports the information revelation that occurs in equilibrium. Surveying the literature

6As a transparent example, all remaining votes have zero value if one voter holds a majority on his own.
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on the existence of rational expectations equilibria, Allen and Jordan (1998) identify the

"competitive message"—the price and the set of others’ demands—as the smallest possible

information message that supports a fully revealing equilibrium.

In our competitive market, demands are known but anonymous. What is crucial is not

the full knowledge of realized values but an individual’s ability to associate a demand σj

with a direction of preferences for voter j. In a fully revealing equilibrium, others’ strategies

and the price are sufficient to convey such information and thus to identify uniquely one’s

own best response strategy. An important corollary is that if a fully revealing equilibrium

exists, then it is also an equilibrium of the complete information game. We have assumed

above that individual intensities of preferences are private information. But everything we

say below will apply identically if all preferences are publicly known.7

In general, the existence and the characterization of the equilibrium will depend on

the rationing rule. The selection of any particular rule is necessarily debatable, but we

concentrate on a rule that seems well-suited to a market for votes. First, in line with the spirit

of competitive markets, it is anonymous: every demand is treated equally, independently of

the identity and preferences of the trader, or of the amount of the demand. Second, the rule

does not require voters to accept and pay for partially filled orders: any individual demand

is either satisfied in full or not at all. Being held responsible for partial orders is an expensive

proposition in a market for votes where a single vote may make the difference between control

and irrelevance. As in CLP, we call such a rule R1 or Rationing-by-Voter: any outstanding

positive order for votes is equally likely to be selected; it is then either satisfied in full, if

there exists sufficient outstanding supply; or not at all, in which case the voter exits the

market; a second positive order is then randomly selected from those remaining, and the

process continues until either all orders are satisfied or the only orders left outstanding are

all unfeasible. Formally: call πi(s) the probability of being recognized when s are realized

demands, nR1s>0 the number of voters with outstanding positive demands, and n−1 the number

of voters with outstanding offers to sell. Then πi(s) = 1/nR1s>0 if si > 0; πi(s) = 1/n−1 if

si = −1, and R(s)(x) = 0 if ∃i ∈ {1, .., n}|xi /∈ {1, 1 + si}, where the last condition just
states that no allocation of votes has positive probability unless all individuals either fulfill

their full demand or do not trade at all. At the end of the paper, we discuss the conditions

7Note that the reverse does not hold: an equilibrium of the full information game need not be a fully
revealing equilibrium of the incomplete information game, because it may be impossible for an agent to
extract all relevant information.
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under which our results are robust to an alternative rationing rule where each vote offered

for sale is randomly allocated to any voter with positive demand, and orders can be filled

only partially. Up to that point, all our results are to be read as relative to rationing rule

R1.8

An equilibrium with no trade always exists—if no-one else is trading, an individual is

rationed with probability one—and is, trivially, fully revealing—strategies are identical to what

they would be with full information. Our interest is in equilibria with trade.

If an equilibrium existed in pure strategies, market balance would hold not only ex ante

but ex post, and no rationing would occur. We need to allow for mixed strategies and ex

ante equilibrium because in a market for votes with two opposing groups of known sizes, no

fully revealing competitive equilibrium with trade exists in pure strategies. This result is

well-known but we reproduce it here because it is the point of departure of our analysis.

Remark9. For all n odd, m, F , and v, there is no price p∗and vector of strategies

s∗(v, p∗) such that s∗i (v, p
∗) = argMax

si∈S
Ui

¡
si, s

∗
−i, p

∗¢ for all i and Pi s
∗
i (v, p

∗) = 0, unless

s∗i (v, p
∗) = 0 for all i.

The logic is simple. If there is trade, for all p > 0,
P

i∈m s∗i (v, p) ∈ {−m, (M−m+1)/2}:
if the aggregate demand of minority voters is positive, it must equal the minimum number

of votes required to win; alternatively, at any positive price all losing votes must be offered

for sale. But
P

i∈M s∗i (v, p) ≤ 0: in equilibrium, the aggregate demand by majority voters
cannot be positive. In addition,

P
i∈M s∗i (v, p) 6= −(M −m+ 1)/2: if (M −m+ 1)/2 votes

were traded, the remaining (M + m − 1)/2 votes collectively held by M voters would be

worthless and thus offered for sale too. Thus for all p > 0,
P

i∈m s∗i (v, p) +
P

i∈M s∗i (v, p) 6=
0. If p = 0,

P
i∈m s∗i (v, p) ≥ (M − m + 1)/210, but

P
i∈M s∗i (v, p) ≥ −(M − m − 1)/2,

because the only supply can come from M voters whose vote is not pivotal. Thus for p = 0,P
i∈m s∗i (v, p) +

P
i∈M s∗i (v, p) > 0.¤

The question this paper addresses then is whether a fully revealing ex ante competitive

equilibrium with trade exists, given the knowledge of m and M .

8R1 resembles All-or-Nothing (AON) orders used in securities trading: the order is executed at the
specified price only if it can be executed in full. See for example the description of AON orders by the New
York Stock Exchange http://www.nyse.com/futuresoptions/nysearcaoptions/

9Ferejohn (1974), Philipson and Snyder (1996), Piketty (1994), Kultti and Salonen (2005), Casella, Pal-
frey, Turban (2012)
10We are assuming that at p = 0, voters on the losing side demand rather than sell votes. This is equivalent

to the standard assumption that goods are in excess demand at 0 price.
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3.1 An example

It is useful to begin by discussing a simple example. Call vm the highest realized value in

the minority group, group m, and vM the highest realized value in group M , and call v(2)m
and v(2)M the second highest realized values in each of the two groups.

Example 1. Suppose v is such that vm ≥ vM ≥ v(2)m. Then for all n odd, m, and F ,

there exists a fully revealing ex ante equilibrium with trade where: p = (2vM)/(n + 1); vm
demands (n−1)/2 votes; vM randomizes between demanding (n−1)/2 votes (with probability
(n− 1)/(n+ 1)) and selling his vote; and all other individuals offer their vote for sale.

The ranking vm ≥ vM ≥ v(2)m means that the (weakly) highest intensity voter belongs

to the minority and that there exist two voters with intensities not lower than anyone else

who disagree. The result is implied by Theorem 1 below and proved there. It states that in

this example there exists an equilibrium where the only two voters with some probability of

positive demand are the highest-value individuals in the two groups, and the only amount

demanded is such that, if demand is satisfied, the individual will hold a majority of votes.

The equilibrium does not depend on F , or, strikingly, onm, the size of the minority. Nor does

the equilibrium depend on the value ranking of the other minority and majority members,

besides requiring vm ≥ vM ≥ v(2)m. For clarity, recall that values are private information: the

group membership of the two highest-value voters, the values’ ranking, and vM are revealed

in equilibrium.

The market equilibrium recalls an auction for dictatorship: the equilibrium price is pinned

down by the condition that vM , the individual with second-highest value if the inequalities

are strict, is indifferent between selling his vote and demanding dictatorship. Equilibrium

strategies are identical to those characterized in CLP, a surprising result because the infor-

mation about preferences is very different in the two models: in CLP each voter is expected

to favor either option with equal probability; here the size of the group favoring each alter-

native is known, and the two groups may be very unequal.11 The conclusion that the vote

market does not allocate votes somewhat smoothly among higher value individuals seems

counterintuitive, but the robustness of the result to the different information assumptions in

the two models suggests a central aspect of markets for votes. Votes have no value in them-

11The different assumption explains the difference in the equilibrium price. In Example 1, the second-
highest value voter is sure to lose the election if rationed; in CLP, if rationed, he loses only with probability
1/2, the probability that his competitor for votes disagrees with him. Hence the price he is willing to pay in
the first case is double the price he is willing to pay in the second.
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selves, and in this equilibrium a well-functioning market for votes approximates a market for

decision power. In the absence of income constraints, the market allocates decision power to

one of the two individuals with the highest incentive to compete for it.

An implication of this result is that the equilibrium allocation of decision power is in-

dependent of the relative size of the minority, and of the values of all voters but the two

highest. The equilibrium holds whether m = 1 or m = M − 1, and for any m it holds

whether large differences in values are possible, or all voters’ values are equal, as long as

vm ≥ vM ≥ v(2)m.12

Four implications follow immediately. They are particularly transparent in this example,

but will continue to be valid in the more general case. First, if we define efficiency in

utilitarian terms—as the allocation of decision power to the group with higher aggregate

value—then there can be no presumption that the market for votes will be efficient. More

strongly, there can be no presumption that the market for votes is more efficient than no

trading, or simple majority voting. For example, if all values are equal, it is clearly superior

to let the majority win, an outcome that in the equilibrium characterized here the market

delivers only if the highest value majority voter demands votes and is not rationed, or with

probability (n− 1)/[2(n+ 1)], smaller than 50 percent.
Second, note that in such a case the only realized purchases of votes are by a majority

member. The result is less paradoxical than it seems: all other majority members are offering

their votes for sale, and the highest value majority member buys to prevent the transfer of

votes to the minority. Preemptive purchases by the majority are very plausible—any sponsor

of a bill needs to worry about the support of his weakest allies. But to our knowledge they

have no role in usual formalizations of vote trading.

Third, and related, the equilibrium predicts intra-group trading with probability that for

all m and M is positive and high. Again, most voters are offering their vote for sale, and

high value individuals need to preempt sales to the opposite group by their own weak allies.

Finally, unless all of one’s group votes are purchased, the winning majority will be larger

than the minimal winning coalition. Thus in general the equilibrium predicts super-majority,

a counter-intuitive result in a market for votes where votes command a positive price. Note

that the result holds although the sizes of the two groups are known, and thus the number

12Even if all values are equal, the strategies of the two voters with positive demands cannot be interchanged.
If vi = vj = v, there is no equilibrium where vi ∈ M demands (n− 1)/2 votes, vj ∈ m randomizes between
selling and demanding (n− 1)/2 votes, and all other sell. See Theorem 1. The reason is the main theme of
this paper: in the market, minority equilibrium strategies are systematically more aggressive.
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of additional votes the minority needs to win is common knowledge.

3.2 Two theorems

In this section we extend the example studied above to less restrictive configurations of re-

alized values. Theorem 1 characterizes an ex ante equilibrium for a large range of value

realizations. Theorem 2 shows that although the range is not exhaustive, with large elec-

torates realized value configurations must fall under Theorem 1 with probability arbitrarily

close to 1.

Given realized values v, we denote by v(1) the highest realized value; by G ∈ {m,M}
the group such that v(1) ∈ G—the group to which the highest intensity individual belongs—,

and by g the opposite group. We call vG (vg) the highest realized value in G (g) (thus by

definition vG = v(1)). Finally, we denote by v(2)G the second highest value in G: v(2)G =

max{vi ∈ G, vi 6= vG}.13

Theorem 1. For all n odd, m, and F , there exists a threshold μ(n) ∈ (0, 1) such that
if vg ≥ μ(n)v(2)G, there exists a fully revealing ex ante equilibrium with trade where vG and

vg randomize between demanding (n− 1)/2 votes (with probabilities qG and qg respectively)

and selling their vote, and all other individuals sell. The randomization probabilities qG and

qg and the price p depend on vg and vG, but for all vg ≥ μ(n)v(2)G, and vG, qG ∈ [n−1n+1
, 1]

and qg ∈ [n−1n+1
, 1]. The threshold μ(n) is given by:

μ(n) =

½ 2
3

if n = 3

max
n
(n−2)(n−1)
2(n2+n−5) ,

(n−2)(n−1)(n+1)
2(n3+3n2−19n+21)

o
if n > 3

The theorem is proved in the Appendix, where we also report the explicit solutions for qG,

qg and p. The expressions are simple but not very enlightening because of the need to consider

different cases, depending on the realizations of vg and vG. An important observation is that

μ(n) < 1 for all n, and μ(n) < 1/2 for all n > 3.14 The condition vg ≥ μ(n)v(2)G is necessary

and sufficient for the existence of the equilibrium characterized in the theorem, and is thus

13Throughout the paper, we use vi to denote the value of i but also occasionally, with abuse of notation,
the name of voter i. We use the notation v(1) to indicate the highest draw, as opposed to the more standard
v(n), for consistency with v(2)G.
14For all n > 3, μ(n) is increasing in n, and approaches 1/2 asymptotically for n arbitrarily large.
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sufficient for the existence of a fully revealing ex ante equilibrium with trade.15

Since μ(n) < 1 for all n, the example discussed in the previous subsection (G = m, g =M ,

and vg ≥ v(2)G) satisfies the condition of the theorem, and the equilibrium characterized

here applies. The condition vg ≥ μ(n)v(2)G is weaker than vg ≥ v(2)G and is compatible

with multiple highest-ranked value realizations all belonging to members of the same group,

but the qualitative properties of Example 1 extend to the more general case. In particular:

the market for votes amounts to a competition for dictatorship between vM and vm, and

after rationing there always is one dictator; the price is always such that min(vM , vm) is

indifferent between selling his vote and demanding dictatorship; finally, the market results in

intra-group trade and in a super-majority with strictly positive probability. Given n, both

the existence and the properties of the equilibrium depend exclusively on the realizations of

three values, vg, vG, and v(2)G. If the equilibrium exists, both the strategies and the price are

fully independent of all other realized values, and, surprisingly, of the size of the two groups.

Figure 1 represents graphically the areas over which the equilibrium described in Theorem

1 exists and uses different colors to describe the equilibrium mixing probabilities. In all

panels, the vertical axis measures vg/vG and the horizontal axis v(2)G/vG, and thus both axes

range between 0 and 1. The panels on the left are drawn for the caseG = m—the highest value

realization belongs to a minority voter—and the panels on the right for G = M—the highest

value realization belongs to a majority voter. The upper panels correspond to n = 9, and

the lower panels, in both columns, to n = 21. Because the existence and characterization of
the equilibrium do not depend on the size of the minority, the figure applies for any m < M ,
as long as v(2)m exists and thus m ≥ 2.16

In all panels, the equilibrium exists above the diagonal line vg = μ(n)v(2)G. Blue areas

correspond to an equilibrium where the highest intensity minority voter, vm, demands (n−
1)/2 votes with probability 1; the highest intensity majority voter, vM , demands (n− 1)/2
votes with probability (n − 1)/(n + 1) and sells his vote otherwise, and all other voters
sell. Note that such an equilibrium exists not only when the highest value belongs to the

minority (the panels on the left) but also when the highest value belongs to the majority

(the panels on the right) as long as vm is high enough, relative to vM—higher than a value

15Theorem 1 does not state that no fully revealing equilibrium with trade exists if vg < μ(n)v(2)G, and
in a specific example (M = 3, m = 2), we have constructed an equilibrium when the condition is violated
(Casella, Palfrey and Turban, 2012).
16If m = 1, the panel on the right (G = M) is unchanged; the panel on the left (G = m) has no white

area in the lower right corner because the condition vM > μ(n)v(2)m is trivially satisfied.
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Figure 1: Equilibrium strategies in Theorem 1, as function of vG, vg, and v(2)G.

ρ(n)vM < vM that appears as the upper horizontal line in the panels on the right. The red

area corresponds to an equilibrium where vM demands (n − 1)/2 votes with probability 1;
vm demands (n − 1)/2 votes with probability (n − 1)/(n + 1) and sells his vote otherwise,
and all other voters sell. Such an equilibrium exists when the highest value belongs to the

majority and vm is low enough, relative to vM—lower than a value ρ(n)vM < ρ(n)vM that

appears as the lower horizontal line in the panels on the right. Both ρ(n) and ρ(n) are

defined precisely in the Appendix; for all n they satisfy 1/2 ≤ ρ(n) < ρ(n) < 1, and both

converge to 1 at large n. Finally, in the purple area, for vm ∈ (ρ(n)vM < ρ(n)vM), both vm

and vM randomize between demanding (n−1)/2 votes, with probabilities qm and qM strictly

between (n− 1)/(n+1) and 1, and selling their vote, and all others sell. The values of μ(n),
ρ(n), and ρ(n), and thus the exact borders between the different areas, depend on n, but

qualitatively the figure is unchanged for all n.

