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1 Introduction

Financial markets deviate, to varying degrees, from the perfect-market ideal in which there are

no impediments to trade. Trade impediments reduce the liquidity that markets offer. A large

and growing literature studies market liquidity and its properties. Theoretical papers trace

illiquidity, i.e., the lack of liquidity, to underlying market imperfections such as asymmetric

information, different forms of trading costs, and funding constraints. They also study how

imperfections affect expected asset returns. Empirical papers estimate measures of illiquidity,

some of which are derived from theoretical models, and relate them to asset characteristics and

asset returns.

In this paper we survey the theoretical and empirical literature on market liquidity. We

organize the survey around three basic questions: (a) how to measure illiquidity, (b) how

illiquidity relates to underlying market imperfections and other asset characteristics, and (c)

how illiquidity affects expected asset returns. We use these three questions as a common

framework to organize both the theoretical and the empirical literature.

Theoretical papers study a variety of market imperfections, relying on different modeling

assumptions. For example, papers on trading costs typically assume life-cycle or risk-sharing

motives to trade, while papers on asymmetric information often rely on noise traders. Some

papers on asymmetric information further assume risk-neutral market makers who can take un-

limited positions, while papers on other imperfections typically assume risk aversion or position

limits. Instead of surveying this literature in a descriptive manner, we use a common, unified

model from Vayanos and Wang (2010) to study all the market imperfections that we consider,

and for each imperfection we address the three basic questions within that model. Our model

generates many of the key results shown in the literature, and serves as a point of reference

for surveying other results derived in different or more complicated settings. Using a common

model to study all imperfections makes the presentation more streamlined and pedagogical.

It also helps better understand the effects of the imperfections since these can be compared

holding constant other assumptions such as trading motives and risk attitudes.

Empirical papers often do not take a view as to the specific market imperfection that causes

illiquidity. Some of the measures of illiquidity that they compute are derived in theoretical

models, while other measures are more intuitive or heuristic. We survey the empirical literature

through the lens of the theory, using the theory to both interpret existing results and suggest

new tests and analysis. Our survey of the empirical literature is more limited in scope than of

the theoretical literature: we goal is not to be comprehensive but to link the main empirical

methodologies and findings with the theory.
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We survey the theoretical literature in Section 2. Our model has three periods, t = 0, 1, 2.

In Periods 0 and 1, risk-averse agents can trade a riskless and a risky asset that pay off in

Period 2. In Period 0, agents are identical so no trade occurs. In Period 1, agents can be

one of two types. Liquidity demanders receive an endowment correlated with the risky asset’s

payoff, and need to trade to share risk. They can trade with liquidity suppliers, who receive no

endowment. Agents learn whether or not they will receive the endowment in an interim period

t = 1/2. While we model heterogeneity through endowments, our analysis would be similar

for other types of heterogeneity, e.g., different beliefs or investment opportunities. Market

imperfections concern trade in Period 1. We determine how the imperfections affect measures

of illiquidity in Period 1. We also determine the effect of the imperfections on ex-ante expected

returns as of Period 0: how does the expected return that agents require to buy the risky asset

in Period 0 depends on the imperfections that they anticipate to face in Period 1? We consider

six imperfections, studied extensively in the theoretical literature:

1. Participation costs: In the perfect-market benchmark, all agents are present in the

market in all periods. Thus, a seller, for example, can have immediate access to the entire

population of buyers. In practice, however, agents face costs of market participation, e.g.,

monitor market movements and be ready to trade. To model costly participation, we

assume that agents must incur a cost to trade in Period 1. Consistent with the notion

that participation is an ex-ante decision, we assume that agents must decide whether or

not to incur the cost in Period 1/2, i.e., after learning whether or not they will receive an

endowment but before observing the price in Period 1. A related imperfection is that of

entry costs, e.g., learning about an asset. The cost would then concern buying the asset

in Period 0.

2. Transaction costs: In addition to costs of market participation, agents typically pay

costs when executing transactions. Transaction costs drive a wedge between the buying

and selling price of an asset. They come in many types, e.g., brokerage commissions,

transaction taxes, and bid-ask spreads. Some types of transaction costs can be viewed

as a consequence of other market imperfections, while other types, such as transaction

taxes, can be viewed as more primitive. We assume that transaction costs concern trade

in Period 1. The difference with participation costs is that the decision whether or not to

incur the transaction costs is contingent on the price in Period 1.

3. Asymmetric information: In the perfect-market benchmark, all agents have the same

information about the payoff of the risky asset. In practice, however, agents can have

different information because they have access to different sources of information or have
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different abilities to process information from the same source. To model asymmetric

information, we assume that some agents observe in Period 1 a private signal about the

asset payoff. We assume that these agents are the liquidity demanders. This assumption,

which in our model is without loss of generality, allows us to determine how the supply of

liquidity is influenced by suppliers’ concern about trading against better-informed agents.

4. Imperfect competition: In the perfect-market benchmark, agents are competitive and

have no effect on prices. In many markets, however, some agents are large relative to others

in the sense that they can influence prices, either because of their size or because of their

information advantage. We model imperfect competition by assuming that some agents

can exert market power in Period 1. We focus on the case where liquidity demanders

behave as a single monopolist, but also consider more briefly monopolistic behavior by

liquidity suppliers. We consider both the case where liquidity demanders have no private

information on asset payoffs, and so information is symmetric, and the case where they

observe a private signal.

5. Funding constraints: Agents’ portfolios often involve leverage, i.e., borrow cash to

establish a long position in a risky asset, or borrow a risky asset to sell it short. In

the perfect-market benchmark, agents can borrow freely provided that they have enough

resources to repay the loan. But as the Corporate Finance literature emphasizes, various

frictions can limit agents’ ability to borrow and fund their positions. We derive a funding

constraint by assuming that agents cannot pledge some of their future income. Because

our focus is on how the funding constraint influences the supply of liquidity, we impose it

on liquidity suppliers only, i.e., assume that the lack of commitment concerns only them.

6. Search: In the perfect-market benchmark, the market is organized as a centralized ex-

change. Many markets, however, have a more decentralized form of organization. For

example, in over-the-counter markets, investors negotiate prices bilaterally with dealers.

Locating suitable counter-parties in these markets can take time and involve search. To

model decentralized markets, we assume that agents do not meet in a centralized exchange

in Period 1, but instead must search for counterparties. When a liquidity demander meets

a supplier, they bargain bilaterally over the terms of trade.

We consider two measures of illiquidity. The first measure is lambda, defined as the regres-

sion coefficient of the return between Periods 0 and 1 on liquidity demanders’ signed volume in

Period 1. This measure characterizes the price impact of volume, which has a transitory and

a permanent component. The second measure is price reversal, defined as minus the autoco-

variance of returns. This measure characterizes the importance of the transitory component in
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price, which in our model is entirely driven by volume. Lambda and price reversal have been

derived in theoretical models focusing on specific market imperfections, and have been widely

used in empirical work ever since.

We determine how each imperfection affects lambda, price reversal, and ex-ante expected

returns. Many of these effects have been derived in the literature, albeit in a less systematic

and unified manner. We highlight the links with the literature, and use more generally our

model to organize and survey it. Many models in the literature can be viewed as enrichments

of our model in terms of, e.g., information structure, agent characteristics, and dynamics.

Deriving the effects of the imperfections within a unified model delivers new insights. We

show, for example, that most imperfections raise lambda, but fewer raise price reversal. Thus,

lambda is a more accurate measure of the imperfections. Intuitively, lambda measures the price

impact per unit trade, while price reversal concerns the impact of the entire trade. Market im-

perfections generally raise the price impact per unit trade, but because they also reduce trade

size, the price impact of the entire trade can decrease. We show additionally that imperfections

do not always raise expected returns. The literature has shown this result for some imperfec-

tions; we examine its validity across all imperfections and identify those under which it is more

likely to hold.

We survey the empirical literature in Section 3. We begin by presenting various measures

of illiquidity. Some measures, such as lambda and price reversal, are motivated by theory, while

others, such as bid-ask spread, market depth, turnover and trade size, are more intuitive or

heuristic. We also discuss ways to measure the illiquidity of an aggregate asset class rather

than of a single asset. We next examine how the measures of illiquidity vary across assets and

over time, how they relate to asset characteristics such as supply and volatility, and how they

relate to each other. We finally examine the link between illiquidity measures and expected

asset returns. Some of the work in that area links the level of illiquidity to expected returns.

More recent work also allows for the possibility that illiquidity is a priced risk factor, which

affects expected returns through its comovement with returns.

Throughout our survey of the empirical literature, we emphasize the links with the theory.

For example, how closely do empirical measures of illiquidity reflect the underlying market

imperfections? How can the theory account for the variation of the illiquidity measures across

assets and over time? How can it account for the relationships between the illiquidity measures

and asset characteristics or expected returns? As we hope to demonstrate, the theory can shed

new light on existing empirical results and suggest new tests and analysis. For example, the

theory implies that the effectiveness of a particular measure of illiquidity, in terms of reflecting
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the underlying market imperfection, depends on the imperfection. This could help explain why

some measures are more successful than others in capturing illiquidity and its relationship with

expected asset returns in some markets. Using those measures, and controlling for additional

factors suggested by theory, could yield sharper empirical tests.

Liquidity effects can manifest themselves over different time horizons. The market mi-

crostructure literature focuses on short horizons, from minutes or hours to days or weeks. At

the same time, recent work on the limits of arbitrage finds that flows can affect returns even

at the longer horizons used in asset-pricing analysis, e.g., months, quarters or years. We view

both horizons as relevant for the purposes of our survey—provided that the price movements

under consideration are temporary departures from fundamental value caused by flows. Our

model can accommodate both horizons simply by changing the length of a “period.” The hori-

zon that we mostly have in mind, and emphasize in the empirical part of this survey, is that of

days, weeks or months. We do not rule out longer horizons, although it can be more difficult

to identify transitory price movements at such horizons. On the other hand, our model is not

well-suited for very short horizons of minutes or hours because we intentionally omit the level

of market detail that is required to study the corresponding effects.

Our survey does not cover some important issues, either because they represent open ques-

tions on which research so far has been limited, or because covering them would detract from

our main focus. Nevertheless, it is important to recognize these issues, both to put our sur-

vey in perspective and to outline promising areas for future research. A first issue, mentioned

above, is the horizon of liquidity effects. In our model horizon is exogenous and corresponds to

the length of a period. It should be derived endogenously, however, through a more detailed

description of market imperfections and agents’ trading needs.

A second issue concerns the interactions between market imperfections. Most of the theo-

retical literature considers one imperfection at a time and thus does not allow for interactions.

Our model also does not cover interactions, except between imperfect competition and asym-

metric information. Other interactions, such as between funding constraints and asymmetric

information, are interesting and have received some attention in the literature.

A related but more fundamental issue concerns the underlying economic causes of the

imperfections and the ways in which imperfections are linked. Following much of the literature,

we treat each imperfection as primitive. Yet, some imperfections could be the consequence of

other more fundamental ones. For example, some types of transaction costs can be viewed as

a consequence of other imperfections, such as participation costs or asymmetric information.

Moreover, if, for example, participation costs are costs to monitor market information, then
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costly participation could be linked to asymmetric information. Asymmetric information could

also underlie the contracting frictions that give rise to funding constraints. Endogenizing some

market imperfections from more fundamental frictions could further streamline, clarify and

deepen the study of market liquidity. In particular, various forms of informational problems

could be the underlying economic cause for various forms of imperfections.

A fourth issue concerns the institutional context. A large fraction of trading activity in

financial markets is generated by specialized financial institutions, and these institutions can

be important suppliers or demanders of liquidity. Following much of the literature, we model

instead liquidity suppliers and demanders as individuals, thus ignoring contracting frictions

and other institutional complexities. (We only consider such frictions briefly in the context of

funding constraints.) The liquidity shock in our model could result from institutional frictions,

but only in reduced form. The importance of financial institutions in affecting asset prices is

emphasized in a rapidly growing literature on the limits of arbitrage.

Related to the institutional context is the issue of market design. While we consider ways

in which markets deviate from the Walrasian ideal, we do not study market design in depth.

The market microstructure literature studies various dimensions of market design and shows

that they can affect market performance. Such dimensions include whether liquidity is supplied

by dedicated market makers or an open limit-order book, whether limit orders are visible to all

traders, whether transactions are disclosed to all traders after they are executed, etc. While we

survey some of that work, we conduct our analysis at a more aggregate level with less market

detail, so that we can derive some key effects within a tractable unified model. The downside

is that our model is not well suited for very short horizons such as seconds or minutes, e.g.,

to compute empirical measures of market depth and resiliency at such horizons. Our model is

also not well suited for addressing the benefits of different market designs.

Finally, we do not perform any analysis of welfare or policy (even though our model could

be used for that purpose as well). For example, we do not examine how imperfections affect

the welfare of different agents and what policy actions could mitigate these effects. We survey,

however, some papers that consider welfare issues.

Our survey is related to both market microstructure and asset pricing. We emphasize

fundamental market imperfections covered in the market microstructure literature, but abstract

away from the level of market detail often adopted in that literature. At the same time,

we study how market imperfections affect expected asset returns—an asset-pricing exercise.

Surveys with greater focus on market microstructure include the book by O’Hara (1995) for

the theory, the article by Hasbrouck (2007) for the empirics, and the articles by Madhavan
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(2000), Biais, Glosten, and Spatt (2005), and Parlour and Seppi (2008) for both theory and

empirics. Amihud, Mendelson, and Pedersen (2005) survey theoretical and empirical work on

market liquidity and asset-pricing effects. They mainly focus on transaction costs and not

on the other market imperfections that we consider. Gromb and Vayanos (2010a) survey the

theoretical literature on the limits of arbitrage.

2 Theory

We organize our discussion of the theoretical literature on market liquidity using the unified

model of Vayanos and Wang (2010, 2011). The model nests a variety of market imperfections

studied in the literature and shows how they relate to empirical measures of liquidity. It also

shows how market imperfections affect ex-ante expected returns.

There are three periods, t = 0, 1, 2. The financial market consists of a riskless and a risky

asset that pay off in Period 2. The riskless asset is in supply of B shares and pays off one unit

of a consumption good per share with certainty. The risky asset is in supply of θ̄ shares and

pays off D units per share, where D has mean D̄ and variance σ2. Using the riskless asset as

the numeraire, we denote by St the risky asset’s price in Period t, where S2 = D.

There is a measure one of agents, who derive utility from consumption in Period 2. Utility

is exponential,

− exp(−αC2),

where C2 is consumption in Period 2, and α > 0 is the coefficient of absolute risk aversion.

We denote agents’ wealth in Period t by Wt. Wealth in Period 2 is equal to consumption, i.e.,

W2 = C2. Agents are identical in Period 0, but become heterogeneous and trade in Period 1.

Because all agents have the same exponential utility, there is no preference heterogeneity. We

instead introduce heterogeneity through agents’ endowments.

A fraction π of agents receive an endowment of the consumption good in Period 2, and

the remaining fraction 1− π receive no endowment. The endowment is z(D− D̄) per receiving

agent, where z has mean zero and variance σ2
z and is independent of D. Since the endowment is

correlated with D, it generates a hedging demand. When, for example, z > 0, the endowment

exposes agents to the risk that D will be low, and agents hedge against that risk by selling the

risky asset. Agents learn whether or not they will receive the endowment in an interim period

t = 1/2, and those who will receive the endowment observe z in Period 1. Thus, agents learn

whether or not they will need to trade before learning the exact size of their desired trade.
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We assume that the endowment is perfectly correlated with D for simplicity; what matters for

our analysis is that the correlation is non-zero. For tractability, we assume that D and z are

normal. While we model heterogeneity through endowments, our analysis would be similar for

other types of heterogeneity, e.g., different beliefs or investment opportunities.

In equilibrium, agents receiving an endowment initiate trades with others to share risk.

Because the agents initiating trades can be thought of as consuming market liquidity, we refer

to them as liquidity demanders and denote them by the subscript d. Moreover, we refer to z as

the liquidity shock. The agents who receive no endowment accommodate the trades of liquidity

demanders, and hence supply liquidity. We refer to them as liquidity suppliers and denote them

by the subscript s.

Because liquidity suppliers require compensation to absorb risk, the trades of liquidity

demanders affect prices. Therefore, the price in Period 1 is influenced not only by the asset

payoff, but also by the liquidity demanders’ trades. Our measures of liquidity, defined in Section

2.1, are based on the price impact of these trades.

The assumptions introduced so far describe our model’s perfect-market benchmark, to

which we subsequently add market imperfections. We maintain the perfect-market assumption

in Period 0 when determining the ex-ante effect of the imperfections, i.e., how the anticipation

of imperfections in Period 1 impacts the price in Period 0. Imperfections in Period 0 are, in

fact, not relevant in our model because agents are identical in that period and there is no trade.

We can give two interpretations to our model. Under the first interpretation, the set of

agents is the entire set of households in an economy. The only liquidity shocks that can then

have non-trivial price impact are those large enough to be comparable to the size of the economy.

Under the second interpretation, the set of agents is the subset of households who participate

in a specific market. Liquidity shocks can then have non-trivial price impact even when they

are small relative to the size of the economy; all that is needed is that they are comparable

to the size of the set of agents participating in that market. That set can be smaller than

the entire set of households in the economy because of participation costs. While we consider

participation costs as a market imperfection (Section 2.2), they can be viewed as implicit in

the perfect-market benchmark under the second interpretation.1

1An additional imperfection that is implicit in the perfect-market benchmark is that agents cannot write
contracts in Period 0 contingent on whether they are a liquidity demander or supplier in Period 1. Thus, the
market in Period 0 is incomplete in the Arrow-Debreu sense. If agents could write complete contracts in Period
0, they would not need to trade in Period 1, in which case liquidity would not matter. Complete contracts are
infeasible in our model because whether an agent is a liquidity demander or supplier is private information.

8



2.1 Perfect-Market Benchmark

In this section we describe the equilibrium in our model’s perfect-market benchmark. Detailed

derivations and proofs of the results in this and subsequent sections are in Vayanos and Wang

(2010, 2011). Agents’ demand functions for the risky asset in Period 1 are

θs1 =
D̄ − S1

ασ2
, (1a)

θd1 =
D̄ − S1

ασ2
− z. (1b)

Liquidity suppliers are willing to buy the risky asset as long as its price S1 in Period 1 is

below the expected payoff D̄, and are willing to sell otherwise. Liquidity demanders have a

similar price-elastic demand function, but are influenced by the liquidity shock z. When z

is positive, for example, liquidity demanders are willing to sell because their endowment is

positively correlated with the asset.

Market clearing requires that the aggregate demand equals the asset supply θ̄:

(1− π)θs1 + πθd1 = θ̄. (2)

Substituting (1a) and (1b) into (2), we find

S1 = D̄ − ασ2
(
θ̄ + πz

)
. (3)

The price S1 decreases in the liquidity shock z. When z is positive, for example, liquidity

demanders are willing to sell, and the price must drop so that the risk-averse liquidity suppliers

are willing to buy.

