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ABSTW.CT

A decentralized market theory of investment based on rising supply

price is formulated and explained. Asset prices embody all available infor—

mation in a competitive market and serve as "sufficient statistics" for

future market conditions. Construction is determined myopically by marginal

cost pricing: rising supply price constrains aggregate investment. Market

dynamics imply that anticipated pulses in demand and interest rates lead to

"bubbles" in prices, rentals and construction, because it pays to "build

ahead of demand" in the presence of rising supply price. This model,

similar to q—theory, assumes that long and short run elasticities of supply

are identical. Short—run supply is less elastic than long—run supply when

internal adjustment costs are superimposed on rising supply price. Then the

current construction decision is no longer myopic and current price (or

current q) is no longer sufficient for investment. Instead, builders must

anticipate the future path of asset prices for current construction

decisions. This enriched model is estimated under the hypothesis of ra-

tional expectations. The short—run elasticity is found to be 1.0 in

quarterly data. The long—run elasticity is 3.0. The long—run is achieved

within one year, indicating substantial built—in flexibility in the industry

to accomodate great volatility in housing construction. Elastic supply

helps account for the large fluctuations in output and employment observed

in this industry. The data also show that prices alone do not clear the

market. Other nonprice dimensions, including expected time—to—sale and

overall transactions volume play independent roles which remain to be

explained.
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I. INTRODUCTION

The housing market is especially attractive for studying invest-

ment behavior. Housing investment is one of the most volatile components of

national product, and understanding its sources of variability may illumin-

ate the sources of volatility in other forms of investment in the economy.

In addition, housing investment and allied data are among thc most complete

and conceptually clean sources for studying investment. This is perhaps the

only investment goods market where data on the valuation of an additional

unit of capital are directly available, and are adjusted for quality change.

In neoclassical investment theory, the value or price of an additional unit

of capital serves as a sufficient statistic embodying all current and

expected future information on the sources of value of capital services.

The model studied here is constructed to exploit and test this fundamental

hypothesis.

The basic conception of the problem is an ancient one, and bears a

close relationship to more modern adjustment cost and q—theory models.

Since investment is a trivial fraction of existing housing stock, the

instantaneous supply of housing services is essentially inelastic. Maintain

the hypothesis that the market for housing services is instantaneously

cleared. Furthermore, assume that the market for housing stock also clears.

Then the price of a standard house must be determined so that agents are

content to hold the existing stock. The rate of additions to the stock at
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that time are determined by supply decisions of a construction sector. A

supplier of new homes can sell as many as desired at the prevailing market

price in a competitive market. If the price of a house is high relative to

production cost then more houses will be built. The housing investment

decision is completely decentralized through decisions of the construction

sector in this market, and issues of demand for investment (as opposed to

the demand for capital services) never arise. This is a supply theory of

investment. But if investment is supply determined, there must be rising

supply price for aggregate investment to be determinate.

Preliminary evidence of rising supply price in the housing

investment sector is presented in the next section. The main content of

this evidence is that factor prices and construction costs are positively

correlated with the level of construction activity, which in turn is

positively correlated with the price of houses. This is crudely indicative

of an essentially demand driven industry in which factors of production are,

at least to a degree, Inelastically supplied to the industry as a whole.

This fact and other elements of diminishing returns imply rising supply

price of new investment, which is investigated in detail in subsequent

analysis.

Sections III and IV lay out the conceptual model based on this

preliminary evidence. The rudiments of this model are structured as above:

there is a demand function for housing services and a supply function for

new investment. A structural relationship linking flow or rental prices of

housing services to house (stock) prices is necessary to close the model.

In this respect we maintain the rational expectations hypothesis that the

observed stock price is the expected discounted present value of current and

future rental prices. It is in this way that current price serves as a
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"sufficient statistic" embodying all available information. We show that

this model is in all respects equivalent to an adjustment cost theory of

investment. However, there is the substantial difference that it is com-

pletely decentralized through a market mechanism, with the observed price of

housing serving as the relevant valuation for investment decisions. Section

IV presents an important extension of this type of model, to approximate a

situation in which there is a difference between the short and long—run

supply elasticities of new houses. The model is changed in interesting and

nontrivial ways. Sufficiency of the current stock price for investment is

lost, but a richer set of possibilities, including endogenous generation of

cyclical response patterns to exogeneous disturbances, are added. This case

is favored by the empirical estimates presented in section V.

Our main estimates relate to the supply price elastiolty of new

housing. The long run supply elasticity is approximately 3.0. The short

run, quarter—to—quarter elasticity of supply is also found to be quite

substantial, in the neighborhood of 1.0. These large supply elasticities

are one of the reasons why investment activity in housing is so volatile and

responds so quickly to new information. Attempts to estimate the demand

function and the intertemporal arbitrage condition are far less successful.

