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1 Introduction

Program evaluation has long been a important part of economics, from the Negative Income Tax

experiments to the wave of recent randomized control trials (RCTs) in development, health, and

other fields. Often, evaluations from one or more sample sites are generalized to make a policy

decision for a larger set of target sites. Replication is valued because program effects can often vary

across sites due to differences in populations, treatment implementation, economic environments.

As Angrist and Pischke (2010) write, “A constructive response to the specificity of a given research

design is to look for more evidence, so that a more general picture begins to emerge.” If a program

works well in a number of different replications, we might advocate that it be scaled up.

Formally, this logic involves an “external unconfoundedness” assumption which requires that

sample sites are as good as randomly selected from the population of target sites. In practice,

however, there are often systematic reasons why sites are selected for empirical analysis. For

example, because RCTs often require highly-capable implementing partners, the set of actual RCT

partners may have more effective programs than the average potential partner. Alternatively,

potential partners with existing programs that they know are effective are more open to independent

impact estimates (Pritchett 2002). Both of these mechanisms would generate positive site selection

bias: treatment effects in sample sites would be larger than in target sites. On the other hand,

innovative organizations that are willing to test new programs may already have many other effective

programs in the same area. If there are diminishing returns, a new program with an actual partner

might have lower impact than with the average potential partner. This would cause negative

site selection bias. Site selection bias implies that even with a large number of internally valid

replications, policymakers could still draw systematically biased inference about a program’s impact

at full scale.

While site selection bias is intuitive and potentially important, there is little empirical evidence

on this issue or the potential mechanisms in any context. The reason is simple: since this type of

selection operates at the level of the site instead of the individual unit, one needs a large sample of

sites with internally valid evaluations of the same treatment. Then, one must define a population of

potential partner sites and somehow infer treatment effects in sites where evaluations have not yet

been carried out. Given the cost of RCTs, it is unusual for the same intervention to be rigorously

evaluated at more than a small handful of sites. By contrast, as in LaLonde (1986), Dehejia and

Wahba (1999), Heckman, Ichimura, Smith, and Todd (1998), Smith and Todd (2004), and many

other studies, providing evidence on individual-level selection bias simply requires a large sample

of individuals.

The Opower energy conservation program provides an exceptional opportunity to study a site

selection process. The treatment is to mail “Home Energy Reports” to residential energy consumers

that provide energy conservation tips and compare their energy use to that of their neighbors. As
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of February 2013, the program had been implemented in 111 RCTs involving 8.6 million households

at 58 electric utilities across the United States.

This paper’s initial organizing question is, what would be the effects if the Opower program were

scaled nationwide? This out-of-sample prediction problem is particularly policy-relevant. In recent

years, “behavior-based” energy conservation programs such as Home Energy Reports have received

increasing attention as alternatives to traditional approaches such as subsidies and standards for

energy efficient capital stock. Consultancy McKinsey & Co. recently released a study predicting

“immense” potential for behavior-based conservation in the U.S., with potential savings amounting

to 16 to 20 percent of current residential energy consumption (Heck and Tai 2013). Policymakers

use such predictions, as well as evaluations of early pilot programs, to help determine the stringency

of energy conservation mandates.1

I begin by using microdata from Opower’s first ten sites to predict aggregate nationwide effects.

This is a highly promising setting for extrapolation: there are large samples totaling 508,000 house-

holds, ten replications spread throughout the country, and a useful set of individual-level covariates

to adjust for differences between sample and target populations. Using standard econometric ap-

proaches, I predict savings of about 1.7 percent, or $2.3 billion in retail electricity costs, in the first

year of a nationally-scaled program.

Aside from the microdata, I also have Opower’s “metadata”: impact estimates from all 111

RCTs that began before February 2013. As an “in-sample” test of external validity, I use the

microdata from the first ten sites to predict first-year effects at the 101 later sites. The microdata

over-predict efficacy by approximately 0.5 percentage points, or $690 million worth of retail elec-

tricity. This shows that even in such a highly promising setting for extrapolation, estimates are not

externally valid: early sites were strongly positively selected from later sites through mechanisms

associated with the treatment effect.

I then use the metadata to explain this positive selection. It occurs both between utilities and

within utilities at early vs. later customer sub-populations. Much of the within-utility trend reflects

successful initial targeting of higher-usage households that are more responsive to treatment. If

a program works well in an initial sub-population, many utilities later expand it to additional

sub-populations within their service area. The between-utility trend is partially explained by two

other mechanisms, neither of which reflects explicit targeting on gains. First, there was selection on

“population preferences”: high-income and environmentalist consumer populations both encourage

utilities to adopt energy efficiency programs and are more responsive to the Opower program once

it is implemented. Second, there was selection on utility ownership structure: for-profit investor-

1ENERNOC (2013), KEMA (2013), and Quackenbush (2013) are examples of state-level energy efficiency potential
assessments that include predictions for behavioral energy efficiency programs based partially on results from RCTs in
pilot locations. The studies were commissioned by utilities and state public utilities commissions as part of the process
of setting Energy Efficiency Resource Standards. Allcott and Greenstone (2012) discuss the economic rationale for
these types of policies.
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owned utilities (IOUs) were less likely to adopt the program until early results from other utilities

demonstrated its efficacy and until conservation mandates became more stringent. Although more

IOUs have now adopted they program, they tend to experience lower efficacy, perhaps because

their customers are less engaged and thus less responsive to utility-provided information.

The 111-site metadata can also help predict efficacy in a nationally-scaled program. Opower’s

current partners are still higher-income and more environmentalist than the average utility, which

suggests lower efficacy. On the other hand, current partners are now disproportionately IOUs with

smaller treatment effects. On net, current samples are still positively selected from the national

population on site-level observables. But because there is also evidence of selection on site-level

unobservables, an unbiased prediction may still not be possible - even after 111 replications.

This paper does not argue that site selection bias reflects sub-optimal behavior: just as individual-

level selection into job training, education, or other treatments reflects rational choices by potential

participants, site-level endogenous selection also reflects rational choices by potential partners.

Indeed, beginning with the most responsive populations maximizes cost effectiveness if there is lim-

ited scaling capacity or uncertainty over efficacy. Instead, the point of the paper is that site-level

selection can systematically bias inference and policy decisions, just as individual-level selection

can. This paper also does not argue that RCTs should be de-emphasized in favor of less costly

non-experimental approaches that could perhaps be implemented in a more general sample of sites:

in the Opower context, Appendix C shows that it is still more informative to extrapolate RCT

results from other sites than to rely on non-experimental estimates from the same site. Further-

more, site selection bias need not be limited to RCTs: for example, sites that collect high-quality

data necessary for quasi-experimental analyses may also have systematically different institutions

or economic environments which could generate different parameter estimates.

This paper builds on distinguished existing work on multi-site program evaluations, selection

bias, external validity, and energy economics. In particular, the Job Training Partnership Act

of 1982 (JTPA) provides closely-related evidence on external validity and site selection bias. The

JTPA initiated job training programs at 600 sites, of which 200 were approached to do RCTs and 16

eventually agreed. Hotz (1992), Heckman (1992), Heckman and Vytlacil (2007), and others discuss

the fact that these sites were non-randomly selected and propose that this could lead experimental

estimates to differ from the true nationwide effects.2 However, Heckman (1992) writes that the

evidence from JTPA on external validity is “indirect” and “hardly decisive.” Given average sample

sizes of 270 people per site, Heckman and Smith (1997) show that it is not even possible to reject

that the JTPA treatment effects are homogeneous across sites. With much larger samples and many

more sites, the Opower experiments allow a clearer analysis of ideas proposed in the discussion of

JTPA.

2Non-random site selection is part of what Heckman (1992) calls “randomization bias,” although his discussion
focuses also on other issues, such as how operational demands of RCTs could cause program performance to decline
and how the need for control groups requires expansion of the pool of eligible individuals.
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Also closely related are the large body of academic papers3 and consulting reports4 on Opower

programs. Nolan et al. (2008) and Schultz et al. (2007) provided the academic “proof of concept”

for the Home Energy Report. Although their experiment is not part of my meta-analysis, it is

strikingly consistent with site selection bias. Their treatment was to hand-deliver door-hangers

with energy use neighbor comparisons to about 300 homes in a wealthy California suburb, and the

treatment effects are three to six times larger than even the first ten Opower programs.

The paper proceeds as follows. Section 2 presents case studies from microfinance and clinical

trials of how RCT sites differ systematically from policy-relevant target sites. Section 3 formalizes

a model of external validity and site selection bias. Section 4 gives an overview of the Opower ex-

periments, and Section 5 presents the data. Section 6 uses the Opower microdata for extrapolation,

while Section 7 uses the metadata to explain the site selection bias shown in Section 6. Section 8

concludes.

2 Motivation: Examples of Site Selection on Observables

I begin with two simple examples of how randomized control trial sample sites differ from policy-

relevant populations of target sites. For both examples, I define a target population of sites and

then compare sample to non-sample sites on observable characteristics that theory suggests could

moderate treatment effects.

2.1 Microfinance Institutions

In the past ten years, there have been many randomized control trials with microfinance institutions

(MFIs). Are MFIs that that partner with academics for RCTs representative of the MFIs that might

learn from RCT results?

I define the population of sites as all MFIs included in the Microfinance Information Exchange

(MIX) global database, which includes characteristics and performance of 1903 MFIs in 115 coun-

tries. Partners are defined as all MFIs listed as RCT partners on the Jameel Poverty Action Lab,

Innovations for Poverty Action, and Financial Access Initiative websites. About two percent of

MFIs in the database are RCT partners. I focus on eight MFI characteristics that might theo-

retically be correlated with empirical results. Average loan balance, percent of portfolio at risk

of default, and the percent of borrowers who are female could be correlated with default rates, a

common outcome variable. An MFI’s structure (as measured by age, non-profit status, and size)

could influence the strength of the MFI’s relationship with its clients, which might in turn affect the

3These include Allcott (2011), Allcott and Rogers (2014), Ayres, Raseman, and Shih (2013), Costa and Kahn
(2013), and others.

4Integral Analytics (2012), KEMA (2012), Opinion Dynamics (2012), Perry and Woehleke (2013), Violette,
Provencher, and Klos (2009), and many other consulting reports evaluate individual programs for regulatory ac-
counting purposes.
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MFI’s ability to implement or monitor an intervention. Similarly, staff availability and expenditures

per borrower could affect implementation or monitoring ability.

Table 1 presents means and standard deviations by partner status. Column 4 presents differences

in means for partners vs. non-partners. Partners have smaller average loan balances, as well as

marginally insignificantly lower percent of portfolio at risk and more female borrowers. Each of

these factors suggests lower default rates, which raises the question of whether treatment effects

on default rates might be larger in non-partner sites given larger baselines. Partner MFIs are also

older, larger, and more likely to be for profit, perhaps because RCTs require large samples and well-

managed partners. Finally, partner MFIs have statistically significantly fewer staff and lower costs

per borrower. Overall, partner MFIs differ statistically on six of the eight individual characteristics,

and an F-test easily rejects the hypothesis that partners are representative on observables.

2.2 Clinical Trials

Are the hospitals that carry out clinical trials representative of hospitals where interventions might

eventually be implemented?

Wennberg et al. (1998) provide a motivating example. In the 1990s, there were two large trials

of carotid endarterectomy, a surgical procedure which treats hardening of the carotid artery in the

neck. In order to participate, institutions and surgeons had to be experienced in the procedure and

have low previous mortality rates. After the trials found the procedure to be relatively effective, its

use nearly doubled. Wennberg et al. (1998) use a broader sample of administrative data to show

that mortality rates were significantly higher at non-trial hospitals, and for some classes of patients

and hospitals, treatment with drugs instead of the surgical procedure might have been preferred.

Table 2 compares US hospitals that have been the site of at least one clinical trial to hospitals

that have never hosted a registered trial. Clinical trial sites are from the ClinicalTrials.gov registry,

while hospital characteristics are from Medicare and American Hospital Association databases; see

Appendix A.1 for details of data preparation. I separately consider “drug” trials, which include

drugs, biological interventions, and dietary supplements, and “procedure” trials, which include

both surgical and radiation procedures, because hospital characteristics are almost certainly more

important moderators for procedures compared to drugs. Of 4653 US hospitals, 1722 have hosted

a drug trial and 1265 have hosted a procedure trial.

The first three rows show that clinical trial sites are at hospitals in urban areas and in counties

with higher income and education. Remaining characteristics are grouped according to the standard

Donabedian (1988) triad of clinical quality measures: structure, process, and outcomes.

Clinical trial sites have significantly different structures. They are larger and perform more

surgeries per year. Chandra and Staiger (2007) show that due to productivity spillovers, surgical

procedures are more effective in areas that perform more surgeries, and they point out that this

may compromise the external validity of randomized control trials. The average trial site also offers
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five to six more of the 21 advanced technologies and three more of the 13 patient services scored in

the U.S. News Hospital Quality Rankings. If these technologies and services are complements to

surgical procedures, then such interventions will be less effective at non-trial sites.

Clinical trial sites also have significantly different processes. They perform 0.33 to 0.35 standard

deviations better on five surgical process measures included in the Hospital Safety Score (HSS)

methodology, which could suggest that surgical procedures are more effective at trial hospitals. On

the other hand, patient surveys show that doctors and nurses at trial site hospitals are worse at

communication, including explaining medicines and what to do during recovery.

Although this may be due to patient selection instead of treatment effects, clinical trial sites

perform worse on two outcome measures: they have higher rates of hospital acquired conditions

and higher rates of the six complications included in the HSS patient safety indicator index. On

the other hand, trial sites have substantially lower mortality rates when treating patients suffering

from heart attack, heart failure, and pneumonia.

Finally, clinical trial sites are significantly more likely to appear in the top 50 hospitals in 12

specialties rated by the U.S. News Hospital Quality Rankings, and they have an average of 0.17 to

0.29 additional specialties ranked. These results point to “ability bias” as a site selection mechanism

in clinical trials: almost mechanically, clinical trials take place at higher-quality hospitals because

technology, size, and skill are complements to clinical research.

MFIs and clinical trials are rare settings where there are many sample and target sites and it is

possible to gather site-level characteristics. But while suggestive, both examples are speculative and

incomplete. Ideally, we could focus on one well-defined treatment and present concrete evidence

on the mechanisms that drive site selection and how site selection affects out-of-sample inference.

The Opower program provides a unique opportunity to do this.

3 A Model of External Validity and Site Selection Bias

3.1 External Validity

This section briefly lays out the assumptions required for external validity, closely following Hotz,

Imbens, and Mortimer (2005). Consider the standard Rubin (1974) Causal Model. Ti ∈ {1, 0} is the

treatment indicator variable for individual i, and each individual has two potential outcomes, Yi(1)

if treated and Yi(0) if not. Individual i’s difference in potential outcomes is τi = Yi(1)−Yi(0). Xi is

a vector of observable covariates. Individuals are either in a sample population which was exposed

to treatment or a target population for which we wish to infer treatment effects. Di ∈ {1, 0} is an

indicator that takes value one if individual i is in the sample.

The average treatment effect (ATE) in a target population can be consistently estimated under

four assumptions:

Assumption 1: Unconfoundedness. Ti ⊥ (Yi(1), Yi(0)) |Xi
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Assumption 2: Overlap. 0 < Pr(Ti = 1|Xi = x) < 1

Assumption 3: External unconfoundedness. Di ⊥ (Yi(1)− Yi(0)) |Xi

Assumption 4: External overlap. 0 < Pr(Di = 1|Xi = x) < 1

The external unconfoundedness and external overlap assumptions are just sample-target ana-

logues of the familiar assumptions required for internal validity. If Assumptions 1-4 hold in the

support of X in the target population, then the target ATE can be estimated from sample data,

after controlling for differences in X between treatment and control and between sample and target:

E[τi|Di = 0] = E [E[Yi|Ti = 1, Di = 1, Xi]− E[Yi|Ti = 0, Di = 1, Xi]|Di = 0] . (1)

This argument is closely comparable to Lemma 1 in Hotz, Imbens, and Mortimer (2005).5

3.2 Sites, Replication, and Site Selection Bias

External unconfoundedness requires conceptually different assumptions in single-site vs. multi-site

evaluations. Specifying these assumptions both clarifies the importance of replication and defines

site selection bias.

Define a “site” as a setting in which one program might be implemented or evaluated. Sites are

indexed by s, and the integer variable Si indicates the site of which individual i is a member. A site

consists of three elements: a population of individuals, a treatment (as implemented, for example,

by an MFI, job training center, or hospital), and an economic environment (for example, market

interest rates, labor market conditions, or disease prevalence).6 Defining Fs and Vs as vectors of

characteristics of the treatment and economic environment, respectively, τs(x) = E[τi|Xi = x, Si =

s] = E[τi|Xi = x, Fs, Vs] is the average treatment effect at site s conditional on Xi = x.

In the Opower example, the decision to implement or evaluate a program is made at the site

level, so I assume that either all individuals in a site are in sample or all are in target.7 Ds ∈ {1, 0}
5The proof follows Hotz, Imbens, and Mortimer (2005) almost identically. The two unconfoundedness assumptions

imply that for any value x of the covariates, the target treatment effect is estimated by the treatment-control difference
in outcomes in the sample: E[τi|Di = 0, Xi = x] = E[τi|Di = 1, Xi = x] = E[Yi|Di = 1, Ti = 1, Xi = x]− E[Yi|Di =
1, Ti = 0, Xi = x]. Then, the two overlap assumptions imply that it is feasible to estimate the target ATE by taking
the expectation of this difference over the distribution of X in the target population.