Agents choose holdings θ0 of the risky asset in Period 0 to maximize the ex-ante expected

utility

U ≡ (1− π)U s + πUd,

where U s denotes the interim utility of becoming a liquidity supplier in Period 1/2, and Ud

that of becoming a liquidity demander. The solution to this maximization problem coincides

with the aggregate demand in Period 0, since all agents are identical in that period and are

in measure one. In equilibrium, aggregate demand has to equal the asset supply θ̄, and this

determines the price S0 in Period 0. The price is

S0 = D̄ − ασ2θ̄ − πM

1− π + πM
∆1θ̄, (4)
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where (M,∆1) are positive constants. The first term in (4) is the asset’s expected payoff in

Period 2, the second term is a discount arising because the payoff is risky, and the third term

is a discount due to illiquidity (i.e., low liquidity). The risk discount is independent of the

parameter σ2
z that measures the size of liquidity shocks, and is non-zero even when there are

no shocks, i.e., σ2
z = 0. The illiquidity discount is instead increasing in σ2

z , and is zero when

σ2
z = 0.

The illiquidity discount is the product of two terms. The first term, πM
1−π+πM , can be inter-

preted as the risk-neutral probability of being a liquidity demander: π is the true probability,

and M is the ratio of marginal utilities of wealth of demanders and suppliers, where utilities

are interim in Period 1/2. The second term, ∆1θ̄, is the discount that an agent would require

conditional on being a demander. Since the illiquidity discount lowers the asset price in Period

0, it raises the expected return

E(R) = D̄ − S0

from buying the asset in Period 0 and holding it until it pays off in Period 2. From now on, we

refer to E(R) simply as the asset’s expected return.

Intuitively, the illiquidity discount arises because agents are concerned in Period 0 that the

endowment they might receive in Period 1 will increase their existing risk exposure. Therefore,

if they are less able to hedge in Period 1, they are less willing to take risk in Period 0, and they

require a larger discount to buy the asset. A discount arises even in the perfect-market bench-

mark because while risk sharing is optimal, hedging affects the price. Market imperfections

affect the discount because they affect agents’ ability to hedge.

We construct two measures of illiquidity in Period 1, both based on the price impact of the

liquidity demanders’ trades. The first measure, to which we refer as lambda or price impact,

is the coefficient of a regression of the asset’s return, S1 − S0, between Periods 0 and 1 on the

signed volume, π(θd1 − θ̄), of liquidity demanders in Period 1:

λ ≡
Cov

[
S1 − S0, π(θ

d
1 − θ̄)

]
Var

[
π(θd1 − θ̄)

] . (5)

Intuitively, when λ is large, trades have large price impact and the market is illiquid. Eq. (3)

implies that the return between Periods 0 and 1 is

S1 − S0 = D̄ − ασ2
(
θ̄ + πz

)
− S0. (6)
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Eqs. (1b) and (3) imply that the signed volume of liquidity demanders is

π(θd1 − θ̄) = −π(1− π)z. (7)

Eqs. (5)-(7) imply that

λ =
ασ2

1− π
. (8)

Price impact λ is higher when agents are more risk-averse (α large), the asset is riskier (σ2

large), or there are fewer liquidity suppliers (1− π small).

Since the signed volume of liquidity demanders is minus that of liquidity suppliers, λ is

also minus the regression coefficient of the return between Periods 0 and 1 on suppliers’ signed

volume in Period 1:

λ = −
Cov

[
S1 − S0, (1− π)(θs1 − θ̄)

]
Var

[
(1− π)(θs1 − θ̄)

] . (9)

The supplier-based definition of λ can be easier to implement empirically than the equivalent

demander-based definition. This is because an important class of suppliers in some markets are

designated market makers, and information on their trades is often available.

The second measure of illiquidity is based on the autocovariance of returns. The liquidity

demanders’ trades in Period 1 cause the price to deviate from fundamental value, while the two

coincide in Period 2. Therefore, returns exhibit negative autocovariance, and more so when

trades have large price impact. We use minus autocovariance

γ ≡ −Cov (S2 − S1, S1 − S0) , (10)

as a measure of illiquidity, and refer to it as price reversal. Eqs. (3), (6), (10) and S2 = D imply

that

γ = −Cov
[
D − D̄ + ασ2

(
θ̄ + πz

)
, D̄ − ασ2

(
θ̄ + πz

)
− S0

]
= α2σ4σ2

zπ
2. (11)

Price reversal γ is higher when agents are more risk-averse, the asset is riskier, there are more

liquidity demanders (π large), or liquidity shocks are larger (σ2
z large).

The measures λ and γ have been defined in models focusing on specific market imper-

fections, and have been widely used in empirical work ever since. We emphasize their basic

properties below, leaving a more detailed discussion of the measures and their empirical esti-

mation to Section 3.
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Kyle (1985) defines λ in a model where an informed insider trades with uninformed market

makers and noise traders. In Kyle, market makers are risk neutral, and trades affect prices

only because they contain information. Thus, the price impact, as measured by λ, reflects the

amount of information that trades convey, and is permanent because the risk-neutral market

makers set the price equal to their expectation of fundamental value. In general, as in our model,

λ has both a transitory and a permanent component. The transitory component, present even

in our perfect-market benchmark, arises because liquidity suppliers are risk averse and require

a price movement away from fundamental value to absorb a liquidity shock. The permanent

component arises only when information is asymmetric (Sections 2.4 and 2.5) for the same

reasons as in Kyle.

Roll (1984) links γ to the bid-ask spread, in a model where market orders cause the price

to bounce between the bid and the ask. Grossman and Miller (1988) link γ to the price impact

of liquidity shocks, in a model where risk-averse liquidity suppliers must incur a cost to par-

ticipate in the market. In both models, price impact is purely transitory because information

is symmetric. In our model, price impact has both a transitory and a permanent component,

and γ isolates the effects of the transitory component. Note that besides being a measure of

imperfections, γ provides a useful characterization of price dynamics: it measures the impor-

tance of the transitory component in price arising from temporary liquidity shocks, relative to

the random-walk component arising from fundamentals.

2.2 Participation Costs

In the perfect-market benchmark, all agents are present in the market in all periods. Thus, a

seller, for example, can have immediate access to the entire population of buyers. In practice,

however, agents face costs of market participation. Such costs include buying trading infrastruc-

ture or membership of a financial exchange, having capital available on short notice, monitoring

market movements, etc. To model costly participation, we assume that agents must incur a cost

c to trade in Period 1. Consistent with the notion that participation is an ex-ante decision, we

assume that agents must decide whether or not to incur c in Period 1/2, after learning whether

or not they will receive an endowment but before observing the price in Period 1. (The price

depends on the liquidity shock, which is observed only in Period 1.) If the decision can be made

contingent on the price in Period 1, then c is a fixed transaction cost rather than a participation

cost. We consider transaction costs as a separate market imperfection.

We first describe the equilibrium, then examine how participation costs affect the illiquidity

measures and the expected return, and finally survey the literature on participation costs. We
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look for an equilibrium where all liquidity demanders participate, but only a fraction µ > 0

of liquidity suppliers do. Such an equilibrium exists under two sufficient conditions, which we

assume from now on. First, the participation cost c is below a threshold ĉ, so that liquidity

suppliers are willing to participate. Second, the measure of demanders is less than that of

suppliers, i.e., π < 1/2. Intuitively, when demanders are the short side of the market, they

stand to gain more from participation, and can therefore cover the participation cost if suppliers

do.2 We focus on that case since we are interested in examining how participation costs can

affect the supply of liquidity.

Market clearing requires that the aggregate demand of participating agents equals the asset

supply held by these agents. Since in equilibrium agents enter Period 1 holding θ̄ shares of the

risky asset, market clearing takes the form

(1− π)µθs1 + πθd1 = [(1− π)µ+ π] θ̄. (12)

Agents’ demand functions are as in Section 2.1. Substituting (1a) and (1b) into (12), we find

that the price in Period 1 is

S1 = D̄ − ασ2

[
θ̄ +

π

(1− π)µ+ π
z

]
. (13)

We derive the participation decision of liquidity suppliers by comparing the interim utility

U s of a participating supplier in Period 1/2 to the interim utility U sn of a non-participating

supplier. If the participation cost c is below a threshold c, then all suppliers participate (U s >

U sn and µ = 1). If c is above c and below a larger threshold c̄, then suppliers are indifferent

between participating or not (U s = U sn), and only some participate (0 < µ < 1). Increasing

c within that region reduces the fraction µ of participating suppliers, while maintaining the

indifference condition. This is because with fewer participating suppliers, competition becomes

less intense, enabling the remaining suppliers to cover their increased participation cost. Finally,

if c is above c̄, then no suppliers participate (U s < U sn and µ = 0). The price in Period 0 is

given by the same equation (4) as in the perfect-market benchmark, but for different constants

(M,∆1).

We next examine how participation costs impact the illiquidity measures and the expected

2For c ≤ ĉ and π ≤ 1/2, only two equilibria exist: the one described above and the one where no agent
participates. The same is true for π larger but close to 1/2.
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return. Proceeding as in Section 2.1, we can compute price impact λ and price reversal γ:

λ =
ασ2

(1− π)µ
, (14)

γ =
α2σ4σ2

zπ
2

[(1− π)µ+ π]2
. (15)

Both measures are inversely related to the fraction µ of participating liquidity suppliers. We

can also show that the illiquidity discount is inversely related to µ.

We derive comparative statics with respect to c, and consider only the region c > c, where

the measure µ of participating suppliers is less than one. This is without loss of generality: in

the region c ≤ c, where all suppliers participate, prices are not affected by the participation cost

and are as in the perfect-market benchmark. When c > c, an increase in the participation cost

lowers µ, and therefore raises price impact, price reversal and the illiquidity discount. Since the

illiquidity discount increases, so does the asset’s expected return.

Result 1 An increase in the participation cost c raises price impact λ, price reversal γ, and

the asset’s expected return E(R).

The idea that participation in financial markets is costly and hence limited dates back to

Demsetz (1968). Demsetz (1968) studies the provision of immediacy, i.e., immediate execution

of trades. He argues that supplying immediacy is costly but there is a demand for it. Because

of the costs of supplying immediacy, only a subset of agents will choose to supply it, and

they will be compensated from the price concessions they will earn from the demanders of

immediacy. Demsetz (1968) identifies the suppliers of immediacy with market makers, and

their compensation with the bid-ask spread.

A subsequent literature models price formation in the presence of market makers. In most

of that literature, market makers are assumed to be the only suppliers of immediacy and to

receive an exogenous flow of orders from the demanders of immediacy. The literature determines

the bid-ask spreads chosen by market makers as a function of the process of order arrival, the

degree of competition between market makers, and the inventory and risk aversion of market

makers. Examples are Garman (1976), Stoll (1978b), Amihud and Mendelson (1980), Ho and

Stoll (1980, 1981, 1983), Cohen, Maier, Schwartz, and Whitcomb (1981) and Mildenstein and

Schleef (1983). Because of the focus on market makers’ inventory, that literature is often

referred to as the inventory literature.

Most of the inventory literature takes the market structure as exogenous, e.g., assumes
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an exogenous number of market makers. One exception is Stoll (1978b), who endogenizes

the number of market makers in the spirit of Demsetz (1968), taking the costs of supplying

immediacy to be fixed costs of processing orders. Grossman and Miller (1988) perform a similar

exercise, but emphasize more explicitly costs of market participation. Their setting is closely

related to ours: a number of liquidity suppliers choose whether or not to participate in a market,

and those choosing to participate pay a cost and can absorb an uncertain and exogenous order

by liquidity demanders. The analysis of Grossman and Miller (1988) is closely related to

the equilibrium in Periods 1/2 and 1 in our model. Grossman and Miller (1988) emphasize

additionally that the bid-ask spread has drawbacks as a measure of liquidity, and suggest the

use of price reversal instead. They show that price reversal increases in participation costs,

consistent with our Result 1.

Grossman and Miller (1988) do not derive the effect of participation costs on ex-ante ex-

pected returns because they do not introduce our Period 0. They introduce, however, two

periods after our Period 1: a Period 2 in which an offsetting liquidity shock arrives in the mar-

ket, and a Period 3 in which the asset pays off. This captures the important idea that a liquidity

shock experienced by some agents is absorbed first by a small set of market participants (the

liquidity suppliers in Period 1) and then by a larger set of agents who gradually arrive in the

market in response to the shock (the traders with the offsetting liquidity shock in Period 2).

The idea that some agents arrive gradually into a market in response to profitable opportu-

nities has received attention recently in the search literature reviewed in Section 2.7. Duffie

(2010) and Suominen and Rinne (2011) model a similar effect in a centralized market. They

assume that some agents arrive into a market infrequently with liquidity shocks. These shocks

are absorbed by market makers present in the market in all periods, and by other infrequent

traders arriving in future periods who can trade with market makers.

Huang and Wang (2009) study how participation costs affect both the demand for imme-

diacy, which Grossman and Miller (1988) treat as exogenous, and the supply. They assume

that liquidity shocks are opposite across agents and so do not affect the price in the absence

of participation costs. Participation costs lower the price because sellers are more willing to

participate than buyers. The intuition is that sellers receive a larger risky endowment, and are

hence more concerned about the risk that an additional shock will leave them with a large risk

exposure. This effect of participation costs on ex-ante expected returns is closely related to

the one that we derive in Period 0 of our model. Huang and Wang (2010) employ a similar

framework as in Huang and Wang (2009) to study welfare questions. They show, in particular,

that the market can provide less liquidity than the social optimum.
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The costs of market participation in our model concern Period 1, which is after agents have

bought the asset. Costs to participate in the market in Period 0 and to buy the asset can be

interpreted as entry costs, e.g., learning about the asset. Goldsmith (1976), Mayshar (1979)

and Merton (1987) show that entry costs induce agents to under-invest and under-diversify,

and typically reduce asset prices. Entry costs would have a similar effect in our model: they

would render agents less willing to buy the asset in Period 0, and hence would lower the Period

0 price. Mankiw and Zeldes (1991) conjecture that limited investor participation in the stock

market can render stocks cheaper relative to bonds, explaining the equity premium puzzle of

Mehra and Prescott (1985). Basak and Cuoco (1998) show that when some investors cannot

participate in the stock market, stocks’ expected excess returns relative to bonds increase, and

interest rates decrease.

Pagano (1989a) and Allen and Gale (1994) show that entry costs can result in multiple

equilibria: high-volatility ones, where few agents enter the market for an asset, causing volatility

to be high and entry to be undesirable, and low-volatility ones, where many agents enter. Key

for the multiplicity in Pagano (1989a) is the feedback from asset prices to equity issuance by

firms, and in Allen and Gale (1994) the heterogeneity between investors.3

2.3 Transaction Costs

In addition to costs of market participation, agents typically pay costs when executing transac-

tions. Transaction costs drive a wedge between the buying and selling price of an asset. They

come in many types, e.g., brokerage commissions, exchange fees, transaction taxes, bid-ask

spreads, price impact. Some types of transaction costs can be viewed as a consequence of other

market imperfections: for example, Section 2.2 shows that costly participation can generate

price-impact costs. Other types of costs, such as transaction taxes, can be viewed as more

primitive. We assume that transaction costs concern trade in Period 1. The difference with the

participation costs of Section 2.2 is that the decision whether or not to incur the transaction

costs is contingent on the price in Period 1.

We focus on the case where transaction costs are proportional to transaction size, and for

simplicity assume that proportionality concerns the number of shares rather than the dollar

value. Denoting by κ the cost per unit of shares traded and by θt the number of shares that

an agent holds in Period t = 0, 1, proportional costs take the form κ |θ1 − θ0|. We assume that

3A different type of multiplicity arises when agents can choose between market venues to trade an asset.
Agents prefer to trade in a venue where others are trading, and this causes concentration of trade in one venue
(Pagano (1989b)). A related multiplicity result arises in our model because there exists one equilibrium in which
there is market participation in Period 1 and one equilibrium in which no agent participates.
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the liquidity shock z is drawn from a general distribution that is symmetric around zero with

density f(z); specializing to a normal distribution does not simplify the analysis.

We first describe the equilibrium, then examine how transaction costs affect the illiquidity

measures and the expected return, and finally survey the literature on transaction costs. Trans-

action costs generate a bid-ask spread in Period 1. An agent buying one share pays the price

S1 plus the transaction cost κ, and so faces an effective ask price S1 + κ. Conversely, an agent

selling one share receives S1 but pays κ, and so faces an effective bid price S1 − κ. Because

of the bid-ask spread, trade occurs only if the liquidity shock z is sufficiently large. Suppose,

for example, that z > 0, in which case liquidity demanders value the asset less than liquidity

suppliers. If liquidity suppliers buy, their demand function is as in Section 2.1 (Eq. (1a)), but

with S1 + κ taking the place of S1, i.e.,

θs1 =
D̄ − S1 − κ

ασ2
. (16)

Conversely, if liquidity demanders sell, their demand function is as in Section 2.1 (Eq. (1b)),

but with S1 − κ taking the place of S1, i.e.,

θd1 =
D̄ − S1 + κ

ασ2
− z. (17)

Since in equilibrium agents enter Period 1 holding θ̄ shares of the risky asset, trade occurs if

there exists a price S1 such that θs1 > θ̄ and θd1 < θ̄. Using (16) and (17), we can write these

conditions as

κ < D̄ − S1 − ασ2θ̄ < ασ2z − κ.

Therefore, trade occurs if z > 2κ
ασ2 ≡ κ̂, i.e., the liquidity shock z is large relative to the

transaction cost κ. The price S1 can be determined by substituting (16) and (17) into the

market-clearing equation (2). Repeating the analysis for z < 0, we find that trade occurs in

Period 1 if |z| > κ̂, and in that case the price is

S1 = D̄ − ασ2
[
θ̄ + πz + κ̂

(
1
2 − π

)
sign(z)

]
. (18)

The effect of transaction costs on the price depends on the relative measures of liquidity suppliers

and demanders. Suppose, for example, that z > 0. In the absence of transaction costs, liquidity

demanders sell and the price drops. Because transaction costs deter liquidity suppliers from

buying, they tend to depress the price, amplifying the effect of z. At the same time, transaction

costs deter liquidity demanders from selling, and this tends to raise the price, dampening the

17



effect of z. The overall effect depends on agents’ relative measures. If π < 1/2 (more suppliers

than demanders), the impact on suppliers dominates, and transaction costs amplify the effect

of z. The converse holds if π > 1/2. The price in Period 0 is given by the same equation (4) as

in the perfect-market benchmark, but for different constants (M,∆1).

We next examine how transaction costs impact the illiquidity measures and the expected

return. Because transaction costs deter liquidity suppliers from trading, they raise price impact

λ. Note that λ rises even when transaction costs dampen the effect of the liquidity shock z

on the price. Indeed, dampening occurs not because of enhanced liquidity supply, but because

liquidity demanders scale back their trades.

Result 2 Price impact λ is higher than without transaction costs (κ = 0).

Defining price reversal γ involves the complication that for small values of z there is no

trade in Period 1, and therefore the price S1 is not uniquely defined. We define price reversal

conditional on trade in Period 1. The empirical counterpart of our definition is that no-trade

observations are dropped from the sample. Transaction costs affect price reversal both because

they limit trade to large values of z, and because they impact the price conditional on trade

occuring. The first effect raises price reversal. The second effect works in the same direction

when transaction costs amplify the effect of z on the price, i.e., when π < 1/2.

Result 3 Price reversal γ is increasing in the transaction cost coefficient κ if π ≤ 1/2.

Because transaction costs hinder trade in Period 1, a natural conjecture is that they raise

the illiquidity discount. When, however, π ≈ 1, transaction costs can lower the discount. The

intuition is that for π ≈ 1 liquidity suppliers are the short side of the market and stand to

gain the most from trade. Therefore, transaction costs hurt them the most, and reduce the

ratio M of marginal utilities of wealth of demanders and suppliers. This lowers the risk-neutral

probability πM
1−π+πM of being a demander, and can lower the discount. Transaction costs always

raise the discount, and hence the asset’s expected return, when π ≤ 1/2.

