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1. Introduction

Over the last few years, economists have uncovered the importance of time-varying volatility in
accounting for the dynamics of U.S. aggregate data. Stock and Watson (2002) and Sims and
Zha (2006) are some prominent examples of this line of research. As a response, a growing
literature has developed to investigate the origins and consequences of time-varying volatility. A
particularly successful branch of this literature uses dynamic equilibrium models to emphasize the
role of volatility shocks (also known as uncertainty shocks, but in any case specified as stochastic
volatility as in Shephard, 2008) in business cycle fluctuations. Among those we can highlight are
Bloom et al. (2007), Ferndndez-Villaverde and Rubio-Ramirez (2007), Justiniano and Primiceri
(2008), Bloom (2009), Ferndndez-Villaverde et al. (2010c), and Bloom et al. (2012). In these
models, there are two types of shocks: structural shocks (shock to productivity, to preferences,
to policy, etc.) and volatility shocks (shocks to the standard deviation of the innovations to the
structural shocks).

To fulfill the promise in this literature, it is crucial to have a set of tools to take these dynamic
equilibrium models with stochastic volatility to the data. Namely, we want to estimate, evaluate,
and compare these models using a likelihood-based approach. However, the task is complicated
by the inherent non-linearity that stochastic volatility generates. By construction, linearization is
ill-equipped to handle time-varying volatility models because it yields certainty-equivalent policy
functions. That is, volatility influences neither the agents’ decision rules nor the laws of motion
of the aggregate variables. Hence, to consider how volatility affects those, it becomes imperative
to employ a non-linear solution method for the dynamics of the economy. Once we consider
non-linear solution methods we are forced to use simulation-based estimators of the likelihood.

In principle, and beyond the computational burden, this could seem a mild challenge. For
instance, one could be tempted to get around this problem by solving the model non-linearly with
a fast algorithm and employing, for estimation, a particle filter to get an unbiased simulation-
based estimator of the likelihood. The particle filter presented in Ferndndez-Villaverde and Rubio-
Ramirez (2007) would be a natural candidate for such an undertaking. Unfortunately, that version
of the particle filter relies, when estimating models with stochastic volatility, on the presence of lin-
ear measurement errors in observables. Otherwise, we would be forced to solve a large quadratic
system of equations with multiple solutions, an endeavor for which there are no suitable algo-

rithms. Although measurement errors are both plausible and empirically relevant, their presence



complicates the interpretation of the results. Thus, it is desirable to consider a particle filter that
departs from requiring measurement errors.

To accomplish this goal, we show how to write a particle filter that allows us to evaluate
the likelihood of a dynamic equilibrium model with stochastic volatility by exploiting the struc-
ture of the second-order approximation to the decision rules that characterize the equilibrium
of the economy without the need of measurement errors. Second-order approximations capture
the implications of stochastic volatility and are convenient because they are accurate but not
computationally expensive.

We achieve the objective in two steps. First, we characterize the second-order approximation
to the decision rules of a rather general dynamic equilibrium model with stochastic volatility.!
Second, we demonstrate how we can use this characterization to handily simulate the likelihood
function of the model with a particle filter without measurement errors. The key is to show how
the decision rules characterization reduces the quadratic problem associated with the evaluation
of the approximated measurement density to a much simpler matrix inversion problem. This is a
novel extension of sequential Monte Carlo methods that can be useful for other applications. After
we have evaluated the likelihood, we can combine it with a prior and an Markov chain Monte
Carlo (McMc) algorithm to draw from the posterior distribution (Flury and Shephard, 2011).

Our characterization of the second-order approximation to the decision rules should be of
interest in itself even for researchers who are not evaluating the likelihood of their model but who
are keen to understand how the model works. Among others, the results are useful to analyze the
equilibrium of the model, to explore the shape of its impulse-response functions, or to calibrate
it.

More concretely, we prove that:

1. The first-order approximation to the decision rules of the agents (or any other equilibrium

object of interest) does not depend on volatility shocks and they are certainty equivalent.

2. The second-order approximation to the decision rules of the agents only depends on volatility
shocks on terms where volatility is multiplied by the innovation to its own structural shock.

For instance, if we have two structural shocks (a productivity and a preference shock) and

!These theorems generalize previous results derived by Schmitt-Grohé¢ and Uribe (2004), for the homoscedastic
shocks case to the time-varying case.



a volatility shock to each of them, the only non-zero term where the volatility shock to
productivity appears is the one where the volatility shock to productivity multiplies the
innovation to the productivity shock. Thus, of the terms in the second-order approximation

that complicate the evaluation of the likelihood function, only a few are non-zero.

3. The perturbation parameter will only appear in a non-zero term where it is raised to a

square. This term is a constant that corrects for precautionary behavior induced by risk.

As an application, we estimate a dynamic equilibrium model of the U.S. economy with stochas-
tic volatility using the particle filter and Bayesian methods. The model, an otherwise standard
business cycle model with nominal rigidities, incorporates not only stochastic volatility in the
shocks that drive its dynamics but also parameter drifting in the parameters that control mone-
tary policy. In that way, we include two of the main mechanisms that researchers have highlighted
to account for the time-varying volatility of U.S. data: heteroscedastic shocks and parameter drift-
ing. We include these together in the model because a “one-at-a-time” investigation is fraught
with peril. If we allow only one source of variation in the model, the likelihood may want to take
advantage of this extra degree of flexibility to fit the data better. For example, if the “true” model
is one with parameter drifting in monetary policy, an estimated model without drift but with sto-
chastic volatility in one of the structural shocks may interpret the “true” drift as time-varying
volatility in that shock. If, instead, we had time-varying volatility in technological shocks in the
data, an estimated model without stochastic volatility and only parameter drifting may conclude,
erroneously, that the parameters of monetary policy are changing. Lastly, we have a model that
is as rich as the models employed by policy-making institutions in real life. While solving and
estimating such a large model is a computational challenge, we wanted to demonstrate that our
procedure is of practical use and to make our application a blueprint for the estimation of other
dynamic equilibrium models.

Our main empirical findings are as follows. First, the posterior distribution of parameters
puts most of its mass in areas that denote a fair amount of stochastic volatility, yet another
proof of the importance of time-varying volatility in applied models. Second, a model comparison
exercise indicates that, even after controlling for stochastic volatility, the data clearly prefer a
specification where monetary policy changes over time. This finding should not be interpreted,

though, as implying that volatility shocks did not play a role of their own. It means, instead,



that a successful model of the U.S. economy requires the presence of both stochastic volatility
and parameter drifting, a result that challenges the results of Sims and Zha (2006). Finally, we
document the evolution of the structural shocks, of stochastic volatility, and the parameters of
monetary policy. We emphasize the confluence, during the 1970s, of times of high volatility and
weak responses to inflation, and, during the 1990s, of positive structural shocks and low volatility
even if monetary policy was weaker than often argued. In the appendix, we thoroughly explore
the model, including the construction of counterfactual histories of the U.S. data by varying
some aspect of the model such as shutting down time-varying volatility or imposing alternative
monetary policies.

An alternative to our stochastic volatility framework would be to work with Markov regime-
switching models such as those of Bianchi (2009) or Farmer et al. (2009). This class of models
provides an extra degree of flexibility in modelling aggregate dynamics that is highly promising.
In fact, some of the fast changes in policy parameters that we document in our empirical sec-
tion suggest that discrete jumps could be a good representation of the data. However, current
technical limitations regarding the computation of the equilibria induced by regime switches force
researchers to focus on small models that are only stylized representations of an economy.

Finally, even if the motivation for our approach and the application belong to macroeconomics,
there is nothing specific about that field in the tools we present. One can think about the impor-
tance of estimating dynamic equilibrium models with stochastic volatility in many other fields,
from finance (Bansal and Yaron, 2004, would be a prominent example) to industrial organization
(for instance, an equilibrium model of industry dynamics where the demand and supply shocks
have time-varying volatility), international trade (where innovations to the real exchange rates or
to the country spreads are well known to have time-varying volatility, see Fernandez-Villaverde et
al., 2010c), or many others.

The rest of the paper is organized as follows. Section 2 presents a generic dynamic equilibrium
model with stochastic volatility to fix notation and discuss how to solve it. Section 3 explains
the evaluation of the likelihood of the model. Section 4 introduces a business cycle model as
an application of our procedure, takes it to the U.S. data, and comments on the main findings.
Section 5 concludes. An extensive technical appendix includes details about the proofs of the

main results in the paper, the model, the computation, and additional empirical exercises.



2. Dynamic Equilibrium Models with Stochastic Volatility

2.1. The Model

The set of equilibrium conditions of a wide class of dynamic equilibrium models can be written as

Eif (Vi1 Voo Se1, Sty 241, Z157) = 0, (1)

where [, is the conditional expectation operator at time ¢, V, = (Vi, Var, - .., Vie) is the k x 1
vector of observables at time t, S; = (S, Sa, - - - ,Sm)' is the n x 1 vector of endogenous states
at time ¢, Z; = (21, 2o, . . ., th)' is the m x 1 vector of structural shocks at time ¢, f maps
R2(k+n+m) into RE+H"+m - and v is the n, x 1 vector of parameters that describe preferences and
technology. In the context of this paper, v is also the vector of parameters to be estimated.

We will consider models where the structural shocks, Z;,. 1, follow a stochastic volatility process
of the form

Zit1 = piZit + NOiOir1€i11 (2)

foralli € {1,...,m}, where A is a perturbation parameter, o; is the mean volatility, and log o1,
the percentage deviation of the standard deviation of the innovations to the structural shocks with

respect to its mean, evolves as
.
logoit 1 = vilog oy + A (1 - 191‘) N Wit41 (3)

for all i € {1,...,m}. The combination of levels in (2) and logs in (3) ensures a positive 0.
1
We multiply the innovation in (3) by (1 — 79?) ? to normalize its size by the persistence of 0. It

will be clear momentarily why we specify (2) and (3) in terms of the perturbation parameter A.

It is also convenient to write, for all i € {1,...,m}, the laws of motions for Z;; and log o
Zit = piZit—1 + 0i04Eit (4)
and
1
IOg O = 191 lOg Oit—1 + (1 - 7912) 2 7); Wit (5>

Note that the perturbation parameter A appears only in equations (2) and (3) but not in



equations (4) and (5). This is because this parameter is used to eliminate, when we later determine
the point around which to perform a higher-order approximation to the equilibrium dynamics of
the model, any uncertainty about the future. Given the information set in equation (1), there
is uncertainty about both Z;,,1 and logo;q for all i € {1,...,m}, but there is no uncertainty
about either Z;; or log oy, for any i € {1,...,m}.

Let ¥, = (log oy, ...,1og o) be the m x 1 vector of volatility shocks, & = (g1, ..., em)’ the
m x 1 vector of innovations to the structural shocks, and Uy = (usy, . . ., Upmt) the m x 1 vector of
innovations to the volatility shocks. We assume that & ~ N (0,I) and U, ~ N (0,I), where O is

an m X 1 vector of zeros and I is an m x m identity matrix. To ease notation, we assume that:

1. All structural shocks face volatility shocks and that the volatility shocks are uncorrelated.

It is straightforward, yet cumbersome, to generalize the notation to other cases.