This is partly due to data limitations (the available housing stock series

is inadequate), and also due to unexplainable movements in the price series

itself. The enormous and sustained increase in the relative price of

housing during the 1975-80 period is not readily explained by the exogenous

variables available to us or by the assumption of stable expectations about

capital gains. Some, but not all of this increase can be explained by

portfolio considerations in the presence of income tax advantages to holding

housing assets in an inflationary environment. There appear to be important



additional causes of this relative shift in demand which are not yet

understood.

II. CONSTRUCTION ACTIVITY AND CONSTRUCTION COSTS

Some of the time—series data used in the subsequent analysis are

shown in the accompanying charts. Our primary focus in this work is on

starts (which are very highly correlated with measures of housing invest-

ment, but due to measurement and data consistency problems, we, like most

others in this field, prefer to use starts as our index of investment).

There are roughly three "episodes" in this series. The series takes a

gentle downward course in the 1963'7O period, with a few wiggles associated

with the 1967 and 1970 recessions. The next episode shows a big spurt in

activity in the 1970—73 period followed by a decline of about equal mag-

nitude during 1973—75. Another boom and bust is exhibited in the 1975—82

period, with a peak sometime in 1978. To get a feeling for the volatility

of real activity in this industry note that the (quarterly) trough—to—peak

levels in the second and third episodes differ by a factor of 2.0. During a

building boom construction activity might double and during a bust it might

fall in half. The turning points In this series are similar to those in the

general business cycle. This correlation is made fairly clear in matching

the starts series with the first difference in real consumption in the

economy (a rough index of changes in real wealth) over this period.1

The relative prices of new houses are shown on the next chart.

The nominal price index for new homes is a hedonically adjusted "house of

1977 characteristics" prepared by BEA. The mean sales price was $19,000 in

1963 and $85,000 in 1982, close to an 8 percent nominal rate of growth. The

chart shows real prices, using the CPI (less the shelter component to avoid
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the measurement problems in that component during the inflationary period in

the 1970s). The overall trend in real price is closer to one percent over

the period as a whole, but is punctuated by a remarkable 25 percent increase

during 1975—79. In fact the land price index implicit in this series

increased by approximately 50 percent during those four years, similar to

the Increases observed In valuations of agricultural land.

There is an obvious positive correlation between movements in

starts and house prices. This is more pronounced in the 1970—82 period than

before, but there is also more action in both series in that later

subperiod. Construction activity tends to increase when prices rise and it

tends to decrease when prices decline. However, the timing is somewhat

different: construction activity appears to turn down prior to downturns In

prices.

Additional informal evidence on rising supply price is presented

in the charts, which show the behavior of various dimensions of building

costs. A major materials component of new house construction is lumber.

Total lumber consumption is highly correlated iith starts, and the real

price of lumber closely tracks lumber consumption. The simplest and best

interpretation of these facts is that there is rising supply price of lumber

to the residential construction industry.

Labor costs represent a major share of total construction costs.

The construction sector is well known to exhibit the most volatile

employment behavior in virtually any industry (Topel and Ward [1985]).

Furthermore, this has been true well before the modern era; for example,

Smith remarked upon it in The Wealth of Nations. The correlation between

starts and total hours of construction labor (not shown) is quite large

(however, starts leads employment by a few quarters). Further, the bulk of
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total hours variability is taken up by variations in employment: hours per

employed person shows remarkably little variation. This is consistent with

a fairly fluid market in which people move in and out of the industry in

response to changes in demand for labor. Competing uses for residential

construction labor include nonresidential construction, the timing of which

is a year or so out of phase with residential construction activity; and a

significant maintenance and allied use of these skills in the industrial and

service sector. There are frequent transitions of workers among these

sectors. Rising supply price of construction labor is to be expected under

these circumstances, with relative wage changes among sectors providing the

economic signals for workers to move from one sector to another. The real

wage series shown In the charts at least are consistent with this

interpretation. Construction wage movements are strongly related to

manufacturing wage changes, reflecting the opportunity costs of construction

labor supply. There is also a noticeable positive comovement between

construction wage rates and construction activity.

The charts show the time—series for the real Boeckh index of

residential construction cost, which combines wage and materials costs in

one summary measure. The pattern of the cost index closely follows the

pattern of construction wage rates and real activity. That both prices and

costs are positively correlated with output is consistent with a rising

supply curve mapped out by shifts in demand; that is, with rising supply

price of investment. Notice also that construction costs increase relative

to housing prices in the first (1963—69) episode, perhaps reflecting a shift

in supply in that episode.
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III. A MODEL OF HOUSING INVESTMENT

The model has its origins in the work of Wairas, and much later by

Friedman [1963] and Tobin [1969] — see also Witte [1963], Foley and

Sidrausky [1971], Engle and Foley [1975], Mussa [1977], Sheffrin [1983], and

Poterba [19814] among many others. We deal with a linear structure for

analytical tractability and present a deterministic (perfect foresight)

formulation to illustrate the key ideas. To avoid expository distractions,

which are well treated in the literature, we also ignore the special and

peculiar income tax provisions of home ownership, though these factors are

included in the empirical work where necessary. The basic model consists of

three equations and some boundary conditions.