Result 4 The asset’s expected return E(R) is increasing in the transaction cost coefficient κ

if π ≤ 1/2.

We can sharpen Results 3 and 4 by assuming specific distributions for the liquidity shock

z. When, in particular, z is normal, transaction costs raise γ for all values of π, and numerical

calculations suggest that they also raise the discount for all values of π.
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Early papers on the effects of transaction costs are Amihud and Mendelson (1986) and

Constantinides (1986). Constantinides (1986) derives the optimal investment policy of an in-

finitely lived agent, who can trade a riskless and a risky asset. The return of the riskless asset is

constant over time, and that of the risky asset is i.i.d. The risky asset carries transaction costs,

which are proportional to the dollar value traded. Because the agent has CRRA preferences, the

optimal policy in the absence of transaction costs is to maintain a constant fraction of wealth

invested the risky asset, as in Merton (1971). In the presence of transaction costs, the agent

instead prevents this fraction from exiting an interval. When the fraction is strictly inside the

interval, the agent does not trade. The agent incurs a small utility loss from transaction costs,

even though he trades infinitely often in their absence. Intuitively, the derivative of the utility

at the optimal policy is zero, and hence a deviation from that policy results in a second-order

loss.

The solution of Constantinides (1986) is approximate because consumption is assumed to be

an exogenous constant fraction of wealth. Davis and Norman (1990) provide an exact solution.

Fleming, Grossman, Vila, and Zariphopoulou (1990), Dumas and Luciano (1991) do the same

in the more tractable case where the agent consumes only at the end of his investment horizon.

To eliminate horizon effects, they focus on the limit where the horizon converges to infinity. Liu

and Loewenstein (2002) consider explicitly the finite-horizon case. Balduzzi and Lynch (1999),

Lynch and Balduzzi (2000), Liu (2004), Jang, Koo, Liu, and Loewenstein (2007) and Lynch

and Tan (2011) consider richer settings, involving multiple risky assets and predictable returns.

While Constantinides (1986) and the subsequent literature mainly emphasize portfolio op-

timization, they also explore implications for equilibrium asset prices. They do this by giving

the agent a choice between two economies: one in which the risky asset carries transaction costs,

and one in which it does not but its expected return is lower. They interpret the reduction in

expected return that would make the agent indifferent between the two economies as an equi-

librium effect of transaction costs. Whether this effect would arise in an explicit equilibrium

model, in which agents can trade both assets, is doubtful; for example, the effect should depend

on the scarcity of the more liquid asset, but asset supply is not taken into consideration. This

exercise, however, provides an intuitive metric to express the utility loss from transaction costs.

Amihud and Mendelson (1986) build an equilibrium model, in which agents are risk neutral

and have different investment horizons. Upon entering the economy, agents can invest in a set

of assets that differ in transaction costs. Agents must sell their assets when they exit the

economy, and exit rates are independent of age but can differ across agents. Assets with high

transaction costs trade at a lower price in equilibrium. Moreover, they are held by agents with

19



long investment horizons, i.e., low exit rates, who can amortize the costs over a longer period.

Each agent holds only one asset, the one maximizing expected return net of transaction costs

amortized over the agent’s horizon. The effect of transaction costs on asset prices is concave.

Indeed, the price differential between one asset and its next closest in terms of transaction

costs is determined by the “marginal” investor who is indifferent between the two assets. Since

the marginal investor in the case of assets with high transaction costs has a long horizon and

hence is less concerned about costs, the price differential between these assets is smaller than

for low-cost assets.

Aiyagari and Gertler (1991) and Vayanos and Vila (1999) allow for intertemporal con-

sumption and risk aversion in a setting with two riskless assets, one of which carries transaction

costs. The latter paper shows that a decrease in the supply of the more liquid asset increases

the liquidity premium, i.e., the premium investors are willing to pay to hold that asset. This

is in the spirit of Amihud and Mendelson (1986): since the horizon of the marginal investor

becomes shorter, the investor is more concerned about transaction costs. Heaton and Lucas

(1996) assume that the asset carrying transaction costs is risky and agents trade to smooth

labor income shocks. A calibration of their model reveals that transaction costs have small

effects on asset prices unless agents face borrowing constraints.

Vayanos (1998) re-examines the effects of transaction costs in a setting with multiple risky

assets and risk averse agents. Agents hold a diversified portfolio at all times, but when they

need to reduce their risk exposure they sell disproportionately more of the assets with low

transaction costs. Moreover, because transaction costs make agents less willing not only to buy

but also to sell an asset, assets with high costs can trade at higher prices than assets with low

costs. This result, which also holds in Period 1 of our model, cannot arise when agents are

risk neutral or assets are riskless because of a “dominance” argument: since assets are perfect

substitutes except for transaction costs, agents would not buy assets with high costs if these

trade at higher prices than assets with low costs. Furthermore, the marginal-investor pricing

derived in Amihud and Mendelson (1986) does not hold since agents hold diversified portfolios

and hence are all marginal for an asset pair.

Huang (2003) assumes stochastic liquidation needs and two riskless assets, one of which

carries transaction costs. He shows that transaction costs can generate a strict preference for

diversification even though the assets are riskless. This is because returns net of transaction

costs are risky: investing in the less liquid asset yields a low payoff if an agent needs to sell

on short notice, and a high payoff otherwise. Lo, Mamaysky, and Wang (2004) assume that

agents trade to share risk and have access to a riskless asset carrying no costs and a risky asset
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carrying fixed costs, i.e., independent of transaction size. They show that transaction costs

hinder risk sharing, as in Period 1 of our model, and this causes the price of the risky asset to

decrease, as in Period 0 of our model.

More recent work on transaction costs emphasizes the time variation in these costs and in

the liquidity premia per unit of the costs. Acharya and Pedersen (2005) assume that investors

have a one-period horizon and transaction costs are stochastic. They show that part of the

costs’ price effect is through a risk premium. This is because transaction costs impact the

covariance between an asset’s return net of costs and the net return of the market portfolio.

For example, if an asset’s transaction costs increase when the costs of the market portfolio

increase or when the market portfolio’s dividends decrease, this adds to the asset’s risk and

causes the asset price to decrease. Beber, Driessen, and Tuijp (2012) examine the effects of

stochastic transaction costs when investors differ in their horizons.

Vayanos (2004) explores time variation in investor horizons, assuming constant transaction

costs. He assumes that investors are fund managers subject to withdrawals when their per-

formance drops below a threshold, and that the volatility of asset dividends is time-varying.

During volatile times, fund managers’ horizons shorten because their performance is more likely

to drop below the threshold. This causes liquidity premia per unit of transaction costs to in-

crease. It also causes the market betas of assets with high transaction costs to increase precisely

during the times when the market is the most risk averse.

Papers on time varying transaction costs and liquidity premia show that the traditional

CAPM should be augmented by pricing factors relating to aggregate liquidity. These factors

are aggregate transaction costs in Acharya and Pedersen (2005) and Beber, Driessen, and Tuijp

(2012), and volatility (which correlates with liquidity premia) in Vayanos (2004).

Buss and Dumas (2011) and Buss, Uppal, and Vilkov (2011) develop numerical algorithms

to solve dynamic general equilibrium models with transaction costs. Buss, Uppal, and Vilkov

(2011) assume multiple risky assets and labor income shocks, and show that transaction costs

have small price effects. Buss and Dumas (2011) show that deterministic transactions costs

give rise to time-variation in measures of illiquidity, such as price impact and volume, and this

variation can be a priced factor.

2.4 Asymmetric Information

In the perfect-market benchmark, all agents have the same information about the payoff of

the risky asset. In practice, however, agents can have different information because they have
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access to different sources of information or have different abilities to process information from

the same source. We model asymmetric information through a private signal s about the asset

payoff D that some agents observe in Period 1. The signal is

s = D + ϵ (19)

where ϵ is normal with mean zero and variance σ2
ϵ , and is independent of (D, z). We assume

that liquidity demanders, who observe the liquidity shock z in Period 1, are also the only ones

to observe s. Assuming instead that liquidity suppliers are the only ones to observe s would

get us back to symmetric information since each set of agents would infer the variable they do

not observe from the price. Note that because liquidity suppliers are uninformed, our model

determines how the supply of liquidity is influenced by suppliers’ concern about trading against

better-informed agents.

We first describe the equilibrium, then examine how asymmetric information affects the

illiquidity measures and the expected return, and finally survey the literature on asymmetric

information. The price in Period 1 incorporates the signal of liquidity demanders, and therefore

reveals information to liquidity suppliers. To solve for equilibrium, we follow the standard ratio-

nal expectations equilibrium (REE) procedure to conjecture a price function, i.e., a relationship

between the price and the signal, then determine how agents use their knowledge of the price

function to learn about the signal and formulate demand functions, and finally confirm that

the conjectured price function clears the market. We conjecture a price function that is affine

in the signal s and the liquidity shock z, i.e.,

S1 = a+ b(s− D̄ − cz) (20)

for constants (a, b, c). For expositional convenience, we set ξ ≡ s− D̄− cz. Agents use the price

and their private information to form a posterior distribution about the asset payoff D. For a

liquidity demander, the price conveys no additional information relative to observing the signal

s. For a liquidity supplier, the only information is the price, which is equivalent to observing ξ.

Agents’ demand functions in Period 1 are as in Section 2.1, with the conditional distributions

of D replacing the unconditional one, i.e.,

θs1 =
E[D|S1]− S1

ασ2[D|S1]
, (21a)

θd1 =
E[D|s]− S1

ασ2[D|s]
− z. (21b)

Substituting (21a) and (21b) into the market-clearing equation (2), we can write the latter as

an affine equation in (s, z). Setting the coefficients of (s, z) and of the constant term to zero
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yields a system of three equations in the constants (a, b, c) that characterize the price in Period

1. The price in Period 0 is given by the same equation (4) as in the perfect-market benchmark,

but for different constants (M,∆1).

We next examine how asymmetric information impacts the illiquidity measures and the

expected return. When some agents observe a private signal, this not only generates dispersion

in information across agents, but also renders each agent more informed because the signal is

partially revealed through the price. The improvement in each agent’s information is not a

distinguishing feature of asymmetric information: information can also improve if all agents

observe a public signal. To focus on the dispersion in information, which is what distinguishes

asymmetric information, we compare with two symmetric-information benchmarks: the no-

information case, where information is symmetric because no agent observes the signal s, and

the full-information case, where all agents observe s.

Result 5 Price impact λ is higher under asymmetric information than under either of the

two symmetric-information benchmarks. It also increases when the private signal (19) becomes

more precise, i.e., when σ2
ϵ decreases.

The comparison between the asymmetric-, no- and full-information cases is driven by an

uncertainty and a learning effect. Price impact increases in the uncertainty faced by liquidity

suppliers, measured by their conditional variance of the asset payoff. Because of this uncertainty

effect, price impact tends to be lowest under full information, since liquidity suppliers observe

the signal perfectly, next lowest under asymmetric information, since the signal is partially

revealed to liquidity suppliers through the price, and highest under no information.

An additional source of price impact, present only under asymmetric information, is that

liquidity suppliers seek to learn the signal from the price. Because, for example, liquidity

suppliers attribute selling pressure partly to a low signal, they require a larger price drop to

buy. This learning effect works in the same direction as the uncertainty effect when comparing

asymmetric to full information, but in the opposite direction when comparing asymmetric to

no information. Result 5 implies that in the latter comparison the learning effect dominates.

While price impact is unambiguously higher under asymmetric information, the same is

not true for price reversal. Suppose for example, that π ≈ 1, i.e., almost all agents are liquidity

demanders (informed). Then the price processes under asymmetric and full information ap-

proximately coincide, and so do the price reversals. Since, in addition, liquidity suppliers face

more uncertainty under no information than under full information, price reversal is highest

under no information. If instead π ≈ 0, i.e., almost all agents are liquidity suppliers (unin-
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formed), then price impact λ converges to infinity (order 1/π) under asymmetric information.

This is because the trading volume of liquidity demanders converges to zero, but the volume’s

informational content remains unchanged. Because of the high price impact, price reversal is

highest under asymmetric information.

Result 6 Price reversal γ is higher under asymmetric information than under either of the

two symmetric-information benchmarks if π ≈ 0. If, however, π ≈ 1, then price reversal is

higher under no information than under asymmetric information.

The analysis of the illiquidity discount involves an effect that goes in the direction opposite

to the uncertainty effect. This is that information revealed about the asset payoff in Period 1

reduces uncertainty and hence the scope for risk sharing. Less risk sharing, in turn, renders

agents less willing to buy the asset in Period 0 and raises the illiquidity discount. The negative

effect of information on risksharing and welfare has been shown in Hirshleifer (1971). We derive

the implications of the Hirshleifer effect for asset pricing: the reduced scope for risksharing in

Period 1 lowers the asset price in Period 0 and raises the illiquidity discount.

Because of the Hirshleifer effect, the illiquidity discount under full information is higher

than under no information—a comparison which is exactly the reverse than for the measures

of illiquidity. The Hirshleifer effect implies that the illiquidity discount under asymmetric in-

formation should be between that under no and under full information. The discount under

asymmetric information, however, is also influenced by the learning effect, which raises price

impact, reduces the scope for risk sharing and hence raises the discount. The learning effect

works in the same direction as the Hirshleifer effect when comparing asymmetric to no infor-

mation, but in the opposite direction when comparing asymmetric to full information. Result 7

implies that in the latter comparison the learning effect dominates: the illiquidity discount, and

hence the asset’s expected return, is highest under asymmetric information than under either

of the two symmetric-information benchmarks.

Result 7 The asset’s expected return E(R) is higher under asymmetric information than under

either of the two symmetric-information benchmarks.

The analysis of REE with asymmetric information was pioneered by Grossman (1976).

Grossman (1976) assumes that agents observe private signals about the payoff of a risky asset,

which are of equal quality and independent conditional on the payoff. The equilibrium price

of the risky asset reveals the average of agents’ signals, which is a sufficient statistic for all the

signals because of normality. Hence, the price aggregates information perfectly.

24



Grossman and Stiglitz (1980) assume that some agents observe a common signal about

the payoff of a risky asset and the remaining agents observe no signal. Following some of the

literature, we term this information structure “asymmetric information structure,” and that in

Grossman (1976) as “differential information structure.” Grossman and Stiglitz (1980) allow

additionally for the supply of the risky asset to be stochastic. With a deterministic supply, the

price reveals perfectly the signal of the informed agents, and hence the uninformed can achieve

the same utility as the informed. With a stochastic supply instead, the informed can achieve

higher utility. The analysis of Grossman and Stiglitz (1980) is closely related to the equilibrium

in Period 1 of our model, except that we introduce noise in the price through endowments rather

than through the asset supply. Diamond and Verrecchia (1981) are first to use this modeling

trick, and do so in a differential information model.

Grossman (1976) and Grossman and Stiglitz (1980) derive two basic paradoxes relating

to information aggregation. Since the price in Grossman (1976) aggregates perfectly agents’

private signals, agents should form their asset demand based only on the price and not on their

signals. The paradox then is how can the price aggregate the signals. A second paradox is that

if the price in Grossman and Stiglitz (1980) reveals perfectly the signal of the informed agents,

then why would the informed be willing to commit resources to acquire their signal.

Both paradoxes can be resolved by introducing noise, e.g., through stochastic asset supply.

Grossman and Stiglitz (1980) show that with stochastic supply, the informed can achieve higher

utility than the uninformed and hence can have an incentive to acquire costly information.

This has the important implication that markets cannot be fully efficient when information

acquisition is costly because information will be acquired only when the price is not fully

revealing.4 Hellwig (1980) introduces stochastic supply in a differential information model,

which generalizes Grossman (1976) by allowing for heterogeneity in signal quality and agent

risk aversion. He shows that the price does not aggregate information perfectly, and hence

agents have an incentive to use both the price and their private signal when forming their asset

demand.

All papers mentioned so far assume that agents can trade one riskless and one risky asset

over one period. Admati (1985) extends the analysis to multiple risky assets, while also allowing

for a general correlation structure between asset payoffs, asset supplies, and agents’ private

signals. She shows that because signals about one asset are also informative about the payoff

and supply of others, surprising phenomena can arise. For example, a high price of one asset,

holding other prices constant, can cause agents to lower their expectation of that asset’s payoff.

4This conclusion does not extend to settings with imperfect competition, as we point out in Section 2.5.
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Grundy and McNichols (1989) and Brown and Jennings (1990) assume two trading periods

and one risky asset. They show that uninformed traders learn about the asset payoff not only

from current prices but also from past ones because prices are noisy signals of asset payoffs.

The optimal strategy thus uses the entire price history, in a manner similar to strategies used by

technical traders. Wang (1993) studies a continuous-time setting with one risky asset. He shows

that uninformed agents behave as price chasers, buying following a price increase. He also shows

that return volatility and price reversal can be highest under asymmetric information than under

full or no information. The latter result is consistent with our Result 6. Wang (1994) employs a

similar model to study the behavior of trading volume and its relationship with price changes.

These papers assume an asymmetric information structure. He and Wang (1995) study the

joint behavior of trading volume and prices under a differential information structure. Vives

(1995) studies the speed at which prices aggregate information under a combined asymmetric-

differential information structure, where some agents observe conditionally independent signals

about the payoff of a risky asset and the remaining agents observe no signal.

Much of the literature on REE with asymmetric information focuses on the informativeness

of prices, rather than on market liquidity. Market liquidity is instead emphasized in a subsequent

literature which combines asymmetric information with strategic behavior or sequential arrival

of traders. This literature was pioneered by Glosten and Milgrom (1985) and Kyle (1985),

and is surveyed in the next section. Yet, even REE models with asymmetric information have

implications for market liquidity. We derive such implications in the context of our model in

Results 5 and 6. Moreover, Cespa and Foucault (2011) show that asymmetric information can

generate liquidity spillovers: because asset payoffs are correlated, a drop in liquidity in one

asset reduces the information available on other assets, hence reducing the liquidity of those

assets.

A number of recent papers examine whether agents require higher expected returns to invest

in the presence of asymmetric information. O’Hara (2003) and Easley and O’Hara (2004) show

that prices and lower and expected returns higher when agents receive private signals than when

signals are public. This comparison concerns Period 1 of our model, and reverses when using

the alternative symmetric-information benchmark where no signals are observed. By contrast,

we show (Result 7) that the price in Period 0 is lower under asymmetric information than under

either symmetric-information benchmark. Comparing prices in Period 0 measures the ex-ante

effect of the imperfection, i.e., what compensation do agents require to invest ex-ante knowing

that they will face asymmetric information ex-post? Qiu and Wang (2010) derive similar results

in an infinite-horizon model. Garleanu and Pedersen (2004) show in a model with risk-neutral

agents and unit demands that asymmetric information can raise or lower prices, with the effect
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being zero when probability distributions are symmetric—as is the case under normality. Ellul

and Pagano (2006) show that asymmetric information lowers prices in a model of IPO trading.

2.5 Imperfect Competition

In the perfect-market benchmark, agents are competitive and have no effect on prices. In many

markets, however, some agents are large relative to others in the sense that they can influence

prices, either because of their size or because of their information advantage. We model imper-

fect competition by assuming that some agents can exert market power in Period 1. We focus

on the case where liquidity demanders behave as a single monopolist, but also consider more

briefly monopolistic behavior by liquidity suppliers. We emphasize the former case because it

has received more attention in the literature. When liquidity suppliers behave monopolistically,

imperfect competition obviously influences the supply of liquidity. More surprisingly, it can

also influence liquidity supply when liquidity demanders behave monopolistically and suppliers

do not.

