
NBER WORKING PAPER SERIES

DYNAMIC PROGRAMMING WITH HERMITE APPROXIMATION

Yongyang Cai
Kenneth L. Judd

Working Paper 18540
http://www.nber.org/papers/w18540

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2012

Cai and Judd gratefully acknowledge NSF support (SES-0951576). The views expressed herein are
those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2012 by Yongyang Cai and Kenneth L. Judd. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.

Dynamic Programming with Hermite Approximation
Yongyang Cai and Kenneth L. Judd
NBER Working Paper No. 18540
November 2012
JEL No. C61,C63

ABSTRACT

Numerical dynamic programming algorithms typically use Lagrange data to approximate value functions
over continuous states. Hermite data is easily obtained from solving the Bellman equation and can
be used to approximate value functions. We illustrate this method with one-, three-, and six-dimensional
examples. We find that value function iteration with Hermite approximation improves accuracy by
one to three digits using little extra computing time. Moreover, Hermite approximation is significantly
faster than Lagrange for the same accuracy, and this advantage increases with dimension.

Yongyang Cai
Hoover Institution
Stanford University
Stanford, CA 94305
yycai@stanford.edu

Kenneth L. Judd
Hoover Institution
Stanford University
Stanford, CA 94305-6010
and NBER
kennethjudd@mac.com

1. Introduction

Dynamic optimization problems in economics are numerically challenging
due to nonlinearities and/or dimensionality. Dynamic programming (DP) is
the standard approach for dynamic optimization problems. In many eco-
nomics problems, the state and control variables are continuous, and the-
ory implies that the value function is continuously differentiable. The value
function must be approximated numerically, but imperfectly since comput-
ers cannot represent arbitrary continuous functions. DP problems are often
solved by value function iteration, where the period t value function is com-
puted from the period t+ 1 value function, and the value function is known
at the terminal time T .

DP algorithms typically use value function iteration, where each step gen-
erates Lagrange data to approximate a value function, where the Lagrange
data comes from solving the optimization problem in a Bellman equation at
many points in the state space. For the purposes of this paper, we call that
approach L-VFI for Lagrange value function iteration. However, the Enve-
lope Theorem tells us that the output of each such optimization problem
can include the gradient of the value function at each point at essentially no
cost. This paper proposes using both the Lagrange and slope information
in Hermite approximation methods for constructing value functions in value
function iteration; we call this approach H-VFI, Hermite value function it-
eration. First, we show how to write an optimization problem so that the
gradient of the value function is the value of the shadow prices of some con-
straints. Second, we apply Hermite value function iteration to some common
economics problems. In our one-dimensional examples, H-VFI improves ac-
curacy by almost the same as if we doubled the number of points used in
L-VFI. This corresponds to the simple intuition that knowing the value and
slope of a function at a point is equivalent to knowing the value of the func-
tion at two points. In our three- and six-dimensional examples, we find
that Hermite approximation often achieves the same accuracy as Lagrange
approximation but at significantly less cost.

This paper’s examples approximate the value function with Chebyshev
polynomials. For one-dimensional problems, Hermite approximation can also
be used in combination with spline methods, such as the Schumaker shape-
preserving spline method (Schumaker, 1983) or a rational function spline
method (Cai and Judd, 2012a). For multi-dimensional problems, we use
complete Chebyshev polynomials to fit our Hermite data, but there are many

2

alternatives such as multivariate splines and radial basis functions. The key
idea behind H-VFI does not depend on the specific functional form used for
approximating the value function.

The paper is organized as follows. Section 2 outlines the basic numerical
L-VFI algorithm with Chebyshev polynomials. Section 3 presents the H-
VFI algorithm. Section 4 gives some numerical examples where we compare
the efficiency of Lagrange and Hermite value function iteration. Section 5
concludes.

2. Review of Numerical Methods for DP

Numerical solutions to a DP problem are based on the Bellman equation
(Bellman, 1957):

Vt(x, θ) = max
a∈D(x,θ,t)

ut(x, a) + βE
{
Vt+1(x+, θ+) | x, θ, a

}
, (1)

s.t. x+ = gt(x, θ, a, ω),

θ+ = ht(θ, ε),

where x is the continuous state vector, θ is the discrete state vector, Vt(x, θ)
is the value function at time t ≤ T where VT (x, θ) is given, a is the vector
of action variables and is constrained by a ∈ D(x, θ, t), x+ is the next-stage
continuous state vector with transition function gt at time t, θ+ is the next-
stage discrete state vector with transition function ht at time t, ω and ε are
two vectors of random variables, ut(x, a) is the utility function at time t, β
is the discount factor, and E{·} is the expectation operator.

In the simpler case where the discrete state θ does not exist and the
continuous state vector x is not random, the Bellman equation (1) becomes

Vt(x) = max
a∈D(x,t)

ut(x, a) + βVt+1(x+), (2)

s.t. x+ = gt(x, a).

If state and control variables in a DP problem are continuous, then the
value function must be approximated in some computationally tractable
manner. It is common to approximate value functions with a finitely param-
eterized collection of functions; that is, we use some functional form V̂ (x;b),
where b is a vector of parameters, and approximate a value function, V (x),
with V̂ (x;b) for some parameter value b. For example, V̂ could be a linear

3

combination of polynomials where b would be the weights on polynomials.
After the functional form is fixed, we focus on finding the vector of parame-
ters, b, such that V̂ (x;b) approximately satisfies the Bellman equation. The
following algorithm gives the traditional value function iteration to solve the
deterministic DP problem (2) .

Algorithm 1. Lagrange Value Function Iteration (L-VFI)

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ Nt} ⊂
Rd, for every t < T , and choose a functional form for V̂ (x;b). Let
V̂ (x;bT) ≡ VT (x). Then for t = T − 1, T − 2, . . . , 0, iterate through
steps 1 and 2.

Step 1. Maximization Step. Compute

vi = max
a∈D(xi,t)

ut(x
i, a) + βV̂ (x+;bt+1)

s.t. x+ = gt(x
i, a),

for each xi ∈ Xt, 1 ≤ i ≤ Nt.

Step 2. Fitting Step. Using an appropriate approximation method, compute
the bt such that V̂ (x;bt) approximates (xi, vi) data.

Algorithm 1 shows that there are two main components in value function
iteration for deterministic DP problems: optimization, and approximation.
In this paper we focus on approximation methods. Detailed discussion of
numerical DP can be found in Cai (2009), Judd (1998) and Rust (2008).

An approximation scheme consists of two parts: basis functions and ap-
proximation nodes. Approximation nodes can be chosen as uniformly spaced
nodes, Chebyshev nodes, or some other specified nodes. From the viewpoint
of basis functions, approximation methods can be classified as either spec-
tral methods or finite element methods. A spectral method uses globally
nonzero basis functions φj(x) such that V̂ (x;b) =

∑n
j=0 bjφj(x) is a degree-n

approximation. Examples of spectral methods include ordinary polynomial
approximation, Chebyshev polynomial approximation, and shape-preserving
Chebyshev polynomial approximation (Cai and Judd, 2012b). In contrast,
a finite element method uses locally basis functions φj(x) that are nonzero
over sub-domains of the approximation domain. Examples of finite element
methods include piecewise linear interpolation, cubic splines, and B-splines.
See Cai (2009), Cai and Judd (2010), and Judd (1998) for more details.