2. & and U, are normally distributed. As we will see below, to implement our particle filter,

we only need to be able to simulate & and evaluate the density of U;.

2.2. The Solution

Given equations (1)-(5), the solution to the model -if one exists- that embodies equilibrium dy-
namics (that is, agent’s optimization and market clearing conditions) is characterized by a policy

function describing the evolution of the endogenous state variables
Sii1=h (S, 21,501, &L Uy, A y) (6)
and two policy functions describing the law of motion of the observables
Vi = 9(St, Zi-1, 241, & Us, As ) (7)

and

Vir1 =9 (St+17 2y, 2, Agt—i—lv Aut+17 A; 7) ) (8)

together with equations (4) and (5) describing the laws of motion of the structural and volatility
shocks. The policy functions h and g map R"**™*+! into R” and R¥, respectively, and are indexed

by the vector of parameters 7.



For our purposes, it is important to define the steady state of the model. Our assumptions
about the stochastic processes imply that, in the steady state, Z = 0 and ¥ = 0. Given a vector
of parameters -y and equations (1)-(8), the steady state of the model is a k x 1 vector of observables

Y =(1,Ys,..., V) and an n x 1 vector of endogenous states S = (S, Ss, . ..,S,) such that

f(g(h(S,0,0,0,0,0;7),0,0,0,0,0;7),¢9(S,0,0,0,0,0;7),k(S,0,0,0,0,0;7),S,0,0;v) = 0.
(9)

In addition, in the steady state, the following two relationships hold
S =h(5,0,0,0,0,0;7), (10)

and

The perturbation parameter A plays a key role in defining our steady state. If A = 0, the
model is in the steady state, since we eliminate any uncertainty about the future. If A # 0, the
model is not in the steady state and conditions (9)-(11) do not hold. For instance, in general

S # h(S5,0,0,0,0,A;~) because of the precautionary behavior of agents.

2.3. The State-Space Representation

Given the solution to the model -the policy functions (6)-(8) together with equations (4) and (5)-
we can concisely characterize the equilibrium dynamics of the model by its state-space represen-
tation written in terms of the transition and the observation equations.

The transition equation uses the policy function (6), together with equations (4) and (5),
to describe the evolution of the states (endogenous states, structural shocks, volatility shocks,
and their innovations) as a function of lag states, the perturbation parameter, and the vector of
parameters

St+1 = E (St, A, ’7) + Ewt+1 (12)

where S, = (S}, 2/_1, %1, &/, U;) is the (n + 4m) x 1 vector of the states and h maps R"Hm+1 into
R+4m - Also, Wy = (W{t 415 Way +1), is a 2m x 1 vector of random variables, Wy; 1 and W, ; are
m X 1 vectors with distributions Wy, 1 ~ N (0,I) and Wa 11 ~ N (0,1), and Zis a (n + 4m) x 2m

matrix with the the top n + 2m rows equal to zero and the bottom 2m x 2m matrix equal to the



identity matrix. Note that Wy, .1 and Wh; 1 share distributions with &1 and U, respectively.
If we were to change distributions for either &, or U;; we would need to do the same with W,
and Wh, 1. Let us define ng = n 4+ 4m. The linearity of the second term of the right-hand side
is a consequence of the autoregressive specification of the structural shocks and the evolution of
their volatilities. However, through the function %, we let those shocks and their volatilities affect
S;+1 nonlinearly.

The measurement equation uses the policy function (7) to describe the relationship of the

observables with the states, the perturbation parameter, and the vector of parameters
Ve=9 A7) (13)

2.4. Approximating the State-Space Representation

In general, when we deal with the class of dynamic equilibrium models with stochastic volatility,
we do not have access to a closed-form solution, that is, the policy functions A and g cannot be
found explicitly. Thus, we cannot build the state-space representation described by (12) and (13).
Instead, we will approximate numerically the solution of model and use the result to generate an
approximated state-space representation.

There are many different solution algorithms for dynamic equilibrium models. Among those,
the perturbation method has emerged as a popular way (see Judd and Guu, 1997, Schmitt-Grohé
and Uribe, 2004, and Aruoba et al., 2006 among others) to obtain higher-order Taylor series
approximations to the policy functions (6)-(7) together with equations (4) and (5) around the
steady state. It is key to note that we also get the Taylor expansion of (4) because it is a non-
linear function. Beyond being extremely fast for systems with a large number of state variables,
perturbation offers high levels of accuracy even relatively far away from the perturbation point
(Aruoba, et al., 2006, and, for cases with stochastic volatility, Caldara et al., 2012).

The perturbation method allows the researcher to approximate the solution to the model up
to any order. Since we want to analyze models with volatility shocks, we must go beyond a
first-order approximation. First-order approximations are certainty equivalent and hence, they
are silent about stochastic volatility. As we well see in section 3.1, volatility shocks only appear
starting in the second-order approximation. But since we want to evaluate the likelihood function,

we need to stop at a second-order approximation. Because of dimensionality issues, higher-order

10



approximation would make the evaluation of the likelihood function exceedingly challenging for
current computers for models with a reasonable number of state variables.

Given a second-order approximation to the policy functions (6)-(7) together with equations (4)
and (5) around the steady state, the approximated state-space representation can be written in
terms of two equations: the approximated transition equation and the approximated measurement

equation. The approximated transition equation is

\]:j;?l/S\t 1 §2W§71§t 1 \ij;l
S15—&-1 - + 5 + § + EWt_H (14)
vloS, SAZIS o

where §t = S; — S is the n, x 1 vector of deviations of the states from their steady-state value and

S =(8,0,0,0,0) . The approximated measurement equation is

~Y= : + : +- | 15
Vi : : (15)

where Y is the steady-state value of ).
In these equations, W}, is a 1 X n, vector and W2, is an ny X n, matrix for i = 1,...,n,.

The first term is the linear approximation to transition equation for the states, while the second

term is the quadratic component of the second-order approximation. Similarly, \I/;Z isal X ng
vector and \I/f” an ng X ng matrix for = 1,..., k. The interpretation of each term is the same as

before: the first term is the linear component and the second one the quadratic component of the
approximation to the law of motion for the measurement equations. The term ‘lfé‘z is the constant

that appears in the second-order perturbation and that is often interpreted as the correction for

risk in the evolution of state ¢ = 1,...,n,. Similarly, the term \I!;\Z is the constant correction
for risk of observable i = 1,..., k. All these vectors and matrices are non-linear functions of the

vector of parameters 7. It is important to emphasize that we are not assuming the presence of

any measurement error. We will return to this point in a few paragraphs.
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3. Stochastic Volatility and Evaluation of the Likelihood

In this section, we explain how to evaluate the likelihood function of our class of dynamic equi-
librium models with volatility shocks in equation (1) using the approximated transition and the
measurement equations (14) and (15). If we allow Y; to be the data counterpart of our observ-
ables Vs, Y = (Yy,...,Y,) (with YO = {&}) to be their history up to time ¢, given a vector of

parameters v, we can write the likelihood of Y7 as

T

[[r Q=Y /Y"47),

t=1

where

p (V=YY" ) =

// //p(yt = Yt|5tazt—17zt—1,gt§7>p (StaZt—laEt—1,5t|Yt_1§7) dS,dZ,_1d¥,_1déE, (16)

forallt €{2,...,T} and

p (V1 =Yq;79)

:////p(yl:Y1|31,ZO,20751;7)]0(81720720,51;7)d51d30d20d51- (17)

Note that the U;’s do not show up in these two expressions. It will be momentarily clear why this
comes directly from our procedure below to evaluate the likelihood.

Computing this likelihood is a difficult problem. Since we do not have analytic forms for the
terms inside the integral, it cannot be evaluated exactly and deterministic numerical integration
algorithms are too slow for practical use (we have four integrals per period over large dimensions).
As a feasible alternative, we will show how to use a simple particle filter to obtain a simulation-
based estimate of (16) for the class of dynamic equilibrium models with volatility shocks we
described above. Kiinsch (2005) proves, under weak conditions, that the particle filter delivers a
consistent estimator of the likelihood function and that a central limit theorem applies. A particle
filter is a sequential simulation device for filtering of nonlinear and /or non-Gaussian space models
(Pitt and Shephard, 1999, and Doucet et al., 2001). In economics the particle filter has been used,

among others, by Ferndndez-Villaverde and Rubio-Ramirez (2007).
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As mentioned before, the particle filter has minimal requirements: the ability to evaluate the
approximated measurement density associated with the approximated measurement equation, to
simulate from the approximated dynamics of the state using the approximated transition equation,
and to draw from the unconditional density of the states implied by the approximated transition
equation. Usually, the first requirement is the hardest. These three requirements are formally

described in the following assumption.
Assumption 1. To implement the particle filter, we assume that:

1. We can evaluate the approximated measurement density

p (Ve =Y S, Zeo1, 301, E57)

2. We can simulate from the approximated transition equation
!/ !/
( tl+17Z1€72:t7 £+1) | (827227172:‘,71781‘{) 7f(Yt) ;fy

for allt € {1,...,T}, where F (Y') is the filtration of Y*.

3. We can draw from the unconditional distribution implied by the approximated transition
equation

p(Sth—l)Zt—l,gt;'Y)‘

The second requirement asks for the filtration of Y, F (Y*), because we will need to evaluate
the volatility shocks (this will be clearer below). The last requirement can be easily implemented
using the results in Santos and Peralta-Alva (2005). Given our assumption about £ and the
quadratic form of the approximated transition equation (14), the second requirement easily holds.
A key novelty of this paper is that we show how the class of dynamic equilibrium models with
volatility shocks considered here also satisfies the first requirement.

For our class of models, conditional on having N draws of {si, z/_,01_,, ei}i]\il from the density
(S, Zi 1,51, &Y ), each integral (16) can be consistently approximated by

X

p (yt = Yt|Yt_1;’Y) ~ N Zp (yt = Yt|5i7 27%717 O-iitflu 6;7 ’7) (18)

=1

13



for all t € {2,...,T}. For t = 1, we need N draws from the density p (S;, Z;_1, %1, &;7), so

that the integral (17) can be consistently approximated by

N
1 L
p (W =Yy;7) ~ N E p (yl = Y1|5Z1>26a06>511§’7) . (19)
i=1

We know that we can make the draws because requirement 3 in assumption 1 holds.
In our framework, checking whether requirement 1 in assumption 1 holds means checking

whether we can evaluate the approximated measurement density
p (Ve =Yysi, 21, 00_1.€07) (20)

for each draw in {s,z/_,0)_;, 8i}i]11 forallt € {1,...,T}. This evaluation step is crucial, not only
because it is required to compute (18) and (19) but also because, as we will explain momentarily,
our particle filter needs to evaluate (20) to resample from p (S, Z; 1,3 1,&|Y71; ) and get
draws from p (Sy+1, Z¢, B¢, E11|Y'; ) in order to obtain {s, z{_;,0%_,, 5};}1.N:1 forallt € {2,...,T}
in a recursive way.
To check how we can evaluate the approximated measurement density (20), we rewrite (15)
/

in terms of draws (s, 2,07 ;,€)" and Y;, instead of (S, Z;_,,%,_;,&!) and Y. Thus, the

approximated measurement equation (15) can be rewritten as

wa\ (eea)  (w
Y, =Y = + 5 + B (21)
v, St SYv? .S, v

where S = S — S and S = (si, 21, 0! 1, €, U)". The new approximated measurement equation
(21) implies that evaluating the approximated measurement density (20) involves solving the

system of quadratic equations

\I/ZIJ?ISQ , Si’\lf;lgi , \11271
v,—y—| : |=2 : - 22
t =Y .A 5 . : ) 5 : 0 (22)
‘IlzllkSi Si’@;kSﬁ/ \Ifﬁk

for U, given Yy, s}, 2;_ 4,074, and &}.