We consider both the case where liquidity demanders have no private information on asset

payoffs, and so information is symmetric, and the case where they observe the private signal

(19), and so information is asymmetric. The second case nests the first by setting the variance

σ2
ϵ of the signal noise to infinity. Hence, we treat both cases simultaneously, and compare

imperfect competition to the competitive equilibrium with asymmetric information studied in

Section 2.4.

The trading mechanism in Period 1 is that liquidity suppliers submit a demand function and

liquidity demanders submit a market order, i.e., a price-inelastic demand function. Restricting

liquidity demanders to trade by market order is without loss of generality: they do not need to

condition their demand on price because they know all information available in Period 1.

We first describe the equilibrium when liquidity demanders behave monopolistically, and

examine how imperfect competition affects the illiquidity measures and the expected return. We

next treat more briefly the case where liquidity suppliers behave monopolistically, and finally

survey the literature on imperfect competition.

We conjecture that the price in Period 1 has the same affine form (20) as in the competitive

case, with possibly different constants (a, b, c). Given (20), the demand function of liquidity

suppliers is (21a) as in the competitive case. Substituting (21a) into the market-clearing equa-

tion (2), yields the price in Period 1 as a function S1(θ
d
1) of the liquidity demanders’ market
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order θd1 . Liquidity demanders choose θd1 to maximize the expected utility

−Eexp
{
−α

[
W1 + θd1

(
D − S1(θ

d
1)
)
+ z(D − D̄)

]}
. (22)

The difference with the competitive case is that liquidity demanders behave as a single monop-

olist and take into account the impact of their order θd1 on the price S1. The optimal order of

liquidity demanders satisfies

θd1 =
E[D|s]− S1(θ

d
1)− ασ2[D|s]z + λ̂θ̄

ασ2[D|s] + λ̂
, (23)

where λ̂ ≡ dS1(θd1)

dθd1
. Eq. (23) determines θd1 implicitly because it includes θd1 in both the left-

and the right-hand side. We write θd1 in the form (23) to facilitate the comparison with the

competitive case. Indeed, the competitive counterpart of (23) is (21b), and can be derived by

setting λ̂ to zero. The parameter λ̂ measures the price impact of liquidity demanders, and is

closely related to the price impact λ. Because in equilibrium λ̂ > 0, the denominator of (23)

is larger than that of (21b), and therefore θd1 is less sensitive to changes in E[D|s] − S1 and z

than in the competitive case. Intuitively, because liquidity demanders take price impact into

account, they trade less aggressively in response to their signal and their liquidity shock.

Substituting (21a) and (23) into the market-clearing equation (2), and proceeding as in

Section 2.4, we find a system of three equations in the constants (a, b, c) that characterize the

price in Period 1. The price in Period 0 is given by the same equation (4) as in the perfect-

market benchmark, but for different constants (M,∆1).

We next examine how imperfect competition by liquidity demanders impacts the illiquidity

measures and the expected return.

Result 8 Price impact λ is the same as under perfect competition when information is sym-

metric, and higher when information is asymmetric.

When information is asymmetric, imperfect competition lowers liquidity, as measured by

price impact, even though liquidity suppliers are competitive. The intuition is that when

liquidity demanders take into account their effect on price, they trade less aggressively in

response to their signal and their liquidity shock. This reduces the size of both information-

and liquidity-generated trades (hence lowering b). The relative size of the two types of trades
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(measured by c) remains the same, and so does price informativeness, measured by the signal-to-

noise ratio. Monopoly trades thus have the same informational content as competitive trades,

but are smaller in size. As a result, the signal per unit trade is higher, and so is the price

impact λ of trades. Imperfect competition has no effect on price impact when information is

symmetric because trades have no informational content.

An increase in information asymmetry, through a reduction in the variance σ2
ϵ of the signal

noise, generates an illiquidity spiral. Because illiquidity increases, liquidity demanders scale

back their trades. This raises the signal per unit trade, further increasing illiquidity. When

σ2
ϵ reaches a lower bound σ̂2

ϵ , illiquidity becomes infinite and trade ceases, leading to a market

breakdown. For σ2
ϵ ≤ σ̂2

ϵ , a linear equilibrium fails to exist.

While imperfect competition raises price impact λ, it lowers price reversal γ. Intuitively,

price reversal arises because the liquidity demanders’ trades in Period 1 cause the price to

deviate from fundamental value. Under imperfect competition, these trades are smaller and so

is price reversal.

Result 9 Price reversal γ is lower than under perfect competition.

Imperfect competition can lower or raise the illiquidity discount. Indeed, since liquidity

demanders scale back their trades, they render the price less responsive to their liquidity shock.

Therefore, they can obtain better insurance against the shock, and become less averse to holding

the asset in Period 0. This effect drives the illiquidity discount, and hence the asset’s expected

return, below the competitive value when information is symmetric. When information is

asymmetric, the comparison can reverse. This is because the scaling back of trades generates the

spiral of increasing illiquidity, and this reduces the insurance received by liquidity demanders.

Result 10 The asset’s expected return E(R) is lower than under perfect competition when

information is symmetric, but can be higher when information is asymmetric.

The case where liquidity suppliers behave monopolistically can be treated in a manner

similar to the case where demanders do, so we provide a brief sketch. Suppose that demanders

are competitive but suppliers behave as a single monopolist in Period 1. Since suppliers do

not know the liquidity shock z and signal s, their trading strategy is to submit a price-elastic

demand function (rather than a market order). Monopolistic behavior renders this demand

function less price-elastic than its competitive counterpart (21a). The lower elasticity manifests
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itself through an additive positive term in the denominator of the competitive demand (21a),

exactly as is the case for liquidity demanders in (21b) and (23).

Because liquidity suppliers submit a less price-elastic demand function than in the com-

petitive case, the trades of liquidity demanders have larger price impact. Hence, price impact

λ and price reversal γ are larger than in the competitive case. The illiquidity discount is also

larger because liquidity demanders receive worse insurance against the liquidity shock.

Two seminal papers on imperfect competition in financial markets and its relationship with

asymmetric information are Kyle (1985,1989). Kyle (1989) assumes a combined asymmetric-

differential information structure, where some agents observe conditionally independent signals

about the payoff of a risky asset and the remaining agents observe no signals. Agents submit de-

mand functions, as in competitive rational expectations equilibrium (REE), but the equilibrium

concept is instead Nash equilibrium in demand functions, as in Wilson (1979) and Klemperer

and Meyer (1989). Noise traders add a stochastic amount to the asset supply, preventing prices

from being fully revealing. Because informed agents take into account their effect on price,

they trade less aggressively in response to their signal. Imperfect competition thus reduces the

size of information-based trades. Since it has no effect on liquidity-generated trades, which are

initiated by the exogenous noise traders, it lowers price informativeness.

Kyle (1985) assumes a risk neutral insider who observes a private signal about the payoff

of a risky asset and can trade with market makers and noise traders. The insider and the noise

traders submit market orders, which are batched together and absorbed by market makers.

Because the latter are risk neutral and competitive, they compete a la Bertrand and absorb all

orders at a price equal to their conditional expectation of the asset payoff. Imperfect competition

reduces price informativeness, as in Kyle (1989). An advantage of Kyle (1985) is that it is highly

tractable and can be extended in many directions. One important extension, performed in Kyle

(1985), is to allow trading to take place dynamically, over more than one period. The insider

then reveals his information slowly over time, as revealing it quickly would subject him to a

higher price impact in the early periods. In the continuous-time limit, the insider reveals his

information in a way that exactly equates price impact across time.

The model of Kyle (1985) has been extended in many directions. A first extension is

to introduce multiple insiders. Admati and Pfleiderer (1988) show that liquidity traders can

concentrate their trades in the same period, to reduce price impact, and this effect can be

amplified when there are multiple insiders. Holden and Subrahmanyam (1992) assume multiple

insiders who receive a common signal about the payoff of a risky asset, and show that they
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reveal it almost immediately in the continuous-trading limit because each insider tries to exploit

his information before others do. Foster and Viswanathan (1996) assume multiple insiders who

receive imperfectly correlated signals, and show that information revelation slows down because

of a “waiting-game” effect, whereby each insider attempts to learn the others’ signals. Back,

Cao, and Willard (2000) formulate this problem in continuous time and show that information

is not fully revealed in prices until the end of the trading session.

A second extension is to drop the noise traders and derive non-informational trading from

utility maximization. Glosten (1989) generates non-informational trading through a random

endowment received by the insider. We make the same assumption, and the equilibrium in

our Period 1 is closely related to the one that Glosten (1989) derives in the case where market

makers are competitive. Glosten (1989) assumes risk-neutral market makers; a paper even

closer to our model is Bhattacharya and Spiegel (1991), which assumes that liquidity suppliers

are risk averse.5 Both papers find that the market breaks down when information asymmetry

is severe. The mechanism is the same as in our model, and the key assumptions are that some

liquidity demanders are informed and all are non-price-takers.6 The idea that adverse selection

can cause market breakdown dates back to Akerlof (1970).

Other extensions are to introduce risk aversion, non-normal probability distributions for the

asset payoff, and a minimum trade size. Back (1992) shows that the result on the equalization

of price impact across time extends to general payoff distributions. Holden and Subrahmanyam

(1994) and Baruch (2002) show that a risk averse insider reveals his information faster than

a risk neutral one because he is eager to reduce the uncertainty at which his trades will be

executed. Back and Baruch (2004) assume that noise traders execute discrete transactions

rather than trading continuously, in which case the insider must do the same so not to be

revealed. They show that the insider follows a mixed strategy, and can trade in a direction

opposite to his information in some cases.

A further extension is to change the information structure. Kyle (1985) assumes that

the insider receives all his information in an initial period, and the information is announced

publicly in a final period. Chau and Vayanos (2008) and Caldentey and Stacchetti (2010) show

that when the insider receives a constant flow of new information over time, he chooses to reveal

it infinitely fast in the continuous-trading limit. This result is in sharp contrast to Kyle (1985),

where revelation is slow. Moreover, markets are arbitrarily close to efficiency and yet informed

5Both papers assume one trading period and do not derive effects on ex-ante expected returns, as we do.

6For example, market breakdown does not occur in Kyle (1985) because noise traders submit price-inelastic
demands, which can be viewed as an extreme form of price taking.
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traders earn abnormal profits, in sharp contrast to Grossman and Stiglitz (1980). Efficient

markets and insider profits are not contradictory because continuous trading gives insiders the

flexibility to earn profits even though they reveal each piece of new information within a very

short interval.7 Other models exploring insider trading with a flow of new information are Back

and Pedersen (1998) and Guo and Ou-Yang (2010).

A final set of extensions examine issues relating to market design. For example, Chowhdry

and Nanda (1991) study the competition between market venues. Fishman and Hagerty (1992),

Leland (1992) and Repullo (1999) study whether insider trading is desirable or should be

banned. Admati and Pfleiderer (1991) study “sunshine trading,” whereby liquidity traders

pre-announce their intention to trade, so to distinguish themselves from insiders and reduce

their trading costs. Pagano and Roell (1996) and Naik, Neuberger, and Viswanathan (1999)

study the effects of a transparency regulation requiring disclosure of all trades but of not traders’

identities. Huddart, Hughes, and Levine (2001) consider instead a regulation requiring disclo-

sure of trades by insiders. They show that the regulation speeds up information revelation and

reduces insiders’ profits. It also induces the insiders to trade less aggressively and follow a mixed

strategy, trading occasionally in a direction opposite to their information. Buffa (2011) shows

that because of the latter effect, the regulation can instead slow down information revelation

when insiders are risk averse.

Kyle (1985) and much of the subsequent literature assume that the non-price-taking agents

are insiders who receive private information about asset payoffs. In many cases, however,

agents without such information affect prices simply because of the size of their trades. For

example, trades by pension funds can exceed the average daily volume of many stocks, and are

often triggered by reasons other than information, e.g., regulatory constraints. Vayanos (1999)

assumes that large traders with no private information about asset payoffs receive random

endowments over time and need to share risk. He shows that these agents break their trades

into small pieces so to reduce price impact, and risk sharing is accomplished slowly even in the

continuous-trading limit. What deters them from trading faster is that this will signal to the

market that a larger trade is yet to come, and so price impact will be large. Vayanos (2001)

shows that the presence of noise traders in this setting can accelerate trading and hence improve

7Jackson (1991) provides an alternative resolution of the Grossman and Stiglitz (1980) paradox within a static
setting. He assumes that agents can acquire private signals at a cost and submit demand functions as in Kyle
(1989). Unlike in Kyle (1989), there are no noise traders. The equilibrium price is fully revealing and yet agents
have an incentive to acquire information. This is because information helps them predict their price impact,
which the price does not reveal. Normal-linear models cannot generate this effect because price impact is a
constant independent of information. For an analysis of information revelation without noise traders, normality
and linearity, see also Laffont and Maskin (1990).
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risk sharing.8

Large traders who trade over time to share risk are similar to durable-good monopolists. Ac-

cording to the Coase conjecture, the monopolists should trade infinitely fast in the continuous-

trading limit. Trading occurs slowly in Vayanos (1999) because each trader is the only one to

observe his endowment and hence his eagerness to share risk; if instead endowments are publicly

observed, the Coase conjecture holds. DeMarzo and Urosevic (2006) consider a general setting

where a large trader needs to share risk but can also take actions to increase asset payoffs,

e.g., monitor the firm’s managers. The trader’s eagerness to share risk is public information.

DeMarzo and Urosevic (2006) confirm the Coase conjecture in the case where asset payoffs are

independent of the trader’s actions. Rostek and Weretka (2011) study risk sharing in a dynamic

setting where agents’ endowments are public information. They decompose the price impact of

a trade into a permanent component, due to the risk aversion of agents taking the other side,

and a temporary one, due to their monopoly power.

When large traders affect prices, information about their future trades is valuable to others.

This is so even when large traders themselves have no information about asset payoffs. Cao,

Evans, and Lyons (2006) label information about future large trades “inventory information.”

Brunnermeier and Pedersen (2005) assume that a large trader needs to sell because of financial

distress, and show that other traders exploit this information by selling at the same time as

him. Such “predatory” behavior benefits these traders because they cause the distressed trader

to sell at low prices, at which they can buy. Pritsker (2005) studies predatory behavior in

a multi-asset setting. Attari, Mello, and Ruckes (2005), Fardeau (2011) and Venter (2011)

model the financial constraints of distressed traders and examine how predatory behavior by

others can bring them closer to distress by moving asset prices against them. Carlin, Lobo, and

Viswanathan (2007) derive predatory behavior as a breakdown of collaboration in a repeated

game.

Most papers mentioned so far emphasize non-price-taking behavior by liquidity demanders;

liquidity suppliers, such as market makers, are assumed to behave competitively. Biais (1993)

studies how oligopolistic market makers bid for an order, depending on whether or not they

know the inventories of their competitors. He relates the quality of market makers’ information

to whether the market is centralized or fragmented. Earlier papers on oligopolistic market

makers include Ho and Stoll (1980) and Copeland and Galai (1983).

8Bertsimas and Lo (1998), Almgren and Chriss (1999), Almgren (2003) and Huberman and Stanzl (2005) study
the optimal policy of large traders in partial-equilibrium settings, under exogenous price dynamics. Obizhaeva
and Wang (2006) derive the price dynamics faced by large traders from a model of the limit-order book, which
describes how new limit orders arrive after existing ones are consumed.
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Glosten (1989) shows that when information is asymmetric, a market with a monopoly mar-

ket maker can dominate one with competitive market makers. This is because the market can

break down with competitive market makers, but breakdown can be avoided with a monopoly

market maker. Glosten (1989) models perfect competition between market makers in terms

of a zero-profit condition. Glosten (1994) derives this condition as the equilibrium of a game

in which market makers post price-quantity schedules. Bernhardt and Hughson (1997) study

this game in the case of two oligopolistic market makers. Biais, Martimort, and Rochet (2000)

study the game for a general number of market makers and provide a full characterization of

the equilibrium. For a finite number of market makers the equilibrium has a Cournot flavor,

and it converges to the competitive case characterized by Glosten (1989) as the number goes

to infinity. Back and Baruch (2011) provide an alternative characterization of the same game.

Models with non-price-taking behavior study the interaction between small numbers of

agents. In this sense, they are related to models of sequential order arrival, in which traders

arrive in the market one at a time and remain there for a short period. The latter models

assume implicitly participation costs since agents are not present in the market until when they

arrive. Early models in that spirit include Garman (1976), Amihud and Mendelson (1980) and

Ho and Stoll (1981), in which market makers receive an exogenous flow of orders.

Glosten and Milgrom (1985) propose a highly tractable model of sequential order arrival

with asymmetric information. Some of the agents receive a private signal about the asset payoff,

while others do not and trade for liquidity reasons. Upon arriving in the market, agents can

execute a buy or sell transaction of a fixed size with market makers. As in Kyle (1989), market

makers are risk neutral and competitive. Therefore, they compete a la Bertrand and absorb

orders at a price equal to their conditional expectation of the asset payoff. In equilibrium, the

bid price that market makers quote to buy from other agents is lower than the ask price that

they quote to sell to them. This is because when market makers buy, they suspect that other

agents might have sold to them because of negative information. Glosten and Milgrom (1985)

thus link the bid-ask spread to asymmetric information, building on earlier work by Bagehot

(1971) and Copeland and Galai (1983).

The models of Glosten and Milgrom (1985) and Kyle (1985) give rise to different measures

of illiquidity. Illiquidity in Glosten and Milgrom (1985) is measured by the bid-ask spread since

all transactions are assumed to be of a fixed size. By contrast, in Kyle (1985) transactions can

be of any size since probability distributions are normal and trading strategies linear. Illiquidity

is measured by the sensitivity of price to quantity, which corresponds to λ in our model. While

the bid-ask spread and λ are derived within different models, the share the basic property of
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being increasing in the degree of asymmetric information. Easley and O’Hara (1987) consider a

hybrid model in which agents arrive in the market one at a time and can execute transactions

of variable size with market makers. The prices that market makers post depend on quantity,

in a spirit similar to Kyle (1985). Easley and O’Hara (1992) allow the time when private

information arrives to be stochastic. They show that the bid-ask spread increases following a

surge in trading activity because market makers infer that private information has arrived.

A recent literature studies sequential order arrival in limit-order markets, where there are

no designated market makers and liquidity is supplied by the arriving agents. Agents can

execute a buy or sell transaction of a fixed size. Impatient agents execute this transaction

immediately upon arrival through a market order, and hence demand liquidity. Patient agents

submit instead a limit order, i.e., a price-elastic demand function, which is executed against

future market orders. Hence, they supply liquidity to future agents. Papers in that literature

include Parlour (1998), Foucault (1999), Foucault, Kadan, and Kandel (2005), Goettler, Par-

lour, and Rajan (2005) and Rosu (2009).9 These papers determine the bid-ask spread that

results from the submitted limit orders, the choice of agents between market and limit orders,

the expected time for limit orders to execute, etc. A positive bid-ask spread arises even in

the absence of asymmetric information, and is decreasing in the degree of competition between

limit-order suppliers. This parallels our result that λ is larger when liquidity suppliers behave

monopolistically than when they are competitive.