First is the demand function for the services of existing stock.

Let K(t) denote the stock of existing capital (homes) at time t, and let

R(t) be the implicit rental value of a unit of stock. Then the demand

function for home services, assuming service flows proportional to stock, is

(1) R=czK+x

where a is the inverse of the slope of the demand curve, with a < 0. x(t)

is a vector of exogenous variables (and coefficients) affecting the demand

for housing services, including per capita income, the demographic

composition of the population, operating and maintenance costs, and the

like.

The second equation is the supply of new stock. Let P(t) be the

competitive equilibrium price of a unit of housing stock. Let 1(t) be the

gross flow of new construction. If the construction sector is competitively

organized and if the representative firm has a neoclassical cost function of
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Output I of' the form CCI, y) where y Is a vector of cost shifters and C1 and

C11 are positive, then output decisions are determined by the familiar price

equals marginal cost rule: P(t) C1(I, y). The (short) delay in the

construction time of new homes is ignored. Taking a linear approximation to

the marginal condition and assuming exponential decay K + '3K = I where

K dK/dt and '3 is the depreciation rate, we have the investment equation:

(2) I = + '3K 8P + y

where > 0 is the inverse of the marginal cost function, the slope of the

supply curve, and y(t) is a vector of variables (and coefficients) affecting

the supply conditions of factors of production that are specialized to the

industry and the prices of factors which are unspecialized. These would

include such things as the opportunity cost of construction labor (e.g., the

manufacturing wage), and the short—term interest rate reflecting the cost of

capital to construction firms.

The model is closed by connecting stock and flow prices. Several

possibilities might be entertained, but we concentrate on the only

internally consistent alternative —— rational expectations (equivalent to

perfect foresight in deterministic models). Thus

(3) R = Cr + '3)P —

where P = dP(t)/dt and r is the rate of interest. This is the familiar

condition that the imputed flow price of a unit of capital is the amortized

stock price, including allowances for interest, depreciation and capital
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gains. We also require a boundary condition that the future price of

capital is bounded:

urn P(t)e'+t 0

The boundary condition in 4) requires that the sequences x(t) and y(t) are

themselves bounded in their rates of growth by exponential functions of

order r: the forcing variables in x and y cannot forever grow (or decline)

at rates exceeding the interest rate, though of course they can do so for

finite periods of time. Integrating (3) and using the boundary condition

(4) yields the familiar asset pricing equation

(5) P(t) = f R(s)et)ds
t

The price of a unit of stock at time t is the discounted present value of

its anticipated stream of future market equilibrium rentals. Finally, the

model is closed by specifying the initial stock K(0) = K0.

Equations (1) — (4) provide a complete description of competitive

market equilibrium, conditional on the course of the forcing variables x(t)

and y(t) and the initial condition. Appendix A shows that these conditions

duplicate a surplus maximizing social planning problem in the presence of

adjustment costs: the decentralized competitive market solution is pareto

efficient and price signals provide the correct information for private

decision makers so long as rational expectations hold true. The reason for

this is the sufficient statistic interpretation of market asset prices. The

market price conveys the social value of an increment of investment —- the
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discounted present value of the marginal utility of an additional unit of

housing services, because marginal utilities are reflected in competitive

rental prices. A competitive housing sector which builds new houses up to

the point where price equals marginal cost therefore duplicates a necessary

condition for social efficiency, that marginal social cost equals marginal

social benefit.

Empirical investment models based on internal adjustment costs

have had difficulties in accomodating price and value data. The rising

supply price model is, as the appendix shows, equivalent to an external

adjustment cost formulation in which market price/value data plays its

traditional role. We believe that the revival of Interest in q—type models

lies, at least in part, in bringing the traditional price signals back into

central focus (Summers [1981]). The difference between adjustment cost and

q—theory models lies In a difference between marginal and average (see

Hayashi [1982J, Able [1980]). The price—equals—marginali-cost

characterization of supply in our model implies that "marginal q" is

identically unity (in a competitive market), whereas q—theory proper has

been less precise on supply conditions. However, the spirit of the two

approaches has marked similarities in spite of these differences in detail.

The virtue of studying the housing market in this connection is precisely

the direct availablilty of price data, which has already been used to

excellent advantage by Poterba [19814] to study the influence of certain tax

treatments of housing using a similar analytical framework as this one. And

of course the role of price in housing investment has been for years a

central focus of empirical investigations of the housing sector though

without the dynamic optimization paraphenalia (see the fine survey by

Weicher [19 ]).
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We are now prepared to analyze the dynamical properties of this

market. Substituting (3) into (1) yields a first order system in P(t) and

K(t)

Cr + 6)P(t) — P(t) = aK(t) + x(t)
(6)

I(t) + SK(t) = 8P(t) + y(t)

along with the boundary condition (24) and the initial condition. The phase

plane is useful for illustrating some general properties of this system.