There are two minor differences, however. First, unlike their Lemma 1, Equation (1) does not require random as-
signment of treatment within sample sites, so it is relevant for quasi-experimental analyses as well. Second, external
unconfoundedness is a weaker version of their “unconfounded location” assumption, which is Di ⊥ (Yi(1), Yi(0)) |Xi.
The external unconfoundedness assumption clarifies that only the difference in potential outcomes need be inde-
pendent of Di. The stronger assumption can be used to motivate tests of Di ⊥ Yi(0)|Xi as evidence of external
unconfoundedness, but Di ⊥ Yi(0)|Xi is in theory neither necessary nor sufficient. In Appendix C, I show that
this test is empirically uninformative in the Opower context, because the ability to predict untreated outcomes Y (0)
depends largely on weather variation, while treatment effects τ differ across sites for many other reasons.

6The idea of a site connects to Heckman and Vytlacil (2005), who discuss extrapolation from a “history” of
“policy-environment pairs.” The exogeneity assumption in their Equation (A-9) is conceptually analogous to external
unconfoundedness.

7This simplifying assumption is appropriate for Opower but inappropriate for some other settings. Heckman
and Vytlacil (2005) show how the marginal treatment effects approach can be used when individual-level selection
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is an indicator that takes value one if s is a sample site. This model could reflect sites choosing

whether to adopt a new program, as with Opower, or whether to evaluate an existing program, as

with JTPA.

Consider two alternative assumptions:

Assumption 3A: Homogeneous site effects. τs′(x) = τs′′(x) for a pair of sites s′ and s′′

Assumption 3B: No site selection bias. E[τs(x)|Ds = 1] = E[τs(x)|Ds = 0] over a large number

of sites

When extrapolating from single sample site to a single target site, external unconfoundedness

is equivalent to the homogeneous site effects assumption. In practice, however, it is rarely plausible

that two different sites have the same treatment effects. This would hold if individuals were

somehow randomly (or quasi-randomly) assigned between the two sites and if there were no site-

level differences in treatment implementation Fs or economic environments Zs. Nevertheless, this

assumption is made (either implicitly or explicitly) whenever results from a single-site analysis are

used to infer effects out of sample.8

By contrast, when extrapolating from many sample sites to many target sites, external un-

confoundedness is equivalent to Assumption 3B. This is a weaker than Assumption 3A, because

it allows heterogeneity in τs(x) across sites as long any site-level heterogeneity averages out. The

plausibility of Assumption 3B depends on the assignment mechanism that allocates sites to sample.

It would be guaranteed if a large number of sites were randomly assigned to sample. For example,

the JTPA evaluation initially hoped to randomly select sites for evaluations within 20 strata defined

by size, region, and a measure of program quality (Hotz 1992). The assumption would also hold

with quasi-random site assignment, which could arise in a multi-site evaluation if evaluators choose

sample sites to maximize external validity. For example, the Moving to Opportunity and RAND

Health Insurance experiments were implemented in multiple cities chosen for diversity in size and

geographic region (Sanbonmatsu et al. 2011, Manning et al. 1988).

This discussion formalizes the appeal of replication but also highlights the limitation: replication

allows external unconfoundedness to hold even when there is site-specific heterogeneity - as long

as replication sites are chosen randomly or quasi-randomly. This discussion also formalizes site

selection bias: the failure of external unconfoundedness when sites are assigned to sample through

mechanisms other than random or quasi-random assignment. Notice that site selection bias is quite

distinct from the treatment effect heterogeneity relevant to defining local average treatment effects

(Angrist and Imbens 1994): within-sample heterogeneity in τi is neither necessary nor sufficient for

mechanisms vary across sites.
8As an example of how the no site effects assumption has been made explicitly, consider analyses of the GAIN job

training program that attribute differences in outcomes between Riverside County and other sites only to an emphasis
on Labor Force Attachment (LFA) (Dehejia 2003, Hotz, Imbens, and Klerman 2006). These analyses require that
there are no unobservable factors other than the use of LFA that moderate the treatment effect and differ across
sites.
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site selection bias.9 Notice also that site selection bias does not mean that the estimated sample

treatment effects are biased away from the true sample treatment effects. Instead, the word “bias”

underscores that sample effects can be systematically different from target effects due to systematic

site selection mechanisms.

The next several sections test Assumption 3B in the specific context of Opower and give intuition

for the forces that generate site selection bias in that context.

4 Opower: Overview and Site Selection Mechanisms

4.1 The Home Energy Report Program

The Home Energy Report is a two-page letter with two key components. The Neighbor Comparison

Module at the top of the first page compares the household’s energy use to its 100 geographically-

nearest neighbors in similar house sizes. The Action Steps Module, which is typically on the second

page, includes energy conservation tips targeted to the household based on its historical energy use

patterns and observed characteristics. The envelope and report are branded with the utility’s

name, as this is believed to increase open rates, perceived credibility, and the utility’s customer

satisfaction. Appendix Figures A2 and A3 present an example report.

Except at a few utilities whose customer bases are too small for precise impact estimates, all

Opower programs are implemented as randomized control trials, because it is easy to hold out

a randomized control group from a mail-based program. The treatment group is sent reports

at frequencies that vary within and between households and sites. For example, of the first ten

programs, two randomized households between monthly and quarterly frequencies, while three

others targeted heavier users with monthly reports and lighter users with quarterly. One common

pattern is to start with three monthly reports and then decrease to a bimonthly frequency.

The reports vary within-household over time: for example, the information and tips are updated

each month to reflect the customer’s most recent energy bills and season-specific energy conservation

tips. The reports also vary somewhat across sites, at a minimum because they carry different

utility names. However, the basic design and implementation are highly consistent, and there is a

remarkably high degree of treatment fidelity compared to other treatments of interest in economics.

For example, “job training” often takes different forms at different sites (Dehejia 2003, Hotz,

Imbens, and Klerman 2006), and the effects of “contract teachers” could depend markedly on the

teacher’s ability and even who employs them (Bold et al. 2013). This suggests that after accounting

for differences in treatment frequency, other variation in treatment is relatively unlikely to cause

substantial site-level heterogeneity. The more likely causes would thus be variation in treated

9One might draw the analogy between a site and a set of compliers in the LATE framework. In this analogy, site
selection bias would arise if the kinds of instruments available tended to identify systematically different populations
- i.e., that LATEs from different instruments were not only heterogeneous but were systematically different from the
ATE in a target population.
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populations and “economic environments” Vs, which tangibly include several factors discussed

below.

Aside from treatment fidelity, there are two other useful features of the Opower experiments.

First, in the taxonomy of Harrison and List (2004), these are “natural field experiments,” meaning

that people are in general not aware that they are being studied. Second, these are “opt-out”

experiments, and opting out requires actively calling the utility and canceling. In the average

program, only about 0.6 percent of the treatment group opts out over the first year. Thus, there is

no need to model essential heterogeneity or household-level selection into the treatment (Heckman,

Urzua, and Vytlacil 2006), and the treatment effect is a Policy-Relevant Treatment Effect in the

sense of Heckman and Vytlacil (2001).

4.2 Site Selection Mechanisms

For the Opower program, there are two levels of site selection. First, a utility contracts with Opower.

In theory, the partnership decision is an equilibrium outcome of Opower’s sales outreach efforts and

utility management decisions. In practice, most of the selection derives from demand-side forces, as

Opower will implement the program with any utility willing to pay for it, and the company’s initial

sales efforts were largely targeted at utilities that were most likely to be interested. As recounted in

personal communication (Laskey 2014), Opower’s early outreach efforts sound remarkably similar to

an economist searching for a field experiment partner: the founders started with existing personal

connections, cold called other utilities that they thought might be interested, and then moved

forward with any partners that agreed. The founders initiated discussions with 50 to 100 utilities

in order to land the first ten (Laskey 2014), and by now, the the program is very well-known

nationwide. Thus, I focus on selection mechanisms that make utilities interested in the program,

with less attention to Opower’s outreach process.

Discussions with Opower executives and utility industry practitioners suggest five potential

utility-level selection mechanisms that could also moderate treatment effects:

• Usage. Utilities use metrics such as cost effectiveness (measured in kilowatt-hours saved per

dollar spent) to make program adoption decisions, and the program’s potential savings are

larger at utilities with higher usage.

• Population Preferences. Environmentalist states are more likely adopt Energy Efficiency

Resource Standards (EERS) that require utilities to run energy conservation programs, and

even in the absence of such regulation, utility managers from environmentalist areas might

be more likely to prioritize conservation. If environmentalism or related cultural factors also

make consumers more responsive to conservation messaging, this would generate positive

selection.
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• Complementary or Substitute Programs. Utilities that prioritize energy conservation

should be more likely to adopt the Opower program. Depending on whether a utility’s

other programs are complements or substitutes to Opower, this would generate positive or

negative selection. Complementarity is possible because one way that consumers respond to

the Opower treatment is by participating in other utility programs, such as energy efficient

insulation and lighting replacement (Allcott and Rogers 2014). However, such programs

could instead be substitutes, because households that have already installed energy efficient

insulation or lighting would save less energy when adjusting the thermostat or turning off

lights in response to the Opower treatment.

• Size. Larger utilities have economies of scale with Opower because of fixed costs of imple-

mentation and evaluation. This could cause negative selection, because larger utilities tend to

be in urban areas where people are less likely to know their neighbors and are thus potentially

less responsive to neighbor energy use comparisons.

• Ownership. Different types of utilities implement energy conservation programs for differ-

ent reasons. For-profit investor-owned utilities (IOUs) typically have little incentive to run

energy efficiency programs in the absence of EERS policies. By contrast, municipally-owned

utilities and rural electric cooperatives are more likely to maximize welfare instead of prof-

its, so they run energy efficiency programs if they believe the programs benefit customers.

Ownership structure could also be associated with treatment effects: for-profit IOUs average

lower customer satisfaction rankings in the JD Power (2014) survey, and related forces may

cause IOU customers to be less likely to trust and use utility-provided information.

After a utility contracts with Opower, the second level of site selection occurs when the utility, with

guidance from Opower, chooses a sample population of residential consumers within the utility’s

service territory. Some small utilities choose to include the entire residential consumer base, while

other utilities target specific local areas where reduced electricity demand could help to delay

costly infrastructure upgrades. Simple theory, along with empirical results in Schultz et al. (2007),

suggests that relatively high-usage households would conserve more in response to the treatment,

both because they have more potential usage to conserve and because the neighbor comparisons

induce them to decrease usage toward the norm. Thus, some utilities include only relatively heavy

users in a sample population.

Opower differs in two ways from some other programs evaluated in the economics literature.

First, Opower’s for-profit status meant that the company could benefit from early successes.10

However, this does not make their site selection incentives qualitatively different: social programs

10All of Opower’s first ten sites had fee-for-service contracts without performance incentives. This has largely con-
tinued to be the case, although a small number of contracts include additional payments for larger effects. Regardless
of contract structure, efficacy at previous sites affects subsequent utility adoption decisions.
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and non-profits depend on government or foundation funds that can also hinge on the results of

early evaluations. Pritchett (2002) shows how such incentives could lead to an equivalent of site

selection bias.

Second, because the program is opt-out instead of opt-in, utilities can explicitly target more

responsive households. It is ambiguous whether this generates stronger or weaker selection on gains

than an opt-in program such as job training: this depends on whether individuals’ perceived net

utility gains have higher or lower covariance with τi than site managers’ targeting decisions. While

Opower now has substantial data with which to predict treatment responsiveness, utilities have

been reticent to target based on observables other than high energy use because of concerns over

customer equity.

5 Data

This section provides a brief overview of the three main datasets: utility-level data, microdata

from Opower’s first ten sites, and metadata from all 111 sites that began before February 2013.

Appendix A provides substantial additional information.

5.1 Utility-Level Data

I define the policy-relevant consumer population to be all residential consumers at all 882 large

electric utilities in the United States.11 Table 3 shows characteristics of Opower partner utilities

and utilities from the population of potential partners. The 58 partner utilities include all US

electric utilities that had started Home Energy Report RCTs by February 2013.12

I consider variables that proxy for the five utility-level selection mechanisms proposed in Section

4.2 - that is, variables that might moderate both selection and treatment effects. Utility-specific

data are from the Energy Information Administration (EIA) Form 861 for calendar year 2007 (EIA

2013), the year before the first Opower programs began. I also merge additional variables by taking

population-weighted means of county-level data for the counties in each utility’s service territory.

Utility Mean Usage is daily average residential electricity usage. For context, one kilowatt-

hour (kWh) is enough electricity to run either a typical new refrigerator or a standard 60-watt

incandescent lightbulb for about 17 hours.

The next seven variables proxy for population preferences. Mean Income and Share College

Grads are from 2000 Census county-level data, while Hybrid Auto Share uses each county’s share

11This figure excludes utilities with fewer than 10,000 residential consumers and power marketers in states with
deregulated retail markets, as Opower has no clients in these two categories. About five percent of utilities operate
in multiple states. To reflect how state-level policies affect utilities’ program adoption decisions, a utility is defined
as a separate observation for each state in which it operates.

12Three additional utilities started Home Energy Report programs before that date but did not evaluate them with
RCTs because the customer populations were too small to include randomized control groups.
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of registered vehicles that were hybrid-electric as of 2013. Green Party Share is the county-level

share of votes in the 2004 and 2008 presidential elections that were for the Green party candidate,

while Democrat Share is the share of Democratic and Republican votes that were for the Democratic

candidate, both from Leip (2013). Energy Efficiency Resource Standard is an indicator for whether

the utility is in a state with an EERS, using data from the Pew Center (2011). Green Pricing Share is

the share of residential consumers that have voluntarily enrolled in “green pricing programs,” which

sell renewably-generated energy at a premium price. For the empirical analysis, I use the variable

“Normalized Population Preferences” as a single proxy for higher income and environmentalism.

This is just the sum of these seven variables, after normalizing each variable to mean zero, standard

deviation one.

The next two variables measure complementary or substitute programs: the ratio of estimated

electricity conserved by residential energy conservation programs to total residential electricity

sold (“Residential Conservation/Sales”) and the ratio of total spending on energy conservation

programs to total revenues (“Conservation Cost/Total Revenues”). I construct a single proxy

called “Normalized Other Programs” by adding these two variables after normalizing each to mean

zero, standard deviation one.

The final three variables measure utility size and ownership. Utilities that are neither IOUs nor

municipally-owned are either rural electric cooperatives or other government entities such as the

Tennessee Valley Authority.

Table 3 shows that Opower’s partner utilities are clearly different from non-partners: they use

less electricity, have higher socioeconomic status and stronger environmentalist preferences, have

more existing energy efficiency programs, and are much larger and more likely to be investor-owned.

All of the 13 utility-level covariates are unbalanced with more than 90 percent confidence.

5.2 Microdata

I have household-level microdata through the end of 2010 for each of the ten Opower programs

that began before December 2009. This includes 21.3 million electricity meter reads from 508,295

households, of which 5.4 million are in the first year post-treatment. The dataset includes Census

tracts, which I use to merge in tract-level data, as well as household-level demographic data from

public records and marketing data providers. Columns 1, 2, and 3 of Table 4 present observation

counts, means, and standard deviations, respectively. Every variable has at least some missing

observations. Most missing observations are missing because the variable is unavailable for the

entire site.

I consider 12 X covariates that proxy for four mechanisms that theory suggests could moderate

treatment effects. The first three mechanisms connect to the first three site-level selection mecha-

nisms detailed in Section 4.2. “First Comparison” is the usage difference in kWh/day between a

household and its mean neighbor, as reported in the Social Comparison Module on the first report.
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(Opower also constructs this for control households.) The mean of 1.46 implies that these first ten

sites consisted of slightly above-mean usage households due to utilities’ program targeting decisions.

The next four variables proxy for population preferences. Mean Income, Share College Grads,

and Share Hybrid Autos are Census tract means from the same source as their utility-level analogues

in Table 3, while Green Pricing Participant is at the household level.13

“EE Program Participant” is an indicator for whether the household had received a loan or

rebate for an energy efficient appliance, insulation, or a heating, ventilation, and air conditioning

system through another utility program before the Opower program began. This and the Green

Pricing Participant indicator are only available at one site.

The final six variables measure characteristics of housing stock. While I do not hypothesize

that site-level variation in these factors directly affects site selection, there are clear theoretical

reasons why each of these six characteristics could moderate the treatment effect. One natural

way for households to respond to treatment is to lower thermostat temperatures in the winter,

and having electric heat (instead of gas or oil heat) implies that this would reduce electricity use.

Because building codes have been progressively tightened over the past 30 years, older homes are

less energy efficient and offer more low-cost opportunities to conserve. Replacing pool pumps can

save large amounts of energy. Renters have less ability and incentive to invest in energy efficient

capital stock in their apartments. Occupants of single family dwellings have more control over their

electricity use.14

Section 6 will condition on these variables for out-of-sample prediction, and columns 4 and

5 of Table 4 present the target population means to which the effects are fitted. Column 4 is

the national mean across all 882 potential partner utilities, weighted by the number of consumers

in each utility. This weighting means that the extrapolated effect will reflect the total potential

savings if the treatment were scaled nationwide. Column 5 is the unweighted mean across the

“later sites,” which refers to the 101 Opower programs that started after the 10 programs in the

microdata sample.

Table 4 shows that individuals in the microdata sample differ on observable proxies for popu-

lation preferences: they have higher income, more college graduates, own more hybrid autos, and

are more likely to participate in green pricing programs. Their houses also have somewhat different

physical characteristics, with much less electric heat, fewer renters, and more single-family homes.