2.6 Funding Constraints

Agents’ portfolios often involve leverage, i.e., borrow cash to establish a long position in a

risky asset, or borrow a risky asset to sell it short. In the perfect-market benchmark, agents

can borrow freely provided that they have enough resources to repay the loan. But as the

Corporate Finance literature emphasizes, various frictions can limit agents’ ability to borrow

and fund their positions. These frictions can also influence the supply of liquidity in the market.

Since in our model consumption is allowed to be negative and unbounded from below,

agents can repay a loan of any size by reducing consumption. Negative consumption can be

interpreted as a costly activity that agents undertake in Period 2 to repay a loan. We derive a

funding constraint by assuming that agents cannot commit to reduce their consumption below

a level −A ≤ 0. This nests the case of full commitment assumed in the rest of this paper

9These papers assume that agents have market power. Biais, Hombert, and Weill (2011) assume instead that
agents are competitive and observe their valuation for an asset only infrequently. They show that the optimal
orders that agents submit at the observation times can be price-contingent and concern future execution.
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(A = ∞), and the case where agents can walk away from a loan rather than engaging in

negative consumption (A = 0). Because our focus is on how the funding constraint influences

the supply of liquidity, we impose it on liquidity suppliers only, i.e., assume that the lack of

commitment concerns only them.

For simplicity, we assume that loans must be fully collateralized in the sense that agents

must be able to commit enough resources to cover any losses in full. To ensure that full

collateralization is possible, we replace normal distributions by distributions with bounded

support. We denote the support of the asset payoff D by [D̄ − bD, D̄ + bD] and that of the

liquidity shock z by [−bz, bz]. We assume that D and z are distributed symmetrically around

their respective means, D is positive (i.e., D̄−bD ≥ 0), and agents receive a positive endowment

B of the riskless asset in Period 0.

We first describe the equilibrium, then examine how the funding constraint affects the

illiquidity measures and the illiquidity discount, and finally survey the literature on funding

constraints. To derive the funding constraint, we note that losses from investing in the risky

asset can be covered by wealth W1 or negative consumption. Since liquidity suppliers must be

able to cover losses in full, and cannot commit to consume less than −A, losses cannot exceed

W1 +A, i.e.,

θs1(S1 −D) ≤ W1 +A for all D.

This yields the constraint

m|θs1| ≤ W1 +A, (24)

where

m ≡ S1 −min
D

D if θs1 > 0, (25a)

m ≡ max
D

D − S1 if θs1 < 0. (25b)

The constraint (24) requires that a position of θs1 shares is backed by capital m|θs1|. This limits

the size of the position as a function of the capital W1 + A available to suppliers in Period 1.

Suppliers’ capital is the sum of the capital W1 that they physically own in Period 1, and the

capital A that they can access through their commitment to consume −A in Period 2. The

parameter m is the required capital per share, and can be interpreted as a margin or haircut.

The margin is equal to the maximum possible loss per share. For example, the margin (25a)

for a long position does not exceed the asset price S1, and is strictly smaller if the asset payoff

D has a positive lower bound (i.e., minD D = D̄ − bD > 0).
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Intuitively, the constraint (24) can bind when there is a large discrepancy between the price

S1 and the expected payoff D̄, since this is when liquidity suppliers want to hold large positions.

If (24) binds, then the demand function θs1 of a liquidity supplier in Period 1 is determined by

(24) together with the requirement that θs1 has the same sign as D̄− S1. If (24) does not bind,

then the demand function is

θs1 =
(
f ′)−1

(D̄ − S1), (26)

where

f(θ) ≡
log E exp

[
−αθ(D − D̄)

]
α

. (27)

Eq. (26) generalizes (1a) to the case where asset payoffs are not normal. The function f(θ)

can be interpreted as a cost of bearing risk, and is positive, convex, and equal to 1
2αθ

2 under

normality (which is ruled out by the bounded-support requirement). Note that since f(θ) is

convex, f ′(θ) is increasing, and so the demand θs1 is a decreasing function of the price S1. The

demand function of a liquidity demander for the risky asset in Period 1 is

θd1 =
(
f ′)−1

(D̄ − S1)− z. (28)

Combining (24)-(28) with the market clearing equation (2), we can characterize the equi-

librium in terms of two regions: the abundant-capital region and the scarce-capital region. The

abundant-capital region is defined by the condition that the endowment B of the riskless asset

that agents receive in Period 0, plus the quantity A that liquidity suppliers can access through

their commitment to consume −A in Period 2, exceeds a threshold K∗. If B + A > K∗,

then liquidity suppliers are well-capitalized and their funding constraint never binds. If instead

B + A < K∗, then the constraint binds for large positive and possibly large negative values

of the liquidity shock z. For example, when z is large and positive, the price S1 is low and

liquidity suppliers are constrained because they want to hold large long positions. Note that

in both regions, the constraint does not bind for z = 0. Indeed, the unconstrained outcome for

z = 0 is that liquidity suppliers maintain their endowments θ̄ of the risky asset and B of the

riskless asset. Since this yields positive consumption, the constraint is met.

An increase in the liquidity shock z lowers the price S1 and raises the liquidity suppliers’

position θs1. These results are the same as in the perfect-market benchmark of Section 2.1,

but the intuition is more complicated when the funding constraint binds. Suppose that capital

is scarce (i.e., B + A < K∗), and z is large and positive, in which case suppliers hold long
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positions and are constrained. The intuition why they can buy more, despite the constraint,

when z increases is as follows. Since the price S1 decreases, suppliers realize a capital loss on

the θ̄ shares of the risky asset that they carry from Period 0. This reduces their wealth in

Period 1 and tightens the constraint. At the same time, a decrease in S1 triggers an equal

decrease in the margin (25a) for long positions because the maximum possible loss on these

positions decreases. This effect loosens the constraint. It also dominates the first effect since

it is equivalent to a capital gain on the θs1 shares that suppliers hold in Period 1, and suppliers

are net buyers for z > 0 (i.e., θs1 > θ̄). Hence, suppliers can buy more in response to an increase

in z. The price in Period 0 can be computed in closed form when the risk-aversion coefficient

α is small. The form of the price is different in the abundant and in the scarce capital region.

We next examine how the funding constraint impacts the illiquidity measures and the

illiquidity discount. We compute these variables in the abundant-capital region, and compare

with the scarce-capital region.

Result 11 Suppose that α is small or z is drawn from a two-point distribution. Price impact

λ is higher when capital is scarce than when it is abundant.

Result 12 Price reversal γ is higher when capital is scarce than when it is abundant.

The intuition is as follows. When the liquidity shock z is close to zero, the constraint does

not bind in both the abundant- and scarce-capital regions, and therefore price and volume are

identical in the two regions. For larger values of z, the constraint binds when capital is scarce,

impairing suppliers’ ability to accommodate an increase in z. As a result, an increase in z has a

larger effect on price and a smaller effect on volume. Since the effect on price is larger, so is the

price reversal γ. Since the effect on price per unit of volume is also larger, so is the price impact

λ. Note that λ measures an average price impact, i.e., the average slope of the relationship

between return and signed volume. This relationship exhibits an important non-linearity when

capital is scarce: the slope increases for large values of z, which is when the constraint binds.

The illiquidity discount, and hence the asset’s expected return, is higher when capital is

scarce. This is because the funding constraint binds asymmetrically: it is more likely to bind

when liquidity demanders sell (z > 0) than when they buy (z < 0). Indeed, the constraint

binds when the suppliers’ position is large in absolute value—and a large position is more likely

when suppliers buy in Period 1 because this adds to the long position θ̄ that they carry from

Period 0. Since price movements in Period 1 are exacerbated when the constraint binds, and

the constraint is more likely to bind when demanders sell, the average price in Period 1 is lower
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when capital is scarce. This yields a lower price in Period 0.

Result 13 Suppose that α is small. The asset’s expected return E(R) is lower when capital is

scarce than when it is abundant.

The literature on funding constraints in financial markets can be viewed as part of a broader

literature on the limits of arbitrage. Indeed, both literatures emphasize the idea that some

traders rely on external capital, which is costlier than internal capital, and this affects liquidity

and asset prices. External capital can take the form of collateralized debt, as in our model,

or other forms such as equity. We first survey work that derives funding constraints from

collateralized debt, and then survey more briefly the broader theoretical literature on the limits

of arbitrage. An extensive survey of the latter literature is Gromb and Vayanos (2010a).

The effects of funding constraints have been studied in macroeconomic settings, starting

with Bernanke and Gertler (1989) and Kiyotaki and Moore (1997). In these papers, adverse

shocks to economic activity depress the collateral values of productive assets, and this reduces

lending and amplifies the drop in activity. Similar amplification effects arise in financial-market

settings, as we point out below.

A number of papers link the tightness of funding constraints to the volatility of the col-

lateral. Hart and Moore (1994, 1995) show that uncertainty about assets’ liquidation values

impairs agents’ ability to borrow. Shleifer and Vishny (1992) endogenize liquidation values

and the ability to borrow in market equilibrium. Geanakoplos (1997, 2003) defines collateral

equilibrium, in which agents borrow to buy financial assets and post the assets as collateral.

The amount of collateral is determined endogenously in equilibrium, and is increasing in asset

volatility. Moreover, if volatility increases following adverse shocks, funding constraints tighten,

and this causes agents to sell assets, amplifying the shocks. The link between volatility and

ability to borrow is also present in our model. Indeed, an increase in the parameter bD, which

measures the dispersion of the asset payoff distribution, raises the margins in (25a) and (25b),

holding the price S1 constant. The funding constraint (24) in our model is derived along the

lines of Geanakoplos (2003), who also provides conditions under which full collateralization is

an equilibrium outcome.

Gromb and Vayanos (2002) link market liquidity to the capital of financial intermediaries

and their funding constraints—a link that we also derive in Results 11 and 12. Investors

are subject to liquidity shocks and can realize gains from trade across segmented markets by

trading with intermediaries. Intermediaries exploit price discrepancies, and in doing so supply

liquidity to investors: they buy low in a market where investors are eager to sell, and sell
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high in a market where investors are eager to buy, thus supplying liquidity to both sets of

investors. Intermediaries fund their position in each market using collateralized debt, and face

a funding constraint along the lines of (24). Shocks to asset prices that trigger capital losses by

intermediaries, tighten the intermediaries’ funding constraints and force them to reduce their

positions. This lowers market liquidity and amplifies the shocks.

Amplification effects do not arise in our model because liquidity suppliers increase their

position θs1 in Period 1 following an increase in the liquidity shock z. Amplification effects

require instead that suppliers decrease their position, hence becoming demanders of liquidity.

Recall that suppliers in our model are able to increase their position following an increase in

z because while their wealth decreases, there is a stronger countervailing effect caused by a

decrease in the margin. Amplification effects arise when the margin instead increases, as in

Geanakoplos (1997, 2003), or stays constant. They can arise even when the margin decreases

but there are multiple periods, as in Gromb and Vayanos (2002). Kondor (2009) shows that

amplification effects can arise even in the absence of shocks. Indeed, if a price discrepancy

between two assets were to remain constant or decrease over time, intermediaries would exploit

it and reduce it to a level from which it could increase. Gromb and Vayanos (2010b) determine

conditions under which arbitrageurs stabilize or destabilize prices in a simple static setting.

Liu and Longstaff (2004) study how funding-constrained intermediaries exploit price dis-

crepancies under an exogenous price process. They show that a funding constraint, along the

lines of (24), prevents drastically intermediaries from exploiting opportunities that appear to

be perfect arbitrages. Other papers on optimal portfolio policy under funding constraints are

Grossman and Vila (1992), Jurek and Yang (2007) and Milbradt (2011).

A number of papers study the effects of funding constraints in the presence of multiple

risky assets. Brunnermeier and Pedersen (2009) show in a static setting that funding con-

straints generate not only amplification, but also contagion, whereby shocks to one asset are

transmitted to otherwise unrelated assets through changes in intermediaries’ positions. More-

over, a tightening of funding constraints has the largest impact on the prices of more volatile

assets because these require more collateral. Pavlova and Rigobon (2008) derive contagion

in a dynamic international-economy setting with portfolio constraints, of which funding con-

straints are a special case. Gromb and Vayanos (2011a, 2011b) derive the joint dynamics of

intermediary capital, asset volatility, correlations and liquidity. They show that amplification

and contagion are stronger when intermediary capital is neither too high nor too low. Related

results are shown in Danielsson, Shin, and Zigrand (2011), who derive funding constraints from

value-at-risk requirements of banks.
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Amplification and contagion can also be derived in models without explicit funding con-

straints but where risk aversion depends on wealth. This is done in Kyle and Xiong (2001) and

Xiong (2001), who endow intermediaries with logarithmic utility, under which the coefficient

of absolute risk aversion decreases in wealth. Following adverse shocks, intermediaries reduce

their positions because they become more risk averse and not because they hit funding con-

straints. The analysis has similarities to that with funding constraints, e.g., amplification and

contagion are stronger when intermediary capital is neither too high nor too low. An important

difference is in the welfare and policy implications: funding constraints can create inefficiencies

and the scope for welfare-improving policies, while wealth effects preserve the Pareto optimality

of equilibrium.

Early work on the limits of arbitrage does not consider funding constraints explicitly, but

argues that such constraints can shorten traders’ horizons, and this can affect asset prices.

De Long, Shleifer, Summers, and Waldmann (1990) show that short horizons can cause devi-

ations from the law of one price. They assume an infinite-horizon economy, two assets with

identical payoffs, and stochastic shocks to the demand for one of the assets. They show that

when traders have short horizons there exist two equilibria: one in which the assets trade at

the same price and one in which they trade at different prices. The intuition for the latter

equilibrium is that agents do not trade aggressively against price discrepancies between the two

assets for fear that they might widen in the short run. As a consequence, demand shocks can

cause price discrepancies and render traders’ belief self-fulfilling.

Tuckman and Vila (1992, 1993) show that short horizons can arise endogenously because of

holding costs. Moreover, holding costs can render traders unwilling to exploit price discrepancies

between assets with similar payoffs for fear that they might widen in the short run. Dow and

Gorton (1994) assume short horizons and show that holding costs can generate large mispricings.

Casamatta and Pouget (2011) endogenize short horizons based on moral hazard between fund

managers and investors, and show that they cause prices to be less informative.

Shleifer and Vishny (1997) model the reliance of traders on external capital and its implica-

tions for traders’ horizons and asset pricing. They assume that traders can buy a underpriced

asset but run the risk that the mispricing might worsen in the short run. Traders can raise ex-

ternal funds to buy the asset, but the suppliers of the funds can request them back if the trade

performs poorly in the short run. This assumed performance-flow relationship can generate

amplification effects: following demand shocks that cause the mispricing to worsen in the short

run, traders are deprived of funds and must sell the asset, causing the mispricing to worsen

further.
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Shleifer and Vishny (1997) derive the funding constraint from equity finance: traders can

be interpreted as managers of an open-end fund raising equity from fund investors. Yet, the

amplification effects that they find are similar to those in the papers that derive funding con-

straints from collateralized debt. Recent work on the limits of arbitrage seeks to derive funding

constraints from optimal contracts, instead of assuming an exogenous contract form. Examples

are Acharya and Viswanathan (2011), He and Krishnamurthy (2011), Hombert and Thesmar

(2011), and Biais, Heider, and Hoerova (2012). Endogenizing the constraints would help identify

whether the common results, such as amplification, are driven by a single underlying friction,

or whether the constraints are fundamentally different. Recent work on the limits of arbitrage

also seeks to develop tractable dynamic multi-asset models that can address empirical puzzles.

The survey by Gromb and Vayanos (2010a) provides more details and references.

Funding constraints can interact with other market imperfections. Yuan (2005) and Albagli

(2011) consider the interaction with asymmetric information, and impose funding constraints

on informed agents. Yuan (2005) shows that when prices drop, informed agents become con-

strained and hence prices become less informative. The resulting increase in uncertainty ex-

acerbates the price drop, causing volatility to be asymmetric and higher on the downside.

Albagli (2011) derives multiple equilibria, through a mechanism that is reminiscent of De Long,

Shleifer, Summers, and Waldmann (1990) but does not require an infinite horizon. When future

demand shocks are expected to have a large effect on prices, funding-constrained agents do not

trade aggressively on their information. This makes prices less informative, hence reducing the

willingness of future agents to absorb demand shocks.

Diamond and Verrecchia (1987) and Bai, Chang, and Wang (2006) study the interaction

between asymmetric information and short-sale constraints, which are related to funding con-

straints. Diamond and Verrecchia (1987) show that short-sale constraints prevent investors with

negative private signals from trading. But even though only investors with positive signals are

trading, the market adjusts for this, and short sales do not cause overpricing. Bai, Chang,

and Wang (2006) show that short-sale constraints can instead cause underpricing because they

generate uncertainty about the extent of negative private information.

2.7 Search

In the perfect-market benchmark, the market is organized as a centralized exchange. Many

markets, however, have a more decentralized form of organization. For example, in over-the-

counter markets, investors negotiate prices bilaterally with dealers. Locating suitable counter-
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parties in these markets can take time and involve search.

To model decentralized markets, we assume that agents do not meet in a centralized ex-

change in Period 1, but instead must search for counterparties. When a liquidity demander

meets a supplier, they bargain bilaterally over the terms of trade, i.e., the number of shares

traded and the share price. We assume that bargaining leads to an efficient outcome, and

denote by ϕ ∈ [0, 1] the fraction of transaction surplus appropriated by suppliers. We denote

by N the measure of bilateral meetings between demanders and suppliers. This parameter

characterizes the efficiency of the search process, and is bounded by min{π, 1− π} since there

cannot be more meetings than demanders or suppliers. Assuming that all meetings are equally

likely, the probability of a demander meeting a supplier is πd ≡ N/π, and of a supplier meeting

a demander is πs ≡ N/(1− π).

We first describe the equilibrium, then examine how the search friction affects the search

illiquidity measures and the expected return, and finally survey the literature on search frictions.

Prices in Period 1 are determined through pairwise bargaining between liquidity demanders and

suppliers. Agents’ outside option is not to trade and retain their positions from Period 0, which

in equilibrium are equal to θ̄. The consumption in Period 2 of a liquidity supplier who does not

trade in Period 1 is Csn
2 = W0 + θ̄(D − S0). This generates a certainty equivalent

CEQsn = W0 + θ̄(D̄ − S0)− 1
2ασ

2θ̄2, (29)

where the first two terms are the expected consumption, and the third a cost of bearing risk that

is quadratic in position size. If the supplier buys x shares at price S1, the certainty equivalent

becomes

CEQs = W0 + θ̄(D̄ − S0) + x(D̄ − S1)− 1
2ασ

2(θ̄ + x)2 (30)

because the position becomes θ̄+ x. Likewise, the certainty equivalent of a liquidity demander

who does not trade in Period 1 is

CEQdn = W0 + θ̄(D̄ − S0)− 1
2ασ

2(θ̄ + z)2, (31)

and if the demander sells x shares at price S1, the certainty equivalent becomes

CEQd = W0 + θ̄(D̄ − S0)− x(D̄ − S1)− 1
2ασ

2(θ̄ + z − x)2. (32)

Under efficient bargaining, x maximizes the sum of certainty equivalents CEQs + CEQd. The

maximization yields x = z/2, i.e., the liquidity shock is shared equally between the two agents.
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The price S1 is such that the supplier receives a fraction ϕ of the transaction surplus, i.e.,

CEQs − CEQsn = ϕ
(
CEQs + CEQd − CEQsn − CEQdn

)
. (33)

Substituting (29)-(32) into (33), we find that the price in Period 1 is

S1 = D̄ − ασ2
[
θ̄ + 1

4z(1 + 2ϕ)
]
. (34)

Eq. (34) implies that the impact of the liquidity shock z on the price in Period 1 increases in the

liquidity suppliers’ bargaining power ϕ. When, for example, z > 0, liquidity demanders need to

sell, and greater bargaining power by suppliers results in a lower price. Comparing (34) to its

centralized-market counterpart (3) reveals an important difference: price impact in the search

market depends on the distribution of bargaining power within a meeting, characterized by the

parameter ϕ, while price impact in the centralized market depends on aggregate demand-supply

conditions, characterized by the measures (π, 1− π) of demanders and suppliers. The price in

the centralized market in Period 0 is given by the same equation (4) as in the perfect-market

benchmark, but for different constants (M,∆1).