Figure 1 represents vividly the equilibrium strategies in Theorem 1, but could be mislead-

ing. It is important to note that the relative size of an area in the figure is not informative
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about the probability with which values in the area are realized. The figure’s axes report

relative values of order statistics whose realizations depend on F , n, and the size of the

two groups, m and M . Figure 2 reports the same panels drawn in Figure 1, now using

shading to represents probability mass: darker areas correspond to value realizations with

higher probability. The probabilities were obtained from one hundred million simulations of

random independent draws from a uniform distribution, fixing m = (1/3)n. As in Figure 1,

the upper panels report results for n = 9, and the lower panels for n = 21; the left panels are

drawn for the case G = m and the right panels for G =M . Because the minority is by defi-

nition small, realizations in the right panels always have higher probability than realizations

in the left panels, as reflected in the slightly darker shades. Note that this does not imply

that a majority victory is necessarily more probable than a minority victory. As described in

Figure 1, at equal relative values, in equilibrium vm demands votes more aggressively than

vM .

Figure 2 shows two main regularities: first, in each panel, the probability mass is con-

centrated in the upper right corner; second, the concentration is stronger at higher n.17

The figure gives a clear visual representation, but both results can be obtained analytically.

As shown in Figure 1, the realizations of vg, vG, and v(2)G that support the equilibrium of

Theorem 1 can be divided into three areas, corresponding to the different mixing probabil-

ities: blue (B), where qm = 1, red (R), where qM = 1, and purple (P ), where both qm and

qM ∈ (n−1n+1
, 1). Call Pr(B) the probability of value realizations in B, and similarly for R and

P . Thus:

Pr(B) = Pr(vm ≥ ρvM , vM ≥ μv(2)m)

Pr(P ) = Pr(ρvM < vm < ρvM)

Pr(R) = Pr(vm ≤ ρvM , vm ≥ μv(2)M)

Given F , the different probabilities can be calculated. Suppose, for example, that F is

17The different patterns in the left and right panels reflect the different sizes of the two groups. Because
M > m, vM is likely to be higher than v(2)m (and thus the probability mass in the left panels concentrates
around the upper horizontal boundary), and v(2)M is likely to be higher than vm (and thus the probability
mass in the right panels concentrates around the upper vertical boundary).
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Figure 2: Probability of ordered value realizations; F (v) uniform. A darker shade indicates
higher probability.
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uniform. Then:18

Pr (B) = 1− m(m− 1)
n(n− 1) μ

M − M

n
ρm

Pr (P ) =
M

n
(ρm − ρm) (3)

Pr (R) = ρm
M

n
− M(M − 1)

n(n− 1) μm

Specific values of n and m will then yield precise numerical values. For example, if n = 9

and m = 3, as in the upper panels of Figure 2, the probability of falling in the blue area is

47.8 percent, in the red area is 22.6 percent, and in the purple area 29.9 percent. Thus the

probability of value realizations for which the equilibrium of Theorem 1 does not exist is 1.7

percent. At n = 21 and m = 7, as in the lower panels of Figure 2, the numbers become:

Pr(B) = 0.401, Pr(P ) = 0.392, and Pr(R) = 0.206; the probability of value realizations that

do not support the equilibrium of Theorem 1 is less than 1 in 1, 000.

As we increase n, both the concentration of probability mass in the upper right corner

of each panel and the sharply decreased likelihood of realizations outside the equilibrium

area are clear both from the figure and from the numbers. They arise from the increase

18Using our notation, call x(1) and x(2) the two highest order statistics out of n independent draws, where
each variable is distributed according to the cumulative distribution function Gx, with density gx. Then the
joint density of x(1) and x(2), gx(1),x(2) is given by:

gx(1),x(2)(x, y) = n(n− 1)[Gx(x)]
n−2gx(1)(y)gx(2)(x)

where, calling x(r) the rth highest order statistics:

gx(r)(x) =
n!

(n− r)!(r − 1)! [Gx(x)]
n−r[1−Gx(x)]

r−1gx(x)

See Gibbons and Chakraborty, (2003).
The expressions in (3) are obtained from solving the integrals in:

Pr(B) =

Z 1

vM=0

Z min
vM
μ ,1

v(2)m=0

Z 1

vm=max(v(2)m,ρvM)
m(m− 1)(v(2)m)m−2M(vM )

M−1dvmdv(2)mdvM

Pr(P ) =
M

M +m
(ρm − ρm)

Pr(R) =

Z ρ

vm=0

Z min( vmμ ,1)

v(2)M=0

Z 1

vM=max v(2)M , vmρ

M(M − 1)(v(2)M )M−2m(vm)m−1dvMdv(2)Mdvm
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in n and are independent, qualitatively, of the uniform distribution assumption used in

these examples. If the minority is a non-vanishing fraction of the electorate19, then with

independent draws from any common distribution F , at large n, both vg/vG and v(2)G/vG

must approach the upper boundary of the distribution’s support. At large n, the probability

mass must concentrate towards the upper right corner of the panel. It then follows that

when the electorate is large, the restriction on realized values required for the existence of

the equilibrium described in Theorem 1 is almost certainly satisfied. Indeed this is our second

result. Suppose m = bαnc, for all n, where bαnc is the largest integer not greater than αn,

and α is a constant in (0, 1/2). We can state:

Theorem 2. Consider a sequence of vote markets. For all n, α ∈ (0, 1/2), and F , for

any δ > 0 there exists a finite n0(F, δ) such that if n > n0,Pr n(vg ≥ μ(n)v(2)G) > (1− δ).

The proof of the theorem is immediate. Given μ(n) < 1/2, the theorem follows if

limn→∞Prn(vg > 1/2) = 1. But limn→∞ Prn(vg > 1/2) = limn→∞ 1 − [F (1/2)]bαnc = 1,

and the result is established.¤
The uniform distribution provides a transparent example. From (3):

lim
n→∞

Pr n(B) = α

lim
n→∞

Pr n(P ) = (1− α)(1− e−4α) (4)

lim
n→∞

Pr n(R) = (1− α)e−4α.

As predicted, limn→∞(Pr(B) + Pr(P ) + Pr(R)) = 1. The explicit solution allows us to

see how the probability of realizations in the three different areas depends on the relative

size of the minority, α. As expected, the probability of vm/vM realizations high enough to

support the more aggressive minority strategy (the Blue area) increases monotonically with

α; conversely, the probability of the more aggressive majority strategy (the Red area, or low

enough vm/vM realizations) falls monotonically with α; the intermediate case (the Purple

area) is not monotonic in α. Figure 3 depicts system (4) graphically. The horizontal axis

measures α; each line is drawn in the color of the area whose probability it represents.20

The uniform distribution provides a clean example, but Theorem 2 holds generally. It

19I.e. m
n does not converge to 0 as n −→∞.

20The figure requires α < 1/2. The equilibrium strategies are derived taking into account that the minority
loses with probability 1 if no trade takes place. The discountinuity at α = 1/2, where the red and blue curves
must overlap, reflects the discontinuity of payoffs at the point of pivotality.
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Figure 3: Asymptotic probability of the red area (in red), of the purple area (in purple) and
of the blue area (in blue) as functions of the minority share α. F (v) uniform.

implies that for large n the equilibrium described in Theorem 1 exists with probability that

approaches 1. In addition, because in such an equilibrium the probabilities with which vG

and vg demand (n − 1)/2 votes are bound below by (n − 1)/(n + 1), at large n both

probabilities must also approach 1. Theorem 2 thus implies the following Corollary:

Corollary to Theorem 2. For any α ∈ (0, 1/2) and F , for any δ > 0 there exists a

finite n00(F, δ) such that for all n > n00 qm,n > (1− δ), and qM,n > (1− δ).21

4 Frequency of minority victories and welfare

The most unexpected feature of Theorem 1 is that when the equilibrium exists the market

outcome depends on the size of the minority only indirectly. It is easy to see why: only

two market participants demand votes with positive probability—the highest-value minority

voter and the highest-value majority voter—and the only quantity demanded is such that, if

demand is satisfied, the voter will hold a strict majority of the votes. Given these strategies,

the relative size of the two groups is irrelevant to the outcome, i.e. to which group exits the

market controlling a majority of votes. Group size matters indirectly because it affects the

21Because n0 in Theorem 2 depends on F , we allow for the possibility that n” > n0.
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probability of different value rankings, and thus the existence of the trading equilibrium and

the equilibrium mixing probabilities of the two high-value voters. Given the single highest

realized value in each group, however, if the equilibrium exists the expected outcome is the

same whether there is a single minority voter or the minority comprises almost half of the

electorate. This result suggests a systematic vote market bias in favor of the minority group:

a higher frequency of minority victories than efficiency dictates.

To evaluate this conjecture, we need to construct an equilibrium that exists for all value

draws, and define an efficiency benchmark. Since an equilibrium with no trade exists trivially

for all value realizations, we can construct an equilibrium such that if vg ≥ μ(n)v(2)G, then

trade occurs and the equilibrium of Theorem 1 is selected; if vg < μ(n)v(2)G, then no vote-

trading takes place and the majority wins with probability 1. Our equilibrium construction

thus minimizes the frequency of minority victories when the condition is not met.22 We call

ωm the ex ante expected frequency of minority victories in such an equilibrium, before values

are drawn: ωm ≡ PrF (
P

i∈m xi(v) >
P

j∈M xj(v))

In line with the anonymity of the competitive market and of majority voting, we measure

efficiency by ex ante efficiency, treating each voter identically—expected utility before the

voter knows the group he belongs to and before values are drawn. Ex ante efficiency is

equivalent to the utilitarian criterion: it is maximized when, for each realization of values,

the group with higher aggregate value prevails. We call W the ex ante expected utility in

the equilibrium we have constructed; W0 the ex ante expected utility in the absence of

vote trading (i.e. with simple majority voting), and W ∗ the ex ante expected utility under

full efficiency. Finally, we call ω∗m the expected frequency of majority victories under our

efficiency benchmark: ω∗m ≡ PrF (
P

i∈m vi >
P

j∈M vj).

We begin by establishing a preliminary result. Because it can be of some general interest,

we report it here as a separate lemma.

Lemma 1. If all vi, i ∈ m and i ∈ M , are i.i.d. according to some F (v), then for all

F , n, and m , ω∗m ≤ m/n.

The lemma is proved in the Appendix. It states that if values are i.i.d., then for any

distribution F the expected share of value configurations such that the aggregate minority

value is larger than the aggregate majority value, and thus a minority victory is efficient,

cannot be larger than the share of the minority in the electorate. The statement is intuitive

22As noted earlier, equilibria with trade may exist when vg < μ(n)v(2)G, in which case the expected
fraction of minority victories must be weakly higher than in our equilibrium construction.
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and it is useful here because it establishes an upper bound for ω∗m that holds for all F , n,

and m and can be compared to ωm, the equilibrium fraction of expected minority victories.

Conditional on value realizations, ωm is either characterized precisely by the strategies

in Theorem 1, or equals 0, by our equilibrium construction, if the condition in Theorem 1

is not satisfied. In particular, because under Theorem 1 the final votes’ allocation depends

only on the probability with which vm and vM demand votes, we can write:

ωm =

½
qm(1− qM) + (1/2)qmqM if vg ≥ μ(n)v(2)G
0 if vg < μ(n)v(2)G

where the equilibrium values of qm and qM depend on the realized values. It is convenient

to refer to the regions of the value space according to their color in Figure 1: recall that

Blue (B) corresponds to value realizations such that vM ∈
£
μ(n)v(2)m, vm/ρ(n)

¤
; Red (R)

corresponds to vm ∈
£
μ(n)v(2)M , ρ(n)vM

¤
, and Purple (P ) to vm ∈ [ρ(n)vM , ρ(n)vM ]. Then:

qm =

⎧⎪⎨⎪⎩
1 if B

n−1
n+1

if R

q0m ∈ (n−1n+1
, 1) > n−1

n+1
if P

qM =

⎧⎪⎨⎪⎩
n−1
n+1

if B

1 if R

q0
M
∈ (n−1

n+1
, 1) < 1 if P

Hence:

ωm ≥
∙µ
1− n− 1

n+ 1

¶
+
1

2

µ
n− 1
n+ 1

¶¸
Pr(B) +

∙
1

2

µ
n− 1
n+ 1

¶¸
Pr (R) +

∙
1

2

µ
n− 1
n+ 1

¶¸
Pr (P )

with strong inequality if Pr (P ) > 0. Or:

ωm ≥
µ

n+ 3

2(n+ 1)

¶
Pr (B) +

µ
n− 1
2(n+ 1)

¶
[Pr (R) + Pr (P )] ≡ ωm (5)

The probability of realizations in the different regions of the value space depends on F ,

and thus so does ωm. Yes, as we prove in the Appendix, some claims can be made without

specifying F :

Proposition 1. (a) There exists a value m0 > 0 such that if m < m0, ωm > ω∗m for all

n and F . (b) There exist distributions F0 such that if F ∈ F0, ωm > ω∗m for all n and m.

As the proposition states, for any value distribution and electorate size, it is always

possible to find a minority size for which the equilibrium we are studying predicts excessive
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Figure 4: Lower bound on the probability of minority victories, as function of α = m/n.
F (v) uniform.

minority victories. The proof shows that this must always be the case if m = 1. It relies on

sufficient conditions that can be weakened substantially if we make specific assumptions on

the shape of the value distribution. In particular, we show in the Appendix that if F = vb,

then for any b ≥ 1, ωm > ω∗m for any electorate size and for any minority size, supporting

the second claim in the proposition.

Consider the example of F uniform (b = 1). Substituting (3) in (5), we obtain an explicit

expression for ωm, as function of n and m. Figure 4 plots ωm, on the vertical axis, against

m/n ≡ α on the horizontal axis, with m = 1, .., (n− 1)/2. The different panels correspond
to different values of n: n = 9, 15, and 21. In each panel, the 450 line thus equals m/n = α,

and by Lemma 1, since ω∗m ≤ m/n, if ωm > m/n, it follows that ωm > ω∗m. Thus in all cases

in all three panels, ωm > ω∗m.

The figure shows that ωm can be surprisingly large. In all three panels, ωm > 1/2 if

m = (n − 1)/2 = M − 1 and assumes unexpectedly high values even at low m/n. For

example, if m = 1, ωm is 33 percent at n = 9 (when m is 11 percent of the voters) and

remains almost 29 percent at n = 21 (when m is just below 5 percent of the voters).

Analyzing ωm when F = vb, for arbitrary b > 0, provides a simple intuition for the role

played by F . The higher is b, the larger the probability mass at high value realizations, the

smaller the ratio Ev(1)/Ev—the ratio of the expected highest order statistics to the mean—
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and the smaller the probability that an unusually high value realization can compensate

for the minority’s smaller size. Hence the higher is b the lower is the probability that the

aggregate minority value is higher than the aggregate majority value. Conversely, the lower

is b, the larger the probability mass at low value realizations, the larger the ratio Ev(1)/Ev,

and the less important the relative size of the two groups in determining which group has

higher aggregate value. Hence the lower is b, the less costly is the high frequency of minority

victories built into the vote market.23 Thus, as stated, if b ≥ 1, F = vb ∈ F0 in Proposition
1 for all n and m, but there exists a b ∈ (0, 1) such that for b ≤ b, F = vb /∈ F0.
Proposition 1 establishes that there always are parameter values for which the first best

solution has a lower probability of minority victory than the market delivers. The lack of

full efficiency is not too surprising, given the externalities inherent in trading votes. But is

the market inferior to majority voting with no trading? Are the excessive minority victories

so costly that no minority victory at all, as delivered by simple majority voting, is in fact

preferable? If n is small, the answer depends on the shape of the value distribution. We

find:

Proposition 2. There exist distributions F00
such that if F ∈ F00

, then W < W0 for all

n and m.