14



Solving this system is non-trivial. Since the system is quadratic, we may have either none or
several different solutions. In fact, it is even hard to know how many solutions there are. But
even if we knew the number of solutions, we are not aware of any accurate and efficient method to
solve quadratic problems that finds all the solutions. This difficulty seemingly prevents us from
achieving our goal of evaluating the likelihood function.

A solution would be to introduce, as Ferndndez-Villaverde and Rubio-Ramirez (2007) did, a
k x 1 vector of linear measurement errors and solve for those instead of ;. In this case the system
would have a unique, easy to find solution. However, there are three reasons, in increasing order

of importance, why this solution is not satisfactory:

1. Although measurement errors are both plausible and empirically relevant, their presence
complicates the interpretation of any empirical results. In particular, we are interested
in measuring how heteroscedastic structural shocks help in accounting for the data and

measurement errors can confound us.

2. The absence of measurement errors will help us to illustrate below how dynamic equilibrium

models with volatility shocks have a profusion of shocks that we can exploit in our estimation.

3. As we will also show below, volatility shocks would enter linearly (conditional on the draw)
in the system equations. Since, by definition, linear measurement errors would also enter in

the same fashion, it would be hard to identify one apart from the others.

Our alternative in this paper is to realize that considering stochastic volatility converts the
above-described quadratic system into a linear one. Hence, if a rank condition is satisfied, the
system (22) has only one solution and the solution can be found by simply inverting a matrix.
Thus, requirement 1 in assumption 1 holds and we can use the particle filter. The core of the
argument is to note that, when volatility shocks are considered, the policy functions share a

peculiar pattern that we can exploit.

3.1. Structure of the Solution

Our first step will characterize the first- and second-order derivatives of the policy functions
h and g evaluated at the steady state. Then, we will describe an interesting pattern in these

derivatives. The second step will take advantage of the pattern to show that, when the number

15



of volatility shocks equals the number of observables, our quadratic system becomes a linear one.
This characterization is important both for estimation and, more generally, for the analysis of

perturbation solutions to dynamic equilibrium models with stochastic volatility.

3.1.1. First- and Second-order Derivatives of the Policy Functions

Let us begin with the characterization of the first- and second-order derivatives of the policy
functions. The following theorem shows that the first-order derivatives of h and g with respect to
any component of U, and ¥, ; evaluated at the steady state are zero; that is, volatility shocks and
their innovations do not affect the linear component of the optimal decision rule of the agents.
The same occurs with the perturbation parameter A. A similar result has been established by

Schmitt-Grohé and Uribe (2004) for the homoscedastic shocks case.

Theorem 2. Let us denote [Tw];. as the derivative of the i — th element of generic function Y
with respect to the j — th element of generic variable w evaluated at the non-stochastic steady
state (where we drop this index if w is unidimensional). Then, for the dynamic equilibrium model
specified in equation (1), we have that [hzt_l};,l = [ggt_l]j.z = [hut]j.l = [gut];2 = [h,\]i1 = [gA]i2 =0
foriy € {1,...,n}, i € {1,...,k}, and j € {1,...,m}.

Proof. See appendix 6.1.1. m

The second theorem shows, among other things, that the second partial derivatives of h and ¢

with respect to either log o;; or u; ; and any other variable but ¢; ; is also zero for any i € {1,...,m}.

Theorem 3. Furthermore, if we denote [Y,¢|; . as the derivative of the i —th element of generic

i
Ji.J
function Y with respect to the j; — th element of generic variable w and the j, — th element of

generic variable & evaluated at the non-stochastic steady state (where again we drop the index for

unidimensional variables), we have that [hA,St];1 = [gA,gt];‘? =0fori; €{1,...,n},is € {1,...,k},

and j € {1,...,n},

i1

J

i1

J

72

= [onza] ) = [Pasi]) = loasc )] = [hae) = [9ael} = [hawl) = loas]y =0

] j
fori; € {1,...,n}, i € {1,...,k}, and j € {1,...,m},

72

J1,J2

i1

J1,J2

= [hstvut];llij - [gst’ut];?lvh

[hstyxtﬂ} = [gSt,Et,l]
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foriy € {1,...,n}, i € {1,...k}, 1 € {1,...,n}, and jo € {1,...,m},

12 i1 12

o= [gth,Ethjhh = [hEtflathl]jh‘h - [gztfl’xtfl}jhh =0

[hztfl’ztfl] Ji.g2
and

i1

Ji.J2

;21,1‘2 - [hztﬂ’”ﬁ];im - [gxtfhutﬁ,jg - [h”tv“t];,m = [gut,ut]}i,b

[hzt,l,ut} = [thA,UJ

fori; € {1,...,n}, i € {1,...,k}, and j1,j» € {1,...,m}, and

72

J1,J2

11

J1,J2

= [h&,ut];'ll,jz - [gg“ut]}zl,ﬁ

[hgt»xt—l] = [ggt,Et,l]

forile{l,...,n}, iQE{l,...,/{?}, andjl,jge{l,...,m} if j1 # Ja.

Proof. See appendix 6.1.2. =
Since the statement of theorem 3 is long and involved, we clarify it with a table in which we
characterize the second derivatives of the functions h and g with respect to the different variables

(Si, 241,241, E, Uy, A). This pattern is both interesting and useful for our purposes.

Table 3.1: Second Derivatives
S8 #0| §2Z,1#0 521 =0 S:EF#0 Sy =0 SA=0
2112 1 #0298 10=0| Z2,1&E#0 | ZiUy =0 | Z2,,A=0
Y121 =0 | X 1&EF#0" | By =0 ] X 1A=0
EEFD U, # 0F EAN=0
U, =0 UNAN =0
AN #0

The way to read table 3.1 is as follows. Take an arbitrary entry, for instance, entry (1,2),
512, 1 # 0. In this entry, we state that the cross-derivatives of A and g with respect to S; and
2,1 are different from zero (the table is upper triangular because, given the symmetry of second
derivatives, we do not need to report those entries). Similarly, entry (3,5), ¥;_1U; = 0 tells us that

the cross-derivatives of h and g with respect to ¥;_; and U; are all zero.? Entries (3,4) and (4,5)

2For ease of exposition, in table 3.1 we are not being explicit about the dimensions of the matrices: it is a purely
qualititive description of the relevant derivatives.
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have a “*”

to denote that the only cross-derivatives of those entries that are different from zero
are those that correspond to the same index j (that is, the cross-derivatives of each innovation
to the structural shocks with respect to its own volatility shock and the cross-derivatives of the
innovation to the structural shocks to the innovation to its own volatility shock). The lower
triangular part of the table is empty because of the symmetry of second derivatives.

Table 3.1 tells us that, of the 21 possible sets of second derivatives, 12 are zero and 9 are not.
The implications for the decision rules of agents and for the equilibrium function are striking.
The perturbation parameter, A, will only have a coefficient different from zero in the term where
it appears in a square by itself. This term is a constant that corrects for precautionary behavior
induced by risk. Volatility shocks, 3, ; , appear with coefficients different from zero only in the
term ¥; ;& where they are multiplied by the innovation to its own structural shock &;. Finally,
innovations to the volatility shocks, i;, also appear with coefficients different from zero when they
show up with the innovation to their own structural shock &;. Hence, of the terms that complicate

i1

the evaluation of the approximated measurement density, only the ones associated with [he, :Ut]jl i

and [9& Ut ];21 J1

are Non-zero.
3.1.2. Evaluating the Likelihood Using the Particle Filter

The second step is to use theorems 2 and 3 to show that the system (22) is linear and it has only
one solution. Corollary 4 shows that the pattern described in table 3.1. has an important, yet

rather direct implication for the structure of the approximated measurement equation (21).

Corollary 4. The approximated measurement equation (21) can be written as

Tl JI21q A i1y 2:2 i, 2,3
v, 15 . S . Uy er Vi erVya
Y=Y = +§ +§ + o1+ Uy
~1 ~1/ ~1 ~ ~
T1Q S 218 A iy 252 iy 2:3
\ij,kSt St \I/y,kgt \I}y,k St \I}y,k &t \ij,k

where Si = (s¥, 2, €V )Iis the (n + 2m) x 1 vector of the simulated states without the stochastic
volatility components (that is, endogenous states, structural shocks, and their innovations), S =
(8',0',0") is its steady state, and gz = gﬁ — S is its deviation from the steady state. Let us define
ns = n + 2m. The matrix \Il; ; is a1 X ng vector that represents the first-order component of the

second-order approximation to the law of motion for the measurement equation as a function of
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gt, where S, = (S{,Z{_l,é't’), and gt =S, -S, for j =1,...,k. The matrix ffi; is an ng X ng
matrix that represents the second-order component of the second-order approximation to the law
of motion for the measurement equation as a function of gt for j =1,...,k. The matrix \Tff/? is
an m X m matrix that represents the second-order component of the second-order approximation
to the law of motion for the measurement equation as a function of & and ¥, 1 for j =1,... k.
The matrix W3 is an m x m matrix that represents the second-order term of the approximated

YsJ

law of motion for the measurement equation as a function of & and U; for j =1,... k.

We are now ready to show that the system (22) is linear, and if a rank condition is satisfied,

it has only one solution. Define

A (Ym Sty Zt—1> O¢—15 €43 7)

~ ~if ~i
1 Q < g2lg A iy 2:2
\I]y,lgt 1 St \Py,lgt 1 \ij,l t qjy,l
= Yt . y_ . - . - . o . 0_7;
t—1
~ Xt 2 Sy 2 oA i 2.2
1 s ’
\ij,kSt Sy \I/y,kSt Yk St Ty k

and
B (ci:~) = i3 23Y a523) Y
(ch7) = ( (srwz) o (09 )
Let k = m, then B (g};7) is a k x k matrix. If B (¢%;) is full rank, the solution to the system (22)

can be written as
U =B (ch7) A (Y, s}, 21,00 1,€57) .
The next theorem shows how to use this solution to evaluate the approximated measurement

density.