We next examine how the search friction impacts the illiquidity measures and the expected

return. We perform two related but distinct exercises: compare the search market with the cen-

tralized market of Section 2.1, and vary the measure N of meetings between liquidity demanders

and suppliers.

When N decreases, the search process becomes less efficient and trading volume decreases.

At the same time, the price in each meeting remains the same because it depends only on the

distribution of bargaining power within the meeting. Since λ measures the price impact of

volume, it increases. One would conjecture that λ in the search market is higher than in the

centralized market because only a fraction of suppliers are involved in bilateral meetings and

provide liquidity (N ≤ 1 − π). Result 14 confirms this conjecture when bargaining power is

symmetric (ϕ = 1/2). The conjecture is also true when suppliers have more bargaining power

than demanders (ϕ > 1/2) because the liquidity shock has then larger price impact. Moreover,

the result extends to all values of ϕ when less than half of suppliers are involved in meetings

(N ≤ (1− π)/2).

Result 14 Price impact λ is

λ =
ασ2(1 + 2ϕ)

2N
, (35)
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and increases when the measure N of meetings decreases. It is higher than in the centralized

market if ϕ+ 1/2 ≥ N/(1− π).

Because the price in the search market is independent of N , so is the price reversal γ.

Moreover, γ in the search market is higher than in the centralized market if ϕ is large relative

to π.

Result 15 Price reversal γ is

γ =
α2σ4σ2

z(1 + 2ϕ)2

16
, (36)

and is independent of the measure N of meetings. It is higher than in the centralized market if

ϕ+ 1/2 ≥ 2π.

When the measure N of meetings decreases, agents are less likely to trade in Period 1, and a

natural conjecture is that the illiquidity discount increases. Result 16 confirms this conjecture

under the sufficient condition ϕ ≤ 1/2. Intuitively, if ϕ ≈ 1, a decrease in the measure of

meetings does not affect liquidity demanders because they extract no surplus from a meeting.

Since, however, liquidity suppliers become worse off, the risk-neutral probability of being a

demander decreases, and the price can increase.10

Result 16 A decrease in the measure N of meetings lowers the price in Period 0 if ϕ ≤ 1/2.

Early work modeling search frictions in asset markets and their implications for equilibrium

prices includes Burdett and O’Hara (1987), Pagano (1989b) and Keim and Madhavan (1996).

These papers focus on the market for large blocks of shares (known as the “upstairs” market

in the New York Stock Exchange).

Duffie, Garleanu and Pedersen (2002, 2005, 2008) model price formation in asset markets

building on the search framework of Diamond (1982), Mortensen (1982) and Pissarides (1985),

in which a continuum of agents negotiate prices in bilateral meetings over an infinite horizon

and continuous time. Duffie, Garleanu, and Pedersen (2002) focus on the repo market, where

traders can borrow or lend assets. In a centralized market with no frictions, lenders of positive-

supply assets would compete their rent down to zero. Indeed, equilibrium requires that some

10The illiquidity discount in the search market is higher than in the centralized market if ϕ is large relative to
π. This property is the same as for λ and γ, but the calculations are more complicated.
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agents hold the assets, and hence would be willing to lend them as long as they earn any non-

zero rent. With search frictions, however, lenders can earn a rent because they can extract

some of the borrowers’ surplus when bargaining in bilateral meetings. The rent is an additional

payoff from holding the assets and raises their price in the spot market.

Duffie, Garleanu, and Pedersen (2008) focus on the spot market and assume that the

valuation of agents for a risky asset switches over time between high and low. Agents with

high valuation who do not own the asset seek to buy it. Conversely, agents with low valuation

who own the asset seek to sell it. The equilibrium prices that emerge in the bilateral meetings

depend not only on the measures of buyers and sellers, as in a centralized market, but also

on their relative bargaining power. Our model yields an extreme version of this result: the

price in Period 1 depends only on the bargaining power parameter ϕ and not on the measures

(π, 1−π) of liquidity demanders and suppliers. An implication of this result is that an increase

in search frictions can raise or lower the asset price, with the price decreasing when there are

more buyers than sellers. Indeed, with larger frictions, the price responds less to the aggregate

demand/supply conditions, and hence decreases when these conditions are favorable to the

sellers. Finally, following a positive shock to the measure of sellers, which moves the market

away from steady state, prices drop and recover gradually with the drop being larger when

frictions increase.

Duffie, Garleanu, and Pedersen (2005) introduce market makers who intermediate trade.

Market makers differ from other agents, who we term investors, because they can be contacted

more easily. If investors are better able to contact each other, then market makers face more

competition and post lower bid-ask spreads. Moreover, if investors are heterogeneous in their

ability to contact market makers, then market makers post lower spreads for investors with

higher such ability. Weill (2007) studies the dynamics of an intermediated search market away

from steady state. He shows that following a positive shock to the measure of sellers, market

makers build up inventories, which they gradually unload to buyers. Market makers acquire

the asset despite having lower valuation for it than other agents because they are more efficient

in passing it to the buyers.

Vayanos and Wang (2007) and Weill (2008) extend the analysis to multiple assets, and

show that search frictions can generate price discrepancies between assets with identical payoffs.

Buyers choose one of two assets to search for, and then can only meet sellers of that asset. In

equilibrium, they can locate one asset more easily, and are hence willing to pay a higher price

for it. The asset that is easier to locate has a higher number of sellers either because it attracts

endogenously high-turnover agents in Vayanos and Wang (2007), or because it is in larger supply
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in Weill (2008). Note that one-asset models, such as Duffie, Garleanu, and Pedersen (2008),

yield the opposite prediction that assets in larger supply trade at lower prices.

Vayanos and Weill (2008) show that deviations from the law of one price can arise even

under simultaneous search, i.e., buyers can meet sellers of all assets. Key to this result is the

presence of short sellers, who borrow an asset in the repo market, then sell it in the spot market,

and then buy it back again to unwind the short sale. In equilibrium, short sellers endogenously

concentrate in one asset, making it more liquid. That asset trades at a higher price because its

superior liquidity is priced by the longs, i.e., the buyers who seek to establish long positions.

Moreover, the higher concentration of short-sellers in one asset makes it profitable for longs

to lend the asset in the repo market, and further raises its price as in Duffie, Garleanu, and

Pedersen (2002).

A number of papers relax the assumption that agents can hold zero or one unit of an asset.

Garleanu (2009) and Lagos and Rocheteau (2009) show that an increase in search frictions

makes agents less willing to change their positions in response to short-run shocks to their

valuation for the asset. This is because they are aware that it will take them time to change

their positions back should an offsetting shock hit. Since agents become less responsive to

shocks in either direction, search frictions have an ambiguous effect on the price, consistent

with Duffie, Garleanu, and Pedersen (2008). Lagos, Rocheteau, and Weill (2011) study the

effects of shocks that move the market away from steady state, and show that the speed of

recovery is non-monotonic in search frictions. Afonso and Lagos (2011) study price formation

in the interbank market, and determine how the Federal Funds Rate depends on the search

frictions and on Federal Reserve policy actions.

Search models emphasize the idea that matching buyers and sellers takes time. In their

work on participation costs, Grossman and Miller (1988) model a related idea: a liquidity

shock experienced by some agents is absorbed first by a small set of market participants and

then by a larger set of agents who gradually arrive in the market. The market participants

who first absorb the shock act as intermediaries, building up inventories and then unwinding

them. Search models provide a natural setting to study the process through which assets are

reallocated across agents via the temporal variation in intermediaries’ inventories. This is done,

for example, in Weill (2007), where intermediaries are modeled as a special class of agents who

can be contacted more easily than others. It is also done in Afonso and Lagos (2011), where

agents engage endogenously in intermediation when they meet others with large liquidity shocks:

they absorb more than their final share of a shock knowing that they can unload it to others

in future bilateral meetings. Duffie and Strulovici (2011) model the process through which new
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agents slowly become informed about liquidity shocks in one market and bring their capital

into that market. Mitchell, Pedersen, and Pulvino (2007) and Duffie (2010) emphasize the idea

that capital moves slowly across markets in response to profitable investment opportunities.

All papers mentioned so far assume that agents have symmetric information about the asset

payoff. If some agents receive private signals, then these can be revealed gradually through the

bilateral meetings, as agents learn the information of those they meet and of those that their

meeting partners have met in the past. Papers studying the transmission of private information

in decentralized markets include Wolinksy (1990), Blouin and Serrano (2001), Duffie and Manso

(2007), Duffie, Malamud, and Manso (2009), Golosov, Lorenzoni, and Tsyvinski (2011) and Zhu

(2011).

Finally, some papers study portfolio choice under the assumption that agents can trade

only after a lag, which could reflect unmodeled search frictions or market breakdowns. For

example, Longstaff (2001) restricts trading strategies to be of bounded variation, while Ang,

Papanikolaou, andWesterfield (2011) assume that investors can trade only at exogenous random

times. Both papers take prices as given and compute the utility loss from infrequent trading.

This exercise is in the spirit of the one performed in Constantinides (1986) in the case of

transaction costs, but the utility loss is larger in the case of infrequent trading. Longstaff

(2009) shows in an equilibrium model that infrequent trading has large effects on asset prices.

3 Empirical Evidence

In this section we survey the empirical literature on market liquidity. In Section 3.1 we present

various measures of illiquidity, and discuss their inter-relationships from a theoretical viewpoint.

We also use the theory to examine how well these measures reflect the underlying market

imperfections. In Section 3.2 we survey the empirical evidence on how illiquidity measures

vary across assets and over time, how they relate to asset characteristics such as supply and

volatility, and how they relate to each other. In Section 3.3 we examine the link between

illiquidity measures and expected asset returns.

3.1 Empirical Measures of Illiquidity

Empirical papers employ a wide variety of illiquidity measures. Some measures, such as lambda

and price reversal, are motivated by theory, while others, such as bid-ask spread, market depth,

turnover and trade size, are more intuitive or heuristic. Within our unified model, we compute

48



lambda and price reversal, and study their relationship with a variety of market imperfections.

Price impact λ is defined as the regression coefficient of returns on signed volume, and is based

on the idea that trades in illiquid markets should have large price impact. Price reversal γ

is defined as minus the autocovariance of returns, and is based on the idea that trades in

illiquid markets should generate transitory deviations between price and fundamental value.

The measures λ and γ capture two fundamental and distinct aspects of illiquidity, so we start

by surveying the empirical work on them. We then review a number of additional measures.

An early paper that emphasizes the link between systematic price reversals and market

imperfections is Niederhoffer and Osborne (1966). Using stock ticker data, they find that

prices in consecutive transactions revert on average, and argue that these reversals are linked

to the mechanics of the market making process. Roll (1984) shows that the bouncing of prices

between the bid and the ask causes systematic reversals, and derives analytically an increasing

relationship between γ and the bid-ask spread. Based on this relationship, he argues that γ can

be used to estimate the bid-ask spread when data on the latter are not available. He computes

this estimator using daily and weekly returns. One difficulty with the estimation is that γ

can occasionally be negative because of, e.g., sampling noise, while a positive bid-ask spread

implies a positive γ. Harris (1990) derives statistical properties of the estimator in Roll (1984),

and shows that its small-sample bias can be large. Hasbrouck (2009) derives a Bayesian Gibbs

estimator, which is in the spirit of Roll (1984) but has better statistical properties. Bao, Pan,

and Wang (2011) estimate γ for corporate bonds.

Campbell, Grossman, and Wang (1993) show that the autocovariance of daily stock returns

is more negative when trading volume is large. They explain this finding theoretically in a model

similar to Grossman and Miller (1988), in which risk-averse market makers absorb liquidity

shocks. Price movements without volume are caused by fundamentals, while movements with

volume are caused by buying or selling pressure. Since the latter movements are transitory,

price reversals are larger conditional on volume.

The analysis in Campbell, Grossman, and Wang (1993) suggests that illiquidity should

be measured by γ conditional on trading volume. This measure is more precise than the

unconditional γ because it focuses more sharply on the effects of price pressure. Llorente,

Michaely, Saar, and Wang (2002) show that conditional γ correlates negatively with measures of

asymmetric information, consistent with the theoretical model of Wang (1994). As in Campbell,

Grossman, and Wang (1993), conditional γ is derived as minus the coefficient of a regression of

a stock’s daily return on the product of volume times return on the previous day, controlling for

previous-day return. Pastor and Stambaugh (2003) define a similar measure, but use returns in
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excess of a market index instead of raw returns, and volume signed by return instead of volume

times return. They aggregate their measure across stocks to construct a proxy for aggregate

illiquidity, which they show is a priced risk factor.

Refined measures of γ can be derived using data not only on trading volume but also on

market maker inventories. Indeed, since market makers absorb liquidity shocks, changes to

their inventories away from the long-run average should signal transitory price movements and

hence predict future returns. Even more importantly, data on inventories can help determine

the horizon of liquidity effects and hence better estimate those effects. Indeed, computing γ

with daily returns assumes implicitly that the horizon is one day. The horizon, however, could

be longer if, for example, a liquidity shock is generated by a trader breaking a large trade into

many smaller ones over several days (a phenomenon shown theoretically in models of imperfect

competition, surveyed in Section 2.5, and empirically in, e.g., Chan and Lakonishok (1993)).

Data on inventories could help identify such effects. Ho and Macris (1980) and Madhavan and

Smidt (1993) show that changes in the inventories of market makers in the stock market correlate

positively with contemporaneous movements in stocks’ transaction prices. Hendershott and

Menkveld (2011) use inventories to predict future stock returns.

Kyle (1985) defines price impact λ and links it to the degree of asymmetric information.

While price impact in Kyle (1985) is permanent because market makers are risk neutral and

competitive, in general it consists of a transitory and a permanent component. The transitory

component measures profits earned by market makers. These can be a compensation for risk,

information asymmetry, transaction costs or participation costs, or rents from monopoly power.

Glosten and Harris (1988) attempt to separate the permanent and transitory component using

stock transaction data. They observe only trade size, and identify whether a trade is buyer- or

seller-initiated through the Lee and Ready (1991) algorithm, i.e., trades taking place above the

midpoint of the bid-ask spread are classified as buyer-initiated while those taking place below

are seller-initiated. Because they observe only transactions and not the bid-ask spread, they use

maximum likelihood to infer buyer- and seller-initiated trades and to estimate the parameters of

their model. They further allow each of the transitory and permanent components to be affine

in transaction size. The linear part of the sum of the two affine functions is λ, and the fixed

(constant) part is related to the bid-ask spread. Sadka (2006) estimates a similar model using a

larger cross-section of stocks and data that include not only transactions but also quotes. This

allows for a more precise estimation of the model parameters, e.g., the variable and fixed parts

of the permanent and transitory components.

Measures related to λ can be constructed by comparing volume and absolute returns.

50



An early such measure is Aminvest (e.g., Dubofsky and Groth (1984)) which divides volume

aggregated over twenty trading days by the sum of absolute values of returns during those days.

More recently, Amihud (2002) divides absolute daily return by daily volume and averages over

a number of days. Since high price impact means high absolute return per unit of volume, it is

associated with a low value of the Aminvest measure and a high value of the Amihud measure.

An advantage of the two measures over the estimates of λ in Glosten and Harris (1988) and

Sadka (2006) is that they can be constructed using only daily data on volume and returns,

rather than intraday data on returns, transactions, and quotes.

Because λ is the coefficient of a linear regression, it measures the average slope of the

price impact function, which can be non-linear. Loeb (1983) and Keim and Madhavan (1996)

find that the function is concave, i.e., price impact per unit trade is smaller for large orders.

Earlier studies of the price effect of large orders include Kraus and Stoll (1972) and Holthausen,

Leftwich, and Mayers (1990).

How do γ-based measures compare to λ-based ones? Each of γ and λ captures a fundamen-

tal and distinct aspect of illiquidity, so the two measures are not substitutes but can be taken

together to give a more complete picture. At the same time, each measure has some advantages

over the other, from the viewpoint of empirical estimation or theory.

Estimating γ is simpler than λ for several reasons. First, γ requires only data on returns,

while λ requires additional data on transactions and quotes. Second, λ can fail to reflect a

causal effect of volume of prices. For example, if prices or other public news cause volume,

then λ can be positive even if volume has no causal effect on prices.11 Third, even if causality

goes only from volume to prices, λ requires identifying the signed trades of liquidity demanders.

Such identification is typically done using the Lee and Ready (1991) algorithm (e.g., Glosten

and Harris (1988) and Sadka (2006)), but the algorithm can misclassify trades. For example,

Asquith, Oman, and Safaya (2010) find that short sales are often classified mistakenly as buyer-

initiated because of a requirement that they are executed at an uptick or above the existing

bid. This can underestimate the short-sales’ price impact.

Identifying the signed trades of liquidity demanders becomes easier when data on the iden-

tity of traders are available. Such data often exist for designated market makers, present in

many markets. Under the assumption that market makers mostly supply rather than demand

liquidity, signed trades of liquidity suppliers can be identified. Examples of papers that estimate

11The causality problem does not arise in our unified model. Indeed, volume is generated by shocks observable
only to liquidity demanders, such as the liquidity shock z and the signal s. Since these shocks can affect prices
only through the liquidity demanders’ trades, λ measures correctly the price impact of these trades.
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price impact using data on market maker trades or inventories are Hendershott and Menkveld

(2011) for stocks and Edwards, Harris, and Piwowar (2007) for corporate bonds. As is the case

of γ, data on inventories can help determine the horizon of liquidity effects and hence better

estimate those effects.

The difficulties in estimating λ should be set against an important theoretical advantage

of that measure. This is that λ captures not only the transitory component of price impact, as

does γ, but also the permanent component, driven by the information that trades convey. The

latter component is an important aspect of illiquidity and should not be ignored. The model of

Kyle (1985) provides a simple illustration of this point. Since market makers are assumed risk

neutral and competitive, γ is equal to zero. Yet, this does not mean that liquidity is perfect:

a trader entering into the market would suffer from price impact. The imperfect liquidity is

reflected correctly in λ, which is positive.

Our unified model delivers a similar message concerning the theoretical advantage of λ.

While participation costs, transaction costs, and funding constraints increase both λ and γ

(Results 1, 2, 3, 11 and 12), we show that λ reflects better than γ the remaining imperfections.

Indeed, both asymmetric information and imperfect competition increase λ (Results 5 and 8)

but can decrease γ (Results 6 and 9). And while search frictions can decrease both λ and γ,

the conditions for λ to decrease are more stringent than for γ (Results 14 and 15).