13I do not include tract-level Democrat vote share in the primary analysis because its association with the treatment
effect is not robust to the inclusion of other covariates and is actually often negative, which is inconsistent with the
sign at the site level. Appendix B provides intuition for why this happens and presents results including Democratic
vote share.

14I must also gather utility-level data to construct target means of these housing stock characteristics. Mean
square footage and share of homes with pools are from the American Housing Survey state-level averages, and share
using electric heat, mean house age, share rented instead of owner-occupied, and share single family are from the
county-level American Community Survey 5-year estimates for 2005-2009.
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5.3 Metadata

Due to contractual restrictions, Opower cannot share microdata from many of their recent partners.

Instead, they have provided site-level metadata, including average treatment effects and standard

errors, control group mean usage, and number of reports sent for each post-treatment month of

each RCT. Some utilities have multiple sites, typically because they began with one customer sub-

population and later added other sub-populations in separate RCTs. As of February 2014, there

were 111 sites with at least one year of post-treatment data at 58 different utilities. I focus on the

ATEs over each site’s first year in order to average over seasonal variation and eliminate duration

heterogeneity while including as many sites as possible.

Opower’s analysts estimated first-year ATEs using mutually-agreed procedures and code; see

Appendix A for details. The 111 site-level populations average about 77,200 households, of which an

average of 53,300 are assigned to treatment. The total underlying sample size for the meta-analysis

is thus 8.57 million households, or about one in every 12 in the United States.

When analyzing the metadata, I consider ATEs both measured in levels (kWh/day) and nor-

malized into a percent of control group post-treatment usage. Savings in kWh/day is relevant

because it is more closely (although not perfectly) related to electricity cost savings and externality

reductions, which are outcomes that enter cost effectiveness and welfare calculations. On the other

hand, ATEs in percent terms are much more informative for out-of-sample prediction, because

control group usage strongly predicts ATEs.15 In other words, it is more useful for prediction to

know that first-year effects in the metadata average 1.31 percent than it is to know that first-year

effects average 0.47 kWh/day.16 Because of this, Opower typically quotes ATEs in percent terms

when reporting results publicly.

5.3.1 Dispersion of Site Effects

Is the heterogeneity across sites statistically significant? If effects do not vary across sites, then

there is no possibility for site selection bias. Put formally, if Assumption 3A holds across all sites,

this is sufficient for Assumption 3B. In reality, the 111 ATEs vary substantially, from 0.10 to 1.47

kWh/day and from 0.50 to 2.63 percent. This is statistically significant, in the sense that it is

much larger than can be explained by sampling error: Cochran’s Q test rejects that the effects are

homogeneous with a p-value of less than 0.001. The percent ATEs have standard deviation of 0.45

percentage points, while the average standard error is only 0.18 percentage points.

Is this site-level heterogeneity also economically significant? One measure of economic signif-

icance is the dollar magnitude of the variation in predicted effects at scale. Figure 1 presents a

15The relationship between treatment effects in kWh/day and control group usage in kWh/day has a t-statistic of
11.35 and an R2 of 0.54 across the 111 sites.

16Appendix Table A3 shows this formally: the coefficient of variation for ATEs is 55 percent higher when measured
in kWh/day instead of percent.
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forest plot of the predicted electricity cost savings in the first year of a nationwide program at all

households in all potential partner utilities. Each dot reflects the prediction using the percent ATE

from each site, multiplied by annual national residential retail electricity costs. The point estimates

of first-year savings vary by a factor of 5.2, from $695 million to $3.62 billion, and the standard

deviation is $618 million. Appendix A also documents a wide dispersion in cost effectiveness, which

suggests that extrapolating effects from other sites could lead to ex-post program adoption errors.

This site-specific heterogeneity implies that Assumption 3A does not hold when not conditioning

on X. The next section explores whether Assumption 3B holds: even if there are site effects, is it

possible to condition on X and extrapolate from 10 replications?

6 Microdata: Extrapolation Under External Unconfoundedness

6.1 Empirical Strategy

Under Assumptions 1-4 in Section 3, microdata from the first ten Opower replications could identify

the average treatment effect in a target population. Furthermore, because there are a relatively

large number of replications, external unconfoundedness could hold under Assumption 3B (no site

selection bias) even if Assumption 3A fails and there is site-specific treatment effect heterogeneity.

Using the microdata, I first predict the average treatment effect for the program if it were scaled

nationwide. I then test external unconfoundedness “in sample” by extrapolating from the microdata

to the remainder of the sites in the metadata.

I address missing data using standard multiple imputation commands in Stata. I use the

chained equations (“MICE”) approach and estimate with 25 imputations, combining coefficients

and standard errors according to Rubin (1987).17

The econometric techniques that can be used to condition on observables are limited by the

fact that I observe only the means of X in the target populations. However, I can still use two

simple off-the-shelf procedures commonly used in applied work: linear prediction and re-weighting

to match means. In both procedures, I condition only on the subset of X variables that statistically

significantly moderate the treatment effect. This increases precision in the re-weighting estimator,

because it reduces extreme weights that match samples on Xs that don’t actually moderate the

treatment effect.

17Five imputations is standard in some applications, and 25 is certainly sufficient here: due to the large samples,
parameter estimates are very similar in each individual imputation. Multiple imputation is consistent under the
Missing at Random assumption. In earlier drafts, I instead used the missing indicator method, which is only unbiased
under stronger assumptions (Jones 1996) but gives very similar results.

17



6.1.1 Determining the Set of Conditioning Variables

Yis is household i’s mean daily electricity use (in kWh/day) over the first year post-treatment,

Cs is the control group mean usage in site s over that same year, and yis = 100Yis
Cs

. X̄D=1 is the

vector of sample means of the covariates reported in Table 4, where the mean is taken across all

25 imputations. X̃is = Xis − X̄D=1 is the vector of demeaned covariates. Y0i is a vector of three

baseline usage controls: average daily usage over the entire 12-month baseline period, the baseline

winter (December-March), and the baseline summer (June-September). Heterogeneous treatment

effects are estimated using the following equation:

yis = −(αX̃i + α0)Ti +
∑
s

(
βsX̃i + γsY0i + πs

)
+ εis. (2)

Equation (2) is analogous to the equation used to estimate ATEs for the metadata, but it also

includes interactions with X.

The treatment causes energy use to decrease. By convention, I multiply the first term by -1

so that more positive α imply higher efficacy. The normalization of yis is such that treatment

effects can be interpreted as the percentage point effect on electricity use. For example, τs = 1

would reflect a one percent effect.18 Because X̃ are normalized to have mean zero in the sample, in

expectation the constant term α0 equals the sample ATE that would be estimated if X̃ were not

included in the regression.

Standard errors are robust and clustered by the unit of randomization. In sites 1-9, randomiza-

tion was at the household level. In site 10, households were grouped into 952 “block batch groups”

- about the same size as Census block groups - that were then randomized between treatment and

control.

I determine the set of conditioning variables using the “top-down” procedure of Crump, Hotz,

Imbens, and Mitnik (2008). I start with the full set of X, estimate Equation (2), drop the one

covariate with the smallest t-statistic, and continue estimating and dropping until all remaining

covariates have t-statistic greater than or equal to 2 in absolute value. I denote this set of remaining

covariates as X∗.

18While dividing Yis by sample mean control group usage would be a purely presentational normalization, dividing
Yis by the site-specific Cs substantially improves prediction. The reason is that treatment effects in kWh/day depend
both on a household’s absolute level of usage (measured by average baseline usage) and relative usage compared to
neighbors (measured by First Comparison). These two variables are highly collinear, making it difficult to separately
identify their effects. (When interacting both with the treatment effect, the coefficients often have opposite signs
depending on the other included covariates, whereas theory clearly predicts that they should both should increase
the treatment effect.) Normalizing by site-specific Cs allows me to predict a percent ATE in a target site and also
estimate how the effect varies within-site as a function of First Comparison. This allows predictions for target sites
that both have different average absolute usage levels and also differentially target relatively heavy-usage households.
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6.1.2 Linear Prediction

One approach to extrapolation is to assume that treatment effects are linear functions of X∗ plus

a constant:

Assumption 5: Linear treatment effects. E[τi|Xi = x] = αx+ α0

I denote sample and target average treatment effects as τD=1 and τD=0, respectively. X
∗
D=0 is

the vector of target mean covariates. Assuming external unconfoundedness and linear treatment

effects, an unbiased estimator of the target treatment effect is:

τ̂D=0 = τ̂D=1 + α̂(X
∗
D=0 −X

∗
D=1). (3)

To implement this, I insert the estimated sample ATE τ̂D=1 and the α̂ parameters from Equation

(2) estimated with X∗ only. Standard errors are calculated using the Delta method.

6.1.3 Re-Weighting

A second approach to extrapolation is to re-weight the sample population to approximate the target

means of X∗ using the approach of Hellerstein and Imbens (1999). Given that only the target means

of X∗ are observed, I assume that the target probability density function of observables fD=0(x) is

the sample distribution fD=1(x) rescaled by λ, a vector of scaling parameters:

Assumption 6: Rescaled distributions. fD=1(x) = fD=0(x) · (1 + λ(x− X̄∗D=0))

Under this assumption, observation weights wi = 1/(1 + λ(X∗i − X̄∗D=0)) re-weight the sample

to exactly equal the target distribution of X∗.

Following Hellerstein and Imbens (1999), I estimate wi using empirical likelihood, which is

equivalent to maximizing
∑

i lnwi subject to the constraints that
∑

iwi = 1 and
∑

iwiX
∗
i = X̄∗D=0.

In words, the second constraint is that the re-weighted sample mean of X∗ equals the target mean.

Given that the sum of the weights is constrained to 1, Jensen’s inequality implies that maximizing

the sum of lnwi penalizes variation in w from the mean. Thus, the Hellerstein and Imbens (1999)

procedure amounts to finding observation weights that are as similar as possible while still matching

the target means.

6.1.4 Frequency Adjustment

Because treatment frequency varies across sites, with reports sent on monthly, bimonthly, quarterly,

or other frequencies, I adjust for frequency when extrapolating and comparing ATEs. To do this, I

estimate φ, the causal impact of frequency on the treatment effect, by exploiting the two sites in the

microdata where frequency was randomly assigned between monthly and quarterly. A “frequency-

adjusted treatment effect” τ̃ is adjusted to match the mean frequency F across all 111 sites in the

metadata, which is 0.58 reports per month. Denoting the frequency at site s as Fs, the adjustment
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is:

τ̃s = τ̂s + φ̂(F − Fs) (4)

Standard errors are calculated using the Delta method.

6.2 Results

6.2.1 Heterogeneous Treatment Effects

Table 5 presents heterogeneous treatment effects using combined microdata from the first ten sites.

Column 1 shows that the average treatment effect τ̂D=1 across the first ten sites is 1.707 percent of

electricity use. Because column 1 excludes the X covariates, this is the only column in Table 5 that

does not use multiple imputation. The R2 is 0.86, reflecting that fact that the lagged outcomes Y0i

explain much of the variation in yis.

Column 2 presents estimates of Equation (2) including all X̃ variables. Column 3 presents

the results from the last regression of the Crump, Hotz, Imbens, and Mitnik (2008) “top-down”

procedure, including only the X̃∗ that statistically significantly moderate the treatment effect.

Column 4 adds a set of 10 site indicators interacted with T . This identifies the α parameters only

off of within-site variation, not between-site variation. Column 5 repeats column 3 after adding

the interaction between T and average baseline usage. This tests whether the final α coefficients

reflect an omitted association between X and baseline usage.

The α̂ coefficients are remarkably similar across columns. Furthermore, Appendix Table A8

presents estimates of Equation (2) for each of the 10 sites individually. None of the coefficients for

the combined sample are solely driven by any one site, and there is only one α̂ from one site that

is statistically significant and has a sign opposite the α̂ in the combined data.

The signs and magnitudes are also sensible. The first social comparison interaction is positive:

informing a household that it uses ten kilowatt-hours per day more than its neighbors (which is

about 1/3 of the mean) is associated with just less than a one percentage point larger treatment

effect. Homes with electric heat conserve over one percentage point more, suggesting that reduced

heating energy use is an important effect of the program. Homes that have pools or are 1000 square

feet larger both have approximately 0.5 percentage point larger effects. Because these estimates

condition on First Comparison, the α parameters for physical characteristics reflect the extent to

which the characteristic is associated with the treatment effect relative to some other household

characteristic that would use the same amount of electricity.

Appendix Table A9 presents the empirical likelihood estimates for the re-weighting estimator.

As suggested by comparing sample and target means in Table 4, they imply lower weights for

households with higher First Comparison and higher weights for households with electric heat.

Appendix Table A10 presents the estimated frequency adjustment. The estimated φ̂ is 0.515

percent of electricity use per report/month, and the estimates from each of the two sites alone are

20



economically and statistically similar. The point estimate implies that a one-standard deviation

change in reports per month across the 111 sites (0.11 reports/month) would change the ATE

by 0.515×0.11=0.056 percentage points. Frequency adjustment does not meaningfully impact the

analyses, both because frequency is uncorrelated with other factors and because the adjustment is

small relative to the variation in effect sizes.

6.2.2 Predicting Target Treatment Effects

Figure 2 presents the extrapolation results, with 90 percent confidence intervals. The left panel

presents the frequency-adjusted sample ATE τ̃D=1. This is simply the estimate in column 1 of

Table 5 adjusted to match the 111-site mean reports/month using Equation (4). The middle panel

presents the predicted effects if the program were scaled “nationwide” to all households at all

potential partner utilities. Per Equation (3), the “Linear Fit” is simply the frequency-adjusted

sample ATE τ̃D=1 adjusted by the differences in sample and target mean X∗ (the fourth minus

the second column of Table 4) multiplied by the α̂ estimates (column 3 of Table 5). This linear

adjustment is primarily composed of an increase of (0.34 − 0.12) × 1.196% ≈ 0.26% predicted by

the difference in Electric Heat, plus a decrease of (0− 1.47)× 0.092% ≈ −0.14% predicted by the

difference in First Comparison. On net, the linear fit predicts a slightly larger nationwide ATE,

while the weighted fit is close to the unadjusted sample ATE.

Using these standard approaches and assuming external unconfoundedness, the predicted na-

tionwide effects in the program’s first year would be about 1.7 percent of electricity use. This

amounts to 21 terawatt-hours, or about the annual output of three large coal power plants. At

retail prices, the first-year electricity cost savings would be $2.3 billion.

The results from the 101 later sites provide an opportunity to explicitly test the external un-

confoundedness assumption. The right panel of Figure 2 shows the linear and weighted fits to the

unweighted mean of X∗ in the 101 later sites, along with the unweighted mean of the true ATEs

in the metadata. The predicted ATEs are 0.64 and 0.40 percentage points larger than the true

ATE. When scaled to the national level, a misprediction of 0.50 percentage points would amount to

an overstatement of the first-year effects by 6.3 terawatt-hours, or $690 million in retail electricity

cost savings. As suggested by the confidence intervals on the figure, the overpredictions are highly

statistically significant, with p-values<0.0001.19 If the only goal were to predict the average target

site ATE, this $690 million measures the improved inference from randomly sampling a sufficiently

large number of replication sites instead of allowing non-random site selection.

Predictions can also be made for each of the 101 later sites. Figure 3 compares the site-specific

linear predictions from Equation (3) to each site’s true ATE τ̃s. If all predictions were perfect, all

dots would lie on the 45 degree line. Black dots vs. gray dots distinguish predictions that are vs.

are not statistically different from the true τ̃s with 90 percent confidence; the 22 non-significant

19See Appendix D for formal details on this test.
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differences naturally tend to be closer to the 45 degree line. The graph has two key features. First,

most of the sites are below the 45 degree line. This confirms that early site data systematically

overpredict later ATEs and that this is not driven by any one particular site. Second, there is

no correlation between predicted and actual ATEs, meaning that the adjustments on observable

covariates are not correlated or perhaps negatively correlated with the site-specific heterogeneity.

This echoes the result from Figure 2 that observables are not very informative about unobservables

in this context.20 Thus, the logic of inferring the direction and magnitude of bias from unobservables

(Altonji, Elder, and Taber 2005) would not work well here.

6.2.3 Explaining the Prediction Failure

So far, I have documented a systematic failure of two simple approaches to predict efficacy in later

sites. Does this happen due to a violation of external unconfoundedness, lack of overlap, or lack of

knowledge of the full distribution of X in target sites?

Following Imbens and Rubin (2014), define a “normalized difference” for a single covariate as

∆ = XD=0−XD=1√
S2
X,D=0+S2

X,D=1

, where S2
X,D=d is the variance of X in the population with D = d. Imbens

and Rubin (2014) suggest that as a rule of thumb, linear regression methods tend to be sensitive

to the specification when normalized differences are larger than 1/4. Although target variance

S2
X,D=0 is unknown, under the natural assumption that S2

X,D=0 = S2
X,D=1, all but one of the 101

individual target sites in Figure 3 satisfy the ∆ < 1
4 rule of thumb on both continuous variables

in X∗. When predicting to the 101-site means, inspection of Table 4 shows that both continuous

variables in X∗ would easily satisfy this rule of thumb even under the most conservative assumption

that S2
X,D=0 = 0.