4

2.1. Chebyshev Polynomial Approximation
Chebyshev polynomials on [−1, 1] are defined as Tj(x) = cos(j cos−1(x)),

while general Chebyshev polynomials on [xmin, xmax] are defined as Tj((2x−
xmin−xmax)/(xmax−xmin)) for j = 0, 1, 2, These polynomials are orthog-
onal under the weighted inner product: 〈f, g〉 =

´ xmax

xmin
f(x)g(x)w(x)dx with

the weighting function w(x) =
(
1− ((2x− xmin − xmax)/(xmax − xmin))2)−1/2

.
A degree n Chebyshev polynomial approximation for V (x) on [xmin, xmax] is

V̂ (x;b) =
n∑
j=0

bjTj
(

2x− xmin − xmax

xmax − xmin

)
, (3)

where b = {bj} are the Chebyshev coefficients.
If we choose the Chebyshev nodes on [xmin, xmax]: xi = (zi + 1)(xmax −

xmin)/2 + xmin with zi = − cos ((2i− 1)π/(2m)) for i = 1, . . . ,m, and La-
grange data {(xi, vi) : i = 1, . . . ,m} are given (where vi = V (xi)), then the
coefficients bj in (3) can be easily computed by the following formula,

b0 =
1

m

m∑
i=1

vi,

bj =
2

m

m∑
i=1

viTj(zi), j = 1, . . . , n. (4)

The method is called the Chebyshev regression algorithm in Judd (1998).
When the number of Chebyshev nodes is equal to the number of Cheby-

shev coefficients, i.e., m = n + 1, then the approximation (3) with the coef-
ficients given by (4) becomes Chebyshev polynomial interpolation (which is
a Lagrange interpolation), as V̂ (xi;b) = vi, for i = 1, . . . ,m.

It is often more stable to use the expanded Chebyshev polynomial inter-
polation (Cai, 2009), as the above standard Chebyshev polynomial interpo-
lation gives poor approximation in the neighborhood of end points. That is,
we use the following formula to approximate V (x),

V̂ (x;b) =
n∑
j=0

bjTj
(

2x− x̃min − x̃max

x̃max − x̃min

)
, (5)

where x̃min = xmin−δ and x̃max = xmax+δ with δ = (z1+1)(xmin−xmax)/(2z1).
Moreover, if we choose the expanded Chebyshev nodes on [xmin, xmax]: xi =

5

(zi + 1)(x̃max− x̃min)/2 + x̃min, then the coefficients bj can also be calculated
easily by the expanded Chebyshev regression algorithm (Cai, 2009), which is
similar to (4).

2.2. Multidimensional Complete Chebyshev Polynomial Approximation
In a d-dimensional approximation problem, let the domain of the value

function be {
x = (x1, . . . , xd) : xmin

j ≤ xj ≤ xmax
j , j = 1, . . . d

}
,

for some real numbers xmin
j and xmax

j with xmax
j > xmin

j for j = 1, . . . , d.
Let xmin = (xmin

1 , . . . , xmin
d) and xmax = (xmax

1 , . . . , xmax
d). Then we denote

[xmin, xmax] as the domain. Let α = (α1, . . . , αd) be a vector of nonnegative in-
tegers. Let Tα(z) denote the product Tα1(z1) · · · Tαd

(zd) for z = (z1, . . . , zd) ∈
[−1, 1]d. Let

Z(x) =

(
2x1 − xmin

1 − xmax
1

xmax
1 − xmin

1

, . . . ,
2xd − xmin

d − xmax
d

xmax
d − xmin

d

)
for any x = (x1, . . . , xd) ∈ [xmin, xmax].

Using these notations, the degree-n complete Chebyshev approximation
for V (x) is

V̂n(x;b) =
∑

0≤|α|≤n

bαTα (Z(x)) , (6)

where |α| =
∑d

j=1 αj for the nonnegative integer vector α = (α1, . . . , αd). So
the number of terms with 0 ≤ |α| =

∑d
j=1 αi ≤ n is

(
n+d
d

)
for the degree-n

complete Chebyshev approximation in Rd.

3. Hermite Value Function Iteration Algorithm

L-VFI is the traditional approach to value function iteration. In this
section, we show how to generate more information in each Maximization
Step that will allow us to construct better value function approximations.
More specifically, we will first show that each maximization problem in the
Maximization Step can produce the gradient of the value function at an
approximation node as well as the value. Then we show how to use that
information to produce better value function approximations.

6

3.1. H-VFI
Traditional approximation methods in DP problems use only Lagrange

data. The Maximization Step in L-VFI is

vi = Vt(x
i) = max

a∈D(xi,t)
ut(x

i, a) + βVt+1(x+),

s.t. x+ = gt(x
i, a),

for each pre-specified approximation node xi, i = 1, . . . , N . Then it uses the
Lagrange data set {(xi, vi) : i = 1, . . . , N} in the Fitting Step to construct
an approximation V̂t(x) of the value function.

However, the Maximization Step of L-VFI can give not only the value
function at an approximation node, but also its gradients, and do so at almost
no cost, for DP problems with continuous and derivable value functions. This
is accomplished by invoking the Envelope Theorem, which we next state.

Theorem 1 (Envelope Theorem). Let

H(x) = max
a

f(x, a) (7)

s.t. g(x, a) = 0,

h(x, a) ≥ 0,

where x ∈ Rd. Suppose that a∗(x) is the optimizer of (7), and that λ∗(x)
is the vector of shadow prices for the equality constraints g(x, a) = 0,
and µ∗(x) is the vector of shadow prices of the inequality constraints
h(x, a) = 0,. Then

∂H(x)

∂xj
=

∂f

∂xj
(x, a∗(x)) + λ∗(x)>

∂g

∂xj
(x, a∗(x)) + µ∗(x)>

∂h

∂xj
(x, a∗(x)),

(8)
for j = 1, . . . , d.

Formula (8) expresses the value of ∂H(x)/∂xj in terms of the shadow prices,
objective gradient, constraints gradients at the optimum. The key simplifying
feature of (8) is the absence of any term expressing how the choice of a is
affected by a local change in state.

We could use Formula (8) to generate Hermite data for a value function,
but there is a better way to compute those gradients. Corollary 1 shows
how to rewrite the optimization problem so that solver outputs the value of
∂H(x)/∂xj.

7

Corollary 1. The optimization problem,

H(x) = max
a

f(x, a) (9)

s.t. g(x, a) = 0,

h(x, a) ≥ 0,

is equivalent to

H(x) = max
a,y

f(y, a) (10)

s.t. g(y, a) = 0,

h(y, a) ≥ 0,

xj − yj = 0, j = 1, . . . , d,

implying that
∂H(x)

∂xj
= τ ∗j (x),

where τ ∗j (x) is the shadow price of the trivial constraint xj − yj = 0,
for j = 1, . . . , d.