An additional measure of illiquidity is the probability of informed trading (PIN), introduced

by Easley, Kiefer, and O’Hara (1997). As with λ and γ, PIN is motivated by theory: it is

derived from a structural estimation of the Easley and O’Hara (1992) model of sequential

order arrival. PIN is high when there is a large imbalance between buyer- and seller-initiated

trades, as classified by the Lee and Ready (1991) algorithm. This follows from two assumptions

on liquidity traders: they are equally likely to trade in either direction, and their trades are

independent over time. These assumptions imply that long sequences of buying or selling

are more likely to come from informed traders. The assumption that liquidity trades are

independent over time is strong: for example, a liquidity trader can break a large trade into a

long sequence of small trades in the same direction. Hence, it is important to investigate the

performance of PIN outside the Easley and O’Hara (1992) model and for a variety of market

imperfections—a task that we undertake for λ and γ in this survey. Some results in this direction

are in Buss and Dumas (2011), who show that PIN is positive in a symmetric-information model

with transaction costs.

An intuitive and widely used measure of illiquidity is the bid-ask spread. Several versions

of this measure exist. One is the quoted spread, defined as the difference between the quoted
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ask and bid prices. A drawback of quoted spread is that many trades are executed inside

the spread, i.e., at more favorable prices. A measure remedying this drawback is the effective

spread, defined as the difference between transaction price and mid-point of the quoted spread.

This difference is taken in absolute value, and is multiplied by two so that it is expressed

in the same terms as the quoted spread. A third measure is the realized spread, defined as

the reversal between consecutive (or near-consecutive) transactions: the price of the current

transaction minus of the future transaction if the current transaction is above the mid-point,

and the opposite if the current transaction is below. This difference is multiplied by two, as

with the effective spread. The realized spread measures profits earned by liquidity suppliers.

These can be a compensation for risk, transaction costs or participation costs, or rents from

monopoly power. If instead liquidity suppliers are risk neutral, competitive, and incur no costs,

then the realized spread is zero. The effective spread can still be non-zero, however, because of

asymmetric information, as in Glosten and Milgrom (1985). A detailed discussion of quoted,

effective, and realized spread is in Huang and Stoll (1996), who compare the liquidity of the New

York Stock Exchange (NYSE) and the NASDAQ based on these measures. Biais, Glosten, and

Spatt (2005) develop a unified model showing how the bid-ask spread is affected by asymmetric

information, market maker risk aversion, order-processing costs, and imperfect competition.

The bid-ask spread in their model is closely related to λ. An earlier paper linking the bid-ask

spread to many of the same variables is Stoll (1978b).

While the bid-ask spread is an intuitive measure of illiquidity, it has some limitations. First,

its estimation requires detailed data on transactions and quotes. Second, because the spread

is valid only for transactions up to a certain size, it provides no information on the prices at

which larger transactions might take place. By the same token, it provides no information

on how the market might respond to a long sequence of transactions in the same direction.

Such a sequence could be generated, for example, by a trader breaking a large trade into many

smaller ones, and could span several days. The market’s response to large buying or selling

pressure is an important aspect of illiquidity. The measures λ and γ capture that aspect better

than the bid-ask spread, especially if returns are computed over a horizon matching that of the

liquidity effects. The bid-ask spread is related to these measures but imperfectly as we show

in Section 3.2. This could be because the relative effects of the various market imperfections

on the measures can differ. For example, in line with the theoretical analysis of Section 2,

the bid-ask spread could be more affected by order-processing costs, while λ and γ could be

influenced more heavily by the risk aversion of liquidity suppliers.

A measure of illiquidity which is related to the bid-ask spread is market depth, defined as

the quantity of limit orders at the bid and the ask. Higher market depth is a sign of higher
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liquidity since the bid and ask prices are valid for larger transaction sizes. The limitations of

market depth are similar to those of the bid-ask spread: it is data intensive, and it gives only

a partial picture of the market’s response to large buying or selling pressure.

In addition to the measures of illiquidity described so far, empirical papers have also used

a number of more heuristic measures. Some of these measures relate to trading activity. For

example, Bhushan (1994) measures illiquidity by the inverse of trading volume. Lesmond,

Ogden, and Trzcinka (1999) propose the LOT measure, which is based on the number of non-

trading days. Mahanti, Nashikkar, Subrahmanyam, Chacko, and Mallik (2008) propose “latent

liquidity,” defined as the turnover of investors holding an asset weighted by their asset holdings.

The idea behind this measure is that if investors with large holdings trade frequently, then

they can absorb large shocks on short notice. Other measures relating to trading activity

include turnover, trade size, trade frequency, and number of non-trading days. Fleming (2003)

uses trading volume and trade size, alongside bid-ask spread and price impact, to measure the

illiquidity of Treasury bonds. Chen, Lesmond, and Wei (2007) use LOT, number of non-trading

days, and bid-ask spread to measure the illiquidity of corporate bonds.

Measuring illiquidity by the inverse of trading activity can be motivated by theory. Indeed,

many of the models surveyed in Section 2 yield the intuitive result that market imperfections

reduce trading volume.12 Moreover, models with transaction costs, surveyed in Section 2.3,

show that the costs give rise to a no-trading region and hence reduce trading frequency. But

while a negative effect of market imperfections on trading activity is intuitive, using the inverse

of trading activity to measure illiquidity has some drawbacks. First, trading activity does not

provide a direct estimate of the costs of trading. A direct estimate requires translating trading

activity into a measure of costs, as is done in the case of LOT. Second, trading activity can be

influenced by variables other than the market imperfections, such as the supply of an asset, the

number of investors holding it, and the size of their trading needs. These variables can imply

the opposite relationship between illiquidity, as measured by λ and γ, and trading activity. For

example, the parameter σ2
z , which characterizes the trading needs of investors in our unified

model, increases both trading volume and γ. Hence, it implies a positive relationship between

illiquidity, as measured by γ, and trading activity. We return to this issue in Section 3.2, where

we discuss the relationship between measures of illiquidity and asset characteristics.

Other heuristic measures of illiquidity include asset characteristics such as the supply of

12The result does not arise in all the models. In Kyle (1985), for example, asymmetric information increases
volume because it triggers trades by the insider but has no effect on the activity of noise traders, which is
exogenous. Endogenizing noise trading, however, can restore the negative effect of asymmetric information on
volume. An extreme version of this result is the possibility of market breakdown shown in Section 2.5.
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an asset, the volatility of its payoffs, and its time from issuance. For example, Karpoff and

Walkling (1988) measure the illiquidity of stocks under the assumption that it is positively

related to price volatility and negatively related to the price level, market capitalization, and

number of shares. Bao, Pan, and Wang (2011) use issuance size, time from issuance, time

to maturity, rating, and γ to gauge the illiquidity of corporate bonds. These measures are

imperfect proxies of illiquidity, and do not provide direct estimates of the costs of trading.

Their use, however, can be motivated by theory in some cases. For example, as we point out

in Section 3.2, volatility typically increases both λ and γ.

An aspect of liquidity that most of the measures presented so far do not capture is mar-

ket resiliency, the speed at which liquidity recovers from shocks. Consider, for example, the

dynamics of liquidity in a limit-order market. When a market order hits the existing limit

orders, it causes the price to change. Moreover, as existing limit orders are consumed, new

orders arrive gradually and liquidity recovers. Most measures of illiquidity do not capture this

gradual recovery; price reversal γ does but only to a limited extent because it measures the

reversal of price rather than of liquidity. Obizhaeva and Wang (2006) show that the intraday

dynamics of liquidity in limit-order markets have an important effect on the optimal execution

of large orders. Biais, Hillion, and Spatt (1995) study these dynamics empirically and show

that market resiliency is finite. Other empirical studies of intraday resiliency include Coppe-

jans, Domowitz, and Madhavan (2004), Degryse, De Jong, Van Ravenswaaij, and Wuyts (2005)

and Dong, Kempf, and Yadav (2007). The survey by Parlour and Seppi (2008) contains more

references to empirical work on limit-order markets.

The measures of illiquidity presented so far concern an individual asset. Illiquidity, however,

can vary over time in a correlated manner across assets and markets, as we show in Section 3.2.

Hence, it is useful to also measure it at a more aggregate level. A number of papers, surveyed

in Section 3.3, measure the aggregate illiquidity of an asset class by averaging the measures

presented so far over individual assets within the class. Yet, it is possible to construct more

direct measures. For example, Longstaff (2004) uses the yield spread between RefCorp and US

Treasury bonds to measure the “flight to liquidity” premium. Since both types of bonds are

guaranteed by the US Federal government, the spread should arise mainly from their relative

liquidity.

Fontaine and Garcia (2011) and Hu, Pan, and Wang (2011) measure the illiquidity of the

US Treasury market by the deviations of observed Treasury yields from a fitted term structure.

The logic behind their measures derives from funding constraints and limited arbitrage, which

we study theoretically in Section 2.6. When arbitrageurs are well capitalized, they can supply
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ample liquidity, and so can eliminate deviations between Treasury yields and their fundamental

values which are assumed to lie on the fitted term structure. When instead capital is scarce,

liquidity is imperfect and substantial deviations can appear.

Fontaine and Garcia (2011) assume that the residuals from the fit depend on a latent

liquidity factor, which they estimate under parametric assumptions on how the residuals depend

on that factor and on a bond’s maturity and time from issuance. They show that consistent

with the funding-constraint interpretation, the illiquidity of the Treasury market is negatively

related to the asset size of the shadow banking sector. Hu, Pan, and Wang (2011) use the

sum of squared residuals as a measure of illiquidity, and not just for the Treasury market but

also for the overall financial market. They show that their measure rises sharply during crises

even outside the Treasury market. Thus, the illiquidity of Treasuries seems to reflect broader

market-wide conditions. Consistent with this evidence, Hu, Pan, and Wang (2011) find that

their measure is a priced risk factor for a broad set of assets.

3.2 Properties of Illiquidity Measures

In this section we survey empirical evidence on the cross-section and time-series variation of

illiquidity measures. To set the stage for what follows, we report in Table 1 means, medians,

and standard deviations for some of the measures presented in Section 3.1. These are taken

from Goyenko, Holden, and Trzcinka (2009), and concern 400 randomly selected US stocks over

1993-2005. Each measure is computed for each stock and month, and the summary statistics

concern stock-month observations.

The effective and realized spread are expressed as (approximate) percentages of the mid-

point because prices are in logs. The median effective spread is 1.6%, implying an average

difference between transaction price and mid-point of 0.8%. The mean effective spread is 2.9%,

significantly higher than the median because of a large tail of stocks with low liquidity. The

median realized spread is about one third of the median effective spread, meaning that one

third of the effective spread reflects a transitory component associated to price reversal. Note

that the reversal is measured over a very short horizon of five minutes, and can fail to capture

reversal over longer horizons.

The price impact λ is computed as in Hasbrouck (2009): it is the coefficient of a regression

of the return over a five-minute interval on the signed squared-root dollar volume during that

interval. Signed squared-root dollar volume is the sum over transactions of the squared root

of the dollar transaction size times an indicator which is one if the transaction is below the
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Table 1: Illiquidity measures for US stocks.

Effective spread is the difference between transaction price and mid-point of the quoted spread, in
absolute value and multiplied by two. Realized spread is the price of a current transaction minus that
of a transaction five minutes later if the current transaction is above the mid-point, and the opposite if
the current transaction is below. This difference is multiplied by two. Price impact λ is the coefficient
of a regression of the return over a five-minute interval on the signed squared-root dollar volume during
that interval. Signed squared-root dollar volume is the sum over transactions of the squared root of
the dollar transaction size times an indicator which is one if the transaction is below the mid-point
and minus one if it is above. Realized price impact is the current mid-point minus the mid-point five
minutes later if the current transaction is above the current mid-point, and the opposite if the current
transaction is below. The Amihud measure is an average of daily ratios of absolute return over volume.
The Pastor-Stambaugh measure is minus the coefficient of a regression of a stock’s daily return in
excess of the market index on the previous day’s signed volume, controlling for the previous day’s
return. Volume on a given day is signed using the excess return on that day. Prices are in logs. The
sample consists of 400 randomly selected stocks traded in NYSE/NASDAQ/AMEX over 1993-2005. All
averages and regression coefficients are computed for each stock and month, and the summary statistics
concern stock-month observations. The data in the table are taken from Goyenko, Holden, and Trzcinka
(2009), but we define Pastor-Stambaugh with the opposite sign.

Measure Mean Median Standard deviation

Effective Spread 0.029 0.016 0.040
Realized Spread 0.015 0.005 0.032
Price impact λ 130.425× 10−6 15.793× 10−6 2446.202× 10−6

Realized price impact 0.016 0.010 0.038
Amihud 6.314× 10−6 0.104× 10−6 91.957× 10−6

Pastor-Stambaugh 0.179 0.000 10.129

mid-point and minus one if it is above. The median price impact is 15.793. To map this into an

actual price change, suppose that there is only one transaction during the five-minute interval

and it is for $10000. The price change then is 15.793×
√
10000× 10−6 = 0.0016, i.e., 16 basis

points. The “realized price impact” measures the typical impact of volume over the five-minute

interval, and is defined in terms of the movement of the mid-point. Its median is 1%, i.e., 100

basis points. The median of the Amihud measure is 0.104× 10−6, meaning that if daily volume

is $10000, then the price change is 0.104 × 10000 × 10−6 = 0.001, i.e., 10 basis points. This is

comparable to the value derived using λ.

Table 1 shows that all measures of illiquidity have high standard deviation compared to

their mean and median. Some of this variation reflects a secular downward trend, i.e., increase in

liquidity over time. For example, Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes

(2010) report that the value-weighted effective spread in the NYSE in 2005 was about one tenth

of its 1994 value. Yet, time-series variation around the trend as well as cross-sectional variation

are also important, and we examine them next.

An important source of cross-sectional variation in illiquidity is the size of a stock, as
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measured, for example, by market capitalization or number of shares. Large stocks are typically

more liquid that small stocks. For example, Loeb (1983) and Stoll and Whaley (1983) find that

market capitalization correlates negatively with the bid-ask spread. Demsetz (1968), Benston

and Hagerman (1974) and Hamilton (1976) find a negative correlation between the number of

shares and the bid-ask spread. Roll (1984) finds that market capitalization correlates negatively

with the γ-based estimator of the bid-ask spread, and Sadka (2006) finds that it also correlates

negatively with the price impact λ. The effect of size is economically significant: for example,

Hendershott and Moulton (2007) find that the effective spread for the lowest and second-lowest

market-capitalization quintile of US stocks is about six and three times, respectively, that for

the highest quintile.

Many theoretical models imply a negative relationship between illiquidity and size, provided

that the former is measured by λ and the latter by the aggregate trading needs of investors

holding an asset. For example, in models with participation costs, surveyed in Section 2.2,

higher trading needs by liquidity demanders induce more participation by liquidity suppliers,

and this reduces λ. In models with asymmetric information, surveyed in Section 2.4, higher

trading needs reduce the informational content per unit trade, also reducing λ. These effects

also hold in our unified model, in which the parameter σ2
z measures the trading needs of liquidity

demanders. The effects of σ2
z on γ, however, are generally in the opposite direction than for

λ: an increase in σ2
z increases γ except under participation costs, where there is no effect.

Intuitively, higher trading needs cause larger price effects, and while the effect per unit trade

(corresponding to λ) can be smaller, the total effect (corresponding to γ) is generally larger.

A negative relationship between λ and trading needs translates to a negative one between

λ and market capitalization or number of shares if the latter two variables are positively related

to trading needs. Such a positive relationship arises naturally in most of the search models

surveyed in Section 2.7, which assume that the probability that an asset holder needs to sell is

independent of the total number of asset holders.

In addition to size, an important source of cross-sectional variation in illiquidity is the

volatility of asset payoffs. For example, Stoll (1978a) finds that more volatile stocks have higher

bid-ask spreads. Stoll (1978a) also finds that more than 80% of the cross-sectional variation

in stocks’ bid-ask spreads can be explained by volatility combined with measures of trading

activity, number of market makers, and price level. Chen, Lesmond, and Wei (2007) find that

illiquidity as measured by bid-ask spread, LOT, and number of non-trading days is higher for

corporate bonds with lower rating or higher maturity, characteristics which are associated with

higher price volatility. Edwards, Harris, and Piwowar (2007) and Bao, Pan, and Wang (2011)
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find similar results measuring illiquidity by a price-impact based estimate and γ, respectively.

A positive relationship between illiquidity and volatility is implied by many theoretical

models, as well as by our unified model. Intuitively, liquidity suppliers trading high-volatility

assets are exposed to more risk and possibly to more asymmetric information. Therefore, they

require a larger price movement to absorb liquidity shocks, which means that these shocks have

larger price impact and cause larger transitory deviations between price and fundamental value.

Significant variation in illiquidity arises not only within asset classes, e.g., stocks or cor-

porate bonds, but also across classes. Spiegel (2008) summarizes related evidence, drawing on

Goyenko, Subrahmanyam, and Ukhov (2011) for Treasury bonds, Chen, Lesmond, and Wei

(2007) for corporate bonds, and Hendershott and Moulton (2007) for stocks. Bid-ask spreads

for Treasury bonds are generally smaller than for stocks, which are generally smaller than for

corporate bonds. As Spiegel (2008) points out, the theory can readily explain some but not

all of these comparisons. In particular, the lower bid-ask spreads of Treasury bonds relative

to stocks and corporate bonds can be due to their less volatile payoffs. At the same time,

the higher bid-ask spreads for corporate bonds relative to stocks are puzzling, given that the

former have less volatile payoffs. Possible explanations are that the corporate-bond market

is less transparent (e.g., Edwards, Harris, and Piwowar (2007)) and there is less competition

between market makers. A negative effect of market-maker competition on bid-ask spreads has

first been shown in Tinic and West (1972).

Papers studying the time-series variation of illiquidity document that there is some com-

monality across assets, i.e., the illiquidity of different assets moves up and down together.

Chordia, Roll, and Subrahmanyam (2000) show that the effective bid-ask spread of the av-

erage NYSE stock increases by 0.778% for each 1% increase in the average effective bid-ask

spread of the other stocks. At the same time, the R-squared of this regression is only 1.4%,

meaning that the importance of the common factor relative to idiosyncratic ones in driving

time-series variation is small. The explanatory power of the common factor increases for stocks

with large market capitalization. Hasbrouck and Seppi (2001) also find a common factor with

small explanatory power for the stocks in the Dow Jones index, using both effective spread and

λ. Huberman and Halka (2001) provide additional evidence for commonality, and show that it

persists even after controlling for market-wide returns and volatility.

The commonality in illiquidity can be linked to a number of aggregate variables. Huber-

man and Halka (2001) show that illiquidity increases following negative market returns and

increased market volatility. Chordia, Roll, and Subrahmanyam (2001), Chordia, Sarkar, and
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Subrahmanyam (2005) and Hameed, Kang, and Viswanathan (2010) also find strong increases

in illiquidity following market drops. This evidence is consistent with the increase in illiquidity

during market crises, such as the stock market crash of 1987, the debt market crisis of 1998,

and the financial crisis of 2007-9. Using γ as a measure of illiquidity, Bao, Pan, and Wang

(2011) find that the illiquidity of corporate bonds is not influenced by volatility in the bond

market, but increases following negative returns and increased volatility in the stock market.

This suggests that factors influencing illiquidity in the stock market matter also for bonds, and

possibly vice-versa, a result also found in Chordia, Sarkar, and Subrahmanyam (2005).