In principle, the set F
00
could be larger or smaller than the set F

0
. The Appendix shows

that F = vb, with b ≥ 1, belongs to both sets, i.e. it is such that for all n and m, not

only ωm > ω∗m, but W < W0. The intuition remains as discussed above: when the value

distribution is such that the expected frequency of efficient minority victories is sufficiently

low, ex ante welfare is higher when the minority always loses than with the pro-minority

bias implied by the market.24

The complications tied to the specific shape of F disappear when the market is large.

Both Propositions 1 and 2 become simpler and stronger. The point of departure is the

Corollary to Theorem 2 in the previous section: if n is large, with probability approaching 1,

realized values satisfy the condition in Theorem 1, and again with probability approaching 1,

voters vm and vM both demand (n−1)/2 votes, while all other voters offer their votes for sale.
An immediate and unexpected result then follows: the final outcome depends exclusively on

23To be clear: by Lemma 1, ω∗m ≤ m/n always, but the shape of F determines how close ω∗m is to m/n.
If F = vb, b > 0, the higher is b, the closer ω∗m is to 0; the lower is b, the closer ω∗m is to m/n.
24The same logic implies, correctly, that for other value distributions the market can be welfare superior.

An example is F = vb with b = 0.1 and n = 7. As discussed below, however, the market can be welfare
improving only for small n.
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which one of vm and vM has his order filled, and since both have identical chances, both win

with equal probability. Theorem 2 and its Corollary directly imply:

Proposition 3. Consider a sequence of vote markets. For all n, m = bαnc, with
α ∈ (0, 1/2). Then for any α, F , and δ > 0 there exists a finite n000(F, δ) such that for all

n > n000, |ωn − 1/2| < δ.25.

At sufficiently large market size, the minority is expected to win with probability arbi-

trarily close to 1/2, for any minority share and for any distribution from which values are

drawn. Given the previous results, the intuition is straightforward, but the result remains

surprising. Whether the minority is 40 percent of the total electorate, 25 percent, or 10 per-

cent, as long as it is not negligible, in a sufficiently large vote market there is an equilibrium

such that the minority wins with probability 1/2 for any shape of the value distribution.

After trade, the minority and the majority group are equally likely to control a majority of

the votes. The market nullifies majority voting: following the will of the electorate becomes

identical to flipping a coin.

The welfare implications are equally immediate. Call Vm =
P

i∈m vi the aggregate mi-

nority value, VM =
P

j∈M vj the aggregate majority value, and Ev the expected value draw:

Ev =
R 1
0
vdF (v). With i.i.d. value draws, by the law of large numbers, with probability

arbitrarily close to 1 both Vm/m and VM/M converge to Ev. Thus, since α < 1/2 and,

ignoring integer constraints, M/m = (1− α)/α > 1, with probability arbitrarily close to 1,

VM > Vm: in a large electorate with i.i.d. value draws any minority victory is inefficient.

The welfare loss implied by vote trading is easily quantified. Indexing variables to make

their dependence on the size of the market clear, we can write:

Wn =
Mn

n
En

µ
VMn

Mn

¶µ
1

2

¶
+

mn

n
En

µ
Vmn

mn

¶µ
1

2

¶
W0n =

Mn

n
En

µ
VMn

Mn

¶
W ∗

n =
Mn

n
En

µ
VMn

Mn
|VMn > Vmn

¶
Pr(VMn > Vmn) +

mn

n
En

µ
Vmn

mn
|Vmn > VMn

¶
Pr(Vmn > VMn)

25Denote Gn the CDF of the joint distribution of n values.

lim
n→∞

ωn = lim
n→∞

Z
R∪P∪B

∙
qm(v)qM (v)

1

2
+ (1− qm(v))qM (v)

¸
dGn

But by Theorem 2 and its Corollary, as n −→ ∞, qm −→ 1, and qM −→ 1 for all v ∈ R ∪ P ∪ B, andR
R∪P∪B dGn −→ 1. Hence: ωn −→ 1

2 .
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Thus:

lim
n−→∞

Wn =

µ
1

2

¶
Ev

lim
n−→∞

W0n = (1− α)Ev

lim
n−→∞

W ∗
n = (1− α)Ev

Hence:

lim
n−>∞

µ
Wn

W0n

¶
=

1

2(1− α)
< 1

Note that the limit is independent of the distribution of valuations. The following proposition

summarizes the result.

Proposition 4. Consider a sequence of vote markets. For any α ∈ (0, 1/2), F , and
δ > 0, there exists a finite en(F, δ) such that for all n > en,Wn < W0n, and

¯̄̄
Wn

W0n
− 1

2(1−α)

¯̄̄
< δ.

For any minority size and for any distribution of values, with a sufficiently large electorate

vote-trading lowers welfare. Note the contribution of the proposition. The assumption

of i.i.d. value draws implies that majority voting without trade must be asymptotically

efficient26, but a priori a market for votes need not imply sizable minority victories when the

electorate is very large. If the price becomes negligible (as the probability that a single vote

be pivotal becomes negligible), a market for votes could in principle support an equilibrium

with negligible minority victories, and negligible efficiency losses. The proposition makes

clear that this is not the case, at least in the equilibrium we are considering. Because the

minority wins with 50 percent probability, the efficiency loss is both significant and precisely

quantifiable.

5 Robustness of the equilibrium

5.1 Correlated and not identically distributed values

We have assumed so far that values are independent both across groups and within groups,

and identically distributed according to some distribution F . The assumption has allowed us

to look at simple examples and provide closed form solutions, but the logic of the arguments

shows that neither independence nor a common distribution are necessary for our more

26A special case of the result in Ledyard and Palfrey (2002).
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substantive results. Theorem 1 states a sufficient condition for a trading equilibrium that

depends only on the existence of a sufficient wedge between vg and v(2)G, the realized highest

values in the two groups. Nor does the equilibrium depend on F : given m, M , R, p,

and others’ strategies, a voter’s best response is fully identified. The probability that the

condition in Theorem 1 is satisfied does depend on F , but the asymptotic result in Theorem

2 is robust to significant generalization.

Particularly relevant to our voting environment is the possibility of correlation in val-

ues. Consider then the following standard model, where the assumption of independence is

weakened to conditional independence:

vi = vm + εi for all i ∈ m

vj = vM + uj for all j ∈M

where vm (vM) is a common value shared by allm (M) voters, and εi and uj are idiosyncratic

components, independently drawn from distribution Gm(ε), with full support [0, ε], and

GM(u), with full support [0, u]. For all fixed α ∈ (0, 1/2), as n −→ ∞, vm −→ vm + ε, and

vM −→ vM+u. Thus for all 2(vM+u) ≥ (vm+ε) ≥ vM+u
2

the equilibrium of Theorem 1 exists

with probability approaching 1 asymptotically.27 And if the equilibrium exists, Proposition

3 follows: asymptotically, the minority is expected to win with probability 1/2.

Relative to our previous results, there are then two qualifications. First, to ensure that

the equilibrium always exists asymptotically, we need additional conditions on the distribu-

tions of values, here on vm, vM , ε, and u. Second, the welfare results need to be reevaluated

and again in general will depend on the distributions. In this example, if vm + EGm(ε) is

sufficiently larger than vM+EGM
(u), then, depending on α, the vote market could be asymp-

totically superior to simple majority voting. Notice however that both qualifications stem

from the assumption of different distributions of values for the two groups, not from relaxing

independence. We see no convincing reason to assume systematically different intensities

between the majority and the minority. Much stronger arguments can be made for allowing

for richer forms of dependence in intensities, but the logic here is so simple that it makes us

confident that the model can be extended with little change. Our asymptotic results require

that the extremum statistic of the value draws in each group should converge to the upper

bound of the support. The condition is violated if all values are perfectly correlated, but can

27We are using limn−→∞ μ(n) = 1/2.
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accommodate high degrees of dependence.28

5.2 An alternative rationing rule

The equilibrium strategies we have characterized have an extreme flavor: individuals either

demand a majority of votes or sell. Intuitively, the behavior seems in line with the unusual

nature of the goods being traded: because votes per se are worthless, the market allocates

not votes but decision power. Yet, could the extreme strategies instead be the result of the

all-or-nothing rationing rule (either an order is fully filled or it is passed over)? We show in

this section that the result is robust to a different rationing rule that allocates offered votes

with equal probability to any individual with unfilled demand. Under this alternative rule,

a fully revealing ex ante competitive equilibrium with trade is guaranteed to exist under a

condition that recalls the condition characterized in Theorem 1. The equilibrium we have

constructed mimics the equilibrium in Theorem 1: vG and vg randomize between demanding

a majority of votes and selling their vote, while all other voters sell.29

Consider the following rule, which we call R2, or rationing-by-vote: if voters’ orders

result in excess demand, any vote supplied is randomly allocated to one of the individuals

with outstanding purchasing orders, with equal probability. An order remains outstanding

until it has been completely filled. When all supply is allocated, each individual who put in

an order must purchase all units that have been directed to him, even if the order is only

partially filled. If there is excess supply, the votes to be sold are chosen randomly from each

seller, with equal probability. Formally, πi(s) = 1/nR2s>0 if si > 0; πi(s) = 1/n−1 if si = −1,
and R2 (s) (x) = 1 if, for all i, xi ∈ {0, 1, 2, .., 1 + si} and

P
xi = n , where, as earlier, πi(s)

is the probability of being recognized, n−1 the number of voters with outstanding offers to

sell, and nR2s>0 the number of voters with outstanding positive demands. Under R2, n
R2
s>0 is

the number of voters whose demand has not been fully filled, whether or not they have been

recognized in the past.

Like R1, R2 is anonymous, in line with competitive analysis in this paper; contrary to

28For example, statisticians working on limit distributions for maxima have proposed the concept of m-
dependence. When values are drawn in a natural sequence (think of floods over time), m-dependence applies
when there exists a finite m such that draws that are more than m steps apart are independent (Hoeffding
and Robbins, 1948). In our application, the concept could be relevant for geographically or ideologically
concentrated subgroups of voters. Theorem 2 and Proposition 3 continue to hold in this case, under minor
regularity assumptions.
29A similar result, on the robustness of the equilibrium to this alternative rationing rule, holds for the

model in CLP.
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R1, it guarantees that only one side of the market is ever rationed. However, R2 requires

voters to accept and pay for partially filled orders, a scenario that can be very costly in a

market for votes, where the value of votes hinges on pivotality, and thus on the exact number

of votes transacted.

At n = 3, R2 and R1 are identical and Theorem 1 applies. Suppose then n > 3:

Theorem 3. Suppose R2 is the rationing rule. For all n > 3 odd, m, and F , there

exists a threshold μR2(n) > 0 such that if vg ≥ μR2(n)Max[v(2)G, v(2)g], there exists a fully

revealing ex ante equilibrium with trade where vG and vg randomize between demanding

(n−1)/2 votes (with probabilities q0
G
and q0g respectively) and selling their vote, and all other

individuals sell. The randomization probabilities q0
G
and q0g and the price p0 depend on the

realized values vg and vG, but for all vG and vg ≥ μR2(n)Max[v(2)G, v(2)g], q0G ∈ [
n−1
n+1

, 1] and

q0g ∈ [n−1n+1
, 1]. The threshold μR2(n) is given by:

μR2(n) =
(n− 1)2
2n−2n

µ
n− 3
n−3
2

¶
The theorem is proved in the Appendix. Its similarity to Theorem 1 is apparent. There

are two main differences: first, the thresholds in the two theorems differ, and μR2(n) >

μ(n), implying that the equilibrium exists under R2 under more restrictive conditions than

under R1. In particular, limn−→∞ μR2(n) = ∞: whereas under R1 the probability that the
equilibrium exists in a very large market converges to 1, the probability converges to 0 under

R2. Second, as can be verified in the Appendix, when the equilibrium exists, the equilibrium

price p0 is consistently lower than p, the equilibrium price under R1. The intuition is clear:

when both vG and vg submit demands for (n − 1)/2 votes, one of the two will receive and
be charged for (n − 3)/2 votes, useless votes, since the opponent will hold a majority. To
compensate for this risk, the equilibrium price must be lower30.

The choice of rationing rule poses a number of interesting but challenging questions. We

know that in general the equilibrium must depend on the exact rule, and we can debate

whether the rationing rule is better thought of as part of the institution, controlled by the

market designer, or as part of the equilibrium, and interpreted as reduced form for the

30There is a third difference as well. As the proof in the Appendix makes clear, the condition
vg ≥ μR2(n)Max[v(2)G, v(2)g] is sufficient for the existence of the equilibrium in Theorem 3—there are value
realizations for which weaker conditions are necessary—whereas under R1 the condition in Theorem 1 is
necessary and sufficient for the equilibrium characterized there.
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complex, decentralized system of search that underlies the trades.31 Our goal here is not

to address these broad questions but to make a narrower point: Theorem 3 shows that the

equilibrium discussed in this paper is not the artifact of one specific rationing rule, and in

particular of the all-or-nothing nature of R1. We now revert to R1 for our concluding section.

6 Conclusions

We have shown in this paper that an ex ante competitive equilibrium exists in a market for

votes in which the precise numerical advantage enjoyed by the majority is known, while the

intensity of preferences is private information. The assumption seems faithful to many voting

situations, but the knowledge of the precise number of votes on which the decision hangs

defines pivotality sharply and makes the existence of an equilibrium particularly problematic.

We have characterized a sufficient condition for the existence of an ex ante equilibrium with

trade for any electorate size, any majority advantage, and any distribution of intensities.

It is well-known that the equilibrium of a competitive market for votes must involve

randomization. The concept of ex ante competitive equilibrium is designed to accommodate

probabilistic demands and weakens the requirement of market-clearing to market-clearing in

expectation. The equilibrium we have constructed is such that only two voters, the highest

intensity voters on each side, demand votes with positive probabilities; all others offer their

votes for sale. The two voters who randomize assign positive probability to only two actions:

either selling, or demanding enough votes to alone control a majority of all votes. The

equilibrium exists unless multiple members of one of the two groups, whether the majority or

the minority, have much higher intensities than all members of the opposite group. Although

at first sight counterintuitive, the equilibrium reflects the unusual characteristics of votes:

per se, votes are worthless; what matters is decision power. As in Casella, Llorente-Saguer

and Palfrey (2012), in equilibrium the market comes to resemble an auction for decision

power among those who value it most.

Because the probability of either group’s victory depends only on the action of its most

intense member and gives no direct weight to the size of the group, the equilibrium yields a

systematic minority bias. If the minority is sufficiently small, then, for any number of voters

and any distribution of intensities, the markets leads it to win more frequently than efficiency

dictates. And for any minority size, there are well-behaved distributions of intensities such

31Green (1980) proposes the second interpretation.
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that not only the minority wins too frequently relative to efficiency, but the market decreases

expected welfare relative to majority voting alone. The results are particularly clean in a

large electorate. There, the equilibrium always exists. Strikingly, for any distribution of

intensities, the minority always wins as frequently as the majority does, for any minority

sizes, and expected welfare is diminished by the market for votes.

The results are surprisingly clear-cut for such a long-debated problem, but depend on the

specific equilibrium we have studied. It would be good to know to what extent the minority

bias we uncovered is a general property of competitive markets for votes. The experimental

results in Casella, Palfrey and Turban (2012) support the conjecture: in every experimental

session, in fact in every committee of voters, the frequency of minority victories is higher

than efficiency dictates. The experiment, however, concerned a specific case: a committee

of five voters, with a minority of size two. Can the theory tell us more?

This is difficult question because it addresses the possible multiplicity of equilibria, an

issue we are unable to resolve satisfactorily. The equilibrium we have discussed exists for

a large range of value realizations (and with probability one asymptotically), and we have

not identified any other equilibrium with trade when the condition in Theorem 1 is satisfied.