Theorem 5. Let k = m, then B (¢};7) is a k x k matrix. If B (¢i;~) is full rank, the approximated

measurement density can be written as

p (yt = Yt"gi’ Zi—la Ui—b Ei; 7) = det B (Ei; 7) p (Z/{t =B (5?; 7) A (th Si, Zg—lﬁ Ji—lj Ei; 7))
(23)
for each draw in {s, z_,,0}_|, éi}iN:l for allt € {1,..., T}, which can be evaluated given that we

know B! (¢5;7), A (Y, si,2_1,0%_1,€l;7), and the distribution of U;.
Proof. The theorem is a straightforward application of the change of variables theorem. m
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Theorem 5 shows that requirement 1 in assumption 1 holds. Consequently, we can use a
variation of the particle filter adapted for our class of dynamic equilibrium models with volatility
shocks. We are requiring B (g}; ) to be full rank. When can B (};7) not be full rank? B (ei;~)
would fail to have full rank when the impact of volatility innovations are identical across several
elements of Y;. This would mean that the observables lack enough information to tell volatility
shocks apart. If this is the case, a new set of observables would have to be chosen to estimate the
model.

Note also that theorem 5 assumes & = m. Given the notation in section 2.1, this means
that the number of structural shocks equals to the number of observables. This is not always
necessary. What the theorem needs is that the number of volatility shocks equals the number of
observables. Since, to simplify notation, we have assumed that all structural shocks face volatility
shocks, the number of structural shocks equals the number of observables. As mentioned in section
2.1, we could have structural shocks that do not face volatility shocks (this will be the case in
our application to follow). In that case, we could have more structural shocks than observables.
From the theorem, it is also clear that if we used &; rather than I/; to compute the approximated
measurement equation, we would have to solve a quadratic system, a challenging task.

An outline of the algorithm in pseudo-code is:

Step 0: Set t~» 1. Sample N values {si,zﬁ_l,ai_l,ei}ij\il from p(Si, Zi1,%1,&;7) -

Step 1: Compute

1 & ‘ , o
P (:)/t = Yt|Yt_1;7) ~ & Zdet B! (ei;'y) p (Z/It =B (sé;v) A (Yt, Sty %1504 1, ei;'y))
i=1

using expression (23) and the importance weights for each draw

_ det B_l (Si; 7)p (ut = E_l (511,;; 7) A (Yta Sia z;—la O-wz‘;—la 5%; 7)) )
SN det B (el ) p (U =B (el 7) A (Yo, s, 2{_1, 011, €57))

q

) . , . N
Step 2: Sample N times with replacement from {S;\t—hZ;—l\t—hJi—l|t—17€;\t—1}i:1 and
N
probability {¢;},_,. This delivers {Si\wZZ—l\in—ut?gat}i:l'
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Step 3: Simulate {siﬂ,zz,aé,éiﬂ}i:l from the approximated transition equation
/ 1N oer i i ir )/ t) .
( 110 245 2t t+1) |(Stlt’Zt—1|t7at—1|t’5t|t) ,]:(Y),%

Step 4: If t <7, set t~~t+1 and go to step 1. Otherwise stop.

Once we have evaluated the likelihood, we can nest this algorithm either with a McMc to
perform Bayesian inference (as done in our application; see Flury and Shephard, 2011, for technical
details) or with some optimization algorithm to undertake maximum likelihood estimation (as
done, in a model without volatility shocks, by Van Binsbergen et al., 2012). In this last case, care
must be taken to keep the random numbers used in the particle filter constant among iterations
to achieve equi-continuity and to use an optimization algorithm that does not rely on derivatives,

as the particle filter implies an evaluation of the likelihood function that is not differentiable.

4. An Application: A Business Cycle Model with Stochastic Volatility

As an illustration of our procedure, we estimate a business cycle model of the U.S. economy with
nominal rigidities and stochastic volatility. We will show: 1) how we can characterize posterior
distributions of the parameters of interest and 2) how we can recover and analyze the smoothed
structural and volatility shocks. Those are two of the most relevant exercises in terms of the
estimation of dynamic equilibrium models. Once the estimation has been undertaken, there are
many other exercises that can be done with the empirical results. For instance, in the appendix,
we include several of those such as: 1) finding the impulse response functions (IRFs) of the model;
2) evaluating the fit of the model in comparison with some alternatives; and 3) undertaking some
counterfactuals and run alternative histories of the evolution of the U.S. economy.

Before doing so, though, we need to motivate our choice of application. The model that we
present has many strengths but also important weaknesses. Suffice it to say here that since this
model is the base of much applied policy analysis by academics and policy-making institutions, it
is a natural example for this paper. Thus, given that the model is well known, our presentation
will be brief. We will depart only along two dimensions from the standard model: we will have
stochastic volatility in the shocks that drive the dynamics of the economy (the object of interest

in this paper) and parameter drifting in the monetary policy rule. In that way, the likelihood
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has the chance of picking between two of the alternatives that the literature has highlighted to
account for the well-documented time-varying volatility of the U.S. aggregate time series, either
a reduced volatility of the shocks that hit the economy (as in Sims and Zha, 2006) or a different
monetary policy (Clarida et al., 2000), which makes the application of interest in itself.

4.1. Households

The economy is populated by a continuum of households indexed by j and preferences:

o0 1+9
[Eo ; Btd, {log (cjt — heje—1) +vlog (%) - Qatwllj:_ 19} :
which are separable in consumption, ¢;;, real money balances, m;;/p;, and hours worked, [;;. In
our notation, [Eq is the conditional expectations operator, 3 is the discount factor, h controls habit
persistence, 19 is the inverse of the Frisch labor supply elasticity, d; is a shifter to intertemporal
preference that follows log d; = p,log d;_1 + cqoacq4 where e4; ~ N(0,1), and ¢, is a labor supply
shifter that evolves as logyp, = p,logp, 1 + 0,0,E, Where e, ~ N(0,1). The two preference
shocks are common to all households.

The principal novelty of these preferences is that, for both shifters d; and ¢,, the standard
deviations, o4 and o, of their innovations, 4 and e, are indexed by time; that is, they

stochastically move according to:
5 \ 1
logoar = py,logoa—1 + (1 — pgd) 2 nyuqg where ug ~ N(0,1)

and

1
log oyt = p,, log o1+ (1 — piv) ’ NpUot Where uy; ~ N(0,1).

This parsimonious specification introduces only four new parameters, p, , Po,> Nas and 7, while
being surprisingly powerful in capturing important features of the data (Shephard, 2008). All the
shocks and innovations throughout the model are observed by the agents when they are realized.
Agents have, as well, rational expectations about how they evolve over time.

We can interpret the shocks to preferences and to their volatility as reflecting the random
evolution of more complicated phenomena. For example, stochastic volatility may appear as the

consequence of changing demographics. An economy with older agents might be both less patient
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because of higher mortality risk (in our notation, a lower d;) and less prone to reallocations in the
labor force because of longer attachments to particular jobs (in our notation, a lower o).
Although we assume complete financial markets, to ease notation we drop the Arrow securities
implied by that assumption from the budget constraints (they are in net zero supply at the
aggregate level anyway). Households also hold b;; government bonds that pay a nominal gross
interest rate of R;_;. Therefore, the 7 — th household’s budget constraint is given by:
Mt bjt+1 mji—1

_ b
Cjt + l’jt + — 4+ = ’w]’tljt + (Ttu]'t — My 1(19 [th]) kjt71 + + Rtflit + irt -+ Ft
2 Pt Dt Pi

where z; is investment, wj; is the real wage, 7, is the real rental price of capital, u;; > 0 is the
rate of use of capital, z; '® [u;,] is the cost of using capital at rate uj; in terms of the final good,
i, is an investment-specific technological level, T; is a lump-sum transfer, and f; is firms’ profits.
We specify that @ [u] = @ (u— 1) + 22(u — 1)?, a form that satisfies that ®[1] = 0, ®'[-] = 0,
and ®” [-] > 0. This function carries the normalization that v = 1 in the balanced growth path of
the economy. Using the relevant first-order conditions, we can find ®; = @' [1] = 7 where 7 is the
(rescaled) steady-state rental price of capital (determined by the other parameters in the model).
This leaves us with only one free parameter, ®,.

The capital accumulated by household j at the end of period t is given by:

2
kjt = (1 — (5) kjt—l + My 1-— E xjt — Ax Tt
2 Tjt—1

where 0 is the depreciation rate and « is an investment adjustment cost parameter. This function is

written in deviations with respect to the balanced growth rate of investment, A,. The investment-
specific technology level 11, follows a random walk in logs, log i, = A, +1log 11,y + 0,046, With
et ~ N(0,1) and where A, is the drift of the process and ¢, is the innovation to its growth rate.

The standard deviation o, also evolves as:

-

log o, = p,, log o1 + <1 — pgu> ? 1, where u, ~ N(0,1).

Again, we can interpret this stochastic volatility as a stand-in for a more detailed explanation of
technological progress in capital production that we do not model explicitly.

Each household j supplies a different type of labor services /;; that are aggregated by a labor
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packer into homogeneous labor ¢ with the production function ¢ = ( fol [ ;‘% dj) 1 that is rented
to intermediate good producers at wage w;. The labor packer is perfectly competitive and it takes
all wages as given. Households set their wages with a Calvo pricing mechanism. At the start of
every period, a randomly selected fraction 1—#6,, of households can reoptimize their wages (where,

by a law of large numbers, individual probabilities and aggregate fractions are equal). All other

households index their wages given past inflation with an indexation parameter x,, € [0, 1].

4.2. Firms

There is one final good producer that aggregates a continuum of intermediate goods according to

1 e—1 5—%
Yt = (/ (7 di) (24)
0

where ¢ is the elasticity of substitution. The final good producer is perfectly competitive and

the production function:

minimizes its costs subject to the production function (24) and taking as given all intermediate
goods prices py; and the final good price p;.

Each intermediate good is produced by a monopolistic competitor with technology y;; =
Akg (lft) lfa, where k;;_; is the capital rented by the firm, /% is the amount of the “packed”
labor input rented by the firm, and A; is neutral productivity. Productivity evolves as log A; =
Aa+1log Ay 1 + 040 ase ar where Ay is the drift of the process and e4; ~ N (0, 1) is the innovation

to its growth rate. The time-varying standard deviation of this innovation follows:
5 \ 1
logoas = p, , logoa—1+ (1 - pUA) 2 nguas where uqy ~ N(0,1).

Intermediate good producers meet the quantity demanded by the final good producer by
renting Z;ﬁ and k;;_1 at prices w; and ;. Given their demand function, these producers set prices
to maximize profits. However, when they do so, they follow a Calvo pricing scheme. In each
period, a fraction 1 — 6, of intermediate good producers reoptimize their prices. All other firms

partially index their prices by past inflation with an indexation parameter x € [0, 1].
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4.3. The Monetary Authority

The model is closed with a monetary authority that sets the nominal interest rates by following

a modified Taylor rule:

Ry (Rt—1)7R ((Ht)%ﬂ“’f ( yf )’Yy'Yy,t)l_'YR
- = ~LJexp (A £, 95
R R I yg_l/ (Aya) ¢ (25)

The first term on the right-hand side represents a desire for interest rate smoothing, expressed in

terms of R, the balanced growth path nominal interest rate. The second term, an “inflation gap,”
responds to the deviation of inflation from its balanced growth path level II. The third term is
a “growth gap”: the ratio between the growth rate of the economy and A,a, the balanced path
gross growth rate of y?, where y¢ is aggregate demand (defined precisely in appendix 6.2). The
last term is the monetary policy shock, where log &, = o¢0¢ 6¢ with an innovation e¢ ~ N(0,1)

and a time-varying standard deviation, o¢,, that follows an autoregressive process
3
logog = Poe logog—1 + (1 — Pi) NeUgr where ugy ~ N(0,1).