First set x(t) x and y(t) y, some constant values. The arrows in the

figure show all possible trajectories of the general solution that satisfy

both equations in (6). However, the two heavy arrows are the only ones that

also satisfy the terminal condition (we assume for simplicity that costs of

demolition and accumulation of capital are symmetric). Thus for constant

values of x and y, the market ultimately achieves a steady state. This

experiment is related to the general solution to system (6).

More Interesting are the particular solutions. The phase plan can

be used to give a rough and ready analysis of the complete response

characteristics of the system, using a "gluing and pasting" algorithm of the

trajectories In figure 1 (Able [1982], Judd [1985]). Consider an experiment

in which there is an anticipated pulse in demand at time T in the future

persisting for an Interval t, which returns to its initial level

thereafter. y(t) remains at its Initial constant level for all t. This is

similar to a distributed lag response experiment. However, in this problem

there will also be a distributed lead because rational agents act In

anticipation of future demand changes when there is rising supply price of
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investment. The reason is that it is too expensive to wait for the demand

change to occur prior to acting on that information. With rising supply

price it pays to build ahead of anticipated demand since rapid investment is

penalized by greater cost.

The key to analyzing this experiment in the phase plane is to

recognize that the solution must be consistent from the backward point of

view. System (6) will apply with x(t) x and y(t) y for all t > T + Lt.

Therefore we must be on a stable trajectory of figure 1 in that final phase

of the problem. However, for the interval T < t < T + t the system is

described by (6) with x(t) at a larger value. For this interval we must

find the unique unstable trajectory of the altered system which arrives at

the known stable trajectory of the original system at exactly time

t T + t, and glue the two together. Finally, we know that we must be

back in the original system (with x(t) at its original value) for t < T.

Therefore we must find another unstable trajectory of the original system

which arrives at the now known second phase trajectory of the perturbed

system at exactly time t = T. The solution is pasted together in figure 2,

assuming an initial capital stock at K. The pulse in demands sets things

off on the trajectory marked A, which corresponds to an unstable path of the

original system. At t = T, this path joins arrow B and that trajectory

takes over for t in the interval (T, T + Lit). Arrow B is an unstable

trajectory of the system where the P = 0 line has been shifted up to reflect

a larger value of x in the second phase. Finally, at t = T + t, the stable

path of the original system is joined and capital converges to its initial

value.

The whole solution is described by the circular motion in the

figure. This translates in the (P, t) plane to a price "bubble" in figure
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3. The price of housing immediately begins to rise in anticipation of the

increase in demand, and keeps rising up to t = T. This signals construction

firms to increase the stock of housing before the demand shock is realized.

New construction reaches its maximal rate at time T if t is relatively

small. At that point demand jumps up. However, agents perceive the

transitory nature of the shock, and price begins falling at that point (for

small tt), slowing down the rate of increase of new construction, but not

sufficiently to keep the stock from growing. However, at some time during

the T + it interval, price falls enough to reduce investment to a level that

makes the capital stock reach a peak and then start to fall. In fact P(t)

falls below its initial level in this phase, which signals that the stock

must decline. At t T + t, the final phase is begun: the price gradually

works its way back up to its initial level and the capital stock

asymptotically falls to its initial level.2 The investment path 1(t)

follows the same qualitative course as that of P(t). It is also clear what

must happen to the rental price R(t) in this experiment. Since demand for

housing services is unchanging in the period prior to T, the increase in the

stock makes R(t) actually fall in this phase. In the second phase R jumps

up and reaches its peak at a level higher than its initial value. The

capital stock has been "overbuilt" in this phase, so R must drop below its

initial level in the third phase and then gradually work its way back up to

its initial level as K(t) falls back to K. Hence the intertemporal pattern

of R(t) would appear as the silhouette of a "sombrero".

Analyzing the trajectories in this way allows qualitative analysis

of all kinds of experiments, e.g., permanent anticipated changes in r, x and

y, transitory changes, unanticipated changes,and so forth. Responses to

more complicated changes could be found by approximating them by step
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functions and linking trajectories in the pasting manner depicted above.