While commonality in illiquidity can be linked to some aggregate variables, the variation

cannot be fully explained by these variables, as Huberman and Halka (2001) show. Comerton-

Forde, Hendershott, Jones, Moulton, and Seasholes (2010) provide evidence helping to account

for the unexplained variation. They show that bid-ask spreads in the NYSE increase following

periods when market makers have realized losses, even after controlling for market returns and

volatility. Thus, the funding constraints on market makers could account for a significant frac-

tion of the commonality in illiquidity and its sharp increase following crises. This is consistent

with the theoretical models of funding constraints, surveyed in Section 2.6 and in Gromb and

Vayanos (2010b).13

The common variation of illiquidity explored in the previous papers concerns how a given

measure computed for different assets comoves over time. We next examine the extent to

which different measures of illiquidity comove, both across assets and over time. Table 2

reports correlations between the measures included in Table 1. These are taken from Goyenko,

Holden, and Trzcinka (2009) and concern 400 randomly selected US stocks over 1993-2005.

Each measure is computed for each stock and month. Cross-sectional correlations are computed

for each month and are averaged across months. Time-series correlations concern an equally

weighted portfolio of the stocks.

In terms of the taxonomy of the previous section, the measures in Table 2 can be divided

into three groups: (a) λ-based, consisting of Amihud, price impact λ, and realized price impact,

(b) γ-based, consisting of Pastor-Stambaugh, and (c) spread-based, consisting of effective and

realized spread. An additional taxonomy concerns the horizon at which these measures are

computed: (i) measures computed using high-frequency intraday data, consisting of effective

spread, realized spread, price impact λ, and realized price impact, which correspond to the rows

of Table 2, and (ii) measures computed using low-frequency daily data, consisting of Amihud

13Funding constraints are not the only imperfection that can generate time-varying aggregate illiquidity. For
example, Eisfeldt (2004) shows that aggregate illiquidity can decrease during downturns because asymmetric
information becomes more severe.
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Table 2: Correlation across illiquidity measures for US stocks.

The definition of the measures is in Table 1. The sample consists of 400 randomly selected stocks traded
in NYSE/NASDAQ/AMEX over 1993-2005. All measures are computed for each stock and month.
Cross-sectional correlations are computed for each month and are averaged across months. Time-series
correlations concern an equally weighted portfolio of the stocks. The data in the table are taken from
Goyenko, Holden, and Trzcinka (2009), but we define Pastor-Stambaugh with the opposite sign.

Amihud Pastor-Stambaugh

Cross Section Time Series Cross Section Time Series

Effective Spread 0.571 0.608 0.118 0.366
Realized Spread 0.305 0.511 0.031 0.351
Price impact λ 0.317 0.400 0.064 0.192
Realized price impact 0.516 0.511 −0.035 0.230

and Pastor-Stambaugh, which correspond to the columns.

All measures of illiquidity in Table 2 covary positively. Yet, the correlations are relatively

low: they range from 30-60% for Amihud and 0-40% for Pastor-Stambaugh. Moreover, the

correlations appear to be driven mainly by the second taxonomy because they are roughly the

same regardless of whether the high-frequency measures are λ- or spread-based. One interpre-

tation of these results is that the low-frequency measures are imperfect proxies of illiquidity,

which is measured more precisely by the high-frequency measures. Under that interpretation,

low-frequency measures should be used only when high-frequency data are not available, which

is often the case for the long samples needed for asset-pricing analysis (Section 3.3). Moreover,

Amihud seems to capture illiquidity better than Pastor-Stambaugh, given its higher correlation

with the high-frequency measures.

An alternative interpretation of the results in Table 2 is that different frequencies capture

different phenomena. For example, and as pointed out in Section 3.1, the bid-ask spread and

the price impact evaluated over a horizon of five minutes might fail to capture how the market

would respond to a long sequence of transactions in the same direction. Thus, high-frequency

measures might not be capturing the most relevant aspect of illiquidity. Moreover, the lower

correlations for Pastor-Stambaugh relative to Amihud are not necessarily evidence that the

former measure is less suitable than the latter in capturing illiquidity. Instead, it could be

capturing different aspects. Differences in behavior across λ- and γ-based measures are, indeed,

to be expected given the differences in the theoretical properties of λ and γ, discussed in Sections

3.1 and 3.2.

Sadka (2006) computes correlations involving measures based on trading activity. He finds
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that trading activity is inversely correlated with price impact λ, consistent with the use of

its inverse as a proxy for illiquidity. The correlations are low, however. For example, the

correlation between trading volume and λ is -0.18, and that between turnover and λ is -0.11.

The correlations become -0.06 and -0.05 when λ is replaced by Amihud. The low correlations

are consistent with the theoretical discussion in Section 3.1. Yet, while the theory can provide

suggestions as to why correlations between various measures of illiquidity can be low, more

work is needed to explain the exact properties of these correlations.

3.3 Illiquidity and Asset Returns

Many of the papers linking illiquidity to asset prices and expected returns focus on the level

of illiquidity rather than its time variation. Amihud and Mendelson (1986) sort stocks into

portfolios according to quoted bid-ask spreads and market betas, and regress portfolio returns

on these characteristics. They find that returns are increasing and concave in transaction costs,

a result which they also derive theoretically. The effects are significant, as can be seen by

comparing returns across the seven portfolios they consider when sorting along the bid-ask

spread dimension. The average annual return of the stocks in the middle spread portfolio

exceeds that in the lowest spread portfolio by 2.88%. The average bid-ask spread difference

between the stocks in the two portfolios is 0.66%, implying an expected return premium of 4.36

per unit of spread. The corresponding quantities in the comparison between the highest and

the middle spread portfolios are 5.22% for the return, 2.06% for the bid-ask spread, and 2.53

for the expected return premium per unit of spread. The return-per-spread ratio is higher for

the less liquid stocks, consistent with a concave return-spread relationship.

Amihud and Mendelson (1986) show additionally that illiquidity can help explain the small-

firm effect, namely that small stocks earn higher expected returns than large stocks (Banz (1981)

and Reinganum (1981)). Including size in their regression, they show that the higher returns

of small stocks can be largely explained by these stocks’ higher bid-ask spreads. The idea that

transaction costs can help explain the size effect is also explored in Stoll and Whaley (1983).

Eleswarapu and Reinganum (1993) question the findings of Amihud and Mendelson (1986) by

showing that the effect of bid-ask spread on expected returns holds only in January. Eleswarapu

(1997) finds, however, a strong effect for both January and non-January months on a sample

of NASDAQ stocks.

Brennan and Subrahmanyam (1996) measure the illiquidity of stocks by price impact λ

instead of bid-ask spread. They employ the model of Glosten and Harris (1988) to separate
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price impact into a variable part, equal to λ, and a fixed part. Unlike the previous papers, they

control for risk using the Fama-French three-factor model instead of the CAPM. They show that

returns are positively related to both the variable and the fixed part of price impact. Curiously,

however, the bid-ask spread is negatively related to returns. They attribute this result to a

possible correlation between the spread and a risk factor not captured by the Fama-French

model.

Additional papers linking the level of illiquidity to expected stock returns include Brennan,

Chordia, and Subrahmanyam (1998), who use the inverse of trading volume as a measure of

illiquidity, Datar, Naik, and Radcliffe (1998), who use inverse turnover, and Chalmers and

Kadlec (1998), who use amortized spread. Amortized spread measures the aggregate cost of

the bid-ask spread to investors, and is roughly equal to spread times turnover. These papers

find a positive relationship between illiquidity and expected returns.

Spiegel and Wang (2005) provide a more skeptical assessment of the effects of illiquidity.

They regress stock returns on idiosyncratic risk and various illiquidity measures, and show that

idiosyncratic risk renders many of these measures insignificant. Idiosyncratic risk, however,

could also be a measure of illiquidity, especially when measured using short-horizon returns.

Indeed, transitory deviations between price and fundamental value, caused by liquidity shocks,

are larger for illiquid stocks. Moreover, these deviations are more likely to manifest themselves

on the idiosyncratic component of returns, which liquidity suppliers cannot hedge away, than

on the systematic component. Hence, illiquid stocks are likely to be characterized by higher

idiosyncratic volatility.

A different criticism of illiquidity effects comes from Ben-Rephael, Kadan, and Wohl (2010).

They find that while these effects were strong in the distant past, they have become weak more

recently. For example, the coefficient of a cross-sectional regression of expected returns of NYSE

stocks on Amihud’s illiquidity measure has declined by a factor of 16 from the period 1964-1974

to 1997-2008, and its value in the latter period is statistically insignificant. This suggests a

strong decline of illiquidity effects: not only transaction costs have been declining, as pointed

out in the previous section, but liquidity premia per unit of transaction costs seem to have been

declining as well.

Measuring the effects of illiquidity on stock prices and expected returns requires separating

them from the effects of risk. The papers mentioned so far control for risk using the CAPM

or a multi-factor model, but such adjustments are likely to be imperfect. Sharper tests can be

derived by identifying stocks with identical cash flows that differ only in liquidity. One such

example is restricted versus publicly-traded stocks. Restricted stocks cannot be traded publicly
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for a given period after issuance, which was two years until 1997, because of regulatory reasons.

The firms issuing them, however, issue publicly-traded stocks as well, which are identical to

restricted stocks in all aspects other than the trading restriction. Empirical studies on the pre-

1997 period (e.g., Silber (1991)) find that restricted stocks were priced on average 35% below

their publicly-traded counterparts.14

Assets with similar cash flows can be found not only in the stock market but also among

Treasury bonds. A number of papers examine the yield differential between on- and off-the-run

Treasury securities with similar time to maturity. On-the-run securities are newly issued and

actively traded, while off-the-run ones have been issued in the more distant past and trade less

actively. Amihud and Mendelson (1991) find that off-the-run Treasury notes trade at lower

prices and hence higher yields than on-the-run Treasury bills with same time to maturity. The

effect is significant: the average yield is 6.52% for notes and 6.09% for bills, implying a yield

differential of 43 basis points (bps). Further supporting evidence is in Kamara (1994). Warga

(1992) compares the returns of on- and off-the-run portfolios that have matched duration and

are rebalanced annually. The average annual return of on-the-run portfolios is 55bps below that

of their off-the-run counterparts. Additional evidence on the on-the-run phenomenon is in Kr-

ishnamurthy (2002), Goldreich, Hanke, and Nath (2005), and Strebulaev (2007). Boudoukh and

Whitelaw (1993) document a similar effect in Japan: a highly liquid “benchmark” government

bond trades at a yield of 60bps below other bonds with similar characteristics.

While on-the-run effects are of significant magnitude, they arise not only because of liquidity

but also because of repo specialness: on-the-run bonds are more expensive than off-the-run

bonds partly because they constitute better collateral for borrowing funds in the repo market.

Duffie (1996) shows that specialness can arise because of the higher liquidity of on-the-run

bonds, and derives the price premium due to specialness. Vayanos and Weill (2008) derive the

higher liquidity and specialness of on-the-run bonds endogenously, and decompose the on-the-

run premium into a liquidity and a specialness part. Banerjee and Graveline (2011) provide a

model-free decomposition of the premium.

A market that is particularly suited for measuring the effects of illiquidity on prices is the

corporate-bond market. Indeed, corporate bonds are less liquid than Treasury bonds and stocks

(Section 3.2); they typically carry no specialness premia; and they are less risky than stocks so

14Large discounts have also been found for assets other than stocks. For example, Brenner, Eldor, and Hauser
(2001) report that currency options that are issued by central banks and cannot be traded prior to maturity
were priced on average 21% below exchange-traded options. Comment (2012) argues, however, that restricted-
stock discounts are driven primarily by factors other than illiquidity. For example, restricted stocks are placed
privately, but private placements typically occur at prices lower than public placements even for freely-traded
stocks.
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the confounding effects of risk could be smaller. Chen, Lesmond, and Wei (2007) study how the

yield spreads of corporate bonds relative to Treasuries are affected by illiquidity, measured by

bid-ask spread, LOT, and number of non-trading days. They find that more illiquid corporate

bonds have higher yield spreads. Bao, Pan, and Wang (2011) find a robust and even stronger

positive relationship between yield spreads and illiquidity, when the latter is measured by γ.

The empirical papers mentioned so far examine whether a variety of illiquidity measures

are positively related to expected asset returns. Our unified model suggests, however, that the

relationship is more complex: it depends on the underlying cause of illiquidity, on the measure

of illiquidity being used, and on the sources of cross-sectional variation. Accounting for these

complexities can both shed light on existing empirical findings and help with the design of new

tests.

To illustrate some of the complexities, suppose that illiquidity is caused by asymmetric

information. If it is measured by λ, then its empirical relationship with expected returns will

be positive since asymmetric information raises both λ and expected returns (Results 5 and

7). If, however, it is measured by γ, then the relationship can turn negative since asymmetric

information can reduce γ (Result 6). Furthermore, if the imperfection is imperfect competition,

then a negative relationship can arise even if illiquidity is measured by λ. This is because

imperfect competition raises λ but can lower expected returns (Results 8 and 10). Finally,

if cross-sectional variation is driven by the variance σ2
z of liquidity shocks rather than by the

imperfections, then the relationship between λ and expected returns will be negative. Indeed,

under both asymmetric information and imperfect competition, larger σ2
z lowers λ and raises

expected returns (Vayanos and Wang (2011)). In summary, a positive relationship between

illiquidity and expected returns is more likely to arise when illiquidity is measured by λ rather

than γ, and when cross-sectional variation in trading needs is appropriately controlled for.

Evidence consistent with our theory comes from recent studies of the corporate-bond mar-

ket. Dick-Nielsen, Feldhutter, and Lando (2012) examine how yield spreads are linked to λ,

as approximated by the Amihud measure, and to γ. They find that the positive relationship

between spreads and λ is more robust than that between spreads and γ, both across differ-

ent rating categories and across the pre- and post-2008-crisis sample periods. Moreover, for

the post-crisis period, the relationship between spreads and γ becomes insignificant except for

AAA-rated bonds. For speculative-grade bonds the relationship becomes even negative. Given

that speculative-grade bonds are more likely to be subject to asymmetric information, this

finding appears consistent with our theory. Rayanankorn and Wang (2012) provide additional

evidence along these lines.
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Recent work linking illiquidity to expected returns focuses on the time variation of illiquidity

and its possible role as a priced risk factor. Amihud (2002) examines how time variation in

illiquidity affects stock returns. He computes the illiquidity of the aggregate stock market by

averaging the Amihud measure over stocks. He shows that in a year when aggregate illiquidity

increases, returns are low, consistent with a negative effect of illiquidity on prices. Moreover,

returns are predicted to be high over the next year, consistent with a positive effect of illiquidity

on expected returns.

The finding that movements in aggregate illiquidity affect stock returns opens up the pos-

sibility that illiquidity might be a priced risk factor. Indeed, investors might prefer to avoid

stocks that go down when illiquidity goes up because they become exposed to a systematic

risk. As a consequence, such stocks with “high liquidity risk” might be earning high expected

returns, controlling for other risk characteristics. Pastor and Stambaugh (2003) test for this

effect. They compute aggregate illiquidity by averaging the Pastor-Stambaugh measure over

stocks, and show that stocks with high liquidity risk earn abnormally high expected returns.

The effect is significant: stocks in the highest liquidity-risk decile outperform stocks in the

lowest decile by 7.5% annually, controlling for the three Fama-French factors and a momentum

factor.

Acharya and Pedersen (2005) allow illiquidity to affect expected returns both through its

level and as a risk factor. They derive these effects in a theoretical model, which shows that

liquidity risk affects expected returns through three covariances: between a stock’s return and

aggregate illiquidity, as in Pastor and Stambaugh (2003), between a stock’s illiquidity and the

return on the aggregate stock market, and between a stock’s illiquidity and aggregate illiquidity.

Using the Amihud measure for illiquidity, they find that all three covariances matter in a way

consistent with their model.

Pastor and Stambaugh (2003) find that liquidity risk can explain about 50% of the momen-

tum anomaly (Jegadeesh and Titman (1993)). Sadka (2006) explores further the link between

liquidity risk and asset-pricing anomalies, using price impact as a measure of illiquidity. He

decomposes price impact into a variable part λ and a fixed part, and shows that only λ is a

priced risk factor. This risk factor can explain more than 50% of momentum and of the post-

earnings-announcement drift anomaly (Bernard and Thomas (1989)). Korajczyk and Sadka

(2008) find that only the common component across illiquidity measures is a priced risk factor.

Hasbrouck (2009) finds weak evidence that illiquidity is a priced risk factor when measured

using his Bayesian Gibbs estimator. Watanabe and Watanabe (2008) find that the pricing of

liquidity risk is time varying. Lin, Wang, and Wu (2011) find that liquidity risk is priced in
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the corporate bond market, while Bongaerts, De Jong, and Driessen (2012) find that only the

level of illiquidity is priced. Sadka (2010) and Franzoni, Nowak, and Phalippou (2012) find that

liquidity risk is priced in the cross section of hedge funds and private equity, respectively.

Most of the papers studying illiquidity as a priced risk factor focus on a single asset class.

This leaves open the question whether liquidity risk is truly systematic and common to many

asset classes. Hu, Pan, and Wang (2011), which measure aggregate illiquidity based on pricing

errors of US Treasury bonds, provide evidence in favor of a systematic risk factor. They show

that the covariance with aggregate illiquidity helps explain the returns of two sets of assets that

are sensitive to market-wide conditions: hedge funds and currency carry trades.

A challenge for the empirical literature on liquidity risk is to establish that the effects are

driven by risk and not by the level of illiquidity. Indeed, an asset’s illiquidity level is typically

positively correlated with the asset’s loading on the illiquidity risk factor: this correlation is

particularly high for stocks as shown in Acharya and Pedersen (2005), and lower for corporate

bonds as shown in Bongaerts, De Jong, and Driessen (2012). Some papers on liquidity risk

side-step the multi-collinearity problem by omitting the level of illiquidity.

While empirical papers provide suggestive evidence that illiquidity is a priced risk factor,

more theoretical work is needed to clarify the nature of that factor and interpret the evidence.

Does the illiquidity factor reflect variation in illiquidity only, or is such variation caused by

more fundamental factors which might be affecting asset prices through additional channels?

And what fundamental characteristics of an asset determine its liquidity risk, i.e., its sensitivity

to the illiquidity factor? For example, if the illiquidity factor is a crisis factor, it could be

affecting asset prices also through the risk premium because risk aversion increases during

crises. Moreover, an asset’s sensitivity to that factor could be determined by sensitivities to

both risk aversion and illiquidity. Work on funding constraints, surveyed in Section 2.6, has

begun to address these issues. Further work in that area could provide more comprehensive

answers and put empirical research on liquidity risk on a firmer theoretical foundation.

4 Conclusion

Illiquidity can be viewed as a consequence of various forms of market imperfections. A large

theoretical literature shows that even simple imperfections can break the clean properties of the

perfect-market model and lead to rich but complex behavior. Moreover, this behavior can be

sensitive to the particular form of imperfection and the specification of the model. The situation

is reminiscent of the saying “Happy families are all alike; every unhappy family is unhappy in
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its own way.” The lack of a unified framework and robust predictions makes it difficult not

only to advance our theoretical understanding of illiquidity, but also to provide guidance for

empirical work, e.g., how to measure illiquidity, what theoretical predictions to test, and how

to interpret the empirical findings.

In this survey we hope to demonstrate that a framework can be constructed to unify the

existing theoretical work. Our framework allows us to examine in a consistent manner how

various forms of market imperfections affect illiquidity and expected asset returns. It also

shows how well different empirical measures of illiquidity capture the underlying imperfections.

Furthermore, it provides new insights in interpreting existing empirical findings and guiding

further analysis. Needless to say, the framework has a number of limitations, some of which are

pointed out in the Introduction. But this only suggests that more research is needed; and the

limitations of the framework may well point us to new and fruitful directions.
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