Because the target distribution of X fD=0(x) is unobserved, I cannot test for overlap on contin-

uous variables other than with this suggestive normalized difference test, and I must impose either

Assumption 5 (linearity) or Assumption 6 (rescaled distributions). Appendix C tests whether pre-

diction can be improved when fD=0(x) is known by predicting the ATE for each of the ten sites

in the microdata, using the other nine sites as the “sample.” Results show that predictions from

the linear approach can be marginally improved (reducing root mean squared prediction error by

10-15 percent) by using a polynomial in X that also includes squares and interactions, and/or by

predicting effects only for the target sub-population with improved overlap.

This marginal improvement should be interpreted with three caveats. First, while the within

sample tests in Appendix C are informative about how well the approaches in this section control for

individual-level observables, conditioning on X cannot address site selection bias due to individual-

level unobservables or site-level observables that do not vary within the sample. Thus, even if

20This is not the only context in which individual-level observables are not very useful for prediction: Hotz, Imbens,
and Mortimer (2005) similarly find that “once we separate the sample into those with and without recent employment
experience, the results are remarkably insensitive to the inclusion of additional variables.”

22



improved conditioning on X had dramatically improved prediction between the sample sites, it

might still be impossible to predict the positive selection of early sites from later sites. Second,

even if prediction can be improved by knowing fD=0(x), in applied settings it is not uncommon

to only have an estimate of target means. In developing countries, for example, knowing fD=0(x)

might require census microdata or researcher-conducted baseline surveys that do not always exist.

Third, the predictiveness of observed covariates is in any event context-specific, so conditioning on

observables might generate better or worse out-of-sample predictions in other contexts. The more

basic implication of this section is that some adjustment is clearly necessary for the microdata to

successfully predict impacts in later sites. As suggested by Heckman, Ichimura, Smith, and Todd

(1998) and Smith and Todd (2005) in the context of individual-level selection bias, such adjustments

might be possible, but only under particular conditions.

7 Metadata: Explaining Site Selection Bias

Why were Opower’s first 10 sites positively selected from the full set of 111 sites? And is the

current 111-site sample positively or negatively selected from the nationwide consumer population?

In this section, I empirically test site selection mechanisms using site-level metadata. Building on

the discussion in Section 4.2, I first separate within-utility vs. between-utility selection and then

use utility-level covariates to test the hypothesized utility-level mechanisms.

7.1 Empirical Strategy

7.1.1 Cohort Trends and Within- vs. Between-Utility Selection

The microdata analysis compared the ten initial sites to all later sites, which exploits only a coarse

binary measure of early vs. late selection. The metadata allow me to use Ms, the program start

date for site s measured continuously in years, in the following continuous test:

τ̃s = ηMs + κ+ εs. (5)

If η is positive (negative), this implies that earlier sites are negatively (positively) selected from

all sample sites. As dependent variables, I use ATEs measured both in levels (kWh/day) and

in percent. In some specifications, I also condition on individual-level observables by using the

frequency- and X-adjusted ATE τ̃s|X = τ̃s + α̂(X
∗ −X∗s), where X is the mean of Xs across all

111 sites in the metadata. Using τ̃s measures whether there is systematic site selection, while using

τ̃s|X measures site selection bias unexplained by observables. Of course, the results of Section 6

suggest that η̂ will be negative when measuring τ̃s in percent and that using τ̃s|X will not make

much difference.
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I weight observations by analytic weights 1/ ˆV ar(τ̃s). This improves precision by weighting more

heavily the τ̃s which are more precisely estimated. I also present results using random effects meta-

regression, which assumes that εs is the normally-distributed sum of variance from both unexplained

site level heterogeneity and sampling error in τ̃s.

To isolate within-utility site selection mechanisms, I condition on utility and estimate the within-

utility trend in ATEs. Denote ωu as a vector of 58 indicator variables for utilities u. Within each

utility, I number sites in order of start dates and define this integer variable as Lsu. I estimate:

τ̃su = λLsu + ωu + εsu. (6)

In this equation, λ measures how treatment effects increase or decrease as utilities expand

the program to additional households. The λ parameter should be interpreted carefully: utilities’

decisions to expand the program were endogenous, and utilities that did not start additional sites

may have expected a less favorable efficacy trend. This would cause λ to be larger (or less negative)

than if all utilities proceeded with additional sites.

Section 4.2 hypothesized one systematic within-utility site selection mechanism, which is that

utilities initially target higher-usage populations. If this mechanism dominates, then λ < 0, and

including control group mean post-treatment usage Cs in Equation (6) should attenuate λ.

7.1.2 Testing Utility-Level Selection Mechanisms

The test of utility-level selection mechanisms is straightforward: does a variable that moderates

selection also moderate treatment effects? I estimate both selection and outcome equations as

a function of utility-level covariates Zu that proxy for the selection mechanisms hypothesized in

Section 4.2.

I assume that the utility-level selection decision Du depends on a linear combination of Zu plus

a normally-distributed unobservable υu:

Du = 1(ρZu + υu ≥ 0) (7)

I consider selection on two different margins. First, I consider selection into early partnership

from the set of all partners with results in the metadata. Here, the first ten utilities have Du = 1,

while the remaining 48 partner utilities have Du = 0. This type of selection could help explain

why microdata from early sites overestimate later site ATEs. Second, I consider selection of the

58 current partner utilities from the target population of 882 utilities. This helps to assess how a

nationally-scaled program might have different effects than observed so far.

To assess whether Zu also moderates the treatment effect, I then estimate the outcome equation:

τ̃su = θZu + λLsu + ζCs + κ+ ξsu (8)
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This equation includes all 111 sites. Lsu and Cs are included to control for within-utility

selection mechanisms, and Cs is also a potential moderator of ATEs across utilities. If ρ and θ

have the same sign for a given Z variable, that mechanism causes positive selection. If ρ and θ

have opposite signs, that mechanism causes negative selection. Because Zu vary only at the utility

level, standard errors are clustered by utility. As in Equations (5) and (6), I weight observations

by 1/ ˆV ar(τ̃su) and also present robustness checks using random effects meta-regression.

7.2 Results

7.2.1 Cohort Trends and Within- vs. Between-Utility Selection

Table 6 presents trends for earlier vs. later sites. The top panel uses frequency-adjusted ATE τ̃

normalized into percent, while the bottom panel uses τ̃ in kWh/day. Column 1 presents the results

of Equation (5), showing a statistically and economically significant decline in frequency-adjusted

ATEs over time. Sites that start one year later average 0.173 percentage points (0.077 kWh/day)

smaller ATEs.

Figure 4 illustrates this regression for τ̃s in percent. Each of the first 11 sites had a frequency-

adjusted ATE of 1.34 percent or larger. Sixty-seven of the next 100 sites had a smaller ATE than

that. This further corroborates the results from Section 6 that extrapolating from early sites would

overstate efficacy in later sites. An alternative specification in Appendix Table A12 using frequency-

and X-adjusted ATE τ̃s|X gives an almost identical results, which corroborates the result that the

decline in efficacy cannot be explained by individual-level observables.

Column 2 presents estimates of Equation (6), which isolates within-utility trends. The regression

excludes single-site utilities, so the sample size is 73 instead of 111. On average, a utility’s next site

performs 0.091 percentage points (0.062 kWh/day) worse than its previous site. Column 3 repeats

column 2 but also conditions on control group mean usage Cs to test within-utility targeting of

higher-usage households. As predicted, the within-utility trend attenuates toward zero, implying

that some or all of the within-utility trend results from intentional decisions by utilities to initially

target on gains.

Columns 4 and 5 focus on between-utility selection by adding Lsu and Cs to Equation (5)

as controls for within-utility selection. Both columns suggest that earlier utilities were positively

selected from later utilities. Comparing column 4 to column 5 in the bottom panel suggests that

controlling for usage makes the kWh/day ATE trend more negative. Additional regressions in

Appendix Table A12 explain why. The program’s expansion has taken it to increasingly high-

usage utilities, such as those further away from temperate coastal areas. On top of that, the ratio

of control group mean usage at utilities’ first sites to utility-wide mean usage grows over time,

implying that utilities are increasingly targeting heavy-usage customer subpopulations. In sum,

the program has gradually expanded to utilities with consumers that are increasingly heavy users
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but increasingly less responsive in percent terms.

Appendix Table A11 shows that the estimates in Table 6 are essentially identical when using

random effects metaregression.

Could the systematic failure of external validity be due to time effects instead of cohort effects?

In other words, is it possible that the same individuals exposed to treatment in 2008 and 2009 would

have been less responsive in later years? While it is impossible to fully distinguish time effects from

cohort effects in this setting, Appendix Table A13 presents a series of results suggesting that time

effects are an unlikely explanation. First, the results in column 2 of Table 6 are robust to including

site start date Ms, meaning that the within-utility trend is certainly not due to time effects. Second,

likely forces that might drive time effects would be trends correlated with the Great Recession -

for example, if a systematic decrease in average consumption left less scope for the treatment to

further reduce consumption. However, the results are identical when controlling for percent changes

in wages in counties served by utility u between 2007 and the first post-treatment year in site s,

and results are also identical when controlling for analogously-calculated percent changes in utility

average electricity usage. While there is substantial variation across sites in these two variables,

neither is associated with treatment effects.21 Furthermore, Allcott and Rogers (2014) show that

effects tend to increase over a program’s duration, which while certainly not dispositive, is also not

suggestive of a negative time effect.

7.2.2 Testing Utility-Level Selection Mechanisms

Table 7 tests utility-level selection mechanisms. Columns 1 and 2 present the selection estimates

from Equation (7), with column 1 studying selection of early partners from current partners, and

column 2 studying selection of current partners from all potential partners. In most cases, the same

mechanisms drive both early and overall partner selection, and the directions are as hypothesized in

Section 4.2 and as documented in the unconditional comparisons in Table 3. Utilities with higher-

income and more environmentalist populations are more likely partners, as are larger utilities.

Furthermore, point estimates suggest that pre-existing energy efficiency programs are positively

associated with selection, although this is not statistically significant.

Ownership structure, however, has different associations early (column 1) vs. overall (column

2). This is consistent with anecdotal evidence (Laskey 2014): initially, the program was unproven

at scale, and the company relied on innovative and non-profit utilities for business. As initial RCTs

21Furthermore, this is not a spurious result of focusing only on electricity as the dependent variable: there is no
trend in the proportion of “dual fuel” partner utilities that sell both electricity and gas, nor is there a trend in the
share of homes using electric heat. Finally, there is no indication that the trend is driven by a lack of treatment
fidelity. There is no statistically or economically significant time trend in treatment frequency (reports per month)
for utilities’ first sites, and the η̂ coefficient estimate is almost exactly the same when not adjusting for treatment
frequency. In fact, discussions with Opower managers suggest that the treatment may actually be improving over
time due to a series of incremental changes. While this is difficult to quantify systematically, it only would strengthen
the argument that the later populations would be less responsive to an exactly identical treatment.
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gave positive results, and also as EERS policies expanded, the more conservative and heavily-

regulated IOUs increasingly adopted the program.22 Interestingly, anecdotal evidence suggests

that very little of the early selection was based on intentionally targeting gains: both the company

and potential partner utilities had little idea of whether the program would be at all feasible at scale,

let alone how the effects would vary across utilities (Laskey 2014). Instead, this between-utility

selection seems to have been based on other “unintentional” mechanisms.

Columns 3-6 present outcomes estimates from Equation (8). Effects are fairly consistent across

columns and are as hypothesized. Because the specifications also condition on control mean usage

Csu, higher utility mean usage implies that the sample of households used less electricity relative to

others in the utility, which should decrease effects of the energy use comparison treatment. Higher

income and environmentalist populations have larger treatment effects, while IOUs have smaller

effects, perhaps due to lack of customer engagement. Municipally-owned utilities also have lower

effects than the omitted ownership category (coops and other non-profits), but point estimates

suggest larger effects than IOUs.

Point estimates suggest that effects are smaller at larger utilities. Appendix Table A14 presents

alternative estimates of the outcome equations using random effects meta-regression, and the only

substantive difference is that three of the four negative coefficients on ln(Residential Consumers) are

statistically significant. As suggested in Section 4.2, large utilities seem to have lower efficacy largely

because they are in urban areas, where neighbor comparisons might be less effective: Appendix

Table A15 shows that the utility’s urban population share is strongly negatively associated with

treatment effects, and including this coefficient attenuates the negative coefficients on ln(Residential

Consumers).

How much site selection is explained by individual-level and utility-level observables? Column

5 adds site start date Ms to Equation 8, which is also equivalent to adding the Zu variables to

column 5 of Table 6. Adding the Zu variables attenuates the η coefficient on Ms from -0.175 to -

0.122 percentage points per year, suggesting that site-level observables explain just under 1/3 of the

decline in efficacy between earlier and later sites. Column 6 uses frequency- and X-adjusted ATE

τ̃s|X. Point estimates are similar and suggest even greater selection on unobservables, consistent

with previous results that individual-level observables are negatively correlated with unobservables

driving earlier site selection.

Including utility-level data explains more of site selection than individual level data for two

reasons. First, some of the selection is associated with factors that vary only at the site level,

such as ownership and size. Second, site-level data better captures some population characteristics,

as suggested by the stark case study of the Democrat vote share variable in Appendix B. In

22This is one case where Opower’s sales outreach may have impacted selection independently of utilities’ demand
for the program. Laskey (2014) says that Opower’s earliest sales outreach preferentially targeted municipally-owned
and other non-profit utilities because he and others believed that IOUs would be less interested, but he believes they
were wrong in retrospect given demand from IOUs reflected in column 2.
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other words, part of the prediction failure with individual-level observables in Section 6 is due to

extrapolating to sites with different site-level observables.23 Unfortunately, corrections for site-level

observables are not possible in a typical program evaluation without so many sites.

Variables that moderate both selection and outcomes suggest mechanisms of site selection bias.

Population preferences and ownership structure are the two that are consistently statistically sig-

nificant in estimates of both equations. Figure 5 presents simple graphical intuition, showing the

unconditional relationship between the frequency-adjusted percent ATE and normalized population

preferences for each utility’s first site. The figure has two interesting features. First, while popu-

lation preferences is normalized to mean zero across the 882 potential partner utilities, the sample

mean is approximately one, implying strong selection. Second, the best fit line slopes upward,

illustrating larger treatment effects at higher-income and environmentalist utilities. As the figure

suggests, ρ̂ and θ̂ have the same sign, suggesting that population preferences has caused positive

selection from the 882 potential partner utilities nationwide. On the other hand, utility ownership

structure generates negative selection from the 882 potential partners: current partners are more

likely to be IOUs, and IOUs have conditionally lower ATEs.

What do these metadata results predict would be the first-year effects of a nationwide scaled

program? To answer this, I use the outcome equation estimates (Equation (8)) to predict total

effects across all consumers at all 882 potential partner utilities nationwide. To do this, I set

control mean usage Cs equal to utility mean usage to reflect inclusion of all residential consumers,

set within-utility start number Lsu equal to the sample mean, and sum the predicted τ̃s, multiplying

by each utility’s number of residential consumers and then by the national average retail electricity

price. The coefficient estimates in column 3 of Table 7 predict national first-year retail electricity

cost savings of $1.45 billion; the estimates in levels from column 4 predict a very similar $1.42

billion. Of course, these predictions rely on the assumption that υ ⊥ ξ, i.e. that no unobserved

factors that moderate treatment effects affected selection of the 58 current partners from the set

of 882 potential partners. Column 5 of Table 7 suggests that this may not be true: much of the

downward trend in efficacy within the 111-site sample is unexplained by utility-level observables.

Thus, even these predictions with a large sample of 111 sites may be biased due to unobserved site

selection mechanisms.

By comparing these predictions to a prediction that does not adjust for any site-level observables,

it is possible to test whether current sites are selected on observables. Assuming that the mean

percent ATE from the 111 sample sites will hold for all consumers nationwide predicts first-year

savings of $1.80 billion, and assuming the sample mean ATE in levels predicts first-year savings of

$2.13 billion. These substantial overpredictions of $350 million and $710 million show that current

23One way to document that later sites differ on site-level observables is to fit “early site propensity scores” based
on column 1 of Table 7. Sixty-one of the 101 later sites are outside the support of the scores for the first ten
sites, meaning that they are different on site-level observables. When predicting site-specific ATEs from the ten-site
microdata as in Figure 3, these 61 sites have larger absolute prediction errors.
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sample sites are positively selected on observables from the nationwide population.

8 Conclusion

Replication is crucial for program evaluation because it gives a sense of the distribution of effects in

different contexts. However, in the absence of randomly-selected evaluation sites, site-level selection

mechanisms can generate a sample where program impacts differ systematically from target sites.

The Opower energy conservation programs are a remarkable opportunity to study these issues,

given a large sample of microdata with high-quality covariates plus results from 111 RCTs. There

is evidence of both positive and negative selection mechanisms, involving both intentional targeting

on gains (via within-utility targeting) and unintentional forces (such as population preferences and

utility ownership and size). While the within-utility trend could have been predicted qualitatively

with the knowledge that utilities initially target high-usage consumers, the large samples of rich

individual-level microdata from the first ten sites do not even predict the direction of overall site-

level selection, let alone its magnitude.

How can researchers address site selection bias? First, one might propose additional econometric

approaches to control for observables. In the Opower example, however, econometric approaches

are unhelpful, and no econometric approach can possibly work without external unconfoundedness.

Second, researchers can continue efforts to replicate in sites that differ on hypothesized moderators.

In the Opower example, however, this may not have been effective - there were ten replications in

sites that did differ on potentially-relevant site level factors. Third, when reporting results, we can

clearly define policy-relevant target populations and compare sample and target on observables, as

in Tables 1, 2, and 3. While this can help to diagnose site selection bias, however, it does not solve

the problem.