In this policy rule, we have two drifting parameters: the responses of the monetary authority

to the inflation gap and the growth gap. The parameters drift over time as:
log Vi = pypy 108 Vi1 + OxEme and logy,, = p., 1087y, 1 + 0yey where exy e ~ N(0,1).

For simplicity, the volatility of the innovation to this processes is fixed over time. The agents

perfectly observe the changes in monetary policy parameters.

4.4. Equilibrium and Solution

We can characterize the equilibrium of the model in appendix 6.2. This equilibrium conditions

are non-stationary because we have two unit roots in the processes for technology. However, we

= 2
11—«

_1
circumvent this problem by rescaling the model using the variable z; = A/ *u,;~® in the form:

At
exp(Aa)Ai—1’

Kt

— e In
exp(Au)py_1

T k ~ ct S oxp o ~  _ wy T 1 o
by = - Ct:_fxt__tayt_ﬂwt__tart_/'btrtaAt_ and g1, =

ztpy 2zt 2t zt) 2t

the notation of section 2.1 we have that:

25



1. The states of the (rescaled) economy are

~ /
S = (log kt—1,log¢;-1,log T;—1,log Y1, log vy_y, log vy’ , log wy 1, log Ry1,log Ht—1> .

~ !/
2. The structural shocks are Z;, = (log dy, log ¢, log 11,,1og Az, log &, log vy, log vyt) . The pa-

rameter drifts are handled as structural shocks in the state-space representation.

3. The volatility shocks are ; = (log ogs, log 0, 10g 7 11, 10g 0 a1, log 0¢;)', where the last two
zeros correspond to the processes for parameter drifting, which have constant volatilities (see
also in vector U; below). Here, we can see that we do not need as many volatility shocks (5

of them) as structural shocks (7 of them).

4. The innovations to the structural and the volatility shocks are & = (e4t, €1, €15 €Aty Ect Ents Egt)’

_ / 3
and U, = (Uar, Upp, Wur, WAL, Ugt)', Tespectively.

We pick as observables the first difference of the log of the relative price of investment, the log
federal funds rate, log inflation, the first difference of log output, and the first difference of log real
wages, in our notation ); = (—Alog i, log Ry, log IT;, Alog y;, A\ log w;)" . We select these variables
because they bring us information about aggregate behavior (output), the stand of monetary policy
(the interest rate and inflation), and the different shocks (the relative price of investment about
investment-specific technological change, the other four variables about technology and preference
shocks) that we are concerned about. Note that we have the same number of observables as we
do of volatility shocks, as required by theorem 5.

We follow the steps in section 2.2 and employ a second-order perturbation around the rescaled
steady-state to approximate this equilibrium and build the associated state-space representation
(appendix 6.4 gives more details). The second-order approximation is even more relevant in our
application because, to complicate matters, a linearization would also imply that the parameter

drift in the Taylor rule would disappear as well from the equilibrium dynamics (see appendix 6.3).

4.5. Data and Estimation

We estimate our model using the five time series for the U.S. economy described above. Our
sample covers 1959.Q1 to 2007.Q1, with 192 observations. Because of space considerations, we

stop at 2007 to avoid having to deal with the recent financial crisis, which would make it difficult
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to appreciate the points we want to illustrate about how to econometrically deal with stochastic
volatility. This could be fixed at the cost of a lengthier discussion. Appendix 6.5 explains how we
construct the series.

Once we have evaluated the likelihood, we combine it with a prior. We pick flat priors on
a bounded support for all the parameters. The bounds are either natural economic restrictions
(for instance, the Calvo and indexation parameters lie between 0 and 1) or are so wide that
the likelihood assigns (numerically) zero probability to values outside them. Bounded flat priors
induce a proper posterior, a convenient feature for our exercises below.

We resort to flat priors for two reasons. First, to reduce the impact of presample information
and show that our results arise mainly from the shape of the likelihood and not from the prior
(although, of course, flat priors are not invariant to reparameterization). Thus, the reader who
wants to interpret our posterior modes as maximum likelihood point estimates can do so. Sec-
ond, because as we learned in Ferndndez-Villaverde et al. (2010c), eliciting priors for stochastic
volatility is difficult, since we deal with unfamiliar units, such as the variance of volatility shocks,
about which we do not have clear beliefs. Flat priors come, though, at a price: before proceeding

to the estimation, we have to fix several parameters to reduce the dimensionality of the problem.

Table 4.1: Fixed Parameters

6] h | ¢| o ) Q kK | e |n P2 | Py Py,
099 109 |8|1.17{0.025|0.21 [ 9.5|10| 10| 0.001 |095] 0 | O

Oy

Table 4.1 lists the fixed parameters. Our guiding criterion in selecting them was to pick conven-
tional values in the literature. The discount factor, 5 = 0.99, is a default choice, habit persistence,
h = 0.9, matches the observed sluggish response of consumption to shocks, the parameter con-
trolling the level of labor supply, ¥ = 8, captures the average amount of hours in the data, and
the depreciation rate, 0 = 0.025, induces the appropriate capital-output ratio. The elasticities of
substitution, e = n = 10, deliver average mark-ups of around 10 percent, a common value in these
models. We set the cost of capital utilization, ®, to a small number to introduce some curvature
in this decision. Three parameter values are borrowed from the point estimates from a similar
model without stochastic volatility or parameter drifting presented in Ferndndez-Villaverde et al.
(2009). The first is the inverse of the Frisch labor elasticity, ¢ = 1.17. As argued by Chetty et
al. (2011), this aggregate elasticity is compatible with micro data, once we allow for intensive

and extensive margins on labor supply. The second is the coefficient of the intermediate goods
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production function, o = 0.21. This value is lower than the common calibration of Cobb-Douglas
production functions in real business cycle models because, in our environment, we have positive
profits that appear as capital income in the National Income and Product Accounts. Finally,
the adjustment cost, x = 9.5, is in line with other estimates from similar models (k would be
particularly hard to identify, since investment is not one of our observables).

The autoregressive parameter of the evolution of the response to inflation, p, , is set to 0.95.
In preliminary estimations, we discovered that the likelihood pushed this parameter to 1. When
this happened, the simulations became numerically unstable: after a series of positive innovations
to log vy, the reaction of nominal interest rates to inflation could be too tepid for too long. The
0.95 value seems to be the highest possible value of p, such that the problem does not appear.
The last two parameters, Py, and o,, are equal to zero because, also in exploratory estimations,
the likelihood favored values of o, ~ 0. Thus, we decided to forget about them and make v, , = 1.

To find the posterior, we proceed as follows. First, we define a grid of parameter values and
check for the regions of high posterior density by evaluating the likelihood function in each point
of the grid. This is a time-consuming procedure, but it ensures that we are searching in the right
zone of the parameter space. Once we have identified the global maximum in the grid, we initialize
a random-walk Metropolis-Hastings algorithm from this point. After an extensive fine-tuning of

the algorithm, we use 10,000 draws from the chain to compute posterior moments.

4.6. Results I: Parameter Estimates

Our first empirical result is the parameter estimates. To ease the discussion, we group them in
different tables, one for each set of parameters dealing with related aspects of the model. In all
cases, we report the mode of the posterior and the standard deviation in parenthesis below (in

the interest of space, we do not include the whole histograms of the posterior).

Table 4.2: Posterior, Parameters of Nominal Rigidities and Structural Shocks

‘9p X 0w Xw Pd Py Au Aa
0.8139 | 0.6186 | 0.6869 | 0.6340 | 0.1182 | 0.9331 | 0.0034 | 0.0028
(0.0143) | (0.024) | (0.0432) | (0.0074) | (0.0049) | (0.0425) | (6.6e—5) | (4.le—5)

Table 4.2 presents the results for the nominal rigidities and the stochastic processes for the
structural shocks parameters. Our estimates indicate an economy with substantial rigidities in

prices, which are reoptimized roughly once every five quarters, and in wages, which are reoptimized
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approximately every three quarters. Moreover, since the standard deviations are small, there is
enough information in the data about this result. At the same time, there is a fair amount of
indexation, between 0.62-0.63, which brings a strong persistence of inflation. While it is tempting
to compare our estimates with the micro evidence on the individual duration of prices, in our
model all prices and wages change every quarter. That is why, to a naive observer, our economy
would look like one displaying tremendous price flexibility.

We estimate a low persistence of the intertemporal preference shock and a high persistence of
the intratemporal one. The low estimate of p,; produces the quick variations in marginal utilities
of consumption that match output growth and inflation fluctuations. The intratemporal shock
is persistent to account for long-lived movements in hours worked. We estimate mean growth
rates of technology of 0.0034 (neutral) and 0.0028 (investment-specific). Those numbers give us
an average growth of the economy of 0.44 percent per quarter, or around 1.77 percent on an
annual basis (0.46 and 1.86 percent in the data, respectively). Technology shocks, in our model,
are deviations with respect to these drifts. Thus, we estimate that A, falls in only 8 of the 192
quarters in our sample (which roughly corresponds to the percentage of quarters where measured
productivity falls in the data), even if we estimate negative innovations to neutral technology in

103 quarters.

Table 4.3: Posterior, Parameters of the Stochastic Processes for Volatility Shocks

log oy logo, log o, log o4 log o¢
—1.9834 | —2.4983 | —6.0283 | —3.9013 | —6.000
(0.0726) (0.0917) (0.1278) (0.0745) (0.1471)
Py Po, Ps, Ps, Poe
0.9506 | 0.1275 0.7508 | 0.2411 | 0.8550
(0.0298) (0.0032) (0.035) (0.005) (0.0231)
Na 77<p 77# Na 775
0.1007 | 2.8316 | 0.3115 0.7720 | 0.5723
(0.0083) (0.0669) (0.006) (0.013) (0.0185)

The results for the parameters of the stochastic volatility processes appear in table 4.3. In
all cases, the p’s and the n’s are far away from zero: the likelihood strongly favors values where
stochastic volatility plays an important role. The standard deviations of the innovations of the
intertemporal preference shock and of the monetary policy shock are the most persistent, while the
standard deviation of the innovation of the intratemporal preference shock is the least persistent.

The standard deviation of the innovations of the volatility shock to the intratemporal preference
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shock, n,, = 2.8316, is large: the model asks for fast changes in the size of movements in marginal

utilities of leisure to reproduce the hours data.