Corollary 1 takes the optimization problem (9), adds variables yj, adds con-
straints xj − yj = 0, and replaces x by y in the objective function and all
other constraints. The Envelope Theorem tells us that ∂H(x)/∂xj is the
shadow price of the trivial constraint xj − yj = 0, which can be included
in the output of a solver. This frees us from computing the more complex
formula (8) in the Envelope Theorem. The extra cost of the reformulated
problem is trivial for any modern solver.

Using Corollary 1, Algorithm 2 shows how to efficiently use Hermite ap-
proximation in the numerical DP algorithms.

Algorithm 2. Hermite Value Function Iteration (H-VFI)

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ Nt} ⊂
Rd, for every t < T , and choose a functional form for V̂ (x;b). Let
V̂ (x;bT) ≡ VT (x). Then for t = T − 1, T − 2, . . . , 0, iterate through
steps 1 and 2.

8

Step 1. Maximization Step. For each xi ∈ Xt, 1 ≤ i ≤ Nt, compute

vi = max
a∈D(y,t),y

ut(y, a) + βV̂ (x+;bt+1),

s.t. x+ = gt(y, a),

xij − yj = 0, , j = 1, . . . , d,

and
sij = τ ∗j (xi),

where τ ∗j (xi) is the shadow price of the constraint xij − yj = 0.

Step 2. Hermite Fitting Step. Using an appropriate approximation method,
compute the bt such that V̂ (x;bt) approximates (xi, vi, s

i) data.

We can easily extend the above algorithm to solve the general stochastic DP
model (1).

3.2. Hermite Approximation Approaches
Many approximation methods can use Hermite information. Our ex-

amples will have smooth value functions, as is often the case in economics
problems. In this section we describe polynomial approximation methods
that will produce smooth approximations using Hermite information. We
next introduce Chebyshev-Hermite interpolation for one dimensional cases,
and Hermite approximation with complete Chebyshev polynomials for multi-
dimensional problems.

3.2.1. Chebyshev-Hermite Interpolation
Chebyshev interpolation is often used in L-VFI, and can also be used for

H-VFI. If we have Hermite data {(xi, vi, si) : i = 1, . . . ,m} on [xmin, xmax],
where xi = (zi + 1)(xmax− xmin)/2 + xmin (with zi = − cos ((2i− 1)π/(2m)))
are the Chebyshev nodes, vi = V (xi) and si = V ′(xi), then the following
system of 2m linear equations can produce coefficients for degree 2m − 1
Chebyshev polynomial interpolation on the Hermite data:

∑2m−1
j=0 bjTj(zi) = vi, i = 1, . . . ,m,

2
xmax−xmin

∑2m−1
j=1 bjT ′j (zi) = si, i = 1, . . . ,m,

(11)

where Tj(z) are Chebyshev basis polynomials. After the coefficients are com-
puted from the above linear system, we can use the polynomial (5) to ap-
proximate V (x) by choosing the degree n = 2m− 1.

9

3.2.2. Multidimensional Hermite Approximation with Complete Chebyshev
Polynomials

We can generalize the idea of combining Chebyshev polynomials and Her-
mite data to higher dimensions, but multidimensional interpolation becomes
difficult because the most natural approaches do not have equality between
the number of unknown coefficients and the number of items of informa-
tion. Therefore, we use a least squares approach to fit complete Chebyshev
polynomials to Hermite data.

For simplicity, we assume that the approximation range is [−1, 1]d in
a d-dimensional approximation problem. It can be easily extended to any
range [xmin, xmax] ⊂ Rd. Assume that we have Hermite data {(xi, vi, si) : i =
1, . . . , N} on [−1, 1]d, where xi ∈ [−1, 1]d are d-dimensional approximation
nodes, vi = V (xi), and si = (si1, . . . , s

i
d) are the gradient of V at xi, i.e.,

sij = ∂
∂xj
V (xi). The following least square model can produce coefficients for

degree n complete Chebyshev polynomial approximation (6) on the Hermite
data:

min
b

N∑
i=1

vi − ∑
0≤|α|≤n

bαTα
(
xi
)2

+
N∑
i=1

d∑
j=1

sij − ∑
0≤|α|≤n

bα
∂

∂xj
Tα
(
xi
)2 .

(12)
Since this is a simple least squares problem without constraints, this is easy
and fast to be solved.1 When the approximation nodes are tensor grids with
m nodes in each dimension, there are N = md approximation nodes {xi},
so there are (d + 1)md information data {vi, si} used for the computing the
coefficients of degree n complete Chebyshev polynomial approximation. In
this case, it is often good to choose the degree n = 2m−1 complete Chebyshev
polynomial approximation for the Hermite approximation, as the number of
coefficients is

(
2m−1+d

d

)
, less than (d+ 1)md, for any d ≥ 2 and m > 1.2

3.3. Comparison with Previous Work
The key idea in H-VFI is generating and using gradient information. Some

of the ideas we outlined above in this paper have been discussed in the lit-

1The objective in (12) is an unweighted sum of squared errors. Weighted versions of
the least squares may do better but we do not pursue that possibility in this paper.

2This can be proved recursively.

10

erature, but this is the first complete discussion of the issues. Philbrick and
Kitanidis (2001) described the generation and use of Hermite information
but did not invoke the Envelope Theorem. Instead they used a formula that
sometimes required computing how the optimal choice depends locally on
the state, a much more costly and complex procedure. They also used ten-
sor products of splines for the approximation, whereas the multidimensional
Hermite approximation approach described in Section 3.2 is more flexible.
They report at most three-digit accuracy for their examples of dimension
four or less, but less than two digits for higher dimensions. Our examples
presented below will achieve higher accuracy. Wang and Judd (2000) com-
bined Hermite approximation with shape preservation, but used a very ineffi-
cient approach to multidimensional approximation. Another related method
is the shape-preserving rational function spline Hermite interpolation (Cai
and Judd, 2012a), but that was only for one-dimensional problems. More
important, none of those papers documented the actual performance of H-
VFI relative to L-VFI in economically relevant problems. We now turn to
how H-VFI performs on substantive economic problems.

4. Application

This section applies H-VFI algorithm to solve multi-stage portfolio opti-
mization problem using Hermite interpolation, and to solve multi-dimensional
optimal growth problems using Hermite approximation with complete Cheby-
shev polynomials.