The only guaranteed solutions to site selection bias are “design-based” approaches. Just as the

profession has de-prioritized econometric strategies in favor of randomized and quasi-randomized

research designs to address individual-level selection bias, we may wish to further prioritize design-

based strategies to address site-level selection bias. With a very large budget, a program could be

evaluated in the entire population of sites to which it might be expanded, as in the Department of

Labor YouthBuild evaluation and the Crepon et al. (2013) evaluation of job placement assistance

in France. If only a few sites can be evaluated, sample sites can be randomly selected within strata

of potentially-relevant site-level observables, as was originally envisioned for the JTPA evaluation.

At least in the Opower example, which is an unparalleled empirical setting to study these issues,

some form of randomized site selection would substantially improve inference.
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Tables and Figures

Table 1: Microfinance Institution Characteristics: RCT Partners and Non-Partners
(1) (2) (3) (4)
All Partners Non-Partners Difference

Average Loan Balance ($000’s) 1.42 0.58 1.44 -0.86
(3.07) (0.51) (3.10) (0.12)∗∗∗

Percent of Portfolio at Risk 0.083 0.068 0.083 -0.015
(0.120) (0.066) (0.121) (0.012)

Percent Female Borrowers 0.62 0.69 0.62 0.07
(0.27) (0.27) (0.27) (0.05)

MFI Age (Years) 13.99 21.86 13.84 8.02
(10.43) (11.21) (10.36) (1.88)∗∗∗

Non-Profit 0.63 0.37 0.64 -0.27
(0.48) (0.49) (0.48) (0.08)∗∗∗

Number of Borrowers (106) 0.06 0.85 0.05 0.80
(0.40) (1.84) (0.27) (0.31)∗∗∗

Borrowers/Staff Ratio (103) 0.13 0.22 0.13 0.09
(0.21) (0.19) (0.21) (0.03)∗∗∗

Cost per Borrower ($000’s) 0.18 0.10 0.18 -0.08
(0.19) (0.08) (0.19) (0.01)∗∗∗

N 1903 35 1868
F Test p-Value 0.00002∗∗∗

Notes: The first three columns present the mean characteristics for all global MFIs, field experiment part-

ners, and field experiment non-partners, respectively, with standard deviations in parenthesis. The fourth

column presents the difference in means between partners and non-partners, with robust standard errors in

parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence, respectively. Cur-

rencies are in US dollars at market exchange rates. Percent of Portfolio at Risk is the percent of gross loan

portfolio that is renegotiated or overdue by more than 30 days. “F Test p-Value” is from a regression of a

partner indicator on all characteristics.
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Table 2: Hospital Characteristics: Clinical Trial Sites and Non-Trial Sites
(1) (2) (3)

Difference: Difference:
Population Drug Trial Sites - Procedure Trial Sites -

Mean Other Hospitals Other Hospitals
County Percent with College Degree 0.23 0.09 0.08

(0.10) (0.00)∗∗∗ (0.00)∗∗∗

County Income per Capita 37.6 7.7 7.4
(10.7) (0.3)∗∗∗ (0.4)∗∗∗

In Urban Area 0.57 0.47 0.42
(0.49) (0.01)∗∗∗ (0.01)∗∗∗

Bed Count 179 238 256
(214) (7)∗∗∗ (8)∗∗∗

Annual Number of Admissions (000s) 7.4 11.0 11.9
(9.6) (0.3)∗∗∗ (0.4)∗∗∗

Annual Number of Surgeries (000s) 5.8 8.0 8.7
(7.5) (0.2)∗∗∗ (0.3)∗∗∗

Uses Electronic Medical Records 0.62 0.13 0.15
(0.31) (0.01)∗∗∗ (0.01)∗∗∗

U.S. News Technology Score 4.92 5.27 5.75
(4.78) (0.14)∗∗∗ (0.16)∗∗∗

U.S. News Patient Services Score 4.42 2.87 3.16
(3.16) (0.09)∗∗∗ (0.10)∗∗∗

Surgical Care Process Score 0.00 0.35 0.33
(1.00) (0.03)∗∗∗ (0.03)∗∗∗

Patient Communication Score 0.00 -0.36 -0.23
(1.00) (0.03)∗∗∗ (0.03)∗∗∗

Hospital-Acquired Condition Score 0.00 0.13 0.14
(1.00) (0.03)∗∗∗ (0.03)∗∗∗

Patient Safety Indicator Score 0.00 0.21 0.25
(1.00) (0.03)∗∗∗ (0.04)∗∗∗

Surgical Site Infections from Colorectal Surgery 0.00 -0.02 0.03
(1.00) (0.06) (0.05)

Mortality Rate Score 0.00 -0.34 -0.37
(1.00) (0.03)∗∗∗ (0.03)∗∗∗

Ranked as U.S. News Top 50 Hospital 0.04 0.04 0.07
(0.21) (0.01)∗∗∗ (0.01)∗∗∗

Number of Specialties in U.S. News Top 50 0.20 0.17 0.29
(1.25) (0.04)∗∗∗ (0.05)∗∗∗

N 4653
F Test p-Value 0.0000∗∗∗ 0.0000∗∗∗

Notes: The first column presents the mean characteristic for all US hospitals, with standard deviations in

parenthesis. The second and third columns present differences in means between clinical trial sites and non-

trial sites, with robust standard errors in parenthesis. *, **, ***: Statistically significant with 90, 95, and

99 percent confidence, respectively. 1722 hospitals have hosted drug trials, and 1265 have hosted procedure

trials. “F Test p-Value” is from a regression of a trial site indicator on all characteristics.

34



Table 3: Utility Characteristics: Opower Partners and Non-Partners
(1) (2) (3) (4)
All Partners Non-Partners Difference

Utility Mean Usage (kWh/day) 34.7 28.3 35.2 -6.8
(9.0) (7.5) (9.0) (1.0)∗∗∗

Mean Income ($000s) 50.2 59.0 49.6 9.4
(10.1) (9.7) (9.9) (1.3)∗∗∗

Share College Grads 0.21 0.27 0.21 0.06
(0.07) (0.06) (0.07) (0.01)∗∗∗

Hybrid Auto Share 0.0073 0.0112 0.0070 0.0042
(0.0042) (0.0050) (0.0040) (0.0007)∗∗∗

Democrat Share 0.44 0.53 0.44 0.10
(0.11) (0.10) (0.11) (0.01)∗∗∗

Green Party Share 0.0046 0.0052 0.0046 0.0007
(0.0033) (0.0028) (0.0033) (0.0004)∗

Energy Efficiency Resource Standard 0.58 0.97 0.55 0.41
(0.49) (0.18) (0.50) (0.03)∗∗∗

Green Pricing Share 0.0045 0.0100 0.0041 0.0059
(0.0151) (0.0187) (0.0147) (0.0025)∗∗

Residential Conservation/Sales 0.0007 0.0035 0.0005 0.0029
(0.0028) (0.0063) (0.0022) (0.0008)∗∗∗

Conservation Cost/Total Revenues 0.0027 0.0092 0.0022 0.0069
(0.0065) (0.0110) (0.0058) (0.0015)∗∗∗

Municipally-Owned Utility 0.26 0.17 0.27 -0.10
(0.44) (0.38) (0.44) (0.05)∗

Investor-Owned Utility 0.19 0.74 0.15 0.59
(0.39) (0.44) (0.35) (0.06)∗∗∗

ln(Residential Customers) 10.5 12.8 10.4 2.5
(1.3) (1.3) (1.1) (0.2)∗∗∗

N 882 58 824
F Test p-Value 0.0000∗∗∗

Notes: The first three columns of this table present the means of utility-level characteristics for all US utilities,

for Opower partners, and for Opower non-partners, respectively. Standard deviations are in parenthesis. The

fourth column presents the difference in means between partners and non-partners, with robust standard

errors in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence, respectively.

“F Test p-Value” is from a regression of a partner indicator on all characteristics.
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Table 4: Microdata Covariates
(1) (2) (3) (4) (5)

Microdata Microdata Microdata Later

Sample Sample Sample National Sites

Size Mean Std. Dev. Mean Mean

First Comparison (kWh/day) 475,278 1.47 15.33 0.00 1.34

Tract Mean Income ($000s) 508,082 73.8 28.2 57.0 59.3

Tract Share College Grads 508,082 0.35 0.17 0.25 0.27

Tract Share Hybrid Autos 506,367 0.018 0.012 0.010 0.011

Green Pricing Participant 82,836 0.096 0.292 0.006 0.009

EE Program Participant 82,715 0.06 0.24 - -

Electric Heat 313,076 0.12 0.35 0.34 0.28

House Age (Years) 407,469 41.5 27.7 39.2 41.2

Has Pool 207,885 0.18 0.35 0.17 0.17

Rent 272,308 0.10 0.32 0.33 0.33

Single Family 241,332 0.76 0.40 0.63 0.64

Square Feet (000s) 380,296 1.83 0.74 1.86 1.83
Notes: Columns 1, 2, and 3, respectively, present the observed sample sizes, means, and standard deviations

of household characteristics in the ten-site microdata. Sample means and standard deviations are taken

across the 25 imputations. The total microdata sample size is 508,295. Column 4 presents the national

means, which are the means across the 882 potential partner utilities, weighted by number of residential

consumers. Column 5 presents the unweighted mean across “later sites,” the 101 more recent sites not

included in the microdata. The Energy Efficiency Program Participant variable is not observed outside of

the microdata.
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Table 5: Heterogeneous Treatment Effects

(1) (2) (3) (4) (5)

Treatment 1.707 1.762 1.760 1.760

(0.056)*** (0.055)*** (0.058)*** (0.058)***

T x First Comparison 0.089 0.092 0.095 0.099

(0.009)*** (0.009)*** (0.009)*** (0.013)***

T x Tract Mean Income 0.001

(0.003)

T x Tract College Share -0.516

(0.678)

T x Tract Hybrid Auto Share 0.940

(7.437)

T x Green Pricing 0.009

(0.235)

T x EE Program Participant 0.064

(0.300)

T x Electric Heat 1.125 1.196 1.015 1.314

(0.229)*** (0.223)*** (0.224)*** (0.269)***

T x House Age -0.000

(0.002)

T x Has Pool 0.460 0.491 0.415 0.571

(0.211)** (0.208)** (0.214)* (0.224)**

T x Rent -0.185

(0.252)

T x Single Family 0.048

(0.221)

T x Square Feet 0.498 0.494 0.652 0.565

(0.128)*** (0.109)*** (0.121)*** (0.127)***

T x Baseline Usage -0.010

(0.013)

N 508,295 508,295 508,295 508,295 508,295

T x Site Indicators No No No Yes No

Notes: This table presents estimates of Equation (2) with different X characteristics. The dependent vari-

able is household i’s post-treatment electricity use normalized by the site s control group post-treatment

average. Missing data are imputed by multiple imputation. Robust standard errors, clustered at the level

of randomization (household or block batch), are in parenthesis. *, **, ***: Statistically significant with 90,

95, and 99 percent confidence, respectively.
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Table 6: Cohort Trends and Within- vs. Between-Utility Selection

Dependent Variable: Frequency-Adjusted ATE (Percent)

(1) (2) (3) (4) (5)

Site Start Date (Years) -0.173 -0.174 -0.175

(0.032)*** (0.035)*** (0.035)***

Within-Utility Start Number -0.091 -0.059 0.003 0.006

(0.033)*** (0.028)** (0.027) (0.030)

Control Mean Usage (kWh/day) 0.017 0.001

(0.004)*** (0.002)

R2 0.22 0.65 0.76 0.22 0.22

N 111 73 73 111 111

Dependent Variable: Frequency-Adjusted ATE (kWh/day)

(1) (2) (3) (4) (5)

Site Start Date (Years) -0.077 -0.044 -0.054

(0.013)*** (0.013)*** (0.010)***

Within-Utility Start Number -0.062 -0.002 -0.046 -0.000

(0.016)*** (0.010) (0.009)*** (0.007)

Control Mean Usage (kWh/day) 0.020 0.012

(0.002)*** (0.001)***

R2 0.17 0.65 0.93 0.28 0.72

N 111 73 73 111 111

Utility Indicator Variables No Yes Yes No No

Sample: All Multi-Site Multi-Site All All

Sites Utilities Utilities Sites Sites

Notes: Column 1 presents estimates of Equation (5), columns 2 and 3 present estimates of Equation (6), and

columns 4 and 5 add controls to Equation (5). The average percent ATE is 1.31 percent, and the average

ATE in levels is 0.47 kWh/day. Observations are weighted by inverse variance. Robust standard errors are

in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence, respectively.
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Table 7: Utility-Level Selection

Selection Outcomes
(1) (2) (3) (4) (5) (6)

Frequency- Frequency-
Frequency- Adjusted Frequency- and X-

1(Early Adjusted ATE Adjusted Adjusted
Dependent Variable: Partner) 1(Partner) ATE (%) (kWh/day) ATE (%) ATE (%)

Utility Mean Usage (kWh/day) -0.068 -0.007 -0.040 -0.013 -0.038 -0.062

(0.046) (0.012) (0.009)*** (0.003)*** (0.007)*** (0.008)***

Normalized Population Preferences 0.808 0.337 0.122 0.050 0.094 0.055

(0.359)** (0.091)*** (0.058)** (0.019)** (0.043)** (0.044)

Normalized Other Programs 0.093 0.071 -0.002 -0.002 0.008 -0.010

(0.144) (0.059) (0.011) (0.004) (0.011) (0.013)

Municipally-Owned Utility -2.145 0.405 -0.367 -0.188 -0.331 -0.635

(1.109)* (0.264) (0.171)** (0.046)*** (0.129)** (0.202)***

Investor-Owned Utility -3.695 0.557 -0.485 -0.185 -0.382 -0.381

(1.111)*** (0.302)* (0.175)*** (0.049)*** (0.149)** (0.141)***

ln(Residential Customers) 0.541 0.494 -0.043 -0.013 -0.060 -0.084

(0.440) (0.078)*** (0.037) (0.012) (0.042) (0.059)

Within-Utility Start Number -0.070 -0.012 -0.031 -0.013

(0.016)*** (0.004)*** (0.018)* (0.023)

Control Mean Usage (kWh/day) 0.015 0.018 0.016 0.014

(0.003)*** (0.001)*** (0.003)*** (0.003)***

Site Start Date (Years) -0.122 -0.141

(0.036)*** (0.042)***

Psuedo R2 0.43 0.44

N 58 882 111 111 111 111

R2 0.47 0.80 0.56 0.60

Estimator: Probit Probit OLS OLS OLS OLS

Sample: Partner All All All All All

Utilities Utilities Sites Sites Sites Sites

Notes: Columns 1 and 2 present estimates of Equation (7), while columns 3-6 present estimates of Equation

(8). Observations are weighted by inverse variance. Robust standard errors, clustered by utility, are in

parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence, respectively.
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Figures

Figure 1: Predicted Nationwide Effects by Site
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Notes: This figure presents the national electricity cost savings that would be predicted by extrapolating

the percent average treatment effect from the first year of each Opower site to all US households.
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Figure 2: Predicted Effects Using Microdata
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Notes: This figure presents the average treatment effects (ATEs) of the Opower program as predicted by

microdata from the first ten sites. ATEs are “frequency adjusted” to match the average number of home

energy reports per month in across the 111 sites in the metadata. The left panel is the sample ATE in the

microdata, the middle panel is the nationwide prediction, and the right panel is the prediction for the 101

later sites that are in the metadata but not the microdata. The “True ATE” is the unweighted mean ATE

for the later sites.

Figure 3: Site-Specific Predictions from Microdata
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Notes: This figure plots the actual average treatment effects (ATEs) for each of the 101 later sites against a

linear prediction from sample microdata using Equation (3). All ATEs are “frequency adjusted” to match

the average number of home energy reports per month across the 111 sites in the metadata. “Statistically

different” means that predicted and true ATEs differ with 90 percent confidence.
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Figure 4: Efficacy Trend Across Sites
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Notes: This figure plots the data and fitted regression line for column 1 of Table 6. In this regression,

observations are weighted by inverse variance.

Figure 5: Site Selection on Population Preferences
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Notes: This figure plots the regression of frequency-adjusted ATE on normalized population preferences,

which is the sum of Income, Share College Grads, Hybrid Auto Share, Democrat Share, Green Party Share,

Energy Efficiency Resource Standard, and Green Pricing Share, after normalizing each to mean zero, standard

deviation one. In estimating the best fit line, observations are weighted by inverse variance.
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Appendix: For Online Publication

Site Selection Bias in Program Evaluation

Hunt Allcott
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A Data Appendix

A.1 Clinical Trial and Hospital Data

ClinicalTrials.gov is a registry and results database of clinical trials conducted in the United States and other
countries. Although the registry does not contain all clinical studies, the number of studies registered has
increased as protocols and laws requiring registration have been enacted and as voluntary registration has
caught on. The database for Aggregate Analysis of ClinicalTrials.gov contains records of each registered trial
as of September 27, 2012 (CTTI 2012). There were 108,047 “interventional” studies (randomized control
trials). Of these, 71 percent were “drug trials,” by which I mean that at least one treatment group was
given a drug, biological intervention, or dietary supplement. Thirteen percent were “procedure trials,” by
which I mean that at least one treatment group received a surgical or radiation procedure. Each trial takes
place at one or more sites, and there are 480,000 trial-by-site observations for drug trials and 72,000 trial-
by-site observations for procedure trials. Many trials take place at clinics, corporate research sites, or other
institutions; 135,000 and 37,000 trial-by-site observations of drug and procedure trials, respectively, were
matched to the hospital database using hospital name and zip code.