Table 4.4: Posterior, Policy Parameters

YR log 7, I |logyn | ox

0.7855 | —1.4034 | 1.0005 | 0.0441 | 0.145
(0.0162) | (0.0498) (0.0043) | (0.0005) | (0.002)

In table 4.4., we have the estimates of the policy parameters. The autoregressive component
of the federal funds rate is high, 0.7855, although somewhat smaller than in estimations without
parameter drift. The value of v, (0.24 in levels) is similar to other results in the literature and
shows that the likelihood clearly likes parameter drifting, although with mild persistence. The
estimated value of II plus the correction on equilibrium inflation implied by second-order effects
of the solution match the average inflation in the data.® Finally, the estimated value of vy (1.045
in levels) guarantees local determinacy of the equilibrium even if ~y; is temporarily below 1 (see
appendix 6.6 for details).

In appendix 6.7 we plot the impulse response functions of the model implied by our estimates.
This exercise allows us to check that the estimates are sensible and that the behavior of the model
is consistent with the behavior of related models in the literature. In appendix 6.8 we compare our
model against an alternative version without parameter drifting but still with stochastic volatility.
That is, we ask whether, once we have included stochastic volatility, it is still important to allow
for changes in the monetary policy rule to account for the time-varying volatility of U.S. aggregate
data over the last several decades. The results show that, even after controlling for stochastic
volatility, the data strongly prefer a specification where the monetary policy rule has changed over
time. In appendix 6.9 we show, though, that this finding does not imply that volatility shocks did
not play an important role in the time-varying volatilities of U.S. aggregate time series. In other
words, both stochastic volatility and parameter drifting are key parts of a successful dynamic

equilibrium model of the U.S. economy.

3 Also, these second-order effects enormously complicate the introduction of time-variation in II. The likelihood
wants to match the moments of the ergodic distribution of inflation, not the level of II, which is inflation along
the balanced growth path. When we have non-linearities, the mean of that ergodic distribution may be far from
II. Thus, learning about II is hard. Learning about a time-varying II is even harder.
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4.7. Results II: Smoothed Shocks

Figure 4.1 reports the log-deviations with respect to their means for the smoothed intertemporal,
intratemporal, and monetary shocks and deviations of the growth rate of the investment and
technological shocks with respect to their means (+2 standard deviations). To ease reading of the
results, we color different vertical bars to represent each of the periods at the Federal Reserve:
the McChesney Martin years from the start of our sample in 1959 to the appointment of Burns in
February 1970 (white), the Burns-Miller era (light blue), the Volcker interlude from August 1979
to August 1987 (grey), the Greenspan times (orange), and Bernanke’s tenure from February 2006

(yellow).
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Figure 4.1: Smoothed intertemporal (logd;) shock, intratemporal ( log ¢,) shock, investment-specific

(log 11,) shock, technology ( log A}) shock, and monetary policy (log&,) shock +/- 2 s.d.

We see in the top left panel of figure 4.1 that the intertemporal shock, log d;, is particularly high
in the 1970s. This increases households’ desire for current consumption (for instance, because of
the entrance of baby boomers into adulthood). A higher aggregate demand triggers, in the model,
the higher inflation observed in the data for those years. The shock has a dramatic drop in the
second quarter of 1980. This is precisely the quarter in which the Carter administration invoked

the Credit Control Act (March 14, 1980). Schreft (1990) documents that this measure caused
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turmoil in financial markets and, most likely, distorted intertemporal choices of households, which
is reflected in the large negative innovation to logd;. The low values of logd; in the 1990s with
respect to the 1970s and 1980s eased the inflationary pressures in the economy.

The shock to the utility of leisure, log ¢,, grows in the 1970s and falls in the 1980s to stabilize
at a very low value in the 1990s. The likelihood wants to track, in this way, the path of average
hours worked: low in the 1970s, increasing in the 1980s, and stabilizing in the 1990s. Higher hours
also lower the marginal cost of firms (wages fall relative to the technology level). The reduction
in marginal costs also helped to reduce inflation during Greenspan’s tenure.

The evolution of the investment-specific technology, log fi,, shows a sharp drop after 1973 (when
it is likely that energy-intensive capital goods suffered the consequences of the oil shocks in the form
of economic obsolescence) and large positive realizations in the late 1990s (our model interprets
the sustained boom of those years as the consequence of strong improvements in investment
technology). These positive realizations were an additional help to contain inflation during the
1990s. In comparison, the neutral-technology shocks, log A}, have been stable since 1959, with
only a few big shocks at the end of the sample.

The evolution of the monetary policy shock, log&,, reveals large innovations in the early 1980s.
This is due both to the fast change in policy brought about by Volcker and to the fact that a Taylor
rule might not fully capture the dynamics of monetary policy during a period in which money
growth targeting was attempted. Sims and Zha (2006) also find that the Volcker period appears
to be one with large disturbances to the policy rule and argue that the Taylor rule formalism can
be a misleading perspective from which to view policy during that time. Our evidence from the
estimated intertemporal, intratemporal, and investment shocks suggests that monetary authorities
faced a more difficult environment in the 1970s and early 1980s than in the 1990s.

As a way to gauge the level of uncertainty of our smoothed estimates, we also plot in figure
4.1 the same shock (+2standard deviations). The lesson to take away from this figure is that, in

all cases, the data are informative about the history we just narrated.
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Figure 4.2: Smoothed standard deviation shocks to the intertemporal (log o4 ) shock, the intratemporal
(log 0 4¢) shock, the investment-specific (log o) shock, the technology (log o 4¢) shock, and the

monetary policy (log og;) shock +/- 2 s.d.

We move now, in figure 4.2, to plot the evolution of the volatility shocks, all of them in log-
deviations with respect to their estimated means (plus/minus two standard deviations). We see
in this figure that the standard deviation of the intertemporal shock was particularly high in the
1970s and only slowly went down during the 1980s and early 1990s. By the end of the sample,
the standard deviation of the intertemporal shock was roughly at the level where it started. In
comparison, the standard deviation of all the other shocks is relatively stable except, perhaps,
for a large drop in the standard deviation of the monetary policy shock in the early 1980s as
well as large changes in the standard deviation of the investment shock during the period of oil
price shocks. Hence, the 1970s and the 1980s were more volatile than the 1960s and the 1990s,
creating a tougher environment for monetary policy. This result also confirms Blanchard and
Simon’s (2001) and Nason and Smith’s (2008) observation that volatility had a downward trend
in the 20th century with an abrupt and temporal increase in the 1970s. Also, from the size of the
plus/minus two standard deviations, we conclude that the big movements in the different series

that we report can be ascertained with a reasonable degree of confidence.
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Figure 4.3: Smoothed path for the Taylor rule parameter on inflation +/- 2 standard deviations.

Finally, in figure 4.3, we plot the evolution of the response of monetary policy to inflation
plus/minus a two-standard-deviation interval. In particular, we graph ~vp,. This graph shows
us an intriguing narrative. The parameter started the sample around its estimated mean, slightly
over 1, and it grew more or less steadily during the 1960s until reaching a peak in early 1968.
After that year, it suffered a fast collapse that took it below 1 in 1971. To put this evolution
in perspective, it is useful to remember that Burns was appointed chairman in February 1970.
The parameter stayed below 1 for all of the 1970s. The arrival of Volcker is quickly picked up by
our smoothed estimates: it increases to over 2 after a few months and stays high during all the
years of Volcker’s tenure. Interestingly, our estimate captures well the observation by Goodfriend
and King (2007) that monetary policy tightened in the spring of 1980 as inflation and long-run
inflation expectations continued to grow. Its level stayed roughly constant at this high during
the remainder of Volcker’s tenure. But as quickly as it rose when Volcker arrived, it went down
again when he departed. Greenspan’s tenure at the Fed meant that, by 1990, the response of the
monetary authority to inflation was again below 1. Moreover, our estimates are relatively tight.
Ferndndez-Villaverde et al. (2010a) discuss how the results of the estimation relate to historical

evidence.
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5. Conclusion

In this paper, we have shown how to estimate dynamic equilibrium models with stochastic volatil-
ity. The key of the procedure is to realize that a second-order perturbation to the solution of this
class of models has a very particular structure that can be easily exploited to build an efficient
particle filter. The recent boom in the literature on dynamic equilibrium models with stochastic
volatility suggests that this procedure may have many uses. Our characterization of the solution
might also be, on many occasions, of interest in itself to understand the dynamic properties of
the equilibrium even if the researcher does not want to estimate the model.

As an application to illustrate how the procedure works we have estimated a business cycle
model with both stochastic volatility in the structural shocks that drive the economy and para-
meter drifting in the monetary policy rule. Such a model is motivated by the need to have an
empirical framework where we can account for the time-varying volatility of U.S. aggregate time
series. In particular, we have explained how you get point estimates in such a model and how
to recover and analyze the smoothed structural and volatility shocks. Finally, through different
comments -even if brief and not exhaustive- we have discussed the different empirical lessons that

one can get from all those steps.
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6. Technical Appendix (Not for Publication)

This technical appendix is organized as follows. First, it presents the proofs of theorems 2 and 3.
Second, it describes the equilibrium of the model in more detail. Third, it shows how parameter
drifting in the monetary policy rule does not appear in the first-order approximation. Fourth, it
focuses on describing how we efficiently compute the model. Fifth, it offers details on how we
elaborated the data. Sixth, it discusses the determinacy of the model. Finally, it includes some
additional empirical results not reported in the main text regarding the IRF of the model, the fit

of the model in comparison with some alternatives, and some counterfactuals.

6.1. Proofs
6.1.1. Theorem 2

We start by proving theorem 2. In this theorem, we characterize the first-order derivatives of
the policy functions h and g evaluated at the steady state. We first show that the first partial
derivatives of h and g with respect to any component of ¥; 1, U, or A evaluated at the steady state
are zero (in other words, that the first-order approximation of the policy functions do not depend
on volatility shocks nor their innovations nor on the perturbation parameter). Before proceeding,
note that using (2), we can write 2,1, in a compact manner, as a function of Z;, %y, &1, Uy,
and A

Zi1 =6 (246,54, A1, AU 15 7) (26)

that using (3) ¥;,1 can be expressed as a function of ¥, U1, and A
Y1 = 0% + nAU 1, (27)
that using (4) we can write Z; as a function of Z;, 1, %, 1,&;, and U,
Zy=6(211, 81, E,Uys ), (28)
and that using (5) ¥; can be expressed as

Et = 19215_1 + nut (29)
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where ¥ and 7 are both m x m diagonal matrices with diagonal elements equal to ¥; and
1

(1 —97)2 n; respectively. If we substitute the policy functions (6)-(8) and (26)-(29) into the

set of equilibrium conditions (1), we get that

F (St7 thla Etfla gtauta A) =

g (h (St, 21,21, gtauta A) ) S (thb X1, gt>ut> 719th1 + 77ut, A5t+1, AutJrla A) )
B f g(Staztbetfl;gt;ut;A)7h(8tazt7172t7175t7ut7/\>7St7 =0
S (§ (Zt—la Zt—la gta ut) ) ﬁzt—l + Tluta Agt-i—l) Aut+1) NS (Zt—h Et—h 5157 ut)

where, to ease notation, we do not explicitly write that the functions above depend on ~.