4.1. Multi-stage Portfolio Optimization
We next present a numerical example of H-VFI to solve multi-stage port-

folio optimization problems, and compare it with L-VFI. The dynamic portfo-
lio optimization problem assumes that there are d stocks and one bond avail-
able for investment over the stages t = 0, 1, . . . , T −1, and that the investor’s
objective is to maximize expected utility of wealth at stage T . For each pe-
riod, the bond has a risk-free return Rf = er where r is the interest rate, and
the stocks have a multivariate random return vector R = (R1, . . . , Rd)

>.
In each period t, the investor’s portfolio has market value wealth Wt; we

assume no transaction costs, implying that Wt can be used as the state vari-
able. In period t, the investor chooses a new portfolio St = (S1,t, . . . , Sd,t)

>

where Si,t is the market value stock i chosen by the investor in time t. The

11

value of wealth invested in the bond is Bt = Wt−e>St where e is the column
vector with its i-th element ei = 1 for all i. Thus, the wealth at time t+ 1 is

Wt+1 = RfBt +R>St,

for t = 0, 1, . . . , T − 1.
We want to find an optimal portfolio St at each time t such that the

expected terminal utility is maximized, i.e.,

V0(W0) = max
St,0≤t<T

E{u(WT)},

where u(W) = W 1−γ/(1− γ) for some constant γ > 0 and γ 6= 1. Moreover,
we assume that borrowing or shorting is not allowed in this example, i.e.,
Bt ≥ 0 and St ≥ 0 for all t.

The DP model of this multi-stage portfolio optimization problem is

Vt(W) = max
B,S≥0

E{Vt+1(RfB +R>S)}, (13)

s.t. W −B − e>S = 0,

for t = 0, 1, . . . , T − 1, where W is the state variable, and B and S are the
control variables, and the terminal value function is VT (W) = u(W).

4.1.1. True Solution
Since the terminal utility function is u(W) = W 1−γ/(1 − γ) , we know

that Vt(W) = αtW
1−γ, where

αt = E
{(
Rf

(
1− e>x∗

)
+R>x∗

)1−γ
}
αt+1,

for any t < T , where αT = 1/(1− γ), and x∗ is the optimal allocation ratios
of money invested in the stocks when the current-stage wealth is 1. This
tells us that the optimal solutions are B∗t =

(
1− e>x∗

)
Wt and S∗t = x∗Wt

for all time t and any wealth Wt. Moreover, x∗ can be easily obtained from
computing a single-period optimization problem with the terminal power
utility function at W0 = 1. Therefore, we will use this as the true solution
and then do our accuracy tests for H-VFI.

12

4.1.2. Bounded Normal Random Variable
In a dynamic portfolio optimization problem, a typical assumption about

the stocks is that they have log-normal returns. This means that the next-
stage wealth could be any number in (0,∞), and then makes it hard to
approximate the value function well, particularly when the value function
tends to −∞ when wealth goes to 0 and also tends to 0 when wealth goes
to infinity, like what we have when the terminal utility function is the power
utility with γ > 1. In this example, we assume that the stocks have a
bounded return vector having a distribution close to be log-normal.

We use the following function to transform a standard normal random
variable ς ∼ N (0, 1) to a bounded random variable Ψ:

Ψ =
1− e−κς

1 + e−κς
Υ, (14)

where Υ and κ are two parameters. We see that Ψ has zero mean, and it is
symmetric around the mean and bounded in (−Υ,+Υ). Once we choose a
number of Υ, we would like to choose a corresponding κ so that Ψ has a unit
variance. For example, if we set Υ = 4, then we will choose κ = 0.532708.
Thus, Ψ is close to ς, particularly in the range (−2, 2) if we choose Υ ≥ 4.
See Cai, Judd and Lontzek (2012c) for more details.

Therefore, in this example we assume that the stocks have a bounded
log-normal return R = (R1, . . . , Rd)

>, i.e.,

log(Rj) = µi +
1− e−κςj
1 + e−κςj

Υσj, (15)

where ςj is a standard normal random variable for j = 1, . . . , d, and the
correlation matrix of (ς1, . . . , ςd) is Σ.

4.1.3. Multivariate Numerical Integration
In the objective function of the Bellman equation (13), we need to com-

pute the expectation of Vt+1. When we assume that the stocks have a
bounded log-normal return vector R, this expectation can be computed by
product Gaussian-Hermite quadrature efficiently. From the formula (15), we
know that Vt+1(RfB +R>S) in the objective function of (13) can be rewrit-
ten as g(ς) for some function g where ς is the corresponding standard normal
random variable vector with a correlation matrix Σ.

13

Since Σ must be a positive semi-definite matrix from the covariance prop-
erty, we can do the Cholesky factorization, i.e., find a lower triangular matrix
L such that Σ = LL>. Therefore,

E
{
Vt+1(RfB +R>S)

}
= E{g(ς)}

=
(
(2π)ddet(Σ)

)−1/2
ˆ
Rd

g(x)e−x
>Σ−1x/2dx

=
(
(2π)ddet(L)2

)−1/2
ˆ
Rd

g
(√

2Lx
)
e−x

>x2d/2det(L)dx

.
= π−

d
2

N∑
i1=1

· · ·
N∑
id=1

ωi1 · · ·ωidg

(
√

2L1,1xi1 ,

√
2(L2,1xi1 + L2,2xi2), · · · ,

√
2(

d∑
j=1

Ld,jxij)

)
,

where ωi and xi are the Gauss-Hermite quadrature weights and nodes over
(−∞,∞), Li,j is the (i, j)-element of L, and det(·) means the matrix deter-
minant operator.

4.1.4. Nonlinear Change of Variable
When the relative risk aversion coefficient γ in the power utility function is

bigger than 1, the value function is steep and has a large magnitude at nearly
0 and also is very flat at a large wealth. So it will be hard to approximate the
value function well on the state variableW ifW has a small lower bound and
a large upper bound. Thus, to approximate the value function accurately,
approximation nodes should be assigned in such a way that they are denser
when they are closer to the small lower bound, while they are sparser when
they are closer to the large upper bound.

To solve this problem, we will use w = log(W) as our state variable.
Experience shows that this approach helps construct accurate polynomial
approximations of the value function. If we want to solve the problem for
W ∈

(
W,W

)
, we approximate the value function with

V̂ (w;b) =
n∑
j=0

bjTj
(

2w − w − w
w − w

)
,

14

for any w ∈ (w,w), where w = log(W) and w = log(W), and Tj are the
Chebyshev basis polynomials. Moreover, the Chebyshev nodes are wi =
(zi + 1)(w − w)/2 + w with zi = − cos ((2i− 1)π/(2m)) for i = 1, . . . ,m,
so we can get the Chebyshev coefficients bj by using Chebyshev regression
algorithm or by solving the linear system (11) for Hermite interpolation.

Since shorting or borrowing is not allowed in our example, and the i-
th stock return is assumed to be a bounded log-normal random variable in(
eµi−Υσi , eµi+Υσi

)
, we can obtain the ranges [W t,W t] recursively as

W t+1 = min
j=1,...,d

{
eµj−Υσj

}
W t,

W t+1 = max
j=1,...,d

{
eµj+Υσj

}
W t,

with a given initial wealth bound [W 0, W 0]. We see that the ranges are
expanding exponentially across the time. However, the bounds of wt is

wt+1 = min
j=1,...,d

{µj −Υσj}+ wt,

wt+1 = max
j=1,...,d

{µj + Υσj}+ wt,

with w0 = log (W 0) and w0 = log
(
W 0

)
, so the ranges are expanding just

linearly.