We know however that other equilibria can be supported in special cases, if we simplify the

model and focus on a degenerate distribution of intensities. Suppose that all voters in the

same group share the same value, and define quasi-symmetrical an equilibrium where all

voters in the same group adopt an identical strategy. Then, for example:

Example 2. Suppose n = 5, m = 2 and M = 3; vim = vm for all i ∈ m, and vjM = vM

for all j ∈ M . Then, if vM/vm ∈ [0.57, 1.55] , there exists a quasi-symmetrical ex ante
equilibrium with trade where all voters randomize over demanding one vote, staying out of

the market, and offering their vote for sale. The mixing probabilities differ across the two

groups; together with the price p, the probabilities depend on vM/vm.32

The quasi-symmetry of the strategies makes the equilibrium trivially fully revealing. The

example may be quite special: we do not know whether the equilibrium exists for other n’s,

or for other m’s, or whether there is a similar equilibrium when values are allowed to differ

within each group. It is an interesting equilibrium because its strategies are such that voters

do not demand bundles of votes, contrary to the equilibrium characterized in Theorem 1.33

32We have identified the equilibrium in the example with numerical methods in R and in Mathematica.
The programs are available upon request.
33Note that the asymmetrical equilibrium of Theorem 1 continues to exist in this example: it requires
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And yet, our numerical results show that equilibrium strategies again induce a bias in favor

of the minority. Suppose for example vM/vm = 1. To evaluate whether a bias exists, consider

three different benchmarks: the efficient probability of a minority victory in this case is 0;

a fair-division perspective suggests a probability of 2/5, or 40 percent; finally, if all voters

adopted the same strategy, given the three actions over which the voters randomize and

expected market balance, the minority would win at most with 28 percent probability.34 In

equilibrium, however, the minority wins with 57 percent probability, i.e. more than half of

the times. With fixed values within each group, the efficient frequency of minority victories is

a corner solution (1 for vM/vm < 2/3 and 0 otherwise), and thus there are low vM/vm values

for which the minority wins less in equilibrium than efficiency demands, but for 90 percent

of all vM/vm realizations that support the equilibrium—for all vM/vm > 2/3—the minority

wins more than it should. This is not because there is a positive but small probability of

a minority victory: for all vM/vm such that the equilibrium exists, the minority wins with

probability higher than 40 percent.

Looking at the equilibrium strategies in more detail, it is not difficult to see the source of

the bias. In equilibrium, the minority consistently adopts more aggressive strategies. If we

call γm (σm) the equilibrium probability of demanding one vote (selling) for each member of

the minority group, and analogously for the majority group, then:

Example 2 continued. For all vM/vm such that the equilibrium exists, γm > γM ≥ 0,
and 0 ≤ σm < σM . In addition, γm > σm ≥ 0, and σM > γM ≥ 0.35

Nor is it difficult to understand the source of the difference in strategies: the minority is

smaller and suffers from a weaker free-rider problem. This is what we would expect, once

the externalities present in the market are recognized. It is this observation that leads us

to conjecture that the pro-minority bias may a general feature of a market for votes, if an

equilibrium exists.

vM/vm ∈ [μ(5), 1/μ(5)] = [2/7, 7/2], and thus exists over a larger range of value realizations.
34With symmetrical strategies, ex ante equilibrium requires that the probability of selling be equal to the

probability of demanding one vote in each group—call it γ. The probability of a minority victory goes from
0 when γ = 0 to a maximum of 0.28 when γ is maximal, at 0.5.
35The equilibrium strategies are the following: (1) For vM/vm ∈ [0.57, 1.05], γM = 0, and over this range

of vM/vm values, σM rises from 0.25 to 0.36, γm falls from 0.56 to 0.54, and σm falls from 0.19 to 0. (2) For
vM/vm ∈ [1.03, 1.56], σm = 0, γm falls from 0.62 to 0.57, σM rises from 0.41 to 0.49, and γM increases from
0 to 0.11. All probability changes are monotonic in vM/vm.
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7 Appendix

7.1 Proof of Theorem 1.

Theorem 1. For all n odd, m, and F , there exists a threshold μ(n) ∈ (0, 1) such that if
vg ≥ μ(n)v(2)G, there exists a fully revealing ex ante equilibrium with trade where vG and vg

randomize between demanding (n−1)/2 votes (with probabilities qG and qg respectively) and

selling their vote, and all other individuals sell. The randomization probabilities qG and qg

and the price p depend on vg and vG, but for all vG and vg ≥ μ(n)v(2)G, qG ∈ [n−1n+1
, 1] and

qg ∈ [n−1n+1
, 1]. The threshold μ(n) is given by:

μ(n) =

½ 2
3

if n = 3

max
n
(n−2)(n−1)
2(n2+n−5) ,

(n−2)(n−1)(n+1)
2(n3+3n2−19n+21)

o
if n > 3

(6)

Proof. The theorem is implied by the following two lemmas. Lemma A1 characterizes

the case G =M and Lemma A2 the case G = m.

Lemma A1.
Suppose G = M (or vG = vM and vg = vm,). Then if vm ∈

£
μ(n)v(2)M , vM

¤
, the

strategies described in the theorem are a fully revealing ex ante competitive equilibrium for

all n odd, m, and F . The mixing probabilities qM and qm and the price p depend on the

realizations of vm and vM . There exist two thresholds 1/2 ≤ ρ(n) < ρ(n) < 1 such that:

(a) n > 3.

1. If vm ∈
£
μ(n)v(2)M , ρ(n)vM

¤
, qM , qm, and p satisfy:

qM = 1

qm =
n− 1
n+ 1

(7)

p = 2
vm

n+ 1
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2. If vm ∈ [ρ(n)vM , ρ(n)vM ], qM , qm, and p satisfy:

qm + qM =
2n

n+ 1

p =
2qmvM

(n− 3)(1− qm) + n+ 1
(8)

p =
2(2− qM)vm

(n− 3)(1− qM) + n+ 1
.

3. If vm ∈ [ρ(n)vM , vM ], qM , qm, and p satisfy:

qm = 1

qM =
n− 1
(n+ 1)

(9)

p = 2
vM
n+ 1

The two thresholds ρ(n) and ρ(n) are given by:

ρ(n) =
n+ 1

n+ 5
(10)

ρ(n) =
(n− 1)(n+ 5)
(n+ 3)(n+ 1)

(b) n = 3.

If v(2)M ≤ (3/4)vM , then μ(3)v(2)M ≤ ρ(3)vM , and the characterization in part (a) above

applies unchanged. If v(2)M > (3/4)vM , then:

If vm ∈ [μ(3)v(2)M , ρ(3)vM ], qM , qm, and p satisfy (8); if vm ∈ [ρ(3)vM , vM ], qM , qm,

and p satisfy (9).

LemmaA2. Suppose G = m (or vG = vm and vg = vM). Then if vM ∈
£
μ(n)v(2)m, vm

¤
,

where μ(n) is given by (6 ) above,the strategies described in the theorem, together with the

price and mixing probabilities given by (9) are a fully revealing ex ante competitive equilibrium

for all n odd, m, and F .

The proof is organized in two stages. First, we show that if the direction of preferences

associated with each demand is commonly known, the strategies and price described above
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are an equilibrium. Second, we show that when preferences are private information the

equilibrium is fully revealing: given others’ strategies and the market price, each individual’s

best response is identical to what it would be under full information. Others’ strategies and

the market price, together with the notion that the market is in equilibrium, fully reveal

others’ direction of preferences.

7.1.1 Ex ante equilibrium with full information.

Suppose first that preferences are publicly known. We show here that the three systems

(7), (8), and (9) characterize an ex ante equilibrium for each corresponding range of realized

valutions.

1. Consider a candidate equilibrium with qM ∈ (0, 1), qm ∈ (0, 1). Expected market
balance requires (qM + qm)(n− 1)/2 = (n− 2) + (1− qM) + (1− qm), or:

qM + qm =
2n

n+ 1
(11)

Denote by UM(s) the expected utility to voter vM from demand s. Then:

UM

µ
n− 1
2

¶
= qm

µ
qvM
2
− n− 1

4
p

¶
+ (1− qm)vM −

n− 1
2

UM (−1) = qm
³p
2

´
+ (1− qm) (vM)

where we are assuming that voter vM is informed that the other voter randomizing with

probability qm belongs to the minority. Voter vM is indifferent between the two pure demands

if and only if:

p =
2qmvM

n+ 1 + (n− 3)(1− qm)
(12)

Similarly, denoting by Um(s) the expected utility from demand s to voter vm:

Um

µ
n− 1
2

¶
= qM

µ
vm
2
− n− 1

4
p

¶
+ (1− qM)

µ
vm −

n− 1
2

¶
(13)

Um (−1) = qM

³p
2

´
+ (1− qM) (0) ,
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again assuming full information. Indifference requires:

p =
2(2− qM)vm

n+ 1 + (n− 3)qM
(14)

System (11), (12) and (14) corresponds to system (7) in Lemma 2. The existence of a

solution is not guaranteed. There is a solution if and only if there exists qM ∈ [0, 1] and
qm ∈ [0, 1] with qM + qm = (2n)/(n+ 1) such that (12)=(14). Such conditions are satisfied

if and only if:

vm ∈ [ρ(n)vM , ρ̄(n)vM ]

where:

ρ(n) =
n+ 1

n+ 5

ρ̄(n) =
(n− 1)(n+ 5)
(n+ 3)(n+ 1)

,

conditions (10) in Lemma A2. Note that 1/2 ≤ ρ(n) < ρ̄(n) < 1 for all n ≥ 3.
To verify that this is indeed an equilibrium, we need to rule out profitable deviations.

Note that for any voter any demand si > n−1 is always fully rationed, and thus is equivalent
to si = 0.

(i) Consider first voter vM . For any sM ∈ (n−12 , n− 1], UM(sM) < UM(
n−1
2
): demanding

more votes than required to achieve a strict majority does not affect the probability of

rationing and is strictly costly. For any sM ∈ [0, n−12 ), UM(sM) < UM(−1): demanding less
than n−1

2
votes is dominated by selling. To see this, note that when sm = n−1

2
, any sM < n−1

2

guarantees that vm will not be rationed and will win (because all other voters are selling).

Thus, whether sM ∈ (0, n−12 ) and the action is strictly costly, or sM = 0 and voter vM
stays out of the market, when sm =

n−1
2
, any sM ∈ [0, n−12 ) is strictly dominated by selling.

When sm = −1, any sM ∈ (0, n−12 ] is dominated by sM ∈ {−1, 0} and these two actions are
equivalent because both sM = −1 and sM = 0 induce no trade and guarantee a majority

victory. Therefore, when facing the strategy profile defined in the candidate equilibrium,

vM ’s best response can only be either sM = −1 or sM = n−1
2
. System (7) guarantees that

vM is indifferent between the two demands.

(ii) Consider now voter vm. As above, for any sm ∈ (n−12 , n − 1], Um(sm) < Um(
n−1
2
):

demanding more votes than required to achieve a strict majority does not affect the prob-
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ability of rationing and is strictly costly. It is also clear that Um(0) < Um(−1): the two
demands are equivalent if sM = −1 and selling is strictly superior to staying out of the
market if sM = n−1

2
. The question is whether vm could gain by demanding less than n−1

2

votes: although such a strategy is dominated by selling when sM = n−1
2
, it could in principle

be superior when sM = −1. Consider the relevant expected utilities:

Um

µ
n− 1
2

¶
= (1− qM̄)

µ
v̄m −

n− 1
2

p

¶
+ qM̄

µ
v̄m
2
− n− 1

4
p

¶
Um (−1) = (1− qM̄) · 0 + qM̄

³p
2

´
(15)

Um (x) = (1− qM̄) (P (x)v̄m − xp) + qM̄ (−xp)

where P (x) is the probability of a minority victory when vm demands x ∈ (0, n−1
2
) votes

and vM offers his vote for sale. Since P (x) < 1 for all x ∈ (0, n−1
2
), and Um (x) is increasing

in P (x) and decreasing in x, it follows that Um (x) < (1 − qM̄) (vm − p) + qM̄ (−p). Hence
Um

¡
n−1
2

¢
> (1 − qM̄) (vm − p) + qM̄ (−p) is sufficient to rule out a profitable deviation to

x ∈ (0, n−1
2
). The condition is equivalent to:

qM̄
2
v̄m ≥

2(1− qM̄)(n− 1) + qM̄(n− 1)− 4
4

p

Substituting p from (14) and simplifying, the condition amounts to:

(2− n)q2M̄ + (3n− 5)qM̄ − 2n+ 6 ≥ 0

This function is increasing in qM̄ for all n ≥ 3. By (11) qM̄ ≥ n−1
n+1
. Hence, we can evaluate

the condition at qM̄ = n−1
n+1
. If it is positive, the deviation is not profitable. Substituting, we

obtain:

n2 + 2n+ 13 ≥ 0

which is trivially satisfied for all n. Hence for any sm ∈ [1, n−12 ), Um(sm) < Um(
n−1
2
). We

can conclude that when facing the strategy profile defined in the candidate equilibrium, vm’s

best response can only be either sM = −1 or sM = n−1
2
. System (7) guarantees that vm is

indifferent between them.

(iii) Consider vi ∈ M , vi 6= vM . We show here that, given others’ specified strategies,

vi’s best response is selling: si = −1. First notice that, as argued above and for the same
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reasons, Ui(si) < Ui(
n−1
2
) for any si ∈ (n−12 , n − 1]. We need to treat the cases n ≥ 5 and

n = 3 separately.

(iii.a) Suppose first n > 3. In this case, for the same reasons descrobed above Ui(0) <

Ui(−1). If a deviation from si = −1 is profitable, it must be to some si ∈ (0, n−12 ]. Suppose
first sM = −1. Then in the candidate equilibrium the profile of others’ strategies faced by

vi is identical to the profile faced by vM . In particular, Ui(−1) = UM(−1) = UM(
n−1
2
) >

UM(s) for all s ∈ [0, n−12 ). But Ui(s) is increasing in vi for all s ∈ (0, n−12 ]; hence for all s in
this interval Ui(s) < UM(s), and thus Ui(−1) > Ui(s) for all s ∈ (0, n−12 ]. Thus if sM = −1,
si = −1 is vi’s best response. Suppose then sM = n−1

2
. For all si ∈ [0, n−32 ), vi is never

rationed, but there is always another voter, either vM or vm, who exits the market holding a

majority of the votes. Hence the strategy is costly for vi and never increases the probability

of his side winning. It is dominated by si = −1. Consider then the two remaining strategies
si =

n−1
2
, and si =

n−3
2
. Conditional on sM = n−1

2
, the relevant expected utilities are:

Ui∈M

µ
n− 1
2

¶ ¯̄̄̄
sM=

n−1
2

= (1− qm)

µ
vi −

n− 1
4

p

¶
+ qm

µ
2vi
3
− n− 1

6
p

¶
Ui∈M

µ
n− 3
2

¶ ¯̄̄̄
sM=

n−1
2

= (1− qm)

µ
vi −

n− 3
2

p

¶
+ qm

µ
2vi
3
− n− 3

6
p

¶
(16)

Ui∈M (−1)
¯̄̄̄
sM=

n−1
2

= (1− qm)
³
vi +

p

2

´
+ qm

µ
vi
2
+

n− 1
2(n− 2)p

¶

Taking into account qm ∈
£
n−1
n+1

, 1
¤
, (12), and vi ≤ vM , it is then straightforward to show

that, conditional on sM = n−1
2
, Ui∈M (−1) > Ui∈M

¡
n−1
2

¢
, and Ui∈M (−1) > Ui∈M

¡
n−3
2

¢
. But

if si = −1 is vi’s best response both when sM = −1 and when sM = n−1
2
, than it is vi’s best

response when vM randomizes between sM = −1 and sM = n−1
2
. No profitable deviation

exists.

(iii.b) Suppose now n = 3. There are twoM voters; hence vi ∈M , vi ≤ vM , is v(2)M , the

M voter with second highest value. This case must be considered separately because if n = 3,

and only if n = 3, v(2)M can induce no trade with probability qmqM by unilaterally deviating

and staying out of the market. Conditional on sM = n−1
2
= 1, the relevant expected utilities
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are:

U(2)M (1)

¯̄̄̄
sM=1

= (1− qm)

µ
vi −

n− 1
4

p

¶
+ qmvi

U(2)M (0)

¯̄̄̄
sM=1

= vi (17)

U(2)M (−1)
¯̄̄̄
sM=1

= (1− qm)
³
vi +

p

2

´
+ qm

³vi
2
+ p
´

It is immediately clear that U(2)M (0) > U(2)M (1). Given (14) and (11), U(2)M (−1) >

U(2)M (0) for all vm ∈ [ρ(3)vM , ρ̄(3)vM ] ⇐⇒ vm > (2/3)v(2)M . Thus si = −1 is indeed a best
response for v(2)M as long as vm ∈ [max{(2/3)v(2)M , ρ(3)vM}, ρ̄(3)vM ].
(iv) Finally, consider vi ∈ m, vi 6= vm. Note that such a voter only exists for n > 3.