My hospital characteristics database combines three major data sources: the Center for Medicare &
Medicaid Services (CMS) Provider of Services (POS) files for 2011 (CMS 2013a), the American Hospital
Association (AHA) Annual Survey Database for 2011 (AHA 2012), and the CMS Hospital Compare database
(CMS 2013b). Hospitals are linked between the databases using the six-digit CMS provider identification
number.

From the POS files, I extract the hospital name, county, zip code, urban location indicator variable, and
bed count.

From the AHA database, I extract number of admissions and number of surgical procedures, as well
as information on electronic medical records and the U.S. News Technology and Patient Services scores.
The Electronic Medical Records variable takes value 1 if the hospital has fully implemented, 0.5 if partially
implemented, and zero if there are no electronic medical records. In their Best Hospitals 2013-2014 rankings,
U.S. News and World Report identifies 21 technologies as part of their Index of Hospital Quality (U.S. News
2013), from ablation of Barrett’s esophagus to transplant services. The U.S. News Technology Score variable
is simply the number of these technologies that the hospital offers on-site. U.S. News also identifies 13 patient
services, from an Alzheimer’s center to wound management services. Analogously, the U.S. News Patient
Services Score is the number of these services that the hospital offers on-site.

The remainder of the measures are from the CMS Hospital Compare database. Each of the measures
described below is normalized across hospitals to mean zero, standard deviation one. The Patient Commu-
nication Score combines four variables from the Survey of Patients’ Hospital Experiences using the following
formula:

Patient Communication Score=
Percent of patients who reported that their nurses “Always” communicated well

+ 1
2 ·Percent of patients who reported that their nurses “Usually” communicated well

+Percent of patients who reported that their doctors “Always” communicated well
+ 1

2 ·Percent of patients who reported that their doctors “Usually” communicated well
+Percent of patients who reported that staff “Always” explained about medicines

+ 1
2 ·Percent of patients who reported that staff “Usually” explained about medicines

+Percent of patients who reported that they were given information about what to do during recovery

The Mortality Rate Score variable is the sum of three components: the 30-day mortality rates from
pneumonia, heart failure, and heart attack. Each component is normalized to mean zero, standard deviation
one before being added together.

The next four variables from Hospital Compare were motivated directly from the Hospital Safety Score
methodology, available from http://www.hospitalsafetyscore.org. The Surgical Care Process Score is the
sum of five measures from the Surgical Care Improvement Project, which reports the percentage of times
that surgeons at the hospital followed accepted practices, from giving prophylactic antibiotic within one hour
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of surgical incision to giving appropriate venous thromboembolism. For each of the five specific measures, I
normalized the percentages to have mean zero, standard deviation one across hospitals so as to not overweight
variation coming from any one measure. I then summed the normalized measures and again normalized the
sum to have mean zero, standard deviation one.

The Surgical Site Infection Ratio is the Standardized Infection Ratio for Colorectal Surgery.
The Hospital Safety Score includes the incidence rates per 1000 discharges of four Hospital Acquired

Conditions: foreign object retained after surgery, air embolism, pressure ulcers, and falls and trauma. Each of
these individual rates is normalized to mean zero, standard deviation one. The Hospital Acquired Condition
Score is the sum of these four normalized measures.

The Hospital Safety Score incorporates six measures from the Agency for Healthcare Research and
Quality Patient Safety Indicators (PSIs), which are again reported as incidence rates. These include sur-
gical deaths, collapsed lungs, post-operative blood clots, post-operative ruptured wounds, and accidental
lacerations.

A.2 Opower Microdata

Appendix Table A1 provides an overview of Opower’s first ten sites, which are the sites for which I have
microdata. Due to confidentiality restrictions, utility names and locations are masked and the sites are
numbered from one to ten. The rightmost column shows that treatment and control groups at nine sites
are statistically balanced on baseline usage, while there is some imbalance at site 5. Placebo tests using
pre-treatment data suggest that controlling for lagged electricity use eliminates the potential bias from this
imbalance, and the overall results are effectively the same when excluding site 5, which is unsurprising given
that it is only a small share of the ten-site sample.24

Appendix Table A2 presents the means and standard deviations of each variable at each specific site.
Some variables are not available for all sites, and Green Pricing and EE Program Participant are only
available in site 10.

Tract Mean Income and Share College Grads are mean household income and the share of population
over 25 years old that holds a college degree, both from the 2000 Census. Tract Share Hybrid Autos uses
vehicle registration data from 2013.

I note that in addition to the within-utility site selection processes discussed in the body of the paper,
there is one additional element of within-utility site selection that is purely technical: to be eligible for the
program, a customer must have at least one year of valid pre-experiment energy use data and satisfy some
additional conditions. Typically, households in Opower’s experimental populations need to have valid names
and addresses, no negative electricity meter reads, at least one meter read in the last three months, no
significant gaps in usage history, exactly one account per customer per location, and a sufficient number of
neighbors to construct the neighbor comparisons. Households that have special medical rates or photovoltaic
panels are sometimes also excluded. Utility staff and “VIPs” are sometimes automatically enrolled in the
reports, and I exclude these non-randomized report recipients from any analysis. These technical exclusions
eliminate only a small portion of the potential population. Such technical exclusions do not contribute to
site selection bias, because the excluded households would never receive the program and are thus not part
of a target population.

24Since these early programs, Opower has institutionalized a re-randomization algorithm to ensure covariate balance
before implementation.
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Table A1: Microdata Experiment Overviews
(1) (2) (3) (4) (5) (6)

Baseline

Usage:

Electricity Treatment-

Treated Usage Control

Site Region Start Date Households Households Obs. (Std. Error)

1 Midwest July 2009 54,259 27,914 1,869,843 0.04 (0.05)

2 Midwest January 2009 72,687 38,930 3,182,028 0.01 (0.12)

3 Mountain October 2009 38,502 24,088 1,304,199 0.12 (0.14)

4 West October 2009 33,308 23,766 568,395 0.09 (0.13)

5 Rural Midwest April 2009 17,558 9,755 791,227 1.01 (0.42)

6 Northeast September 2009 49,165 24,631 1,704,897 -0.21 (0.13)

7 West October 2008 78,549 34,683 3,117,229 0.02 (0.10)

8 West January 2009 42,576 9,367 1,667,334 0.26 (0.27)

9 West September 2009 38,855 19,406 668,419 0.00 (0.17)

10 West March 2008 82,836 33,651 6,388,135 -0.42 (0.58)

Combined March 2008 508,295 246,191 21,261,706
Notes: This table presents overviews of the first ten Opower sites, which are the sites for which microdata

are available. Electricity Usage Observations includes all pre- and post-treatment data, including before

the one-year baseline period and after the first post-treatment year. The rightmost column presents the

treatment - control difference in baseline usage in kWh/day, with standard errors in parentheses.
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Table A2: Microdata Covariates by Site

Energy Census Household-
Use Tract Level

Baseline First Mean Share Share Green EE House Square
Usage Comparison Income College Hybrid Pricing Program Electric Age Has Single Feet

Site (kWh/day) (kWh/day) ($000s) Grads Autos Participant Participant Heat (Years) Pool Rent Family (000s)
1 30.9 3.33 89.9 0.40 0.013 - - - 50.3 - 0.09 0.77 1.91

(5.7) (14.6) (41.0) (0.21) (0.009) - - - (26.1) - (0.29) (0.42) (0.90)
2 29.7 0.00 70.2 0.21 0.007 - - 0.08 31.7 - - 0.96 1.69

(16.4) (18.5) (12.9) (0.08) (0.003) - - (0.27) (28.1) - - (0.21) (0.54)
3 25.1 0.37 62.9 0.47 0.018 - - 0.14 25.5 - 0.32 0.74 2.01

(13.2) (11.1) (18.8) (0.11) (0.007) - - (0.35) (20.6) - (0.47) (0.44) (0.78)
4 18.2 1.33 63.7 0.34 0.022 - - - 59.2 0.10 0.35 0.50 1.69

(10.7) (9.9) (27.5) (0.11) (0.009) - - - (23.1) (0.30) (0.48) (0.50) (0.72)
5 39.5 -2.45 45.3 0.16 0.004 - - 0.31 - - 0.05 - 1.28

(27.5) (24.2) (6.0) (0.05) (0.002) - - (0.46) - - (0.21) - (0.54)
6 30.0 2.49 82.5 0.39 0.013 - - - 58.6 0.02 0.06 - 2.03

(14.8) (13.3) (30.0) (0.16) (0.006) - - - (42.4) (0.15) (0.23) - (0.85)
7 30.5 2.88 85.4 0.40 0.024 - - 0.07 31.0 - 0.03 - 2.14

(13.8) (15.4) (30.7) (0.16) (0.012) - - (0.26) (16.0) - (0.18) - (0.64)
8 31.2 -1.13 65.3 0.25 0.019 - - - 28.0 0.24 - 0.62 1.88

(22.5) (13.9) (31.2) (0.09) (0.008) - - - (15.7) (0.43) - (0.49) (0.80)
9 36.4 3.48 70.6 0.47 0.035 - - 0.17 65.0 - 0.06 - 1.83

(17.2) (16.3) (23.1) (0.18) (0.015) - - (0.38) (25.4) - (0.23) - (0.77)
10 30.8 0.98 70.9 0.36 0.020 0.09 0.06 0.25 37.4 0.21 - - 1.75

(15.1) (14.1) (17.2) (0.14) (0.010) (0.29) (0.24) (0.44) (18.3) (0.41) - - (0.60)

Notes: This table presents covariate means for the first ten Opower sites, with standard deviations in parenthesis. A dash means that a

variable is unavailable at that site.
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A.3 Site-Level Metadata

Appendix Table A3 presents descriptive statistics for the metadata. The I2 statistic (Higgins and Thompson
2002) shows that 86.6 percent of the variation in percent ATEs is due to true heterogeneity instead of sampling
variation. Effectively none of this variation is due to variation in reports per month: the standard deviation
of frequency-adjusted ATEs and their mean standard error are 0.44 percent and 0.18 percent, respectively,
and the I2 is 85.6 percent.

I focus on the ATEs over each program’s first year, for several reasons. Considering full instead of
partial years averages over seasonal effect variation, whereas comparing programs that have been in effect
over different seasons would require location-specific seasonal adjustments. Comparing programs that have
been in effect for different durations would also require duration controls, given that effect sizes tend to grow
over time (Allcott and Rogers 2014). This growth in effect sizes over time means that these first-year ATEs
are smaller than the ATEs that are realized over longer treatment periods. I use one year instead of two or
more full years because this allows the analysis to include the largest number of sites. In the 67 sites with
two years of data, the first-year ATE is highly predictive of the ATE over the first two years (R2 = 0.79).

Opower’s analysts estimated the ATEs using mutually-agreed procedures and code. I define Ms as the
month when the first home energy reports are generated in the site. The 12 months before Ms are the
“baseline” period, while the “post-treatment” period begins the first day of the month after Ms. The month
Ms is excluded from the analysis, as it often will include days both before and after the first reports arrive.
Yit is daily average electricity usage (in kilowatt-hours per day) for household i for the period ending with
a meter read on date t. Y0i is a vector of three baseline usage controls: average daily usage over the entire
baseline period, the baseline winter (December-March), and the baseline summer (June-September). πt is a
set of indicators for the month and year in which t falls. The first-year ATE is estimated using the following
equation:

Yit = −τTi + γY0i + πt + εit (9)

The treatment causes energy use to decrease. By convention, I multiply τT by -1, so that reported τ are
positive and larger values imply higher efficacy. Standard errors are robust and clustered by household.

Instead of estimating in levels, one alternative approach would be to use the natural log of Y as the
dependent variable. However, regressing in logs and transforming to kWh levels tends to understate the
quantity of energy conserved, because regressing in logs gives higher weight to lower-usage households with
smaller effect sizes. Other practical reasons to prefer logs are less important in this context: there is very
little measurement error because these are administrative records, and the estimated τ̂ are not affected by
dropping outlying high-usage observations.

Due to various contractual and computational issues, Opower has not been able to provide the clustered
standard errors for 12 of the 111 sites. However, I observe non-clustered standard errors for all sites. For
the sites where clustered standard errors are not available, I have predicted them based on a regression
of clustered on non-clustered standard errors in the other sites. Because intra-household correlations of
electricity use are similar across sites, the prediction has an R2 of 0.87, so this approximation seems highly
unlikely to affect the results.

As documented in Appendix Table A3, there are two types of attrition. First, an average of 10 percent of
households move and close their utility accounts each year. The site with the highest one-year move rate (42
percent) is at a utility in college town where most households are rentals that change hands each academic
year. After an account closes, Opower ceases to send reports and no longer observes electricity bills for the
physical location or the former occupant, so the unit attrits from the sample.

The second type of attrition is when a household actively calls the utility and asks to opt out of the
program. An average of 0.6 percent of households opt out during the first year. These households’ utility
bills are observed, and they remain in the sample. I define the “treatment” as “being mailed a Home Energy
Report or opting out.” This definition of “treatment” gives a treatment effect of policy interest: the effect
of attempting to mail Home Energy Reports to an entire site-level population. In practice, because opt-out
rates are so low, the ATE is the almost exactly the same when the “treatment” is defined as “being mailed
a Home Energy Report.”
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Opower also works with utilities that sell only natural gas and other “dual fuel” utilities that sell both
natural gas and electricity. Instead of studying effects on electricity use only, one alternative approach would
be to combine effects on natural gas and electricity consumption. There are two reasons why I do not do this.
First, there is no equivalent of the EIA form 861 database for natural gas utilities, so it would be difficult to
construct a dataset with characteristics of potential partner natural gas utilities. Second, while the treatment
presumably affects natural gas and oil use in all sites where households use these fuels, Opower only observes
these effects if their partner utility is the company that sells the other fuels. In many sites, the natural gas
and oil retailers are separate companies from the electricity retailer. I prefer a consistently-observed measure
of the effects on electricity use instead of an inconsistently-observed measure of the effects on total energy
use.

A.3.1 Site-Level Variation in Cost Effectiveness

In addition to the national-level effects illustrated in Figure 1, a second measure of economic significance
is the variation in cost effectiveness, as presented in Figure A1. While there are many ways to calculate
cost effectiveness, I present the simplest: the ratio of program cost to kilowatt-hours conserved during the
first two years.25 As Allcott and Rogers (2014) point out, cost effectiveness improves substantially when
evaluating over longer time horizons; I use two years here to strike a balance between using longer time
horizons to calculate more realistic levels vs. using shorter time horizons to include more sites with sufficient
post-treatment data. I make a boilerplate cost assumption of $1 per report.

The variation is again quite substantial. The most cost effective (0.88 cents/kWh) is 14 times better
than the least cost effective, and the 10th percentile is four times better than the 90th percentile. The site
on the right of the figure with outlying poor cost effectiveness is a small program with extremely low ATE
and high cost due to frequent reports.

This variation is economically significant in the sense that it can cause program adoption errors: managers
at a target site might make the wrong decision if they extrapolate cost effectiveness from another site in order
to decide whether to implement the program. Alternative energy conservation programs have been estimated
to cost approximately five cents per kilowatt-hour (Arimura, Li, Newell, and Palmer 2011) or between 1.6
and 3.3 cents per kilowatt-hour (Friedrich et al. 2009). These three values are plotted as horizontal lines
on Figure A1. Whether an Opower program at a new site has cost effectiveness at the lower or upper end
of the range illustrated in Figure A1 therefore could change whether a manager would or would not want
to adopt. Extrapolating cost effectiveness from other sample sites could lead a target to implement when it
is in fact not cost effective, or fail to implement when it would be cost effective. The program is not cost
effective at all sites: for example, one early partner utility ended a program due to poor cost effectiveness.

25Cost effectiveness would be further improved if natural gas savings were included. Of course, cost effectiveness is
not a measure of welfare. The welfare effects of non-price interventions such as the Opower program are an important
issue, but this is certainly distinct from this paper’s argument about site selection bias.
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Table A3: Site-Level Metadata
Standard

Mean Deviation Minimum Maximum

Number of Households (000s) 77.2 70.4 5.8 435

Number of Treated Households (000s) 53.3 58.7 2.91 348

Reports/Month 0.58 0.11 0.21 1.03

Control Mean Usage (kWh/day) 36.2 14.9 12.0 90.1

Average Treatment Effect (kWh/day) 0.47 0.25 0.1 1.47

Standard Error (kWh/day) 0.062 0.032 0.017 0.19

Average Treatment Effect (Percent) 1.31 0.45 0.50 2.63

Standard Error (Percent) 0.18 0.095 0.079 0.66

Move Rate 0.10 0.059 0.018 0.42

Opt-Out Rate 0.006 0.004 0 0.032
Notes: This table presents descriptive statistics for the site-level Opower metadata. There are 111 sites at

58 different utilities.

Figure A1: Cost Effectiveness by Site
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Notes: This figure presents the cost effectiveness over the first two years of each site against national

benchmark estimates from Arimura et al. (2011) and Friedrich et al. (2009).
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B The Democrat Share Variable

Political affiliation provides an interesting case study of challenges in estimating heterogeneous treatment
effects when covariates that might moderate the treatment effect are not randomly assigned. In my ten-site
microdata sample, the association between the treatment effect and Census tract Democrat vote share is
not robust and is often negative.26 A negative association is counter to the association in the site-level
Opower metadata and also counter to results from other domains that environmentalism and Democrat
party affiliation are positively correlated. In this appendix, I document these results and explain why they
arise.