4.1.5. Numerical Result
In this numerical example, we choose d = 3 stocks, and they have the

bounded log-normal return R = (R1, R2, R3) >, while the mean of log(R) is
µ = (0.04875, 0.04875, 0.04875)>, the standard deviation of log(R) is σ =
(0.15, 0.15, 0.15)> , and the correlation matrix of corresponding (ζ1, ζ2, ζ3) in
the formula (15) is

Σ =

 1 0.8 0.6
0.8 1 0.7
0.6 0.7 1

 .
The interest rate is r = 0.03, and the relative risk aversion coefficient is
γ = 2 for the terminal power utility function, and the initial wealth bound
is [W 0, W 0] = [0.9, 1.1]. We choose Υ = 4 and κ = 0.532708 in the formula
(15) so that log(Ri) is bounded in (−0.55125, 0.64875), i.e., Ri is bounded in
(0.57623, 1.91315), which is an appropriate range in reality.

The Envelope Theorem implies V ′t (W) = λ∗(W), where λ∗(W) is the
shadow price for the constraint W − B − e>S = 0, so we can get the slope

15

Table 1: Relative Errors and Running Times of L-VFI or H-VFI for Dynamic Portfolio
Optimization

m L-VFI error H-VFI error L-VFI time H-VFI time
5 0.8 0.00327 9 seconds 10 seconds
10 0.00328 1.3× 10−5 12 seconds 17 seconds
20 2.0× 10−6 33 seconds

information of the value functions and apply H-VFI without using a dummy
variable. The computational results of L-VFI or H-VFI are given by our
GAMS (McCarl, 2011) code, and the optimization solver in the Maximiza-
tion Step of DP is CONOPT. We use the Chebyshev polynomial interpola-
tion as the approximation method, and use the product Gaussian-Hermite
quadrature formula with 7 quadrature nodes in each dimension to compute
the expectation in the Bellman equation.

Table 1 lists the relative errors of optimal stock allocations and running
times3 of L-VFI or H-VFI, where the column “L-VFI error” lists the L∞
relative errors of optimal stock allocations over all stages and all stocks using
L-VFI, and the column “L-VFI time” lists the running times of L-VFI, for
different number of approximation nodes, m. Similarly, “H-VFI error” and
“H-VFI time” list the errors and times of H-VFI. Figure 1 also shows the
relative errors of optimal stock allocations for each stage using L-VFI or H-
VFI, where the errors are L∞ relative errors of optimal stock allocations over
all stocks at stage t. The points labeled with “Lagrange - 5” are the errors
of L-VFI with 5 approximation nodes, and “Hermite - 5” are for H-VFI with
the same 5 approximation nodes. Similarly, “Lagrange - 10” and “Hermite -
10” are for 10 approximation nodes, and “Lagrange - 20’ is for 20 nodes.

On the same m Chebyshev nodes, L-VFI uses degree m − 1 Chebyshev
polynomial interpolation on Lagrange data while the Chebyshev coefficients
are computed by the regression algorithm; H-VFI uses degree 2m−1 Cheby-
shev polynomial interpolation on Hermite data while the Chebyshev coeffi-
cients are computed by solving the linear system (11). From Table 1 and
Figure1, we see that H-VFI obtains higher accuracy than L-VFI using the
same number of approximation nodes, but only takes a bit more computa-
tional time which is caused by the almost double degree polynomial approxi-

3All the examples are run on a single core of a Mac laptop with a 2.5 GHz processor.

16

Figure 1: Errors of H-VFI or L-VFI for Dynamic Portfolio Optimization

0 0.5 1 1.5 2 2.5 3 3.5 4
−6

−5

−4

−3

−2

−1

0

stage

lo
g
1
0
 o

f
re

la
ti
v
e

 e
rr

o
rs

Lagrange − 5

Hermite − 5

Lagrange − 10

Hermite − 10

Lagrange − 20

mation. Moreover, if L-VFI wants to achieve the same accuracy with H-VFI,
it should use around 2m approximation nodes and the same degree polyno-
mial as H-VFI using m nodes, and it takes nearly double time of H-VFI.

When there one kinks on the value functions, e.g., the terminal utility
function is −(W −K)−1 for some positive K, H-VFI still has higher accuracy
than L-VFI using the same approximation nodes. However, a better usage of
slope information for this kind of problems is the shape-preserving rational
function spline Hermite interpolation, See Cai and Judd (2012a) for more
details.

4.2. Stochastic Optimal Growth Problems
A deterministic optimal growth problem is to find the optimal consump-

tion function and the optimal labor supply function such that the total utility
over the T -horizon time is maximal4, i.e.,

V0(k0) = max
kt,ct,lt

T−1∑
t=0

βtu(ct, lt) + βTVT (kT), (16)

s.t. kt+1 = F (kt, lt)− ct, 0 ≤ t < T,

4See Judd (1998) for a detailed description of this.

17

where kt is the capital stock at time t with k0 given, ct is the consumption, lt is
the labor supply, β is the discount factor, F (k, l) is the aggregate production
function, VT (x) is a given terminal value function, and u(ct, lt) is the utility
function.

When the capital stock is dependent on a random economic shock θ, the
optimal growth problem (16) becomes a stochastic dynamic optimization
problem,

V0(k0, θ0) = max
kt,ct,lt

E

{
T−1∑
t=0

βtu(ct, lt) + βTVT (kT , θT)

}
, (17)

s.t. kt+1 = F (kt, lt, θt)− ct, 0 ≤ t < T,

θt+1 = h(θt, εt), 0 ≤ t < T,

where θt is a discrete time process with its transition function h, εt is a seri-
ally uncorrelated random process, and F (k, l, θ) is the aggregate production
function dependent on the economic shock. This objective function is time-
separable, so this can be modeled as a DP problem (2), and then we can use
DP methods to solve it.

In the examples, the discount factor is β = 0.95, the aggregate production
function is F (k, l, θ) = k + θAkψl1−ψ with ψ = 0.25 and A = (1 − β)/(ψβ),
and the utility function is the same with (18). The terminal value function
is VT (k, θ) = u(F (k, 1, 1) − k, 1)/(1 − β). The range of capital stocks for
approximation is [0.2, 3]. We assume that θt is a Markov chain, the possible
values of θt are ϑ1 = 0.9 and ϑ2 = 1.1, and the probability transition matrix
from θt to θt+1 is [

0.75 0.25
0.25 0.75

]
,

for t = 0, . . . , T − 1.
The utility function is

u(c, l) =
(c/A)1−γ − 1

1− γ
− (1− ψ)

l1+η − 1

1 + η
. (18)

The functional forms for utility and production imply that the steady state
of the infinite horizon deterministic optimal growth problems is kss = 1, and
the optimal consumption and the optimal labor supply at kss are respectively
css = A and lss = 1.