Again, we show here that, given others’ specified strategies, vi’s best response is selling:

si = −1. The proof proceeds as above. First notice that, as above, Ui(si) < Ui(
n−1
2
) for any

si ∈ (n−12 , n − 1], and Ui(0) < Ui(−1). If a deviation from si = −1 is profitable, it must
be to some si ∈ (0, n−12 ]. Suppose first sm = −1. Then in the candidate equilibrium the

profile of others’ strategies faced by vi is identical to the profile faced by vm. In particular,

Ui(−1) = Um(−1) = Um(
n−1
2
) > Um(s) for all s ∈ [0, n−12 ). But Ui(s) is increasing in vi for

all s ∈ (0, n−1
2
]; hence for all s in this interval Ui(s) < Um(s), and thus Ui(−1) > Ui(s) for

all s ∈ (0, n−1
2
]. Thus if sm = −1, si = −1 is vi’s best response.

Suppose then sm =
n−1
2
. Eaxctly as argued above, if si ∈ [0, n−32 ), vi is never rationed,

but there is always another voter, either vM or vm, who exits the market holding a majority

of the votes. Hence the strategy is costly for vi and never increases the probability of his

side winning. It is dominated by si = −1. Consider then the two remaining strategies si =
n−1
2
, and si =

n−3
2
. Conditional on sm =

n−1
2
, the relevant expected utilities are:

Ui∈m

µ
n− 1
2

¶ ¯̄̄̄
sm=

n−1
2

= (1− qM̄)

µ
vi −

n− 1
4

p

¶
+ qM̄

µ
2vi
3
− n− 1

6
p

¶
Ui∈m

µ
n− 3
2

¶ ¯̄̄̄
sm=

n−1
2

= (1− qM̄)

µ
vi −

n− 3
2

p

¶
+ qM̄

µ
2vi
3
− n− 3

6
p

¶
Ui∈m (−1)

¯̄̄̄
sm=

n−1
2

= (1− qM̄)
³
vi +

p

2

´
+ qM̄

µ
vi
2
+

n− 1
2(n− 2)p

¶

Taking into account qM ∈
£
n−1
n+1

, 1
¤
, (14), and vi ≤ vm, it is then straightforward to show
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that, conditional on sm =
n−1
2
, Ui∈m (−1) > Ui∈m

¡
n−1
2

¢
, and Ui∈m (−1) > Ui∈m

¡
n−3
2

¢
. But

if si = −1 is vi’s best response both when sm = −1 and when sm = n−1
2
, than it is vi’s

best response when vm randomizes between sm = −1 and sm = n−1
2
. No profitable deviation

exists.

We can conclude that if vm ∈ [max{μ(n)v(2)M , ρ(n)vM}, ρ̄(n)vM ], where μ(n) is given by
(6), andρ(n) and ρ̄(n) are given by (10), the strategies described in the theorem, together

with the price and the mixing probabilities characterized in system (8), are indeed an ex

ante equilibrium of the full information game. Note that ρ(n)vM > μ(n)v(2)M for all n > 3;

if n = 3, ρ(3)vM > (2/3)v(2)M ⇐⇒ v(2)M < (3/4)vM .

2. Consider now vm ∈ [μ(n)v(2)M , ρ(n)vM ], where μ(n) is given by (6). Note that this

case is relevant if ρ(n)vM > μ(n)v(2)M , and thus for all n > 3, or for v(2)M < (3/4)vM

if n = 3. Suppose all voters adopt the strategies described in the theorem, and qM = 1.

Expected market clearing (equation (11)) implies qm = n−1
n+1
, and Um(−1) = Um(

n−1
2
) (or

equation (14)) implies p = 2vm
n+1
. Thus suppose system (8) holds. We show here that such

strategies and price are an ex ante equilibrium of the full information game. As above, we

rule out any profitable deviation for each voter in turn. Again, note that for any voter any

demand si > n− 1 is always fully rationed, and thus is equivalent to si = 0.
(i) Consider first voter vM . In the candidate equilibrium, sM = n−1

2
. As argued earlier,

it remains true that for any sM ∈ (n−12 , n− 1], UM(sM) < UM(
n−1
2
): demanding more votes

than required to achieve a strict majority does not affect the probability of rationing and

is strictly costly. Similarly, it remains true that for any sM ∈ [0, n−12 ), UM(sM) < UM(−1):
demanding less than n−1

2
votes is dominated by selling. The argument is identical to what

described earlier. Thus the only deviation we need to consider is to sM = −1. The relevant
expected utilities are:

UM

µ
n− 1
2

¶
= qm̄

µ
vM
2
− n− 1

4
p

¶
+ (1− qm̄)

µ
vM −

n− 1
2

¶
UM (−1) = qm̄

³p
2

´
+ (1− qm̄) (vM)

Substituting qm = n−1
n+1
, we obtain:

UM

µ
n− 1
2

¶
≥ UM (−1)⇔

vM
p

>
n+ 5

2
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Given p = 2vm
n+1
, the condition amounts to:

UM

µ
n− 1
2

¶
≥ UM (−1)⇔ vM ≥

n+ 5

n+ 1
vm =

1

ρ(n)
vm

The requirement established the upper bound of the range of vm values considered here:

vm ∈ [μ(n)v(2)M , ρ(n)vM ].

(ii) Consider voter vm. The arguments discussed under point 1.(ii) apply. With sM = n−1
2

and all other voters selling, sm = n−1
2
and sm = −1 dominate all other vm’s strategies. With

p = 2vm
n+1
, vm is indifferent between them and has no profitable deviation.

(iii) Consider now vi ∈M , vi 6= vM . We show here that, given others’ specified strategies,

vi’s best response is selling: si = −1. By the arguments under point 1.(iii) above, the only
deviations we need to consider are si = n−1

2
and si =

n−3
2
. The relevant expected utilities

are given by (16) for n > 3, and (17) for n = 3. Substituting p = 2vm
n+1
, and qm =

n−1
n+1
, we

derive the following conditions. If n > 3:

Ui∈M

µ
n− 1
2

¶
≤ Ui∈M (−1)⇔ vi

(n− 2)(n− 1)
2(n2 + n− 5) ≤ vm

and

Ui∈M

µ
n− 3
2

¶
≤ Ui∈M (−1)⇔ vi

(n− 2)(n− 1)(n+ 1)
2(n3 + 3n2 − 19n+ 21) ≤ vm

The two conditions are satisfied if and only if μ(n)vi ≤ vm. Thus they are satisfied for all

vi ∈M , vi ≤ vM if they are satisfied for vi = v(2)M . If n = 3:

U(2)M(1) ≤ U(2)M(−1)⇔
v(2)M
2
≤ vm

and:

U(2)M(0) ≤ U(2)M(−1)⇔
2

3
v(2)M ≤ vm

This latter condition is stricter and again is satisfied if and only if μ(3)v(2)M ≤ vm. For all

n, we have established the lower bound of the range of vm values considered here: vm ∈
[μ(n)v(2)M , ρ(n)vm]. Recall thatρ(n)vM > μ(n)v(2)M for all n > 3, but if n = 3, ρ(3)vM >

μ(3)v(2)M ⇐⇒ v(2)M < (3/4)vM if n = 3.

(iv) Finally, consider vi ∈ m, vi 6= vm. Again, this voter only exists if n > 3. The

arguments in 1.(iv) above can be applied identically here and establish that si = −1 is vi’s
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unique best response. In particular, if sm = −1, the profile of others’ strategies faced by
vi is identical to the profile faced by vm. Given others’ specified strategies, the differential

utility from selling, relative to any other action, is decreasing in vi; hence if sm = −1 is vm’s
best response, then it must be a best response for vi ≤ vm. If sm = n−1

2
, the identical proof

detailed in 1.(iv) is relevant. The proof made use of the constraint qM̄ ∈
£
n−1
n+1

, 1
¤
, which is

still satisfied here.

We conclude that for all vm ∈ [μ(n)v(2)M , ρ(n)vM ], where μ(n) is given by (6), the

strategies described in the theorem, together with the price and the mixing probabilities

characterized in system (7), are indeed an ex ante equilibrium of the full information game.

If n = 3, this case is only relevant if v(2)M < (3/4)vM .

3. Consider now vm > ρ̄(n)vM , where ρ̄(n) is defined in (10). Suppose all voters adopt

the strategies described in the theorem, and qm = 1. Expected market clearing (equation

(11)) implies qM = n−1
n+1
, and UM(−1) = UM(

n−1
2
) (or equation (12)) implies p = 2vM

n+1
. Thus

suppose system (9) holds. We show here that such strategies and price are an ex ante

equilibrium of the full information game. As above, we rule out any profitable deviation

for each voter in turn. The proofs follow immediately from the arguments used earlier. In

particular:

(i) Consider first voter vM . The arguments discussed under point 1.(i) apply. With

sm = n−1
2
and all other voters selling, sM = n−1

2
and sM = −1 dominate all other vM ’s

strategies. With p = 2vM
n+1
, vM is indifferent between them and has no profitable deviation.

(ii) Consider then voter vm. Recall that when vM randomizes between sM = n−1
2
and

sM = −1 and all others sell, sm = n−1
2
and sm = −1 dominate all other vm’s strategies. The

relevant expected utilities are given by (13). Hence, substituting qM = n−1
n+1
:

Um

µ
n− 1
2

¶
≥ Um (−1)⇔

vm
p
≥ (n− 1)(n+ 5)

2(n+ 3)

With p = 2vM
n+1
, therefore:

Um

µ
n− 1
2

¶
≥ Um (−1)⇔ vm ≥

(n− 1)(n+ 5)
(n+ 1)(n+ 3)

v̄M = ρ̄(n)vM

The condition establishes the lower bound of the range of vm values considered under this

case.
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(iii) Consider vi ∈M , vi 6= vM . If n > 3, the arguments in 1.(iii.a) above can be applied

identically here and establish that si = −1 is vi’s unique best response. In particular, if
sM = −1, the profile of others’ strategies faced by vi is identical to the profile faced by

vM . Hence if sM = −1 is vM ’s best response, then it must be a best response for vi ≤ vM .

If sM = n−1
2
, the identical proof detailed in 1.(iii) is relevant. The proof made use of the

constraint qm ∈
£
n−1
n+1

, 1
¤
, which is still satisfied here. If n = 3, vi ≡ v(2)M and:

U(2)M (1)

¯̄̄̄
sm=1

= qMv(2)M + (1− qM)
³v(2)M

2
+

p

2

´
U(2)M (0)

¯̄̄̄
sm=1

= qMv(2)M

U(2)M (−1)
¯̄̄̄
sm=1

= qM

³v(2)M
2

+ p
´
+ (1− qM)

³p
2

´
With p = 2vM

n+1
and qM = 1/2 by (11), it is trivial to verify that U(2)M (−1) > U(2)M (1) and

U(2)M (−1) > U(2)M (0).

(iv) Finally, when n > 3, consider vi ∈ m, vi 6= vm. The problem faced here by vi ∈ m

is identical to the problem faced by vi ∈ M , vi 6= vM in case 2.(iii) above, when qM = 1,

qm = n−1
n+1
. Taking into account p = 2v̄M

n+1
, all profitable deviations can be ruled out if and

only if vimax
n
(n−2)(n−1)
2(n2+n−5) ,

(n−2)(n−1)(n+1)
2(n3+3n2−19n+21)

o
≤ vM , or viμ(n) ≤ vM .

Because μ(n) < 1, two observations follow immediately. First, if vM ≥ vm, the condition

viμ(n) ≤ vM for all vi ∈ m, vi 6= vm is always satisfied. Thus the strategies described in the

theorem, together with the price and mixing probabilities characterized in system (9) are

indeed an ex ante equilibrium of the full information game for all vm ∈ (ρ̄(n)vM , vM ]. Second,

the condition vM ≥ vm has not been imposed anywhere in the proof of the equilibrium of

case 3. The equilibrium requires vm > ρ̄(n)vM , where ρ̄(n) < 1, and, for n > 3, viμ(n) ≤ vM

∀vi ∈ m, vi 6= vm. Thus it is compatible with vm > vM , as long as vM ≥ μ(n)v(2)m if n > 5,

and with no additional constraint if n = 3. Hence Lemma A2 follows immediately.

We now show that when preferences are private information, the strategies and price

identified above constitute a fully revealing ex ante equilibrium.
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7.1.2 Fully revealing equilibrium.

We conjecture an equilibrium identical to the full information equilibrium characterized

above and show that given others’ strategies, the equilibrium price and the knowledge that

the market is in a fully revealing equilibrium, each voter’s best response when preferences

are private information is uniquely identified and equals the voter’s best response with full

information. Thus the equilibrium exists when preferences are private information and is

indeed fully revealing.

(i) Consider first the perspective of voter vM , in equilibrium. In any of the scenarios

identified above, expected market equilibrium requires vM to demand a positive number of

votes with positive probability. It then follows that the other voter who demands a positive

number of votes with positive probability must belong to the minority. If not, vM ’s best

response would be to sell, violating expected market equilibrium. Thus vM also knows that

M − 1 majority members and m − 1 minority members are offering their vote for sale; he
cannot identify them individually, but that is irrelevant. Given that the other net demand for

votes comes from a minority voter, vM ’s best response is identified uniquely and is identical

to his best response under full information.

(ii) Consider then the perspective of voter vm. If n = 3, he is the only minority voter

and the problem is trivial. Suppose n > 3. Suppose first that vm ∈
h
μ(n)v(2)M , ρM(n)vM

i
,

and hence sM = n−1
2
with probability 1. Expected market balance requires vm to demand a

positive number of votes with positive probability. But that can only be a best response if

the voter who demands n−1
2
votes belongs to the majority; if not, vm’s best response would

be to sell. Again, vm also knows thatM−1 majority members and m−1 minority members
are offering their vote for sale; he cannot identify them individually, but that is irrelevant.

Suppose now vm ∈ [ρ(n)vM , ρ̄(n)vM ]. Expected market balance rules out that vm could

sell with probability 1 (because over this range of valuations the minimal expected demand

of votes by vm required for expected market balance is min(qm)(n−12 ) + (1− min(qm)(−1) =¡
n−1
n+1

¢
(n−1
2
) +

¡
1− n−1

n+1

¢
(−1) = n−5

2(n+1)
> −1 for all n ≥ 3). Given the profile of strategies

faced by vm, staying out of the market (sm = 0) is always dominated by selling. Thus

vm’s best response in equilibrium must include demanding a positive number of votes with

positive probability. As in all previous cases, demanding more than n−1
2
votes is always

dominated by demanding n−1
2
votes. Thus the actions over which vm can randomize with

positive probability are sm = n−1
2
, sm = x, with 0 ≤ x < n−1

2
, and sm = −1. Suppose

that the voter demanding n−1
2
with probability qM (with qM identified in (7)), and selling
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otherwise, belonged to the minority. Then:

Um

µ
n− 1
2

¶ ¯̄̄̄
(v̄M∈m)e

= (1− qM̄)

µ
vm −

n− 1
2

p

¶
+ qM̄

µ
vm −

n− 1
4

p

¶
Um (−1)

¯̄̄̄
(v̄M∈m)e

= (1− qM̄) · 0 + qM̄

³
vm +

p

2

´
(18)

Um (x)

¯̄̄̄
(v̄M∈m)e

= (1− qM̄) (P (x)vm − xp) + qM̄ (vm − xp)

where the index (vm ∈ m)e indicates the belief that the other voter with positive expected

demand belongs to the minority. System (18) is similar to system (15). In particular: (1) The

differential utility from selling relative to demanding x ∈ [0, n−1
2
) votes, Um (−1)− Um (x),

is identical. We saw earlier that such term must be positive for all qM̄ ∈
£
n−1
n+1

, 1
¤
, a result

that thus applies immediately here. (2) For all vm > 0, the differential utility from selling

relative to demanding n−1
2
votes, Um (−1)− Um

¡
n−1
2

¢
, is strictly higher than in system (15),

where, at equilibrium qM̄ , it equalled 0. Hence at equilibrium qM̄ it must be positive here. It

follows that if the voter demanding n−1
2
with probability qM belonged to the minority, vm’s

best response would be to sell. But that would violate expected market balance. Hence

the voter demanding n−1
2
with probability qM must belong to the majority. Of all remaining

voters offering their votes for sale,M−1 belongs to the majority, and m−1 to the minority.
They cannot be distinguished but that has no impact on vm’s unique best response.