However, since we have assumed a linear structure, analytical solutions

are easily calculated. We turn to this task next.3

Define the differential operator D as Db(t) = db(t)/dt,

D2b(t) d2b(t)/dt2, etc. In this notation, (6) can be written as a matrix

differential equation

[D
(r + 6) a P = —x

I I- (D + 6)J K

The determinant of the matrix is D2 — rD + [(ct8 — 6Cr + 6)]. Solving (7)

yields two independent second order differential equations, one in P and the

other in K:

[D2 - rD + (a - 6(r + o))]P(t) = g(t)

(8)

ED2 - rD + CaB — 6(r + 6))]K(t) h(t)

where

g(t) = —dx(t)/dt — 6x(t) — ay(t)

h(t) = dy(t)/dt — Cr + 6)y(t) — Bx(t)

The forcing functions in (8) contain elements of both demand shifters and

supply shifters. Notice also that the homogeneous parts of (8) are
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identical. This is one aspect of cross—equation—restrictions inherent in

problems of this type.

Use the quadratic formula to factor the left hand sides of (8).

The characteristic equation is

A2 rA + (a — 6Cr + 6)) = 0

so

(9) A = Er Cr2 - 6(r + 6)))h/2]/2

Since < 0 and > 0, both roots are real. Furthermore, one is positive

and one is negative. Take A1 to be the negative (stable) root and take
A2

to be the positive (unstable) root. Then (8) can be written as

(10) CD —
A1)(D

—
A2)P(t)

= g(t)

(11) CD —
A1)(D

—
A2)K(t)

= h(t)

Solving these equations requires inversion of the operator CD — A).

The inverse CD — A) operating on some function b(t) has both a

backward and forward representation: The backward form is

(12) (D A)1b(t) =c1eAt + 5 b(T)eT_t)dt

where c1 is some arbitrary constant; and the forward form is
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(D — A)1b(t) =
At

J b(i) -A(t-t)
c2e

— e di
t

where c2 is another constant. These formulas

(D A) to both sides to obtain b(t) itself.

produce a stable system it is natural to take

the negative root backward (Sargent [1979]).

(11)

(D - A1)K(t)
= CD —

A2)

are verified by applying

To solve (10) and (11) and

the positive root forward and

To illustrate, let us solve

A t A Ct—i)
2 r 2=

c2e
— j

A (t—T)

CD -
A1)K(t)

= - J h(t)e 2

t

A (t—i)
K(t) = —(D — A )1 J h(t)e 2

di
2

t

di
t

using (13). However, 02 must be zero from the transversality condition and

figure 1. Therefore,

and

Alt
t

A2(s—i) A1(t—s)=
c1e

—
$ 5 h(-r)e e

Os
dsd -r
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from (12). Reversing the order of integration and using the initial

condition K(0) K0 gives the complete solution

A t —A t
(1L) K(t) = e [K0 + A

h(T)e
2

di]
210

1 A1(t—t) 1 A2(t—r)—

A A
h(t)e dT —

A -A
h(t)e di.210 2 it

Equation (1k) is useful for studying the equilibrium response pattern for

any intertemporal pattern of exogenous supply and demand shocks. It also

shows why the unstable trajectory comes into the geometry of figure 2.

Notice from the second and third terms in (11!) that the

equilibrium position of K(t) is a weighted sum of past and future

information. The weights decline exponentially in both directions, so

current information in and around the neighborhood of t itself gets the most

weight. The 1tspeedtt of response depends on these weighting functions. If

A2 and A.1 are very large in absolute value then current data h(t) gets most

of the weight and the adjustment speed is very rapid. If they are small

then the response is distributed over a longer interval.

From the definition (9) we see that A2 and —A1 are increasing in

the depreciation rate 6. Response speed is increasing in 6 because there

are less overhanging effects of existing stocks. Indeed as 6 get increas-

ingly large the model gets very close to a conventional flow market in which

long- and short—run elasticities of supply (and demand) are identical.
A2

and —A1 are also increasing in c. 8 indexes the responsiveness of

investment to housing prices. The housing investment supply function is

more elastic the larger is 8 so the sensitivity and speed of response to
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current data is correspondingly larger. However, adjustments are also more

rapid the larger is —, which is the inverse slope of flow demand.

Adjustments are more responsive the more inelastic is the demand for housing

services because inelastic flow demand provokes larger asset price responses

to changes in stocks, and it is these price signals that guide supply

decisions.

The effects of the interest rate are somewhat more complex. The

positive root A2 is increasing in r but IA1 I is decreasing in r. Equation

(1k) implies that future events are given less weight because A2 is larger.

However, the legacy of the past carries greater weight because the

exponential term in the backward integral does not die out as rapidly. All

in all, the system is less responsive to exogenous data as r increases.

That the future is weighted less heavily means that anticipated future

events have smaller influence on current asset price signals for investment

decisons. Furthermore it can be shown (see below) that for permanent (step

function) impulses of the forcing variables, the rate of investment is

proportional to the differences between current and ultimate stock, iith

constant of proportionality —A1, which is decreasing in r.

An expression similar to (1) applies for the complete solution to

P(t) and is omitted. Three methods are available for estimation. One by

Hansen and Sargent [1980] estimates the complete solutions such as (1).