18

4.2.1. DP Solution of Stochastic Optimal Growth Problems
The DP formulation of the stochastic optimal growth problem (17) in

stochastic extension of Algorithm 2 is:

Vt(k, θ) = max
k+,c,l,y

u(c, l) + βE
{
Vt+1(k+, θ+)

}
, (19)

s.t. k+ = F (y, l, θ)− c,
θ+ = h(θ, ε),

k − y = 0,

for t < T , where k is the continuous state, θ is the discrete state, k+ and
θ+ are next-stage continuous and discrete states respectively, (c, l) are the
control variables, ε is a random variable, and the terminal value function
VT (k, θ) is given. Here the dummy variable y and the trivial constraint
k− y = 0 are used in order to get the slopes of value functions directly from
the optimization solver as described in H-VFI.

4.2.2. Tree Method
To solve the stochastic model (17) using nonlinear programming, we can

apply a tree method that is a generalized approach from solving the deter-
ministic model (16) by nonlinear programming. Assume that θt is a Markov
chain with possible states, ϑ1, . . . , ϑm, and the probability of going from state
ϑi to state ϑj in one step is

P(θt+1 = ϑj | θt = ϑi) = qi,j.

Therefore, from a given initial state at time 0 to a state at time t, there are
mt paths of θt, for 0 ≤ t ≤ T . Since the next-stage capital is only dependent
on the current-stage state and control, there are only mt−1 paths of optimal
capital, from a given initial state at time 0 to a state at time t, for 1 ≤ t ≤ T .
In a mathematical formula, given an initial state (k0, θ0), the capital at path
n and time t+ 1 is

kt+1,n = F
(
kt,[(n−1)/m]+1, lt,n, ϑmod(n−1,m)+1

)
− ct,n,

for 1 ≤ n ≤ mt, where mod(n− 1,m) is the remainder of division of (n− 1)
by m, and b(n− 1)/mc is the integer part of (n− 1)/m.

19

In the tree method, the goal is to choose optimal consumption ct,n and
labor supply lt,n to maximize the expected total utility, i.e.,

max
ct,n,lt,n

T−1∑
t=0

βt
mt∑
n=1

(Pt,nu(ct,n, lt,n)) + (20)

βT
mT−1∑
n=1

PT−1,n

m∑
j=1

qmod(n−1,m)+1,jVT (kT,n, ϑj),

where Pt,n is the probability of path n from time 0 to time t with the following
recursive formula:

Pt+1,(n−1)m+j = Pt,n · qmod(n−1,m)+1,j,

for j = 1, . . . ,m, n = 1, . . . ,mt and t = 1, . . . , T − 2, where P0,1 = 1 and
P1,j = P(θ1 = ϑj | θ0) for a given θ0.

This approach is practical for only small values of m and T . In our
examples, we set we have m = 2 and T = 5, implying that there are only 32
possible paths, and nonlinear optimization solvers will produce results with as
much precision as possible in a double precision environment. We will treat
those solutions as the “true” solution which can be used for error analysis
of numerical DP algorithms. One can look at problems with thousands of
paths, but the tree method becomes infeasible as we increase m and T ; see
Cai (2009).

4.2.3. Error Analysis
We examine the errors for the stochastic model in the same manner we

did for the deterministic optimal growth problems: We apply nonlinear pro-
gramming to get the “true” optimal solution on the model (20) for every test
point of initial capital k0 ∈ [k, k̄] and every possible initial discrete state θ0,
and then use them to check the accuracy of the computed optimal solution
from L-VFI or H-VFI on the model (19).

Table 2 lists errors of optimal solutions computed by L-VFI or H-VFI
when T = 5. The computational results are given by our GAMS code,
where we use degree 2m − 1 or m − 1, respectively, Chebyshev polynomial
interpolation on m expanded Chebyshev nodes. And in the Maximization
Step of DP, we use SNOPT5 (Gill et al., 2005).

5The optimality and feasibility tolerances are set to be 10−9.

20

Table 2: Errors of optimal solutions of L-VFI or H-VFI for stochastic growth problems
error of c∗0 error of l∗0

γ η m
0.5 0.1 5

10
20

0.5 1 5
10
20

2 0.1 5
10
20

2 1 5
10
20

8 0.1 5
10
20

8 1 5
10
20

L-VFI H-VFI
1.1(−1) 1.3(−2)
5.4(−3) 2.7(−5)
1.8(−5) 4.0(−6)
1.5(−1) 1.8(−2)
7.2(−3) 3.4(−5)
2.4(−5) 4.9(−6)
4.9(−2) 5.0(−3)
2.5(−3) 1.6(−5)
1.1(−5) 3.3(−6)
9.1(−2) 9.7(−3)
4.2(−3) 2.7(−5)
1.8(−5) 3.2(−6)
2.3(−2) 2.2(−3)
9.5(−4) 1.2(−5)
8.9(−6) 2.7(−6)
2.6(−1) 1.7(−2)
8.4(−3) 3.8(−5)
2.6(−5) 2.5(−6)

L-VFI H-VFI
1.9(−1) 1.8(−2)
7.8(−3) 3.7(−5)
2.4(−5) 4.9(−6)
6.5(−2) 7.0(−3)
2.9(−3) 1.5(−5)
1.1(−5) 5.0(−6)
2.5(−1) 2.8(−2)
1.5(−2) 8.0(−5)
5.2(−5) 4.7(−6)
1.3(−1) 1.5(−2)
6.7(−3) 4.7(−5)
3.1(−5) 5.0(−6)
4.5(−1) 4.9(−2)
2.2(−2) 2.6(−4)
1.9(−4) 3.7(−6)
1.0(−0) 1.0(−1)
5.2(−2) 2.4(−4)
1.6(−4) 4.8(−6)

Note: a(k) means a× 10k.

21

The errors for optimal consumptions at time 0 are computed by

max
k∈[0.2,3],θ∈{0.9,1.1}

|c∗0,DP(k, θ)− c∗0(k, θ)|
|c∗0(k, θ)|

,

where c∗0,DP is the optimal consumption at time 0 computed by L-VFI or H-
VFI on the model (19), and c∗0 is the “true” optimal consumption computed
by nonlinear programming on the model (20). The similar formula applies
to compute errors for optimal labor supply at time 0.

Table 2 shows that H-VFI is more accurate than L-VFI, with about one or
two digits accuracy improvement. For example, row one in Table 2 assumes
γ = 0.5, η = 0.1, and m = 5 approximation nodes. For this case, the error
in consumption is 0.11 for L-VFI, and drops to 0.013 when we use H-VFI.
Similarly the error in labor supply is 0.19 for L-VFI, and drops to 0.018 when
we use H-VFI. The rest of Table 2 examines different γ and η, and shows
the same patterns for the reduction of errors when we switch from L-VFI
to H-VFI. For both consumption and labor supply, H-VFI is about 10 times
more accurate than L-VFI using 5 approximation nodes. Row two in Table
2 chooses m = 10 approximation nodes, and in this case both consumption
and labor supply errors drop by a factor about 200 when we switch from
L-VFI to H-VFI. For these examples, both DP algorithms are quite fast, so
we do not list their running times for comparison. However, we will show
them in the next multidimensional examples.