Proof. We want to show that

[hzt—l]? - [QZH];’Q =[]} = o)} = [ha]™ = [ga]” =0

fori; € {1,...,n},is € {1,...,k},and j € {1,...,m}.
We show this result in three steps that basically repeat the same argument based on the

homogeneity of a system of linear equations:

1. We write the derivative of the i — th element of F’ with respect to the j — th element of ¥, ;

as

[th—l];‘ = [fytﬂ}; ([gSt}Z [hztfl]j'l + [gztfl]j? ﬁj) + [fyt]éz [gEth? + [fStJrl]; [h‘zt—l];l =0

i1

fori e {1,...,k+n+m} and j € {1,...,m}. This is a homogeneous system on [hztil]j
and [ggtfl}j? foriy € {1,...,n}, i € {1,...,k},and j € {1,...,m}. Thus

[hzt,l}? = [gzt,l]i? =0

j
fori; € {1,...,n},is € {1,...,k},and j € {1,...,m}.

2. We write the derivative of the i — th element of F' with respect to the j — th element of U,

as

By = [ty (Lol uadf + [gs] 2 (U= 92)2 0,) + Uiy Lol + [fis ], Dreallt =0
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fori e {1,...,k+n+m}andj € {1,...,m}. Since we have already shown that [ggt_l}? =

12

and [gy, ]

11

0 forip € {1,...,k} and j € {1,...,m}, this is a homogeneous system on [hut]]'.
fori; € {1,...,n}, i € {1,...,k},and j € {1,...,m}. Thus

[hut];'l = [gut];‘z =0
fori; € {1,...,n},is € {1,...,k},and j € {1,...,m}.
. Finally, we write the derivative of the i — th element of F' with respect to A as

[FA]' = [fyt“]jz ([gst]ﬁ [ha]" + [QA]Zé) + [fyt]éz [ga]™ + [fsm}; [ha]" =0

for i € {1,...,k+n+m}. Since this is a homogeneous system on [hx]" and [ga]? for

ip € {1,...,n} and iy € {1,...,k}, we have that
[ha]™ = [9a]" =0

fori; € {1,...,n} and is € {1,... k}.

6.1.2. Theorem 3

Let us now prove theorem 3. We show, among other things, that the second partial derivatives of

h and g with respect to either logo;; or u;; and any other variable but ¢;, are also zero for any

i€ {l,...,m}. We divide the proof into three parts.

Proof, part 1. The first part of the proof deals with the cross-derivatives of the policy

functions h and g with respect to A and any of S;, Z;_1, ¥;_1, &, or U; and it shows that all of

them are equal to zero. In particular, we want to show that

[has )i = lgas]? =0

fori; € {1,...,n},is € {1,...,k},and j € {1,...,n} and

[haz, ]

i1

J

12

J

11

J

= [9/\7&_1];2 = [hA,st]? = [QA,&]? = [hA,ut]é-l = [QA,ut]é»2 =0

- [-gA,Zt—l} = [hAZz_l]
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fori; € {1,...,n},is € {1,...,k},and j € {1,...,m}.
We show this result in five steps. We again exploit the homogeneity of a system of linear

equations.

1. We consider the cross-derivative of the ¢ — th element of F' with respect to A and the j —th

element of S;

[Fasly = [yl ([9&]2 [has ) + [gns)? [hst]?) + i, lons )7 + [fsaly, has]) =0

fori e {1,...,k+n+m} and j € {1,...,n}. This is a homogeneous system on [hAvgt];1
and [9A78t]§2 fori; € {1,...,n},io € {1,...,k},and j € {1,...,n}. Thus

has]) = logas]? =0

fori; € {1,...,n}, o €{1,...,k},and j € {1,...,n}.

2. We consider the cross-derivative of the i — th element of F' with respect to A and the j —th
element of Z;_;

i

[FA,Zt—l}j‘ = [f%ﬁ-l}; <[93t]2 [hA,Zt—l:Ij'l + [gA,St]:i [hzt—l}jl + [gA,Zt—Ji-z pj)

+ [fyt]éz [gA’thl}? + [fStJrJ; [hA:thJ? =0

fori e {1,....k+n+m} and j € {1,...,m}. Since [gA73t];2 =0 for iy € {1,...,k} and
Jj €{1,...,n}, this is a homogeneous system on |:hA7Zt71:|j‘1 and [gA7Zt7J;2 fori; € {1,...,n},

i €{1,...,k},and j € {1,...,m}. Hence

i1

[hA,zt_Jj = [QA,zt_J;Q =0

fori; € {1,...,n},is € {1,...,k},and j € {1,...,m}.

3. We consider the cross-derivative of the ¢ — th element of F' with respect to A and the j —th
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element of ;_;

[FA,Et—l]j‘ - [fyt+1j|z:2 ([gst]z:? [hA,th];l + [gA,Eth;'Q 19])

+ [fstJrly [hA7Et7J;1 -0

11

12
J

+ [fyt]; [gA,Eth

11

forie{1,...,k+n+m}andj € {l,...,m}. This is a homogeneous system on [hmgtﬂ]j
and [gAzt_l]j.z fori; € {1,...,n}, i € {1,...,k}, and j € {1,...,m}. Hence

i1

i [gA,Et_Ji? =0

[has, ] ;
fori; € {1,...,n},is € {1,...,k},and j € {1,...,m}.

. We consider the cross-derivative of the i — th element of F’ with respect to A and the j —th

element of &,

[FA,&]; = [fyHJ; <[gst]ﬁf [hA,é‘t];} + [gA,St]Zi [hgt];,l + [gA,Zt_l];? o expﬁj log Gj,t—l)

i

-+ [fyt];Z [g/\,gt];'z + [f8t+1:|7;1 [h,A,gt];l = 0

forie{l,....,k+n+m}and j € {1,...,m}. Since [91\72#1};-2 =0 foriy € {1,...,k} and

j€e{l,...,m}and [gA,gt]j? =0forip € {1,...,k} and j € {1,...,n}, this is a homogeneous
system on [hA,,gt]E.1 and [gA,gt];? fori; € {1,...,n},ix € {1,...,k},and j € {1,...,m}. Thus

hae) = lgael? =0

fori; € {1,...,n}, s € {1,...,k},and j € {1,...,m}.

. We consider the cross-derivative of the i — th element of I’ with respect to A and the j —th

element of U,

Fazaly = [yl (1952 aaal) + [oame ] (1= 92)7n))

+ [fyt]; [gA,Z/lt];? + [f3t+1:|zl []’LA,Z/Q]? = 0

forie {1,....,k+n+m}and j€ {1,...,m}. Since we have shown that [gAzt_l]j.Q =0 for
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io € {l,...,k}and j € {1,...,m}, we have that the above system is a homogeneous system

on [hag,)? and [gag]? for iy € {1,....n}, i € {1,... .k}, and j € {1,...,m}. Then
[h/\,ut];"l = [g/\,ut]j'g =0

fori; € {1,...,n},is € {1,...,k},and j € {1,...,m}.

Proof, part 2. The second part of the proof deals with the cross-derivatives of the policy
functions h and g with respect to ¥;_; and any of &;, Z;_1, ¥;_1, or & and it shows that all of
them are equal to zero with one exception. In particular, we want to show that

(s, x5 = losm ], =

forile{l,...,n}, iQE{l,...,k},jlE{l,...,n}, andeE{l,...,m},

12 i1 12

[th—LZt—Jil - [gzt—lzzt—l}jlyjé - [hzt—lvzi—l]jl,jz - [gzt—l’zt—l}jh]é -

J1,J2
fori; € {1,...,n}, i € {1,...,k}, and j1,j2 € {1,...,m}, and

[hgt,zt—l];117j2 = [ggtyzt—l};?l,jQ =
for il € {1,...,7?,}, iQ € {1,...,k}, and jl,jg € {1,,m} lfjl 7éj2
We show this result in four steps (and where we have already taken advantage of the terms

that we know to be equal to zero from previous derivations).

1. We consider the cross-derivative of the i —th element of F' with respect to the j; —th element
of S; and the j; — th element of ¥;

7 12

[FSt,Zt—l]j‘hj2 = [fyt+1]; ([9&]2 [hst,ﬁt&}jlh + [gst,ztfl]ihjé [hsf];ll 19j2)
12

J1,J2

+ |:f$t+1j|; [hSt,Et,Jil =0

J1,J2

+ [fyt]; [gstyztfl]

forie {1,....k+n+m}, j1 € {1,...,n}, and j» € {1,...,m}. This is a homogeneous

11 2

system on [hghgt_l]]hh and [gst,gt_l}jhh fori; e {1,...,n}, i € {1,...,k}, 1 € {1,...,n},
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and jo € {1,...,m}. Therefore

[hSt,Eth u = [gSt,Et,J 2 =0

Ji.j2 Ji.j2
fori; € {1,...,n},ia € {1,...,k}, j1 €{1,...,n}, and j, € {1,...,m}.

2. We consider the cross-derivative of the i —th element of F' with respect to the j; —th element
of Z,_1 and the j5 — th element of ¥;

)
F |
[ Zi-1,%0-11 jy ja

= [yl ([Qst]ﬁf [z s )+ [asosa ], [z 05 + (92008007 Pﬁ%)

+ [fStJrJ ; [hzt7172t71:|

i2

J1,J2

i1 .
J1ge

+ [fyt]; [gztflyztfl]

fori e {1,...,k+n+m}, and ji, j» € {1,...,m}. Since we just found that [gst,zt,l]iz =

J1,J2
0 for is € {1,...,k}, j1 € {1,...,n}, and j, € {1,...,m}, this is a homogeneous system

on [th—l,Et_l}Z‘l' and [ggt_hgt_l}:’. for iy € {1,...,n}, i € {1,...,k}, and j1,j2 €

J1.d2 J2
{1,...,m}. Therefore

[hZFLZFJiI = [thfl,Et,JZé =0

J1.J2 J1:J2
for i, € {1,...,%}, 19 € {1,...,]{7}, and ji,J2 € {1,,m}

3. We consider the cross-derivative of the ¢ —th element of I’ with respect to the j; —th element

of ;1 and the jy — th element of ¥;

7
[Pzl =

[yenls, ([9&]2 [ e ST 19]'1793‘2>

+ [fyt]z:Q [gth,Zt—l];?jz + [fStJrlT: [hzt*hzt*]zw =0

21

for i € {1,...,k+n+m} and ji,jo € {1,...,m}. This is a homogeneous system on
[hzt—lvzt_J“ and [ggt_hgt_l}?l,]é fori; € {1, L. ,TL}, 19 € {1, Ceey k’}, andjl,jg € {1, .. ,m},