Finally, suppose either vm ∈ (ρ̄(n)v̄M , vM ], or vM ∈
£
μ(n)v(2)m, vm

¤
. Expected market

balance requires sm = n−1
2
with probability 1. But then the other voter demanding n−1

2

votes with positive probability cannot belong to the minority (because in a fully revealing

equilibrium, if sm = n−1
2
with probability 1, all other minority voters would prefer to sell).

Hence again the other voter with positive demand for votes must be a majority voter. All

remaining voters are sellers; identifying the group each of them belongs to is not possible

but has no impact on vm’s unique best response.

(iii) Consider now the perspective of all voters who in the full information equilibrium

offer their vote for sale with probability 1: vi ∈ M , vi 6= vM , or vi ∈ m, vi 6= vm. By the

arguments above, each of them knows that in a fully revealing equilibrium the two voters with

positive expected demand must belong to the two different parties. Which one belongs to

the majority and which one to the minority cannot be distinguished, but is irrelevant: since

in the full information case vi’s best response is si = −1 with probability 1 whether vi ∈M ,
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or vi ∈ m, it follows that identifying which of the two voters with positive expected demand

belongs to which group is irrelevant to vi’s best response. Equally irrelevant is identifying

which of the sellers belongs to which group. Although the direction of preferences associated

with each individual voter cannot be identified, vi’s best response is unique and identical to

his best response with full information.

We can conclude that the equilibrium strategies and price identified by Lemmas A1 and

A2 are indeed a fully revealing ex ante equilibrium with private information.¤

7.2 Proof of Lemma 1.

Lemma 1. If all vi, i ∈ m and i ∈ M , are i.i.d. according to some F (v), then for all F ,

n, and α , ω∗m ≤ m/n.

Proof. Call a realization of n values a profile Π, and call a partition P(Π) a corre-
sponding minority profile m and majority profile M: P(Π)={m,M}.36 The probability of
a profile Π depends on the distribution F , but note that because values are i.i.d., given Π

any partition P(Π) is equally likely. Call Vm the sum of realized minority values (Vm =P
i∈m vi), and similarly for VM (VM =

P
j∈M vj). Consider any P(Π)={m,M} such that

Vm > VM , supposing that at least one such profile Π and partition P(Π) exist. Now, keeping
Π fixed, consider an alternative partition P 0(Π) such that the values in the minority profile
m are reassigned to majority voters. By construction, VM > Vm. The values assigned to

the remaining M − m majority voters are chosen freely among all realized values in the

original majority profileM. Thus for any m, there are
¡
n−m
M−m

¢
=
¡

M
M−m

¢
=
¡
M
m

¢
equally likely

partitions P 0(Π) such that VM > Vm. But then:

Pr(VM > Vm|Π) ≥
µ
M

m

¶
Pr(Vm > VM |Π),

with inequality because for given Π we are ignoring partitions P 00(Π) such that some of m
values are associated with minority and some with majority voters and VM > Vm.37.
36For clarity: for any Π, there are

¡
n
m

¢
possible partitions P(Π), and for any partition P(Π) there are

m!M ! possible permutations of values among the different voters, all keeping P(Π) = {m,M} constant.
37We are not ignoring those such that Vm > VM because they are taken into account as different initial

partitions eP(Π).
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Now:

Pr(Vm > VM) =

Z
Π

Pr(Vm > VM |Π)dG

Pr(VM > Vm) =

Z
Π

Pr(VM > Vm|Π)dG ≥
µ
M

m

¶Z
Π

Pr(Vm > VM |Π)dG =
µ
M

m

¶
Pr(Vm > VM)

where G = F n is the joint density of a profile Π. But Pr(Vm > VM) = 1 − Pr(VM > Vm).

Hence:

Pr(Vm > VM) ≤
1

1 +
¡
M
m

¢ .
The Lemma then follows if:

1

1 +
¡
M
m

¢ ≤ m

m+M
. (19)

Condition (19) is equivalent to:

m!(M −m)!

m!(M −m)! +M !
≤ m

m+M

or, after some manipulations:

(m− 1)!(M −m)! ≤ (M − 1)!

which is equivalent to: µ
M − 1
m− 1

¶
≥ 1,

an inequality that holds for all m ≥ 1.¤

7.3 Proof of Proposition 1.

Proposition 1. (a) There exists a value m0 > 0 such that if m < m0, ωm > ω∗m for all n

and F . (b) There exist distributions F0 such that if F ∈ F0, ωm > ω∗m for all n and m.

Proof of part (a). We know that if vg > v(2)G, the equilibrium in Theorem 1 always

applies. If G = m (i.e. vn ∈ m), m wins with probability n+3
2(n+1)

; if G = M (i.e. vn ∈ M),

m wins with probability n−1
2(n+1)

if vm < ρvM , and with some probability ∈ ( n−1
2(n+1)

, n+3
2(n+1)

)

otherwise. Hence:
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ωm >
n+ 3

2(n+ 1)
Pr(G = m ∩ vM > v(2)m) +

n− 1
2(n+ 1)

Pr(G =M ∩ vm > v(2)M) (20)

The inequality is strict both because (20) sets to n−1
2(n+1)

the probability of minority victories

whenever vg > v(2)G and G = M , and because it ignores value realizations such that vg ∈
(μ(n)v(2)G, v(2)G)—the condition in Theorem 1 is satisfied, and the minority wins with positive

probability.38

With i.i.d. value draws:

Pr(G = m ∩ vM > v(2)m) = Pr(G =M ∩ vm > v(2)M) =
mM

n(n− 1)

Thus:

ωm >
n+ 3

2(n+ 1)

mM

n(n− 1) +
n− 1
2(n+ 1)

mM

n(n− 1) =
mM

n(n− 1)
Given Lemma 1, the proposition follows if there exists a m0 such that for all m < m0,

mM/[n(n − 1)] ≥ 1/n. This last condition holds with equality at m = 1, and thus the

proposition always holds at m0 = 2 . ¤

Proof of part (b) Assume that F (v) = vb. Then we can derive:

P (B) =1− m(m− 1)
n(n− 1) μ

bM − M

n
ρ̄bm (21)

P (P ) =
M

n

¡
ρ̄bm − ρbm

¢
(22)

P (R) =ρbm
M

n
− M(M − 1)

n(n− 1) μbm (23)

Ignoring integer constraints, we can rewrite equations (21)-(23) above as:

P (B) =1− α(αn− 1)
n− 1 μb(1−α)n − (1− α)ρ̄bαn

P (P ) =(1− α)
¡
ρ̄bαn − ρbαn

¢
P (R) =ρbαn(1− α)− (1− α)((1− α)n− 1)

n− 1 μbαn.

38Note that such realizations have positive probability for all F with full support.

52



Therefore:

ωm ≥ n+ 3

2(n+ 1)

∙
1− α(αn− 1)

n− 1 μb(1−α)n − (1− α)ρ̄bαn
¸

+
n− 1
2(n+ 1)

∙
(1− α)ρ̄bαn − (1− α)((1− α)n− 1)

n− 1 μbαn
¸

The condition that ωm ≥ m/n is equivalent to

(n+ 3)(n− 1)− 4(n− 1)(1− α)ρ̄bαn − (n− 1)(1− α)((1− α)n− 1)μbαn−
− (n+ 3)α(αn− 1)μb(1−α)n − 2α(n+ 1)(n− 1) ≥ 0 (24)

If n = 3, then α = 1/3, ρ̄(3) = μ(3) = 2/3. Substituting these values, we can verify

immediately that the condition is satisfied for all b > 0. Suppose then n > 3, and consider

some loose bounds on the various parameters. We know that ρ̄bαn < 1 and μb(1−α)n < μbαn <

μ < 1
2
provided bαn = bm ≥ 1 and, for the last inequality, n > 3. Hence, a sufficient

condition for (24) is:

(n+3)(n−1)−4(n−1)(1−α)−n− 1
2
(1−α)((1−α)n−1)−n+ 3

2
α(αn−1)−2α(n+1)(n−1) ≥ 0

This is equivalent to:

a(α)n2 + c(α)n+
1

2
≥ 0 (25)

where:

a(α) =
1

2
− α− α2

c(α) = −(α2 + 1− 3α)

If f(α) ≡ α3 − 6α2 + 13α − 4 ≤ 0, the discriminant of the left handside of inequality
(25) is negative. Provided a(α) ≥ 0, inequality (25) would then hold. Note that f(α) is
increasing in α and that there exists an α∗ > 0 such that f(α∗) = 0. It can be easily verified

that a(α) ≥ 0 for all α ≤
√
3−1
2
, and α∗ <

√
3−1
2
. It follows that (25) is satisfied, and thus

(24) is satisfied and ωm ≥ α for all n > 3 for all α ∈ (1/n, α∗). To conclude the proof, we
need to show that (24) is also satisfied when α ∈

£
α∗, n−1

2n

¤
39.

39The upper bound comes from the fact that m = α · n, n is odd. and m < M so that m ≤ n−1
2
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For any b ≥ 1 and n > 3, μb(1−α)n < μbαn < μαn < 1
2α∗·n

,∀α ∈
£
α∗, n−1

2n

¤
. Thus a sufficient

condition for (24) is:

n2
∙
1− 2α− 1− 2α+ 2α

2

2α∗·n

¸
+ n

∙
4α− 2 + 1− α− α2

2α∗·n−1

¸
+ 1− 2α+ 4α− 1

2α∗·n
≥ 0

Rearrange the terms as :

(1− 2α)(n− 1)2 + 1

2α∗·n
£
−2(n2 + n)α2 + 2(n2 − n+ 2)α− (n− 1)2

¤
≥ 0 (26)

One can show that −2(n2+ n)α2+2(n2− n+2)α ≥ α(1− α)(n− 1)2 for α ∈
£
α∗, n−1

2n

¤
.

A sufficient condition for inequality (26) is then:

∀α ∈
∙
α∗,

n− 1
2n

¸
, 1− 2α− 1

2α∗·n
+

α(1− α)

2α∗·n
≥ 0

The left handside of this equation is decreasing in α, and thus the inequality is satisfied

if it is satisfied at α = n−1
2n
. The condition becomes:

2α
∗·n

n
≥ 1− n2 − 1

4n2
=
3n2 + 1

4n2

The difference of the two terms is increasing in n for n ≥ 5. Moreover, it is satisfied at
n = 740, so is satisfied for all n ≥ 7. Thus for n ≥ 7, we can conclude that (24) is satisfied
for all b ≥ 1 and for all α. To complete the proof, we need to consider the last remaining
case: n = 5. But at n = 5, α ∈ {1

5
, 2
5
}, ρ̄ = 5

6
, μ = 2

7
and b = 1, (24) is satisfied. Hence at

n = 5, it is also satisfied for b > 1. The proposition is proven. ¤

7.4 Proof of Proposition 2.

Proposition 2. There exist distributions F00
such that if F ∈ F00

, then W < W0 for all n

and m.

Proof. Recall that Vm denotes the sum of realized minority values (Vm =
P

i∈m vi), and

VM the sum of realized majority values (VM =
P

j∈M vj). Suppose F (v) = vb, b > 0. We

show here that W < W0 if b ≥ 1, for all n, m.
40To see that, one can use the fact that α∗ > 0.36
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For value realizations such that the condition in Theorem 1 is not satisfied, the equilibrium

construction selects the majority voting outcome, and thus (W |vg < μv(2)G) = (W0|vg <

μv(2)G). When the value realizations are in areas R ( ρvM > vm > μv(2)M ) and P (ρvM >

vm > ρvM ), vM > vm, and given m < M and i.i.d. values, it follows that E[VM |R,P ] >
E[Vm|R,P ]. Thus (W |ρvM > vm > μv(2)M) < (W0|ρvM > vm > μv(2)M). Hence, for all n

and m, a sufficient condition for W < W0 is E[VM |B] > E[Vm|B], where B is the area of

value realizations such that vm > ρvM , vM > μv(2)m. The proposition is an immediate result

of the following Lemma.

Lemma A.1. If F (v) = vb, then:

Pr(B)E(Vm|B) =
bm

b+ 1
− b2Mm

(bn+ 1)(b+ 1)
ρbm+1−

− μbM
b2m(m− 1)

bn+ 1

∙
1

b(n− 1) +
(b(m− 1) + 1)

(b+ 1)(b(n− 1) + 1)

¸
Pr(B)E(VM |B) =

bM

b+ 1
− bM(bM + 1)

(b+ 1)(bn+ 1)
ρ̄bm − b3Mm(m− 1)μbM+1

(b+ 1)(b(n− 1) + 1)(bn+ 1)

Proof of Lemma A1. Recall that vm > ρvM , vM > μv(2)m. If we call x = v̄m, y = v(2)m,

and z = v̄M , then:

Pr(B)E[VM |B] =
Z 1

x=0

Z x

y=0

Z min(xρ̄ ,1)

z=μy

∙
bM + 1

b+ 1
z

¸
b2m(m− 1)yb(m−1)−1xb−1MbzbM−1

=
bM

b+ 1
− bM(bM + 1)

(b+ 1)(bn+ 1)
ρ̄bm − b3Mm(m− 1)μbM+1

(b+ 1)(b(n− 1) + 1)(bn+ 1)

Pr(B)E[Vm|B] =
Z 1

x=0

Z x

y=0

Z min(xρ̄ ,1)

z=μy

∙
x+

b(m− 1) + 1
b+ 1

y

¸
b2m(m−1)yb(m−1)−1xb−1MbzbM−1

=
bm

b+ 1
− b2Mm

(bn+ 1)(b+ 1)
ρbm+1 − μbM

b2m(m− 1)
bn+ 1

∙
1

b(n− 1) +
(b(m− 1) + 1)

(b+ 1)(b(n− 1) + 1)

¸
¤
The proof of Proposition 2 proceeds in two stages. First, we show that if W < W0 for
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b = 1, the uniform case, then W < W0 for b > 1. Second, we show that W < W0 for b = 1.

Given Lemma A.1, for any b, a sufficient condition for W < W0 is:

W < W0 ⇐ 2
b

b+ 1

∙
M −m

2
− M(bM + 1− bmρ̄)

2(bn+ 1)
ρ̄bm
¸

− b2m(m− 1)
(b+ 1)(b(n− 1) + 1)(bn+ 1)

∙
bMμ− b2m(n− 1) + b(n− 1) + bn+ 1

b(n− 1)

¸
μbM > 0

⇔ 2
b

b+ 1

∙
M −m

2
− M(bM + 1− bmρ̄)

2(bn+ 1)
ρ̄bm
¸

− 2
b

b+ 1

∙
bm(m− 1)
b(n− 1)

1

2(b(n− 1) + 1)(bn+ 1)
£
b2(n− 1)(Mμ−m− 1)− bn− 1

¤
μbM

¸
> 0

Note first that:

b2(n− 1)(Mμ−m)− bn− 1 < b2(n− 1)(nμ− 1)− b(n− 1)
< b2(n− 1)(n− 1)− b(n− 1)

Hence:

b2(n− 1)(Mμ−m− 1)− bn− 1
2(b(n− 1) + 1)(bn+ 1) <

b(n− 1)
2(bn+ 1)

≤ 1

2

Thus W < W0 if:

M −m

2
− M(bM + 1− bmρ̄)

2(bn+ 1)
ρ̄bm − m(m− 1)

(n− 1)
μbM

2
≥ 0 (27)

Straightforward manipulations show that M(bM+1−bmρ̄)
2(bn+1)

ρ̄bm is decreasing in b. The term in

μbM is obviously decreasing in b. Hence, if condition (27) is satisfied at b = 1, then it is

satisfied for all b > 1.