This has the virtue of maintaining the transversality condition, but with

the cost of additional assumptions about the nature of the forcing process.

It also does not exploit market price and value data in determining

investment, though these connections are implicit in the derivations of the

complete solutions. Instead, we estimate the structural form (6). This has

the virtue of being less sensitive to stochastic and specification
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assumptions about x(t) and y(t) and allows investigation of a direct and

familiar behavioral relationship: the elasticity of supply is a key

parameter in the investment process. The cost of this is that the

transversality condition is not imposed. Something of a halfway house would

be provided by estimating the independent forms in (8) (Zeilner and Palm

[19714]) though again the transversality condition is not imposed, and we do

not attempt to do so here.

Iv. RISING SUPPLY PRICE AND SHORT—RUN ADJUSTMENT COSTS

A disadvantage of a cost structure based on rising supply price

alone is that it does not make the Marshalljari distinction between short-run

and longrun supply responses: the industry supply curve is fixed, and has

no time—dimension. This assumption gives an industry version of the

adjustment cost theory of investment, but Is unlikely to be valid in the

present problem (and perhaps in others as well), because supply is likely to

be more Inelastic in the short—run.

One way of handling these issues formally would be to specify with

care and precision the nature of the short— and long—run supply conditions

of factors of production to the industry. Thus, for example, labor does not

move costlessly In and out of the industry. Neither does capital. Short—

run factor supplies are less elastic than long—run supplies. To go in this

direction, however, requires introducing additional state variables into the

analysis, which increases the complexity of the model, especially for

empirical work. Instead we adopt a more tractable alternative where supply

conditions of factors are approximately incorporated into an expanded cost

function which Includes the rate of change of industry output. Short—run
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output supply inelasticity is implied by cost penalties to rapid changes in

the level of construction activity. Specify costs as

(15) C(I, I, y)

where C1 > 0, C11 > 0 as before, arid C2 > 0 and C22 > 0. Strict inequali—

ties for the last two derivatives capture the effect under discussion.

The representative firm cannot maximize instantaneous profits in

choosing its level of construction activity because of the presence of the

term I in (15). Instead it must maximize its expected present value:

I [P(t)I(t) - C(I(t), f(t), y(t))]ertdt.
0

The Euler condition for this problem is

(16) P(t) —
C1(•)

=
rC2(•)

—
dC2(.)/dt.

If C2 is identically zero, then the right hand side of (16) vanishes and

section III applies. Otherwise, the presence of increasing marginal

adjustment costs for the firm creates a wedge between price and marginal

cost. The main implication of "internal" adjustment costs is that the

responsiveness of investment to changes in asset values is dampened and

smoothed relative to the simpler model. In addition, the current price of

capital no longer serves as the sufficient statistic: expectations of the

future course of prices as well as the current price affect current

investment decisions.
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To illustrate these points, linearize the marginal costs in (16):

(17) C1(I, i, y) =
C1

+
C111

+
C121

+
C13y

C2(I, i, y) C2 + C121
+

C22i
+

C23y

where the C. and C. are positive constants. Carrying out the

differentiation in (16) and substituting from (17) yields the linearized

Euler equation (assuming C23 = 0 for convenience)

(18) C1 + rC +
(C11

+ rC12)I(t) + rC22f(t) -
C221(t)

+
C13y(t)

= P(t).

If C22 = 0, (18) is equivalent to (2) wIth =
(C11

+ rC12)1. If C22 > 0,

(18) embodies a much richer set of possibilities than (2). Write (18) as:

(19) [1 + rD - 8D2]I(t) = (/C22)P(t)
-

(/C22)[C1 +
rC2

+
C13y] 0(t)

where =
C22/(C11

+
rC21).

Equation (19) defines investment supply. It embodies the standard

distinction between short and long run supply responses and also the modern

distinction of differential response to permanent and transitory shocks. To

see this, consider a conceptual (partial equilibrium) experiment in which

the right hand side of (19) —— written as 0(t) —— is, for the moment,

treated as exogenous. Dividing (19) by 8 and rearranging

(20) (D2 — rD — 1/8)1(t) = -0(t)/8
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or

(21) 1(t) = (D -
A3)1(D

-

where A3 < 0 and A > 0 are real numbers that solve A2 — rO — 1/8 = 0:

(22) A (r + r2 + 1/8)12

Following exactly the same steps as those leading to (14) above yields

At —At
(23) 1(t) e c0

-
A I (0(t)/B)e dr)
t 3 0

t A (t—t)
A(t—t)+

A -A (0(t)/8)e d + J (0(t)/8)e dt]
4• 3 0 t

so the forcing data affects current investment through a backward and

forward exponential "window." The weight function on 0(t) is increasingly

concentrated on current data as 8 approaches zero because —A3 and

increase without bound, from (22). This happens when C22 approaches zero,

by the definition of 8.