The tract-level Democrat share variable is the share (from zero to 1) of Democratic and Republican
votes in the 2008 presidential elections that were for the Democratic candidate. Data are from the Harvard
Election Data Archive.27 The archive does not include voting data for the state where site 6 is located, so I
substitute Democratic and Republican party registrations.

Across counties in the U.S., Democrat vote shares are positively associated with socioeconomic status
(SES), as measured by variables such as income and education. Across Census tracts within Opower samples,
however, Democrat share is negatively associated with SES. As shown in columns 1-5 of Appendix Table
A4, Democratic Census tracts within cities use less electricity and are more urban, with lower income, less
education, fewer single-family homes, and more renters. Furthermore, columns 6 and 7 the empirical associ-
ation between measures of environmentalism and political ideology is ambiguous: consumers in Democratic
Census tracts are more likely to participate in green pricing programs, but they are less likely to participate
in the utility’s other energy efficiency programs, conditional on income and education. Columns 6 and 7
restrict to Census tracts in site 10 because Green Pricing and EE Program Participant are only observed in
that site. I observe households’ Census block group in site 10 (only), and the results in column 6 and 7 are
similar using block group-level data.

These correlations suggest two results. First, within a site, Democrat vote shares could likely be nega-
tively correlated with environmentalism, and thus potentially negatively correlated with Opower treatment
effects. Second, because Democrat share is correlated with other covariates, the association between this
variable and the treatment effect may depend on what other covariates are included.

Appendix Table A5 reflects both of these suggested results. The table presents estimates of the hetero-
geneous treatment effect regression, Equation (2), also including Democrat vote share. Columns 1-3 show
that Democratic neighborhoods have smaller treatment effects, both conditional on all other covariates and
unconditional. However, simply controlling for the interaction between T and baseline usage Y0 in column
4 eliminates this negative association. In columns 5 and 6, I limit the sample to Site 10 and use the block-
group level Democratic vote shares. Column 5 replicates the approach in column 2, showing a negative
but insignificant association. However, when I use lnY as the dependent variable (multiplying by 100 to
make the coefficients comparable) and condition on interactions between T and a particular set of other X
variables, I can obtain a positive association between Democratic vote share and the treatment effect.

Because this within-site association is both not robust in my data and because a negative association
is inconsistent with the between-site comparative static, I do not condition on Democrat share when using
microdata for out-of-sample prediction in Section 6.

26Costa and Kahn (2013) show that the share of Democratic voters in a household’s Census block group is positively
associated with the treatment effect in one Opower site, conditional on interactions between T and some covariates.
Their specification and available covariates differ from mine, and so this appendix is not a comment on their results.
They present a series of regressions showing that their results are robust in their specifications at their site.

27This can be accessed at http://projects.iq.harvard.edu/eda/home.
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Table A4: Associations with Democrat Share

(1) (2) (3) (4) (5) (6) (7)
Baseline Mean College Single Green EE Prog.

Dependent Variable: Usage Income Grads Family Rent Pricing Participant

Democrat Share -14.475 -134.747 -0.367 -1.196 0.665 0.076 -0.051

(5.097)** (13.947)*** (0.111)*** (0.074)*** (0.073)*** (0.044)* (0.014)***

Mean Income -0.001 -0.000

(0.000)* (0.000)

Share College Grads 0.209 0.042

(0.036)*** (0.015)***

R2 0.11 0.28 0.06 0.32 0.25 0.51 0.26

Within-Site R2 0.11 0.28 0.06 0.32 0.25

Between-Site R2 0.01 0.00 0.33 0.79 0.06

N 1,386 1,385 1,385 715 1,117 85 85

Notes: This table presents associations between Democrat vote share and other variables, using data collapsed

to Census tract-level averages. Columns 1-5 include all 10 microdata sites, while columns 6-7 include only

site 10. Robust standard errors are in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99

percent confidence, respectively.
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Table A5: Heterogeneous Treatment Effect Estimates Including Democrat Share

(1) (2) (3) (4) (5) (6)
Dependent Variable: y y y y y 100*ln(y)

Treatment 1.759 1.879 1.891

(0.055)*** (0.170)*** (0.236)***

T x Tract Democrat Share -2.912 -1.666 -1.606 -0.316 -0.679 2.772

(0.572)*** (0.730)** (0.583)*** (0.600) (1.577) (1.512)*

T x First Comparison 0.090 0.091 0.138

(0.009)*** (0.009)*** (0.017)***

T x Tract Mean Income -0.007 0.001 0.011

(0.003)** (0.004) (0.012)

T x Tract College Share 0.075 -0.636 -2.033 0.113

(0.690) (0.789) (1.885) (1.123)

T x Tract Hybrid Auto Share 12.448 12.920 5.724

(7.590) (10.635) (23.610)

T x Green Pricing 0.016 0.024 0.195

(0.234) (0.233) (0.348)

T x EE Program Participant 0.047 0.049 0.194

(0.299) (0.297) (0.414)

T x Electric Heat 1.094 0.914 2.267

(0.229)*** (0.236)*** (0.435)***

T x House Age 0.004 0.002 0.006 -0.013

(0.002)* (0.003) (0.012) (0.013)

T x Has Pool 0.393 0.359 0.766

(0.211)* (0.213)* (0.360)**

T x Rent -0.182 -0.313

(0.253) (0.263)

T x Single Family -0.130 -0.244

(0.228) (0.248)

T x Square Feet 0.510 0.546 0.899

(0.128)*** (0.135)*** (0.374)**

T x Baseline Usage 0.069 0.029

(0.011)*** (0.013)**

N 508,295 508,295 508,295 508,295 82,836 82,831

Sample Sites: All All All All Site 10 Site 10

T x Site Indicators: No Yes Yes Yes N/A N/A

Notes: This table presents estimates of Equation (2) including Democrat vote share and other covariates.

The dependent variable in columns 1-5 is yis, household i’s post-treatment electricity use normalized by the

site s control group post-treatment average. In column 6, the dependent variable is 100 · ln yis. Missing data

are imputed by multiple imputation. Robust standard errors are in parenthesis. *, **, ***: Statistically

significant with 90, 95, and 99 percent confidence, respectively.
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C Testing Alternative Extrapolation Approaches Within Sample

Prediction with microdata in Section 6 is limited by the fact that only the means of covariates X, not the
full distributions, are known for the target populations. This appendix tests whether prediction is improved
when the full distributions are known. To do this, I predict the average treatment effect for each of the
ten sites in the microdata, using the other nine sites as the “sample.” For each of the ten “target” sites, I
compare the linear prediction approach from Section 6.1.2 to predictions using either a polynomial estimator
or inverse probability weights. I also test whether improved prediction is possible for subsets of target
populations that have improved overlap with sample data.

C.1 Procedure

I use five different approaches to predict treatment effects for each of the ten sites, using the nine other sites
as the “sample.”

The first approach is the unconditional prediction, i.e. simply the ATE for the nine sample sites estimated
using Equation 2, without conditioning on any X covariates. The second is the frequency-adjusted linear
prediction, which effectively combines Equations (3) and (4). Again denoting the target as D = 0 and the
remaining sample of nine sites as D = 1, this is:

τ̂D=0 = τ̂D=1 + α̂(XD=0 −XD=1) + φ̂(FD=0 − FD=1). (10)

As in the main estimates, X̄ is the mean over all 25 imputations. The third approach is the same, except
using only the X∗ variables that survive the top-down procedure. This replicates the approach from Section
6.1.2.

The fourth approach relaxes Assumption 5 (that τ is linear inX) and instead uses a polynomial estimator.
To determine the set of the variables that enter this prediction, I begin with all squares and interactions of
all X variables and again use the Crump, Hotz, Imbens, and Mitnik (2008) top-down procedure to select
covariates X∗∗ that statistically significantly moderate the treatment effect. The polynomial prediction also
uses Equation (10), except with X∗∗ and the corresponding α̂.

The fifth approach is the inverse probability weight (IPW) estimator. Denote e(x) = Pr(Di = 1|Xi = x)
as the “target propensity score,” i.e. the probability that an individual drawn from the combined (sample
and target) population is in target. I assume that e(X∗i ) = Φ(ξX∗i + ξ0), where Φ is the normal cumulative
density function and ξ0 is a constant, and estimate with a probit. I then estimate the ATE with sample

data, weighting observations by weights wi =
ê(X∗

i )
1−ê(X∗

i )
. This ATE is then adjusted for the target-sample

difference in frequency (reports/month) by adding φ̂(FD=0 − FD=1).
To test whether improved predictions can be made for a subset of the target population with improved

overlap, I trim the sample and target to observations with 0.1 ≤ ê(X∗i ) ≤ 0.9. This parallels the rule of
thumb developed in Crump, Hotz, Imbens, and Mitnik (2009) for overlap between treatment and control.28

I then repeat each of the five approaches above, beginning with this trimmed sample.

C.2 Results

Table A6 presents estimates from the last iteration of the Crump, Hotz, Imbens, and Mitnik (2008) top-down
procedure, after beginning with all squares and interactions of the X vector. Column 1 clusters at the level
of randomization (household in sites 1-9 and block batch in site 10), while column 2 clusters by Census
tract. Although some of the covariates vary only at the Census tract level, clustering standard errors by
Census tract only slightly affects the standard errors, and all t-statistics are still larger than 2. The variables
that survive are the same X∗ from the linear procedure plus eight interactions. Notice that these eight

28The target population is on average 1/9 the size of the sample, which mechanically generates small target
propensity scores. To address this, I re-weight observations in the probit estimator so that the weighted observation
counts are identical in sample and target.
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interactions can be grouped into four pairs, with each pair including two positively correlated variables with
one positive and one negative coefficient.29

Table A7 presents prediction results. Row 1 show the mean and standard deviation of the ten ATEs
in the ten “target” sites. Rows 2-6 present predictions from the full “samples” of nine sites to the full
target population in the tenth. Rows 7-11 present predictions using trimmed sample and target populations.
Columns 1 and 2 show the means and standard deviations of the ten predicted ATEs, while columns 3 and 4
show the average absolute value of the prediction errors and the root mean squared prediction error (RMSE),
respectively.30

The linear prediction with all variables performs almost exactly the same as linear prediction with
the top-down selected variables, as measured both by average absolute error and RMSE. The polynomial
prediction performs slightly better than the linear predictions, and all perform slightly better after trimming
to improve overlap.

When predicting the ATE in the full target population, the IPW estimator performs significantly worse
than the other approaches. Inspection of the ten site-specific predictions shows that IPW predictions are
very similar to the linear and polynomial predictions in eight sites. In two sites, however, there are a handful
of observations with ê(X∗i ) very close to one and thus very large weights wi, which substantially reduces
precision. These observations are trimmed in Row 11, and the IPW estimator performs approximately as
well as the others.

Not only do all four approaches perform similarly across all sites, they give very similar predictions at
each individual site: the predictions for trimmed populations in Rows 8-11 all have correlation coefficients
greater than 0.87. The linear predictions with all X vs. with selected X∗ are very similar for each site
because the α̂ coefficients on the variables that do not survive the top-down procedure tend to be smaller.
The polynomial and linear predictions are very similar for each site because the polynomial prediction simply
adds the four pairs of nearly-offsetting adjustments discussed above.

The fact that the four approaches to conditioning on X give similar results suggests that they are
correctly adjusting for observable population differences. However, conditioning on X does not improve
predictions of target ATEs: the unconditional predictions perform substantially better. This implies that
unobservable differences in populations or economic environments are negatively correlated with observable
population differences within the ten sites in the microdata - just as they are when extrapolating from the
ten-site microdata to the remaining 101 sites. Further inspection shows that this is not driven by any one
“target” site or any one X covariate: there are four sites where the linear, polynomial, and IPW predictions
tend to differ more from the true ATEs, and in these sites, no individual component of the sample-target
ATE adjustment in Equation (10) tends to be substantially larger than the others.

The fact that linear prediction on X∗ performs only slightly worse than polynomial prediction and/or
trimming suggests that the failure in Section 6 to predict the decline of efficacy is likely not due to the
inability to use more than the means of the target distribution of observables.

C.2.1 Prediction of Control Group Outcomes as a Suggestive Test of External Un-
confoundedness

Hotz, Imbens, and Mortimer (2005) define “location unconfoundedness,” Di ⊥ (Yi(1), Yi(0)) |Xi, and show
that it is a sufficient condition to extrapolate using Equation (1). What I call “external unconfoundedness,”
Di ⊥ (Yi(1)− Yi(0)) |Xi is conceptually similar, but it clarifies that only the difference in potential outcomes
need be independent of assignment to sample vs. target for Equation (1) to hold. Hotz, Imbens, and Mortimer

29The first three pairs are interactions with Tract College Share and Tract Hybrid Auto Share, which are highly
correlated - their association has a t-statistic of 30 when conditioning on site indicators and clustering by Census
tract. The final pair is the interaction of Square Feet with House Age and the Rent indicator. These are also highly
correlated, with a t-statistic of 16 conditional on site indicators.

30The mean of the target ATEs in Row 1 need not line up with the mean of predicted ATEs, as the former is an
unweighted mean across sites, while the predictions will depend on the relationship of site ATEs to sample sizes and
variances.
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(2005) suggest that one potentially useful feature of the stronger location unconfoundedness assumption is
that it motivates a suggestive test of external unconfoundedness that can be implemented in non-sample
sites: Di ⊥ Y (0)|Xi. To implement this, they test whether control group data from a sample site can predict
untreated outcomes in a target site.

The framework of this appendix can be used for in-sample tests of this assumption. I focus on predicting
control group usage in kWh/day levels (Yis) instead of normalized usage yis = 100Yis

Cs
because y is normalized

to average exactly 100 for the control group within each of the sites, and it thus can be fitted mechanically.
Using each of the nine-site “samples,” I regress Yis on X∗i and baseline usage Y0i for the combined control

group and use the estimated coefficients to predict electricity usage Ŷi(0) in the target site control group. I
then calculate the mean prediction across all individuals in the target site, E[Ŷi(0)|Di = 0]. Columns 1 and
2 of Row 14 in A7 present the mean and standard deviation of E[Ŷi(0)|Di = 0] across the ten sites. Columns
3 and 4 compare the E[Ŷi(0)|Di = 0] to the true control group means E[Yi(0)|Di = 0].

On average, the prediction E[Ŷi(0)|Di = 0] differs from the true control group means E[Yi(0)|Di = 0]
by an absolute value of 0.94 kWh/day, or about three percent. This is substantially larger than the average
absolute errors in fitting the treatment effect, which are between 0.4 and 0.5 percent. If the test is informative
about external unconfoundedness, the prediction error for the ATE should be larger when the prediction
error for control group usage is larger. However, across the ten predictions, there is no correlation between
the two types of prediction errors, either in levels (p-value=0.837) or in absolute values (p-value=0.849).

In the Opower context, this test is empirically uninformative because it is not closely conceptually related
to external unconfoundedness. Because weather is the most important determinant of annual average usage,
this untreated outcomes prediction test is primarily a test of whether the weather changed differentially in
sample vs. target. By contrast, there are many factors other than weather variation that cause ATEs to
vary across sites.

C.2.2 Errors from Non-Experimental Estimates

In the Opower context, site selection bias resulted from selective adoption of a new program. In some
other contexts such as the Job Training Partnership Act evaluations, site selection bias might have resulted
from selective inability to experimentally evaluate an existing program. In these contexts, one potential
interpretation of the site selection bias problem would be that researchers should lower the cost of evaluation
by doing non-experimental studies instead of RCTs. If this allows more sites to select as research samples,
this could reduce site selection bias. In other words, one might propose to sacrifice internal validity in favor
of external validity. Would this approach be promising in the Opower setting?

Allcott (2011) evaluated the early Opower programs using the same microdata used in this paper, and
developed two non-experimental estimators to compare to the RCT results. The first estimator used weather-
adjusted pre-post treatment group differences. This estimator would be consistent if there were no other
time-varying factors that affected electricity demand. The second was a difference-in-differences estimator
using average consumption at other utilities in the same state as a control group. This would be consistent
if there were no systematic changes at the control utilities relative to the treatment group counterfactual
change.