4.3. Three-Country Optimal Growth Problems
The more important usage of slope information are in multidimensional

DP problems, as it will take much more time to compute the optimal policy
for one approximation node. But for a d-dimensional DP problem, H-VFI
uses not only m values but also d × m slopes which comes almost freely
at cost, while L-VFI can only use m values. Thus, H-VFI will reduce the
computational time significantly than L-VFI, if one wants to achieve the
same accuracy of optimal solution. We show this by solving multi-country
optimal growth problems.

We assume that there are d countries, and let kt = (kt,1, . . . , kt,d) denote
the capital stocks of these countries which is a d-dimensional continuous state
vector at time t. Let lt = (lt,1, . . . , lt,d) denote elastic labor supply levels of
the countries which is a d-dimensional continuous control vector variable at
time t. Assume that the net production of country j at time t is

f(kt,j, lt,j) = Akψt,jl
1−ψ
t,j ,

22

with A = (1− β)/(ψβ), for j = 1, . . . , d. Let ct = (ct,1, . . . , ct,d) denote con-
sumption of the countries which is another d-dimensional continuous control
vector variable at time t. The utility function is

u(c, l) =
d∑
j=1

[
(cj/A)1−γ − 1

1− γ
− (1− ψ)

l1+η
j − 1

1 + η

]
.

We want to find an optimal consumption and labor supply decisions such
that expected total utility over a finite-horizon time is maximized. That is,

V0(k0) = max
kt,It,ct,lt

T−1∑
t=0

βtu(ct, lt) + βTVT (kT), (21)

s.t. kt+1,j = (1− δ)kt,j + It,j, j = 1, . . . , d,

Γt,j =
ζ

2
kt,j

(
It,j
kt,j
− δ
)2

, j = 1, . . . , d,

d∑
j=1

(ct,j + It,j − δkt,j) =
d∑
j=1

(f(kt,j, lt,j)− Γt,j) ,

where δ is the depreciation rate of capital, It,j is the investment of country
j, Γt,j is the investment adjustment cost of country j, and ζ governs the
intensity of the friction. The functional forms for utility and production im-
ply that the steady state of the infinite horizon deterministic optimal growth
problems is kss,j = 1, and the optimal consumption, labor supply and invest-
ment at the steady state are respectively css,j = A, lss,j = 1, and Iss,j = δ,
for j = 1, . . . , d. Detailed discussion of multi-country growth models with
infinite horizon can be seen in Den Haan et al (2011), Juillard and Villemot
(2011), and a nonlinear programming method for dynamic programming is
introduced in Cai et al. (2012d) to solve the multi-country growth model
with infinite horizon.

The DP formulation of the multi-country model (21) in H-VFI is

23

Vt(k) = max
k+,I,c,l,y

u(c, l) + βVt+1(k+), (22)

s.t. k+
j = (1− δ)yj + Ij, j = 1, . . . , d,

Γj =
ζ

2
yj

(
Ij
yj
− δ
)2

, j = 1, . . . , d,

d∑
j=1

(cj + Ij − δyj) =
d∑
j=1

(f(yj, lj)− Γj) ,

kj − yj = 0, j = 1, . . . , d,

for t < T . The dummy variable yj and the trivial constraint kj − yj = 0 are
used in order to get the gradient of value functions at k directly from the
optimization solver as described in Algorithm 2, for j = 1, . . . , d.

In this subsection, we let d = 3. So this is a DP example with 3-
dimensional continuous states. Let T = 5, ψ = 0.36, δ = 0.025, ζ = 0.5,
and let the capitals range be [0.5, 1.5]3. The terminal value function is
VT (k) = u(f(k, 1), 1)/(1− β). We get the true solution of this three-country
model by solving the model (21) directly using CONOPT in GAMS.

Figure 2 displays the relative errors of optimal consumption, optimal
labor supply, and running times6 of L-VFI or H-VFI using tensor grid of
m = 5, 7, 10 expanded Chebyshev nodes in each dimension, for various β =
0.9, 0.95, 0.99, γ = 0.5, 2, 5 and η = 0.2, 1, 5. For the Lagrange approximation
using m nodes in each dimension, we use degree m− 1 complete Chebyshev
polynomials and apply the regression algorithm to compute the coefficients.
And for the Hermite approximation using m nodes in each dimension, we use
degree 2m − 1 complete Chebyshev polynomials and apply the least square
method (12) to compute the coefficients. All the codes are written in GAMS,
and we use CONOPT as the optimization solver in the Maximization Step of
L-VFI and H-VFI. In the figure, the stars, the marks, and the pluses represent
the log10 of relative errors and the log10 of running times of L-VFI with
m = 5, 7, 10, respectively, and the circles represent Hermite approximation
with m = 5, for various β, γ, η.

From comparing the circles and the stars in Figure 2, we see that, for any

6All the examples are run on one core of a single core of a Mac laptop with a 2.5 GHz
processor.

24

Figure 2: L-VFI vs H-VFI for Three-Country Optimal Growth Problems

2 2.2 2.4 2.6 2.8 3
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log10 of running time (seconds)

lo
g

1
0

 o
f

re
la

ti
v
e

 e
rr

o
rs

Running Time and Errors of Optimal Consumption

Lagrange (125 approximation nodes)

Lagrange (343 approximation nodes)

Lagrange (1000 approximation nodes)

Lagrange − regression line

Hermite (125 approximation nodes)

2 2.2 2.4 2.6 2.8 3
−7

−6

−5

−4

−3

−2

−1

0

log10 of running time (seconds)

lo
g

1
0

 o
f

re
la

ti
v
e

 e
rr

o
rs

Running Time and Errors of Optimal Labor Supply

Lagrange (125 approximation nodes)

Lagrange (343 approximation nodes)

Lagrange (1000 approximation nodes)

Lagrange − regression line

Hermite (125 approximation nodes)

25

combination of β, γ, η, H-VFI achieves higher accuracy than L-VFI using
the same number of approximation nodes, with about three digits higher
accuracy when m = 5. Moreover, the running times of H-VFI are only
around 120 seconds, just a bit more than L-VFI (around 100 seconds).

From comparing the circles and the marks in Figure 2, we see that, H-VFI
with m = 5 approximation nodes in each dimension are not only nearly 3
times faster but also about one more digit higher accuracy than Lagrange
approximation with m = 7.

From comparing the circles and the pluses in Figure 2, we see that if L-
VFI wants to have the same accuracy as Hermite approximation with m = 5,
it needs nearly 8 times of approximation nodes (m = 10) and also nearly
8 times of computational time than H-VFI, for the three-country optimal
growth problems.