(b) We can thus focus on the case b = 1. First, we consider the case n = 3, which is

slightly different from the general case. If n = 3, then m = 1, M = 2, ρ̄ = 2/3, and μ = 2/3.

Condition (27) becomes: 1/2− 7/18 > 0 and is satisfied.
Suppose then n > 3. Substituting b = 1 and M = n−m, condition (27) becomes:
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n− 2m
2

− (n−m)(n−m+ 1−mρ̄)

2(n+ 1)
ρ̄m − m(m− 1)

2(n− 1) μ
n−m ≥ 0

Suppose first n ≥ (2m + 3), or m ≤ (n − 3)/2. Given n > 3 and ρ̄ = 1 − 8
(n+1)(n+3)

, if

n ≥ (2m+ 3):

n− 2m
2

− (n−m)(n−m+ 1−mρ̄)

2(n+ 1)
ρ̄m ≥ 37m

2(n+ 1)2(n+ 3)

Hence the condition becomes:

37m

(n+ 1)2(n+ 3)
− m(m− 1)

(n− 1)

µ
1

2

¶n−m
≥ 0

But 37m(n− 1)−m(m− 1)(n+ 1)2(n+ 3)
¡
1
2

¢n−m ≥ 37m(n− 1)−m(m− 1)(n+ 1)2(n+
3)
¡
1
2

¢n+1
2 ≥ 37(n − 1) − (m − 1)(n + 1)2(n + 3)

¡
1
2

¢n+1
2 . Finally, notice that 37(n − 1) −

(m − 1)(n + 1)2(n + 3)
¡
1
2

¢n+1
2 evaluated at m = n−1

2
is always positive for any n > 3, and

thus must be positive for all m ≤ (n− 3)/2. Therefore, condition (27) is always satisfied for
n > 3 and n ≥ (2m+ 3)

The condition n ≥ (2m + 3) excludes the only case m = n−1
2
. Suppose then m = n−1

2
.

Inthis case,Mμ−m < 0 and the term in μM in condition 27 is positive. A sufficient condition

for W < W0 is then:

2
b

b+ 1

∙
M −m

2
− M(bM + 1− bmρ̄)

2(bn+ 1)
ρ̄bm
¸
> 0

or, with m = n−1
2
:

1

2
−

n+3
2
− n−1

2
ρ̄

4
ρ̄m =

1

2
−
2 + 8

(n+1)(n+3)

4
ρ̄m > 0

Or: ∙
1 +

4

(n+ 1)(n+ 3)

¸
exp

µ
n− 1
2

ln

µ
1− 8

(n+ 1)(n+ 3)

¶¶
< 1
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Denote x = 4
(n+1)(n+3)

. Note that:

exp

µ
n− 1
2

ln

µ
1− 8

(n+ 1)(n+ 3)

¶¶
= exp

µ
n− 1
2

ln (1− 2x)
¶

< exp (−(n− 1)x)

But f(x) = (1 + x)exp(−(n− 1)x) is decreasing in x and is equal to 1 at x = 0. Hence, the

inequality is satisfied, for any n. This concludes the proof. ¤

7.5 Proof of Theorem 3

Theorem 3. Suppose R2 is the rationing rule. For all n > 3 odd, m, and F , there exists a

threshold μR2(n) > 0 such that if vg ≥ μR2(n)Max[v(2)G, v(2)g], there exists a fully revealing

ex ante equilibrium with trade where vG and vg randomize between demanding (n−1)/2 votes
(with probabilities q0

G
and q0g respectively) and selling their vote, and all other individuals sell.

The randomization probabilities q0
G
and q0g and the price p0 depend on vg and vG, but for all

vG and vg ≥ μR2(n)Max[v(2)G, v(2)g], q0G ∈ [
n−1
n+1

, 1] and q0g ∈ [n−1n+1
, 1]. The threshold μR2(n)

is given by:

μR2(n) =
(n− 1)2
2n−2n

µ
n− 3
n−3
2

¶
Proof. The theorem is implied by the following three lemmas.

Lemma A4. Suppose vM/vm ≥ (n + 1)/(n − 1). Then for all n > 3 odd, m, and F ,

if vm ≥ μR2(n)Max[v(2)M , v(2)m], there exists a fully revealing ex ante equilibrium with trade

where vM demands (n − 1)/2 votes with probability 1, vm randomizes between demanding

(n− 1)/2 votes (with probability q0m = (n− 1)/(n+ 1) and selling, and all others sell. The
equilibrium price p0 equals vm/(n− 1).

Lemma A5. Suppose vM/vm ≤ (n+ 3)/(n+ 1). Then for all n > 3 odd, m, and F , if

vM ≥ μR2(n)Max[v(2)M , v(2)m], there exists a fully revealing ex ante equilibrium with trade

where vm demands (n − 1)/2 votes with probability 1, vM randomizes between demanding

(n− 1)/2 votes (with probability q0
M
= (n− 1)/(n+ 1) and selling, and all others sell. The

equilibrium price p0 equals vM/(n− 1).

Lemma A6. Suppose vM/vm ∈ ((n+ 3)/(n+ 1), (n+ 1)/(n− 1)). Then for all n > 3
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odd, m, and F , if :

vm ≥ μR2(n)
2(nx− n− 1)
(n− 1)(x− 1)xMax[v(2)M , v(2)m]

where x ≡ vM/vm, there exists a fully revealing ex ante equilibrium with trade where vM and

vm randomize between demanding (n−1)/2 votes (with probabilities q0M and q0m respectively)

and selling their vote, and all other individuals sell. The randomization probabilities q0
M
and

q0m and the price p0 solve:

q0
M
+ q0m =

2n

n+ 1

p0 =

µ
2− q0

M

n− 1

¶
vm

p0 =

µ
q0m

n− 1

¶
vM .

Note that in lemmas A4 and A6, vm < vM , or vm ≡ vg, and the condition thus applies

to vg, as stated in the theorem. In Lemma A5 the condition is stated in terms of vM , and

vM ≶ vm, but if the condition is satisfied for vg = min[vM , vm], then it is always satisfied

for vM (i.e. the condition stated in the theorem is sufficient for the condition stated in the

lemma). Finally, in Lemma A6, the condition depends on x ≡ vM/vm. Over the interval

x ∈ (n+3
n+1

, n+1
n−1), the expression

2(nx−n−1)
(n−1)(x−1)x is increasing in x, and maximal at x = n+1

n−1 where
2(nx−n−1)
(n−1)(x−1)x = 1 for all n. Hence again the condition stated in the theorem is sufficient for the

condition stated in the lemma.

As in the case of Theorem 1, the proof is organized in two stages. First, we show that the

strategies and price described in the lemmas are an equilibrium if the direction of preferences

associated with each demand is commonly known. Second, we show that when preferences

are private information the equilibrium is fully revealing.

7.5.1 Ex ante equilibrium with full information.

Suppose first that the direction of preferences associated with each demand is commonly

known. Expected market balance requires (q0
M
+q0m)(n−1)/2 = (n−2)+(1−q0M)+(1−q

0
m),
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or:

q0
M
+ q0m =

2n

n+ 1

We begin by proving Lemma A4.

Proof of Lemma A4. Recall that we denote by Um(s) the expected utility to voter vm
from demand s (and similarly for UM(s)). Then, in the candidate equilibrium:

Um(−1) =
p0

2

Um

µ
n− 1
2

¶
=

vm
2
− n− 2

2
p0

Indifference between the two actions requires:

p0 =
vm

n− 1

By expected market balance, if q0
M
= 1, then:

q0m =
n− 1
n+ 1

.

To verify that this is indeed an equilibrium, we need to rule out profitable deviations.

(i) Consider first voter vM . For any sM ∈ (n−12 , n− 1], UM(sM) < UM(
n−1
2
): demanding

more votes than required to achieve a strict majority is strictly costly and does not affect

the probability of rationing vm (because sM > n−1
2
becomes relevant only once sM = n−1

2

is satisfied, at which point vm is already rationed and vM holds a majority of votes). For

any sM ∈ [0, n−12 ), UM(sM) < UM(−1): demanding less than n−1
2
votes is dominated by

selling because demanding any positive number of votes less than n−1
2
would be costly and

not affect the outcome, whether vm is selling or demanding n−1
2
. Therefore, the majority

leader is optimizing if and only if the deviation to selling is not profitable. In the candidate

equilibrium:

UM(−1) = q0m(
1

2
p0) + (1− q0m)(v̄M)

UM

µ
n− 1
2

¶
= q0

M
(
vm
2
− n− 2

2
p0) + (1− q0

M
)(vm −

n− 1
2

p)
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The deviation is not desirable if and only if vM/vm ≥ (n+ 1)/(n− 1).
(ii) Consider voter vm. Given sM = n−1

2
, Um(sm) < Um(

n−1
2
) for all sm > 0 6= n−1

2
, and

Um(0) < Um(−1). Hence no deviation dominates randomizing over selling or demanding
n−1
2
.

(iii) Consider now vi ∈ M , vi 6= vM . Here the rationing rule makes an important

difference. With R2, any incremental demand has a positive incremental impact on the

probability that vm and/or vM will be rationed. We need to consider and exclude deviation

to any si ∈ [0, n−1
2
]. We show here, however, that for all vi ∈ M , vi 6= vM , Ui(−1) ≥ Ui(0)

is sufficient to guarantee Ui(−1) ≥ Ui(si) for all si ∈ [0, n−1
2
]. Hence only one possible

deviation, to si = 0, needs to be ruled out. It is this step that makes the proof possible.

Consider the utilities from demanding s+ 1 votes and demanding s. The probability of

receiving 0 to s− 1 votes is identical when demanding s or s + 1 votes. The probability of
receiving s votes when demanding s votes is equal to the probability of receiving s or s+ 1

votes when demanding s + 1 votes. Therefore, calling x the number of votes received after

rationing, for all s ∈ [0, n−5
2
] :

Ui(s+ 1)− Ui(s) = (1− q0m)(−p0) + q0m[P (xi = s+ 1|s+ 1)] ·

·
∙
(P (xm =

n− 1
2
|si = s)− P (xm =

n− 1
2
|si = s+ 1))v − p0

¸
Calling [(P (xm = n−1

2
|si = s)− P (xm =

n−1
2
|si = s+ 1))v − p0] ≡ ∆(s), we can rewrite the

expression more concisely as:

Ui(s+ 1)− Ui(s) = q0m[P (xi = s+ 1|s+ 1)∆(s)]− (1− q0m)p
0 (28)

and thus, for s ∈ [0, n−5
2
] :

Ui(s)− Ui(s− 1) = q0m(P (xi = s|s)∆(s− 1)− (1− q0m)p
0 (29)

where, as argued above, P (xi = s|s) > P (xi = s+ 1|s+ 1).
Given:

P (xm =
n− 1
2
|si = s) =

n−3−sX
z=n−1

2

µ
n− 3− s

z

¶µ
1

2

¶n−3−s
∀s ∈

∙
0,
n− 5
2

¸
,
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and hence:

∆(s) =
n−3−sX
z=n−1

2

µ
1

2

¶n−4−s ∙µ
n− 4− s

z − 1

¶
(1− n− 3− s

2z
)

¸
v − p0,

it is possible to show that ∆(s) ≤ 0 implies ∆(s + 1) ≤ 0 for all s ∈
£
0, n−5

2

¤
41. It follows

that if 0 is preferred to 1, then 0 dominates all strategies up to buying n−3
2
votes.

From (28):

Ui(1)− Ui(0) = q0m(P (xi = 1|1)∆(0)− (1− q0m)p
0

and since

∆(0) =

"¡n−4
n−7
2

¢
2n−4

−
¡
n−3
n−3
2

¢
2n−2

#
vi − p0

it follows that Ui(1) < Ui(0) if ∆(0) ≤ 0 or, given p0 = vm
n−1 , Ui(1) < Ui(0) for all vi ∈ M ,

vi 6= vM , if vm ≥
(n−1) 4(n−4n−7

2
)−(n−3n−3

2
)

2n−2 v(2)M . But:

Ui(0) = q0m

"
1

2
+

¡
n−3
n−3
2

¢
2n−2

#
vi + (1− q0m)vi

Ui(−1) = q0m

³vi
2
+ p0

´
+ (1− q0m)

µ
vi +

p0

2

¶
and thus:

Ui(0) < Ui(−1) for all vi ∈M,vi 6= vM if

¡
n−3
n−3
2

¢
2n−2

v(2)M ≤
vm̄

n− 1
or:

vm ≥
(n− 1)

¡
n−3
n−3
2

¢
2n−2

v(2)M . (30)

Note that 4
¡
n−4
n−7
2

¢
−
¡
n−3
n−3
2

¢
≤
¡
n−3
n−3
2

¢
. Hence, the last condition is sufficient for ∆(0) ≤ 0. It

is the condition in the lemma, and it is sufficient to establish both that si = −1 dominates
si = 0, and that si = 0, and hence si = −1, dominate all si ∈ [1, n−32 ].
The last step in proof is verifying that a deviation to n−1

2
is not profitable. Note that

P (xm = n−1
2
|si = n−1

2
) = P (xm = n−1

2
|si = n−3

2
): demanding n−1

2
does not change the

probability that vm receive n−1
2
votes, relative to demanding n−3

2
. It may however lead to a

41The proof requires some work. Details are posted at: columbia.edu/~st2511/demundone/theorem3_supp.pdf.
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higher number of votes paid. Thus si = n−1
2
is dominated by si =

n−3
2
which, as we have

seen, is dominated by si = 0. Ruling out a profitable deviation to 0 is thus sufficient to rule

out all other deviations. It follows that no deviation is profitable if (30) is satisfied.

(iv). Finally, consider vi ∈ m, vi 6= vm. With probability q0m, vm demands
n−1
2
votes, as

does vM . In this case, a demand of votes by vi is justified if it increases the probability that

vM is rationed. This is exactly the reasoning we considered in point (iii) above, for vi ∈M .

We established there that if si = −1 dominates si = 0, then it dominates all si ∈ [0, n−32 ].
With probability (1 − q0m), however, vm sells his vote. Since vM demands n−1

2
votes with

probability 1, in this case si = 0 is dominated by si = −1 and any si ∈ [1, n−32 ] is dominated
by si =

n−1
2
(because for any si ∈ [1, n−32 ], neither vM nor vi are rationed, vM wins, and vi

pays sip0). We conclude the only deviations from si = −1 that cannot be excluded are to
si = 0, and si =

n−1
2
. The condition Ui(0) < Ui(−1) leads to a condition parallel to (30):

vm ≥
(n− 1)

¡
n−3
n−3
2

¢
2n−2

v(2)m. (31)

Consider now Ui

¡
n−1
2

¢
. If vm demands n−1

2
votes, vi can expect to receive

n− 3
3

votes. The

minority wins unless vM receives
n− 1
2

votes. If vm sells his vote, vi receives
n− 1
2

votes

with probability 1/2 (and wins), and
n− 3
2

votes with probability 1/2 (and loses). Hence:

Ui

µ
n− 1
2

¶
= q0m[(1− P (xM =

n− 1
2
|sm =

n− 1
2

, si =
n− 1
2
))vi −

n− 3
3

p0] +

+(1− q0m)(
1

2
vi −

n− 2
2

p0)

Call P (xM = n−1
2
|sm = n−1

2
, si =

n−1
2
) =

Pn−3
z=n−1

2

Pn−3−z
y=0

¡
n−3

n−3−z−y,z,y
¢ ¡

1
3

¢n−3 ≡ δ. For all

vi ∈ m, vi 6= vm, the deviation to buying n−1
2
is not desirable if:

vm ≥
n(3− 6δ) + 3 + 6δ

2n+ 6
v(2)m.