Rows 15 and 16 present the means, standard deviations, and errors of these non-experimental estimators
relative to the experimental estimates. On average, these approaches happen to overstate the true ATEs,
and the average absolute errors and RMSEs are more than five times larger than the prediction errors from
extrapolation in rows 2-11. Thus, within this ten-site sample, it would be much better to extrapolate RCT
results from other sites than to use a non-experimental approach in-situ. Furthermore, the errors from non-
experimental estimators are also large relative to the magnitude of site selection bias estimated in Section 6.
Thus, these results do not support the argument that RCTs should be de-emphasized in order to improve
external validity.
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Table A6: Heterogeneous Treatment Effects Estimates with Polynomial

(1) (2)

T x First Comparison 0.084 0.084

(0.008)*** (0.009)***

T x Electric Heat 1.131 1.131

(0.220)*** (0.224)***

T x Has Pool 0.498 0.498

(0.207)** (0.207)**

T x Square Feet 0.425 0.425

(0.105)*** (0.110)***

T x First Comparison x Tract College Share -0.157 -0.157

(0.064)** (0.071)**

T x First Comparison x Tract Hybrid Auto Share 3.962 3.962

(1.029)*** (1.154)***

T x Tract Mean Income x Tract College Share -0.033 -0.033

(0.012)*** (0.012)***

T x Tract Mean Income x Tract Hybrid Auto Share 0.446 0.446

(0.165)*** (0.181)**

T x Single Family x Tract College Share 4.684 4.684

(1.525)*** (1.568)***

T x Single Family x Tract Hybrid Auto Share -75.727 -75.727

(25.798)*** (26.823)***

T x Square Feet x House Age -0.010 -0.010

(0.004)** (0.005)**

T x Square Feet x Rent 0.872 0.872

(0.398)** (0.397)**

N 508,295 508,295

Clustered by: Level of Census

Randomization Tract

Notes: This table presents estimates of the final iteration of the Crump, Hotz, Imbens, and Mitnik (2008)

top-down procedure after beginning with all squares and interactions of X characteristics. The dependent

variable is household i’s post-treatment electricity use normalized by the site s control group post-treatment

average. Missing data are imputed by multiple imputation. Robust standard errors are in parenthesis;

Column 1 clusters at the level of randomization (household in sites 1-9 and block batch in site 10), while

column 2 clusters by Census tract. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence,

respectively.
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Table A7: Within-Sample Prediction
(1) (2) (3) (4)

Root

Average Mean

Standard Absolute Squared

Row Estimate Mean Deviation Error Error

1 True target ATEs (%) 1.74 0.40 - -

Predicted ATEs with full populations (%)

2 Unconditional 1.71 0.04 0.33 0.41

3 Linear (All variables) 1.64 0.28 0.46 0.57

4 Linear (Top-down variables) 1.64 0.29 0.46 0.58

5 Polynomial 1.66 0.30 0.41 0.53

6 Inverse Probability Weighting 2.75 2.75 1.55 2.91

Predicted ATEs with trimmed populations (%)

7 Unconditional 1.69 0.05 0.31 0.40

8 Linear (All variables) 1.64 0.27 0.42 0.51

9 Linear (Top-down variables) 1.65 0.27 0.42 0.52

10 Polynomial 1.65 0.29 0.39 0.48

11 Inverse Probability Weighting 1.67 0.30 0.44 0.54

12 Share of target in trimmed population 0.94 0.04 - -

13 Share of sample in trimmed population 0.95 0.03 - -

14 Prediction of control usage (kWh/day) 29.55 5.12 0.94 1.20

Error from non-experimental estimates (%)

15 Pre-post differences 3.15 2.28 2.08 2.36

16 Diff-in-diff against statewide control 3.75 3.51 2.98 3.65
Notes: This table presents results from extrapolating to each of the ten “target” sites in the microdata from

a sample comprised of the other nine sites. The bottom panel uses non-experimental results presented in

Allcott (2011).
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D Testing Equality of Predicted and Actual ATEs

Section 6 predicts unweighted mean treatment effects for the 101 later sites and compares this to the true
value. This appendix presents the test statistic of equality of these two estimates. Denote the 101-site target
as D = 0 and the ten-site sample as D = 1, and further denote

∑
s(1 −Ds) = N0 = 101 as the number of

sites in the target.
The unweighted mean ATE is simply:

τ̂ trueD=0 =

∑
s(1−Ds)τ̂

true
s

N0
. (11)

Its variance is

ˆV ar(τ̂ trueD=0) =

∑
s(1−Ds) ˆV ar(τ̂ trues )

N2
0

, (12)

where τ̂ trues and ˆV ar(τ̂ trues ) are from the metadata, as estimated in Equation (9) in Appendix A.
The prediction of the re-weighting estimator τ̂D=0 is the ATE from the reweighting estimator τ̂ rwD=1 plus

a frequency adjustment analogous to Equation (4):

τ̂D=0 = τ̂ rwD=1 + φ̂(F̄D=0 − F̄D=1). (13)

Its variance is

ˆV ar(τ̂D=0) = ˆV ar(τ̂ rwD=1) + ˆV ar(φ̂) · (F̄D=0 − F̄D=1)2, (14)

where φ̂ and ˆV ar(φ̂) are as presented in column 3 of Appendix Table A10. In these equations, F̄D=0 is the
unweighted mean frequency (reports/month) across target sites, while F̄D=1 is the sample mean frequency.
Equation (14), like Equation (16) below, uses the assumption that the additive terms in the prediction have
zero covariance.

The linear prediction is as in Equation (10):

τ̂D=0 = τ̂D=1 + α̂(X̄∗D=0 − X̄∗D=1) + φ̂(F̄D=0 − F̄D=1). (15)

Its variance is

ˆV ar(τ̂D=0) = ˆV ar(τ̂D=1) + (X̄∗D=0 − X̄∗D=1)′ ˆV ar(α̂)(X̄∗D=0 − X̄∗D=1) + ˆV ar(φ̂) · (F̄D=0 − F̄D=1)2. (16)

In this equation, X̄∗D=0 is the column vector of unweighted means of X̄s across target sites, while X̄∗D=1

is the vector of sample means of X∗.
For either the re-weighted or linear prediction, the prediction error is:

Ω̂ = τ̂ trueD=0 − τ̂D=0. (17)

,
The variance of the prediction error is

ˆV ar(Ω̂) = ˆV ar(τ̂ trueD=0) + ˆV ar(τ̂D=0). (18)

The test statistic is:

t =
Ω̂√
ˆV ar(Ω̂)

. (19)
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In large samples, this test statistic has a standard normal distribution under the null hypothesis of no
prediction error.
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E Additional Tables and Figures Referenced in Paper
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Table A8: Site-Specific Heterogeneous Effects

Site: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment 1.874 1.214 2.184 3.658 3.538 2.076 1.300 0.201 0.626 2.206

(0.272)*** (0.584)** (0.874)** (0.568)*** (2.147)* (0.386)*** (0.196)*** (0.782) (0.491) (0.186)***

T x First Comparison 0.016 0.082 0.036 0.100 0.106 0.054 0.112 -0.022 0.283 0.128

(0.020) (0.015)*** (0.043) (0.049)** (0.023)*** (0.021)** (0.015)*** (0.089) (0.059)*** (0.015)***

T x Tract Mean Income -0.009 0.029 0.030 0.069 -0.103 0.004 -0.002 0.021 0.015 0.018

(0.007) (0.014)** (0.024) (0.024)*** (0.068) (0.013) (0.008) (0.016) (0.015) (0.015)

T x Tract College Share -1.408 1.949 2.191 -8.542 8.674 -2.024 -0.376 -9.558 0.339 -4.293

(1.701) (2.911) (4.018) (4.938)* (8.961) (2.907) (1.852) (5.810)* (2.179) (1.861)**

T x Tract Hybrid Auto Share 79.481 -76.221 -103.228 -102.442 110.435 73.214 -9.128 26.078 12.382 25.797

(30.310)*** (73.551) (59.828)* (62.835) (199.330) (47.422) (26.378) (63.565) (28.710) (24.532)

T x House Age -0.001 0.007 0.015 0.002 -0.006 -0.006 -0.014 0.005 0.006

(0.008) (0.005) (0.017) (0.012) (0.004) (0.009) (0.019) (0.009) (0.013)

T x Rent 0.331 0.035 -0.793 1.441 -1.139 0.380 -1.349

(0.761) (0.714) (0.648) (1.705) (0.773) (0.918) (1.102)

T x Single Family 0.284 1.245 1.378 -0.202 0.216

(0.493) (0.495)** (0.792)* (0.683) (0.606)

T x Square Feet 0.296 0.405 0.599 0.890 1.254 -0.000 0.591 0.438 0.410 0.890

(0.344) (0.370) (0.431) (0.521)* (1.442) (0.259) (0.257)** (0.796) (0.335) (0.343)**

T x Electric Heat -2.608 1.652 2.014 0.925 1.197 1.974

(0.749)*** (1.172) (1.103)* (0.564) (0.658)* (0.436)***

T x Has Pool 2.385 0.365 0.962 0.734

(0.989)** (0.921) (1.207) (0.372)*

T x Green Pricing 0.202

(0.352)

T x EE Program Participant 0.171

(0.420)

N 54,259 72,687 38,502 33,308 17,558 49,165 78,549 42,576 38,855 82,836

Notes: This table presents estimates of Equation (2) for each individual site in the microdata. The dependent variable is Yis, household i’s

post-treatment electricity use normalized by the site s control group post-treatment average. Missing data are imputed by multiple imputation.

Robust standard errors are in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence, respectively.
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Table A9: Empirical Likelihood Results for the Re-Weighting Estimator

(1) (2)
Target: National Later Sites

First Comparison 0.005 0.003

(0.001)*** (0.001)***

Electric Heat -0.598 -0.542

(0.057)*** (0.041)***

Has Pool -0.008 0.038

(0.049) (0.020)*

Square Feet 0.022 0.026

(0.024) (0.019)

N 101,961 101,961

Notes: This table presents the empirical likelihood results used to re-weight the microdata. Column 1

presents the estimates to match national average characteristics, while column 2 presents estimates to match

the average characteristics in the 101 later sites. To facilitate convergence, estimation was carried out

on a randomly-selected 20 percent subsample. Missing data are imputed by multiple imputation. Robust

standard errors are in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence,

respectively.
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Table A10: Adjustment for Treatment Frequency

(1) (2) (3)
Site 2 Site 7 Both

T x Reports/Month 0.489 0.554 0.517

(0.283)* (0.309)* (0.209)**

Treatment x Site 2 1.465 1.445

(0.248)*** (0.204)***

Treatment x Site 7 1.071 1.101

(0.279)*** (0.209)***

R2 0.89 0.86 0.88

N 72,687 78,549 151,236

T x Site Indicators N/A N/A Yes

Notes: This table presents estimates of the frequency adjustment parameter used in Equation (4). The

estimating equation is Equation (2), using the number of reports per month as the only X covariate. The

dependent variable is Yis, household i’s post-treatment electricity use normalized by the site s control group

post-treatment average. Robust standard errors are in parenthesis. *, **, ***: Statistically significant with

90, 95, and 99 percent confidence, respectively.
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Table A11: Cohort Trends Using Random Effects Meta-Regression

Dependent Variable: Percent Effect

(1) (2) (3) (4) (5)

Site Start Date (Years) -0.194 -0.194 -0.202

(0.035)*** (0.037)*** (0.038)***

Within-Utility Start Number -0.090 -0.060 0.000 0.009

(0.032)*** (0.028)** (0.030) (0.032)

Control Mean Usage (kWh/day) 0.016 0.002

(0.004)*** (0.003)

I2 0.82 0.69 0.56 0.82 0.82

N 111 73 73 111 111

Dependent Variable: kWh/day Effect

(1) (2) (3) (4) (5)

Site Start Date (Years) -0.037 -0.021 -0.069

(0.022)* (0.023) (0.015)***

Within-Utility Start Number -0.046 -0.003 -0.042 0.014

(0.022)** (0.009) (0.019)** (0.012)

Control Mean Usage (kWh/day) 0.020 0.013

(0.001)*** (0.001)***

I2 0.94 0.91 0.56 0.93 0.82

N 111 73 73 111 111

Utility Indicator Variables No Yes Yes No No

Sample: All Multi-Site Multi-Site All All

Sites Utilities Utilities Sites Sites

Notes: This table parallels Table 6 using random effects meta-regression. Column 1 presents estimates of

Equation (5), columns 2 and 3 present estimates of Equation (6), and columns 4 and 5 add controls to

Equation (5). The average percent ATE is 1.31 percent, and the average ATE in levels is 0.47 kWh/day.

Standard errors are in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence,

respectively.
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Table A12: Cohort Trends: Additional Specifications

(1) (2) (3) (4)
Frequency- Utility Control Control/

and X- Mean Mean Utility
Adjusted Usage Usage Mean

Dependent Variable: ATE (%) (kWh/day) (kWh/day) Usage

Site Start Date (Years) -0.194 2.566 5.066 0.057

(0.039)*** (0.742)*** (1.014)*** (0.029)*

R2 0.19 0.16 0.22 0.05

N 111 58 58 58

Sample: All Utilities’ Utilities’ Utilities’

Sites 1st Sites 1st Sites 1st Sites

Notes: This table presents alternative estimates of Equation (5). The dependent variable in Column 4 is the

ratio of control group mean usage to utility mean usage. Observations in column 1 are weighted by inverse

variance. Standard errors are in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent

confidence, respectively.
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Table A13: Cohort Trends vs. Time Trends

(1) (2) (3) (4) (5) (6) (7)
Frequency- Frequency- Frequency- 1(Dual- Share Average Frequency-
Adjusted Adjusted Adjusted Fuel Electric Reports/ Unadjusted

Dependent Variable: ATE ATE ATE Utility) Heat Month ATE

Site Start Date (Years) 0.067 -0.178 -0.178 0.015 0.017 -0.022 -0.185

(0.085) (0.045)*** (0.032)*** (0.057) (0.014) (0.016) (0.031)***

Within-Utility Start Number -0.137

(0.064)**

Total Wages Change 0.162

(0.941)

Electricity Usage Change 1.089

(0.809)

R2 0.65 0.22 0.26 0.00 0.01 0.06 0.24

N 73 111 107 111 111 66 111

Utility Indicator Variables Yes No No No No No No

Sample: Multi-Site All All All All Utilities’ All

Utilities Utilities Utilities Utilities Utilities 1st Sites Utilities

Notes: This table presents alternative estimates of Equations (5) and (6). Total Wages Change is the percent

change in total wages in counties served by utility u between 2007 and the first post-treatment year for site

s, using data from the Quarterly Census of Employment and Wages (BLS 2014). Electricity Usage Change

is the percent change in residential electricity use for utility u between 2007 and the first post-treatment

year for site s, using data from EIA (2014). Observations are weighted by inverse variance. Standard errors

are in parenthesis. *, **, ***: Statistically significant with 90, 95, and 99 percent confidence, respectively.

67



Table A14: Utility-Level Outcome Equation Using Random Effects Meta-Regression

Outcomes
(1) (2) (3) (4)

Frequency- Frequency-
Frequency- Adjusted Frequency- and X-
Adjusted ATE Adjusted Adjusted

Dependent Variable: ATE (%) (kWh/day) ATE (%) ATE (%)

Utility Mean Usage (kWh/day) -0.040 -0.014 -0.038 -0.061

(0.007)*** (0.003)*** (0.007)*** (0.008)***

Normalized Population Preferences 0.151 0.055 0.124 0.104

(0.046)*** (0.018)*** (0.043)*** (0.054)*

Normalized Other Programs 0.008 0.000 0.011 -0.011

(0.014) (0.005) (0.013) (0.017)

Municipally-Owned Utility -0.442 -0.200 -0.387 -0.694

(0.156)*** (0.060)*** (0.147)*** (0.181)***

Investor-Owned Utility -0.471 -0.182 -0.372 -0.374

(0.135)*** (0.054)*** (0.129)*** (0.160)**

ln(Residential Customers) -0.070 -0.019 -0.079 -0.093

(0.042)* (0.016) (0.039)** (0.048)*

Within-Utility Start Number -0.072 -0.013 -0.033 -0.018

(0.027)*** (0.010) (0.027) (0.034)

Control Mean Usage (kWh/day) 0.015 0.018 0.016 0.013

(0.003)*** (0.001)*** (0.003)*** (0.004)***

Site Start Date (Years) -0.115 -0.132

(0.031)*** (0.038)***

I2 0.75 0.75 0.70 0.75

N 111 111 111 111

Notes: This table presents estimates of Equation (8). The table parallels columns 3-6 of Table 7 using random

effects meta-regression. Robust standard errors are in parenthesis. *, **, ***: Statistically significant with

90, 95, and 99 percent confidence, respectively.
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Table A15: Utility Size as a Proxy for Urban Households

(1) (2) (3) (4)

Utility Mean Usage (kWh/day) -0.040 -0.043 -0.040 -0.042

(0.009)*** (0.009)*** (0.007)*** (0.007)***

Normalized Population Preferences 0.122 0.206 0.151 0.240

(0.058)** (0.060)*** (0.046)*** (0.051)***

Normalized Other Programs -0.002 0.002 0.008 0.012

(0.011) (0.013) (0.014) (0.014)

Municipally-Owned Utility -0.367 -0.278 -0.442 -0.336

(0.171)** (0.168) (0.156)*** (0.153)**

Investor-Owned Utility -0.485 -0.533 -0.471 -0.505

(0.175)*** (0.165)*** (0.135)*** (0.130)***

ln(Residential Customers) -0.043 -0.019 -0.070 -0.044

(0.037) (0.040) (0.042)* (0.041)

Within-Utility Start Number -0.070 -0.060 -0.072 -0.060

(0.016)*** (0.015)*** (0.027)*** (0.026)**

Control Mean Usage (kWh/day) 0.015 0.017 0.015 0.016

(0.003)*** (0.003)*** (0.003)*** (0.003)***

Share Urban -1.121 -1.228

(0.418)*** (0.361)***

R2 0.47 0.51

N 111 111 111 111

I2 0.75 0.73

Specification: OLS OLS Random Random

Effects Effects

Meta-Reg Meta-Reg

Notes: This table presents estimates of Equation (8), with the addition of Share Urban. Share Urban is the

share of the population in counties in utility u’s service territory that is in urbanized areas and urban places,

using data from the 2010 Census (NHGIS 2013). In the “OLS” specifications, observations are weighted by

inverse variance and standard errors are clustered by utility. Robust standard errors are in parenthesis. *,

**, ***: Statistically significant with 90, 95, and 99 percent confidence, respectively.
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Figure A2: Home Energy Report: Front Page
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Figure A3: Home Energy Report: Back Page
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