0(t) is linear in P(t) from (19). Suppose y(t) is constant and

P(t) =
P1. a constant. Then 0(t) =

01
is also constant, and 1(t) eventually

settles down to its long—run level 1(t) = 01 = I , which is a point on the
long—run supply curve of investment. Take this point as an initial

condition (so c0 = o, from (23)) and suppose new information comes in that
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the price of housing will permanently increase from P1 to P2. Then 0(t)

jumps from 01 to, say, 2' and 1(t) asymptotes to 02 I2 another point on

the long—run supply curve. Substituting 0(t) =
82

in the intergrals in (23)

and integrating yields the path by which 1(t) travels from 01 to

At
02 (02 — 01)e

The response is exponential, with the largest response at the beginning and

the smallest at the end. Familiar manipulations lead to

1(t) =
—A3(12

— 1(t)), where 12 is the target to which 1(t) converges in the

long—run when P(t) = P2. This flexible accelerator form is common from

early discussions of adjustment cost models (Eisner and Strotz [1963], Lucas

[1967], Gould [1968], Treadway [1969]). The adjustment speed is governed by

—A3, which is decreasing in r and increasing in , from (22). Adjustments

are speedier the smaller is C22: there is no distinction between short— and

long-run supply when C22 is zero.

This experiment can be depicted in the familiar Marshallian

diagram if various short—runs are identified with specific intervals of time

and the long—run with an arbitrarily long interval. Long-run supply

connects the points (11,P1) and (12,P2) in the investment—price plane.

Short—run supply curves are spun out of the point (11,P1) and are less

elastic than long—run supply, with the elasticity increasing as time goes

by.

Now consider another conceptual experiment in which the price

rises from P1, its initial value, to P2 for a finite interval of time T,

after which it returns to its initial value. We shall say that the price
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disturbance is more permanent the larger is T and is more transitory the

smaller is T. Equation (23) implies that the initial response is smaller

the more transitory the price impulse.

Differentiating (23) with respect to t and evaluating the

derivative at T 0 yields an expression for the initial response:

'A14t
(214) 1(0) A + I (e(t)/B)e dT

o

which, for the postulated square wave pulse in P(t) becomes

-A14T
(25) i(o) =

A3
ei)(1 — e

The impact response 1(0) is increasing in T, that is, the more permanent the

pulse. (25) shows that the difference in impact responses to permanent and

transitory shocks is decreasing in A. Thus as C22 approaches zero the term

in T in (25) vanishes ——
A14 grows very large —— and there is no difference

in initial response to permanent and transitory changes in price. Flow long

must the pulse in P(t) last for the impact response to be m% of the impact

response to a permanent change in price? Equation (25) provides a ready

answer. The pulse must have length T* = —mCi — m)/A14. T* is decreasing in

A14, or in C22, which is another way of saying that differences between short

and long-run responses to price changes vanish as internal adjustment costs

get small. For example, if m = .95, then T* =
3/A14,

so if A14 = 3 an

anticipated price pulse of one year's duration essentially simulates a

permanent impact response.
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The specification in (19) is of more than academic interest. We

were led to it not only because the simpler model does not correspond to

short—run/long--run differences in supply that we know are present in most

other goods in the economy, but also because of certain anomolies in the fit

of the simpler theory to the data. The cost of this generality, as is clear

from (23), is that current P(t) is no longer sufficient for the supply

decision: the path of P(t) as well as its current value determines supply

decisions when there are internal adjustment costs for firms on top of

rising supply price. This presents additional difficulties of estimation,

but our estimates definitely favor this case.

The experiments in (20)r-(25) are conceptual because P(t) is

endogenous in the full market equilibrium: current investment affects

future rentals, which in turn influences P(t). If there are neither

adjustment nor transactions costs on the demand side of the market, then

asset pricing theory requires that equation (9) remains valid for this model

as well as for the earlier one. The price of a house is its discounted

anticipated future rental, independent of the technology of supply.

Differentiating (9) with respect to t and substituting for K yields a second

order equation for P(t) which conforms to (19). The differential equations

that fully characterize competitive equilibrium are

(a) [1 + r8D — 8D2]I(t) — P(t) =
—(8/C22)(C1

+
rC2

+
C13y)

(26)

(b) [1 + rBD — BD2]P(t) — cBI(t) = B(D +

where B = [6(iS + r)]1.
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System (26) may be transformed to standard first—order matrix form

by defining two new variables for I and I. The transformed system is 1x4 so

the solution must extract four roots rather than two. Two of these roots

are explosive and two are stable. Some of the formalities are sketched in

Appendix B and are summarized here:

Ci) The complete solution has both forward— and backward—looking

parts on the forcing data Cx, x, y, y, etc.), analogous to (114). Now each

part has two exponential weighting functions rather than one, but the two

explosive roots look forward and the stable roots look backward. Hence this

model preserves the building-ahea&of—anticipated—demand feature of the

simpler model of section III. It is clear from the basic economics that

incentives for building ahead of demand are greater when there are internal

adjustment cost (C22 > 0) than when these cost are not present.