J1,J2
therefore
[hztfl,zt—l];‘ll’jz = [gzt—hztfl};j,]é -
for il S {1,...,71}, ig € {1,...,k}, andjl,jg € {1,,m}
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4. We consider the cross-derivative of the i —th element of F' with respect to the j; —th element

of & and the j; — th element of ¥, 1 if j; # jo

[th72t_1];1,j2 =
[fyHl]; ([gst];? [h5t7gt71}27j2 + [gst,zt,l}zjm [h&g];ll 19]'2 + [thfhﬂtfl};zl,h 0 jy eXpﬂh logoj i1 ﬂj2>
+[fyl;, [gst,ztfl};?,jz + [fsunl, [h&,&flﬂ,ﬁ =0

fori € {1,...,k+n+m} and ji,j» € {1,...,m}. Since we know that [gzt_lvzt_l}h =

J1,J2

[gst,gt_l]jfh = 0 for iy € {1,...,k}, j € {1,...,n}, and j1,jo € {1,...,m}, this is a
homogeneous system on [hgtygtil};i’h and [ggt’ztil];j’jz fori; € {1,...,n}, iy € {1,... k},

and jq, 72 € {1,...,m} if j; # jo. Therefore

= [g&,ztﬂ}h =0

Ji.J2

(51

J1,J2

[hc‘:tyxtq]

forile{l,...,n}, igE{l,...,k}, andjl,jQG{l,...,m} if j; %jg

Note that if j; = jo, we have that

[th7zt71];17j1 = [fyt+1:|22 *
1

Ji:g1

+ [gst,xt—l}m [hgt]; 19]'1—’_

11,J1

[gst]Z [hgtyztfl}

*
<[gzt_1,2t_1]j217j1 + |ith_1j|]i> 0 expﬁjl logoj,i—1 19],1
+ [fyt]ZQ [g&,zt—l]jiﬁ + [f5t+1Ll [hgtyzt—l}jlhjl
+ <[fzt];'1 + [th.H};'l ph) 04, eXpﬂh logojy,t—1 19]1 =0
and since [fgt];l and [fgm];l are different from zero in general for i € {1,...,k+n+m}

and j; € {1,...,m}, we have that this system is not homogeneous and

11

J1,J1

= [gst,zt—Jiz 7é 0

[h5t721—1] 1.1

forile{l,...,n}, iQE{l,...,k}, andjle{l,...,m}.

Proof, part 3. The final part of the proof deals with the cross-derivatives of the policy
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functions h and g with respect to U; and any of S;, Z;_1, ¥;_1, &, or U; and it shows that all of
them are equal to zero with one exception. In particular, we want to show that
12

[hSmUt];‘i,jz = lgsiul}, ;, =0

fori; € {1,...,n}, i€ {1,...,k}, 1 €{1,...,n}, and jo, € {1,...,m},

(hzaa); o, = 9zl 5 = (o], = lose s, = Ty, = Lol ,

fori; € {1,...,n}, i € {1,...,k}, and jy,jo € {1,...,m}, and

[hgt Ut ];11 g2 [ggt vut];?l J2

for i; € {1,...,77,}, 19 € {1,...,]{3}, J1,J2 € {1,...,7’77,}, and j; 7&]2
Again, we follow the same steps for each part of the result as before and use our previous

findings regarding which terms are zero.

1. We consider the cross derivative of the ¢ —th element of F' with respect to the j; —th element

of S; and the j, — th element of U

; i i i i i 1
[FSt,Ut]jth = [fyt+1:|i2 ([gst]i? [h’Styz/{t:Iji,jQ + [gstyzt—l]ii]é [hst}jll (1 - 19?2) ’ 77j2)

+ [fyt]; [gSt,Ut];‘?,jz + [fSH'JZl [hst,ut];"i,h =0

fori e {1,...,k+n+m}, j1 € {1,...,n}, and jo € {1,...,m}. Since [gst’zt—l}?ljz =0
for i € {1,...,k}, j1 € {1,...,n}, and j» € {1,...,m}, this is a homogeneous system on
[hst,ut];i’h and [gghut];i’jz.Therefore

[hSt7Ut];ll7j2 - I:gsi7ut:|.;?l’j2 - O
fori; € {1,...,n}, i € {1,...,k}, 1 €{1,...,n}, and jo, € {1,...,m}.

2. We consider the cross-derivative of the 1 —th element of F’ with respect to the j; —th element
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of Z;_1 and the j, — th element of U,

[th,l,ut]i- =

+lasmal, el (L= 9)
j1,jo Pin (1- 192 ) M,
+ [fseal, [hzeaa]? . =0

J1,J2

95.)% [hzi 2],

[fyt }z
T +|igzt7172t71i|

[fyt]zg [gzt 17Ut]

Ji,J2

= [gst,Zt—l]i‘Q‘ - 0

J5J2

fori e {1,...,k+n+m}, and j1,j» € {1,...,m}. Since [gztfl,Ethji i
forio € {1,...,k}, 7 €{1,...,n}, and ji, jo € {1,...,m}, this is a homogeneous system on
[hzt 1%] and [ggt_l,ut}z’h for iy € {1,...,n}, i € {1,...,k}, and j1,j2 € {1,...,m}.

Therefore

J1,J2

= [gztihut]i? .= 0

J1,J2

(51

J1,J2

[hztflvut]
for i, € {1,...,%}, 19 € {1,...,]{?}, and ji, jo € {1,,m}

. We consider the cross-derivative of the i —th element of F' with respect to the j; —th element

of ;1 and the js — th element of U,

[thfl’ut];hjz -
[fytﬂ]; ([gsz] [hEt 17Ut]jl o + [gztfl,zt—l];j’jz 19 (1 - 192 ) 77]2)
+ [fyt]z [gEt 11/&]]1 o [fStJrJ; [hztfhut];ll"h =0

12

for i € {1,....,k+n+m}, and ji,jo € {1,...,m}. Since [ggt7172t71}j1j2 = 0 for iy €

(51

{1,...,k}, and ji,j52 € {1,...,m}, this is a homogeneous system on [hEt_l,ut]jl i and

[gEt 1,Ut}]‘2 J2 for iy € {1; . ,n}7 iy € {17 SRR k}a and ji, j2 € {1’ T ’m}' Therefore
i1 2
[hzt—lzuf]jhjé - [gzt_l’ut]th =0

for il S {1,...,77,}, ig € {1,...,k},j1,j2 € {1,,m}

. We consider the cross-derivative of the 1 —th element of F' with respect to the j; —th element
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of U; and the j, — th element of U,

[Fut,ut]A -

J1,J2

[fyt+1}:;2 <|:gzt71’2t71]j1 Jo ( — '192 ) 77j1 (1 — 192 ) 7]]2 + [gSt]Z [hlzltl/lt];“lhjz)

+ [fyt}zg [gut,ut];zhh + |:f$t+1}zl [huhut];lhh =0

i2

for i € {1,....,k+n+m} and ji,j» € {1,...,m}. Since [gs, , 5, lejQ = 0 for iy €

{1,...,k}and ji, j, € {1,...,m}, this is a homogeneous system on [hy, 1] . and [ge, 14,]"

fori; € {1,...,n}, i € {1,...,k}, and j1,j2 € {1,...,m}. Therefore

Ji.j2 J1,J2

[hut Mt]]l 2 [guf 7“’5];21 g2 T

for il S {1,...,71}, ig € {1,...,]{}, and jl,jg € {1,,m}
. Finally, consider the cross-derivative of the ¢« — th element of F' with respect to the j; — th
element of & and the j, — th element of U, if j; # jo

[F‘S’f ’Mt]h J2

. - 1
[gSt]i? [h&,ut]jl 2 + [gSuEt 1]1? g2 [ 5t J1 ( 19?2) ’ Mja
1
2

i2 ) logo; _ 92
+ [thq,Etfl]jl’h 0j, €XP V1 et (1 19 ) M5,

|:fyt+1:| ;

+ [fyt]zg [ggt,ut];‘?,jz + |:f3t+1:|zl [h'gt,ut];‘;jz =0

12

forie {1,....,k+n+m} and ji1,jo € {1,...,m}. Since [ggtfl,gtfl]i2 =0

o = (9020

for i € {1,...,k}, j € {1,...,n}, and j1,j2 € {1,...,m}, this is a homogeneous system

and [ge, 4" 2 foriy € {1,...,n}, i € {1,...,k}, and j,jo € {1,...,m} if

on [hS“MJ J1,J2

J1,J2

j1 # Jo. Therefore

(el o = 98], 5, = 0

for il S {1,...,77,}, ig € {1,...,k}, andjl,jg € {1,,m} lfjl #]2
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Note that if j; = jo, we have that

[th,ut];'hjl =
1

([gztfl,zt—l];?lujl + [gzt—l];i> Tj1 expﬁh 08 71,1 (1 - ?9321) ’ My

[fyt+1j|z: . 1 . .
’ + [gSt,Et—l]iijl [h’gt];ll (1 o 1931) ’ Mjy + [gSt]Z [h‘gt’ut];'lhh
+ [fyt]; [ggmut}j'zl,jl + |:f5t+1:|7;‘1 [hgt,ut]ji,jl

. ; oo 1
+ (szt];l + Pj [fzt+1:|j1> Tj1 eXpﬁ“ 108 751,01 (1 - 19?1) ’ Ny = 0

and since [fgt]é-l and [fgtﬂ}; are different from zero in general for i € {1,...,k+n+m} and

J1 € {1,...,m}, we have that this system is not homogeneous and hence

[hr‘:tﬂt];‘zl,jl = [ggtvut]?l,jl 7& 0

fori; €{1,...,n},is € {1,...,k},and j; € {1,...,m}. =

6.2. Equilibrium

In this section we describe the equilibrium conditions of the model. First, we introduce the ones
related to the household, then the ones related to the firm and the monetary authority, and finally

we present the market clearing and aggregation conditions.

6.2.1. Households

We can define two Lagrangian multipliers, Aj;, the multiplier associated with the budget con-
straint, and ¢;; (the marginal Tobin’s Q), the multiplier associated with the investment adjust-
ment constraint normalized by Aj;. Thus, the first-order conditions of the household problem with

respect to cji, bji, uj, kj, and x5 can be written as:

dy (Cjt - hcjtfl)_l - bﬁEtdtH (Cjt+1 - tht)_l = )\jt7 (30)
R
Aje = ﬁEt{)‘jt+1H_t}7 (31)
t+1
o= py O [ug] (32)
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A _
qjt = PE { ;\T (1= 0) gjes1 + resrtjisr — pgy @ [th+1])} ; (33)
]

and

. . , s . . 2
1= qup (1 v [ Ljt } v [ Zjt } Zjt ) + BEqjes1ftyy Gty {%tﬂ] (%tﬂ) C(34)

Tjt—1 Tjt—1] Tj—1 )\jt Tt Tt

The first-order conditions of the “labor packer” imply a demand function for labor:

and, together with a zero profit condition wl¢ = fol wjiljidj, an expression for the wage:

1
1 - .m
wt:</ wjt"dj) :
0

Households follow a Calvo pricing mechanism when they set their wages. At the start of every
period, a randomly selected fraction 1 — 6, of households can reoptimize their wages. All other
households simply index their nominal wages given past inflation with an indexation parameter
Xw € [0,1].

Since we postulated in the main text both complete financial markets for the households
and separable utility in consumption, the marginal utilities of consumption are the same for all
households. Thus, in equilibrium, cj; = ¢, wjr = w, kjr—1 = ki, Tjr = T4, Gjr = G, A\t = A, 