4.4. Six-Country Optimal Stochastic Growth Problems
Our last example shows that the advantage of H-VFI will be even greater

for higher dimensional problems. We use the multi-country model (21) with
d = 6 countries and the similar setting as the previous examples, but we
assume that the net productions of all countries are dependent on a random
economic shock θt, which is a Markov chain. That is, the net production of
country j at time t is

f(kt,j, lt,j, θt) = θtAk
ψ
t,jl

1−ψ
t,j ,

where the possible values of θt are ϑ1 = 0.98 and ϑ2 = 1.02, and the proba-
bility transition matrix from θt to θt+1 = g(θt, εt) is[

0.6 0.4
0.4 0.6

]
,

26

Table 3: H-VFI vs L-VFI for Six-Dimensional Stochastic Problems
error of c∗0 error of l∗0 running times

m
3
5
6

L-VFI H-VFI
3.8(−2) 3.6(−3)
5.5(−3)
3.1(−3)

L-VFI H-VFI
5.4(−2) 5.2(−3)
8.2(−3)
4.5(−3)

L-VFI H-VFI
0.3 hour 0.67 hour

8.74 hours
36.6 hours

Note: a(k) means a× 10k.

for t = 0, . . . , T − 1. Therefore, we have the stochastic version of the multi-
country model (21):

V0(k0, θ0) = max
kt,It,ct,lt

E

{
T−1∑
t=0

βtu(ct, lt) + βTVT (kT , θT)

}
, (23)

s.t. kt+1,j = (1− δ)kt,j + It,j, j = 1, . . . , d,

Γt,j =
ζ

2
kt,j

(
It,j
kt,j
− δ
)2

, j = 1, . . . , d,

d∑
j=1

(ct,j + It,j − δkt,j) =
d∑
j=1

(f(kt,j, lt,j, θt)− Γt,j) ,

θt+1 = g(θt, εt).

Then we can also solve this problem with L-VFI or H-VFI.
In this example, we choose β = 0.95, γ = 2 and η = 1. The number

of decision stages is T = 5, and the capitals range is [0.5, 1.5]6. We apply
the tree model (20) and use CONOPT in GAMS code to compute the “true”
solutions at test points of κ0 and each possible value of θ0.

Table 3 lists the running times7, and relative errors of optimal consump-
tion and labor supply of L-VFI and H-VFI using tensor grid of m = 3, 5, 6
expanded Chebyshev nodes in each dimension on [0.5, 1.5]6. On the ten-
sor grid of m nodes in each dimension, Lagrange approximation uses degree
m − 1 complete Chebyshev polynomials, and Hermite approximation uses
degree 2m− 1 complete Chebyshev polynomials and the least squares model
(12) is applied to obtain coefficients.

7All the examples are run on one core of a single core of a Mac laptop with a 2.5 GHz
processor.

27

From Table 3, we see that H-VFI using m = 3 approximation nodes in
each dimension takes only 0.67 hours to achieves the higher accuracy than
L-VFI using m = 5 approximation nodes in each dimension which takes
8.74 hours, about 13 times computational time of H-VFI. Moreover, if L-VFI
wants to use m = 6 approximation nodes in each dimension to achieve a bit
higher accuracy than H-VFI, the running time is up to 36.6 hours, about 55
times computational time of H-VFI.8

5. Conclusion

We have shown that gradient of the value function can be obtained easily
and almost freely during value function iteration, and that using it in Hermite
approximation approximation methods will produce significant improvement
in the efficiency of numerical dynamic programming. These conclusions are
supported by examples from dynamic portfolio optimization problems and
multi-dimensional optimal growth problems. We show that this improvement
can be used to either improve accuracy for a given amount of computation
time, or to attain the same accuracy much faster than with L-VFI. These
examples also indicate that H-VFI will be particularly valuable in solving
multidimensional dynamic programming problems.

8All the running times can be dramatically reduced if we use Fortran code and NPSOL
solver (Gill et al., 1994), but the relative difference between Hermite and Lagrange approx-
imation is still almost the same with GAMS. Moreover, for higher dimensional problems,
we can solve them using Fortran code in a reasonable time. We conclude that the speed
advantage of H-VFI over L-VFI will increase with dimension.

28

[1] Bellman, R. (1957). Dynamic Programming. Princeton Univer-
sity Press.

[2] Cai, Y. (2009). Dynamic Programming and Its Application in
Economics and Finance. PhD thesis, Stanford University.

[3] Cai, Y., and K.L. Judd (2010). Stable and efficient computa-
tional methods for dynamic programming. Journal of the Euro-
pean Economic Association, Vol. 8, No. 2-3, 626–634.

[4] Cai, Y., and K.L. Judd (2012a). Dynamic programming with
shape-preserving rational spline Hermite interpolation. Eco-
nomics Letters, Vol. 117, No. 1, 161–164.

[5] Cai, Y., and K.L. Judd (2012b). Shape-preserving dynamic pro-
gramming. Mathematical Methods of Operations Research, DOI:
10.1007/s00186-012-0406-5.

[6] Cai, Y., K.L. Judd and T.S. Lontzek (2012c). DSICE: A Dy-
namic Stochastic Integrated Model of Climate and Economy.
RDCEP working paper No. 12-02.

[7] Cai, Y., K.L. Judd, T.S. Lontzek, V. Michelangeli, and C.-L.
Su (2012d). Nonlinear Programming method for dynamic pro-
gramming. Hoover working paper.

[8] Den Haan, W.J., K.L. Judd and M. Juillard (2011). Compu-
tational suite of models with heterogeneous agents II: Multi-
country real business cycle models. Journal of Economic Dy-
namics & Control, 35, 175–177.

[9] Gill, P., W. Murray, M.A. Saunders and M.H. Wright (1994).
User’s Guide for NPSOL 5.0: a Fortran Package for Nonlinear
Programming. Technical report, SOL, Stanford University.

[10] Gill, P., W. Murray and M.A. Saunders (2005). SNOPT: An
SQP algorithm for largescale constrained optimization. SIAM
Review, 47(1), 99–131.

[11] Judd, K.L. (1998). Numerical Methods in Economics. The MIT
Press.

29

[12] Juillard, M., and S. Villemot (2011). Multi-country real busi-
ness cycle models: Accuracy tests and test bench. Journal of
Economic Dynamics & Control, 35, 178–185.

[13] McCarl, B., et al. (2011). McCarl Expanded GAMS user guide
version 23.6. http://www.gams.com/mccarl/mccarlhtml/. Ac-
cessed 06 September 2012.

[14] Philbrick, C.R., and P.K. Kitanidis (2001). Improved Dynamic
Programming Methods for Optimal Control of Lumped Param-
eter Stochastic Systems. Operations Research, 49(3), 398–412.

[15] Rust, J. (2008). Dynamic Programming. In: New Palgrave Dic-
tionary of Economics, ed. by Steven N. Durlauf and Lawrence
E. Blume. Palgrave Macmillan, second edition.

[16] Schumaker, L., (1983). On Shape-Preserving Quadratic Spline
Interpolation. SIAM Journal of Numerical Analysis, 20, 854–
864.

[17] Wang, S.P., and K.L. Judd (2000). Solving a savings alloca-
tion problem by numerical dynamic programming with shape-
preserving interpolation. Computers and Operations Research,
Volume 27, Issue 5, 399–408.

30