This constraint is not binding if n = 5 (when the ratio equals 24
23

> 1) and when n = 7 (when

the ratio equals 1), and it is less stringent than (31) for all n ≥ 9.
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We conclude that the equilibrium exists if vM/vm ≥ (n+ 1)/(n− 1), and

vm ≥
(n− 1)

¡
n−3
n−3
2

¢
2n−2

Max[v(2)M , v(2)m],

as stated in the lemma.¤

Proof of Lemma A5. In the candidate equilibrium:

UM(−1) =
p0

2

UM

µ
n− 1
2

¶
=

vM
2
− n− 2

2
p0

Indifference between the two actions requires:

p0 =
vM
n− 1

By expected market balance, if q0m = 1, then:

q0
M
=

n− 1
n+ 1

.

To verify that this is indeed an equilibrium, we need to rule out profitable deviations.

(i) Consider first voter vM . Given sm =
n−1
2
, UM(sM) < UM(

n−1
2
) for all sM > 0 6= n−1

2
,

and UM(0) < UM(−1). Hence no deviation dominates randomizing over selling or demanding
n−1
2
.

(ii) Consider voter vm. Call P (k) the probability of a minority victory when vm demands

k votes, for k < n−1
2
. Then:

Um(−1) = q0
M
(
1

2
p0)

Um

µ
n− 1
2

¶
= q0

M
(
vm
2
− n− 2

2
p0) + (1− q0

M
)(vm −

n− 1
2

p)

Um(k) = q0
M
(−kp0) + (1− q0

M
)(P (k)vm − kp0)

where

P (k|n,m) =
Pk

i=n+1
2
−m
¡
n−m
i

¢¡
m−1
k−i
¢¡

n−1
k

¢
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Note that P (k) = 0 if k < n+1
2
− m. Moreover, with n fixed, P (k) is increasing in m for

k ∈
£
n+1
2
−m, n−3

2

¤
42 Thus if Um

¡
n−1
2

¢
> Um(k) when m =M − 1, then Um

¡
n−1
2

¢
> Um(k)

for all m < M . Suppose then m =M − 1. In this case:

P (k) = 1−
¡
m−1
k

¢¡
n−1
k

¢
and, for 0 ≤ k ≤ n−5

2
:

U(k + 1)− U(k) = −p+ (1− q0
M
)(P (k + 1)− P (k))vm

= −p+
¡
m−1
k

¢¡
n−1
k

¢ n−m

n− 1− k
vm

The difference is decreasing in k: if one defines h(k) = (m−1k )
(n−1k )

n−m
n−1−k ,

h(k − 1)
h(k)

=
n− 1− k

m− k
> 1

It follows that Um

¡
n−1
2

¢
≥ Um (k) for all k ∈ [0, n−32 ] if Um

¡
n−1
2

¢
≥ Um (0). But note that

Um (−1) ≥ Um (0) = 0. Hence sm = −1 is the only possibly profitable deviation for vm.
Um

¡
n−1
2

¢
≥ Um (−1) yields the condition: vM/vm ≤ (n+ 3)/(n+ 1).

(iii) Consider now vi ∈ M , vi 6= vM . The incentives are identical to (iv) in the proof of

Lemma A4: with vm demanding n−1
2
with probability 1, the only possibly profitable deviation

for vi ∈M are either si = 0 or si = n−1
2
. For all vi ∈M , vi ≤ v(2)M , Ui(−1) ≥ Ui(0) if:

vm ≥
(n− 1)

¡
n−3
n−3
2

¢
2n−2

v(2)M , (32)

and Ui(−1) ≥ Ui(
n−1
2
) if:

vm ≥
n(3− 6δ) + 3 + 6δ

2n+ 6
v(2)M .

where δ ≡ P (xm = n−1
2
|sM = n−1

2
, si =

n−1
2
) =.

Pn−3
z=n−1

2

Pn−3−z
y=0

¡
n−3

n−3−z−y,z,y
¢ ¡

1
3

¢n−3
. This

latter condition is not binding for n = {5, 7} and is less stringent than (32) for all n ≥ 9.
42See columbia.edu/~st2511/demundone/theorem3_supp.pdf.
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Thus (32) is sufficient ot guarantee that no vi ∈M , vi 6= vM has an incentive to deviate.

(iv) Finally, consider vi ∈ m, vi 6= vm. The incentives are identical to (iii) in the proof of

Lemma A4: with vm demanding n−1
2
with probability 1, the only possibly profitable deviation

for vi ∈ m is to stay out of the market. For all vi ∈ m, vi ≤ v(2)m, Ui(−1) ≥ Ui(0) if:

vM ≥
(n− 1)

¡
n−3
n−3
2

¢
2n−2

v(2)m.

We conclude that the equilibrium exists if vM/vm ≤ (n+ 3)/(n+ 1), and

vM ≥
(n− 1)

¡
n−3
n−3
2

¢
2n−2

Max[v(2)M , v(2)m],

as stated in the lemma.¤

Proof of Lemma A6. In the candidate equilibrium:

Um(−1) = q0
M
(
1

2
p0)

Um

µ
n− 1
2

¶
= q0

M
(
vm
2
− n− 2

2
p0) + (1− q0

M
)(vm −

n− 1
2

p0)

and

UM(−1) = q0m(
1

2
p0) + (1− q0m)(vM)

UM

µ
n− 1
2

¶
= q0m(

vM
2
− n− 2

2
p0) + (1− q0m)(vM −

n− 1
2

p0)

The two equivalence conditions yield:

p0 =

µ
2− q0

M

n− 1

¶
vm

p0 =

µ
q0m

n− 1

¶
vM

This system has a solution if and only if:

n+ 3

n+ 1
≤ vM

vm
≤ n+ 1

n− 1
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Given the expected market clearing constraint q0
M
+ q0m =

2n
n+1
, we obtain:

q0
M

= 2
nx− n− 1
(n+ 1)(x− 1)

q0m =
2

(n+ 1)(x− 1)

with x = v̄M
v̄m
.

Consider now the scope for deviations.

(i) Consider first voter vM . As in the proof of Lemma A5, UM(sM) < UM(
n−1
2
) for all

sM > 0 6= n−1
2
, and UM(0) < UM(−1). Hence no deviation dominates randomizing over

sM = −1 and sM = n−1
2
.

(ii) Consider voter vm. Again, exactly as in the proof of Lemma A5, the only two possible

best responses are sm = −1 and sm =
n−1
2
. Hence no profitable deviation exists when vm

randomizes over the two actions.

(iii) Consider now vi ∈ M , vi 6= vM . We have established above that if sM = n−1
2
and

sm =
n−1
2
, vi’s best response can put positive probability on only two actions, either si = −1

or si = 0. If sM = n−1
2
and sm = −1, vi’s best response is si = −1. If sM = −1 and sm = −1,

vi’s best response is either si = −1 or si = 0, which in this case are equivalent. Finally, if
sM = −1 and sm =

n−1
2
, vi’s best response can put positive probability on only two actions,

either si = −1 or si = n−1
2
. It follows that all demands si ∈ [1, n−32 ] are strictly dominated.

Only si = 0 and si = n−1
2
are possible alternatives to si = −1: no profitable deviation exists

if Ui(−1) ≥ Ui(0), and Ui(−1) ≥ Ui(
n−1
2
).

We have:

Ui (−1) = q0
M
q0m(p

0 +
1

2
vi) + q0

M
(1− q0m)(vi +

1

2
p0) + (1− q0

M
)q0m

1

2
p0 + (1− q0

M
)(1− q0m)vi;

Ui (0) = q0
M
q0m

Ã
1 +

¡
n−3

(n−3)/2
¢
(1/2)n−3

2
vi

!
+ q0

M
(1− q0m)vi + (1− q0

M
)(1− q0m)vi,
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where

Ã
1 +

¡
n−3

(n−3)/2
¢
(1/2)n−3

2

!
= P (xM = n−1

2
|sm = n−1

2
, si = 0), and:

U

µ
n− 1
2

¶
= q0m

∙
q0
M

µ
(1− δ)vi −

n− 3
3

p0
¶
+ (1− q0

M
)

µ
vi
2
− n− 2

2
p0
¶¸
+

+(1− q0m)

∙
vi −

µ
q0
M
· n− 2
2

+ (1− q0
M
) · n− 1

2

¶
p0
¸
.

Hence, for all vi ∈M , vi ≤ v(2)M , Ui(−1) ≥ Ui(0) if:

vM ≥
¡
n−3
n−3
2

¢
(n− 1)

2n−2n

2(nx− n− 1)
(x− 1) v(2)M . (33)

and Ui(−1) ≥ Ui(
n−1
2
) if:

vM ≥
3(n2 − 1)(x− 1)[(1 + n)(1− x− 4δ) + 4δnx)]

15 + 11n− 7n2 − 3n3 − 6x− 18nx+ 10n2x+ 6n3x+ 3x2 + 3nx2 − 3n2x2 − 3n3x2v(2)M .

(34)

where x ≡ vM
vm
. For n = 5, 7, the right-hand side of (34) is above 1 for any x ∈ [n+ 3

n+ 1
,
n+ 1

n− 1]
and therefore the constraint is not binding. For n ≥ 9, (34) is less stringent than (33).43

Hence (33) is sufficient to guarantee that all vi ∈M , vi ≤ v(2)M , have no profitable deviation.

By dividing both sides of (33) by x, we obtain the condition in the lemma.

(iii) Finally, consider vi ∈ m, vi 6= vm. Exactly as described in point (iii) above, the

analysis so far has established that only si = 0 and si =
n−1
2
are possible alternatives to

si = −1: no profitable deviation exists if Ui(−1) ≥ Ui(0), and Ui(−1) ≥ Ui(
n−1
2
).

We have:

Ui(−1) = q0
M
q0m(p

0 +
1

2
vi) + q0

M
(1− q0m)

1

2
p0 + (1− q0

M
)q0m(vi +

1

2
p0);

Ui(0) = q0
M
q0m(

1 +
¡

n−3
(n−3)/2

¢
(1/2)n−3

2
vi) + (1− q0

M
)q0mvi,

43The details are available from the authors.
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and:

Ui

µ
n− 1
2

¶
= q0

M
q0m

∙
(1− δ)vi −

n− 3
3

p0
¸
+ q0

M
(1− q0m)(

1

2
vi −

n− 2
2

p0) +

+(1− q0
M
)q0m(vi −

n− 2
2

p0) + (1− q0
M
)(1− q0m)(vi −

n− 1
2

p0).

Thus, for all vi ∈ m, vi ≤ v(2)m, Ui(−1) ≥ Ui(0) if:

vm ≥

¡
n−3
n−3
2

¢
(n− 1)

2n−2n

2(nx− n− 1)
(x− 1)x v(2)m (35)

and Ui(−1) ≥ Ui(
n−1
2
) if:

vm ≥
3(n2 − 1)(x− 1)[(1 + n)(1 + 3x+ x2 − 4δ) + 4δnx)]

x(15 + 11n− 7n2 − 3n3 − 6x− 18nx+ 10n2x+ 6n3x+ 3x2 + 3nx2 − 3n2x2 − 3n3x2)v(2)m.
(36)

As under point (iii) above, it is possible to show that (35) is a more stringent condition

than (36).44 It is then the sufficient condition, guaranteeing that no profitable deviation

exists for all vi ∈ m, vi 6= vm. ¤

We now show that when preferences are private information, the strategies and price

identified above constitute a fully revealing ex ante equilibrium.

7.5.2 Fully revealing equilibrium.

We proceed as for Theorem 1. We conjecture an equilibrium identical to the full information

equilibrium characterized above and show that given others’ strategies, the equilibrium price

and the knowledge that the market is in a fully revealing equilibrium, each voter’s best

response when preferences are private information is uniquely identified and equals the voter’s

best response with full information. Thus the equilibrium exists when preferences are private

information and is indeed fully revealing.

(i) Consider first the perspective of voter vM , in equilibrium. When the equilibrium

exists, expected market balance requires vM to demand a positive number of votes with

positive probability. It then follows that the other voter who demands a positive number

of votes with positive probability must belong to the minority. If not, vM ’s best response

44See columbia.edu/~st2511/demundone/theorem3_supp.pdf
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would be to sell, violating expected market equilibrium. Thus vM also knows that M − 1
majority members and m − 1 minority members are offering their vote for sale; he cannot
identify them individually, but that is irrelevant. Given that the other net demand for votes

comes from a minority voter, vM ’s best response is identified uniquely and is identical to his

best response under full information.

(ii) Consider then the perspective of voter vm. Suppose first that vM/vm ≥ n+1
n−1 , and

hence sM = n−1
2
with probability 1. Expected market balance requires vm to demand a

positive number of votes with positive probability. But that can only be a best response if

the voter who demands n−1
2
votes belongs to the majority. Again, vm also knows thatM −1

majority members and m − 1 minority members are offering their vote for sale; he cannot
identify them individually, but that is irrelevant.

Suppose now vM/vm ∈ (n+3n+1
, n+1
n−1). By market balance, the minimal demand on which

vm must put positive probability is n−3
2
(because n−3

2
=
¡
n−1
n+1

¢ ¡
n−1
2

¢
− (1−.n−1

n+1
)). Suppose

that the voter demanding n−1
2
votes with probability q0

M
were in fact a member of group m.

Then, given that all others offer to sell:

Um,m(−1) = q0
M
(vm +

p0

2
)

Um,m(
n− 3
2
) = q0

M
(vm −

n− 3
2

p0) + (1− q0
M
)(P (

n− 3
2
)vm −

n− 3
2

p0)

≤ vm −
n− 3
2

p0

where P (n−3
2
) < 1 is, as earlier, the probability that the minority wins when vm is the

only buyer in the market and purchases n−3
2
votes. The index m,m indicates vm’s expected

utility if the voter demanding n−1
2
votes with probability q0

M
is a member of group m. Given

p0 = vm(2−q0M)/(n−1), it is easy to verify that Um,m(−1) > Um,m(
n−3
2
) for all q0

M
∈ (n−1

n+1
, 1)

if Um,m(−1) > Um,m(
n−3
2
) at q0

M
= n−1

n+1
, a condition satisfied for all n ≥ 5. Thus, any

strategy for vm that satisfies expected market balance cannot be his best response, if the

voter demanding n−1
2
votes with probability q0

M
belongs to group m. Hence such a voter

must belong to groupM . Of all remaining voters offering their votes for sale,M −1 belongs
to the majority, and m− 1 to the minority. They cannot be distinguished but that has no
impact on vm’s unique best response.

Finally, suppose either vM/vm ≤ n+3
n+1
. Expected market balance requires sm = n−1

2

with probability 1. But then the other voter demanding n−1
2
votes with positive probability
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cannot belong to the minority (because in a fully revealing equilibrium, if sm = n−1
2
with

probability 1, all other minority voters would prefer to sell). Hence again the other voter

with positive demand for votes must be a majority voter. All remaining voters are sellers;

identifying the group each of them belongs to is not possible but has no impact on vm’s

unique best response.

(iii) Consider now the perspective of all voters who in the full information equilibrium

offer their vote for sale with probability 1: vi ∈ M , vi 6= vM , or vi ∈ m, vi 6= vm. By the

arguments above, each of them knows that in a fully revealing equilibrium the two voters with

positive expected demand must belong to the two different parties. Which one belongs to

the majority and which one to the minority cannot be distinguished, but is irrelevant: since

in the full information case vi’s best response is si = −1 with probability 1 whether vi ∈M ,

or vi ∈ m, it follows that identifying which of the two voters with positive expected demand

belongs to which group is irrelevant to vi’s best response. Equally irrelevant is identifying

which of the sellers belongs to which group. Although the direction of preferences associated

with each individual voter cannot be identified, vi’s best response is unique and identical to

his best response with full information.

We can conclude that the equilibrium strategies and price identified by Lemmas A4, A5,

and A6 are indeed a fully revealing ex ante equilibrium with private information.¤
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