Cii) In distinction to the simpler model of section III, where

the roots are necessarily real, it is possible for the roots of (26) to have

imaginary parts. In this case both the forward and backward weight

functions in the complete solution exhibit damped sinusoidal patterns, and

the model generates endogenous damped cyclicality to noncyclical impulses.

This contrasts with the simpler rising supply price model in section III,

where cyclicality occurs only if the forcing variables are themselves

cyclical.14 A necessary condition for endogenous cyclicality is that the

demand for housing services be sufficiently price inelastic. Then small

changes in housing stock provoke large changes in rentals and in housing

prices, and may lead to some high frequency overshooting of responses to

nonsinusoidal supply and demand shocks.
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(iii) If the roots of (26) are real, internal adjustment costs

added to rising supply price considerations tend to reduce the responsive-

ness of investment to supply and demand shocks, and to smooth and spread out

the responses over time. If demand is so inelastic that the roots are

complex, the smoothed and spread—out responses at lower frequencies remain,

but additional endogeous variability of response is added at higher

frequencies.

V. ESTIMATION: SUPPLY

The model is estimated with quarterly time—series data on

investment in new single family homes in the United States (see Appendix C

for data sources). We focus here on the structure of supply decisions. The

data cover the twenty-tone year period 19631—19831V. The empirical form of

the supply side of the model that makes no distinction between short and

long run supply responses, is

(27)

where I denotes new single family housing units started during quarter t,

is the (real) hedonic price index for 1977 quality homes, and y is a

vector of observable variables that shift marginal cost. Unobserved cost

shifters account for v, and these are assumed to be orthogonal to

observable supply and the demand shifters, y and xt, unless otherwise

specified. Summary statisticsfor variables entering (27) are reported in

the last row in table 1.

Alternative formations of' (27) are shown in table 1. With some

differences in detail and specification the estimates in table 1 are similar

to those reported by Poterba [1981] and serve to corroborate his results.
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We report two sets of specifications. The first ignores any autoregressive

structure in the residuals, while the second allows the residuals to follow

an AR(2) process. The method of estimation is instrumental variables using

current and lagged exogenous variables as instruments due to the endogeneity

of Thus the estimators are consistent under alternative serial

correlation structures to those reported here.5 The data are not seasonally

adjusted; instead we have included seasonal dummies in the regression (not

shown), plus another shifter for the severe winter of 1979, to control for

the impact of weather in the new housing production function. The real

price variable in table 2 includes the real value of the site as well as the

structure, though similar results are obtained when only the structure price

is used. It should also be noted that the first—stage instrumenting

equation for P displays an of about .95 in all cases. This

"overfitting" of prices, common in time series, means that the point

estimates in the first half of table 2 differ little from least squares.

The impact of house prices on new construction is of primary

interest. Ignoring adjustment costs other than rising supply price, we find

strong supply respones to a change in the price of new homes. Evaluating

the point estimates at sample means, the implied supply elasticity ranges

between 1.1! and 2.2. Furthermore, the estimated price effects are not

sensitive to the specification of the error process. These relatively large

magnitudes appear to be consistent with the volatile nature of investment in

this sector as compared to the much smoother price series (illustrated in

section II).

The estimated response of investment to changes in interest rates

is surprising in terms of the framework of the model.6 In all models that

we have estimated, we find a strong response of housing starts to changes in
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both the real rate of interest and expected inflation, and the hypothesis

that the nominal rate of interest affects supply decisions cannot be

rejected. The reported specifications include both the ex ante real rate of

interest and the implied expected three month rate of price inflation. In

these and in subsequent models, the two components of the nominal rate have

very similar negative effects on supply decisions. To fix ideas on

magnitudes, the estimates in row 5 of the table imply that a one-point

increase in the annual real rate of interest reduces new construction by

about 8.0 percent, with a similar effect for a point increase in the rate of

inflation. When the model is extended to include both current and lagged

effects of these variables, both have statistically significant (and nearly

identical) negative effects on current supply.

The effects of interest rates on housing construction has often

been discussed in the literature (e.g., Muth [1960]), but we remain

surprised by this finding because most of these effects should be embodied

in house prices in an ideal housing market. There are coherent reasons why

changes in the nominal rate of interest may shift the demand for housing;

for example the structure of fixed rate mortgages imlies that higher nominal

interest rates increase current real interest payments on mortgage loans

(Kearl [1979]). These demand-side effects should reduce investment by

causing prices to fall. They should have no direct effects in and of

themselves, yet our result is that supply is shifted by the nominal rate,

price held constant. One interpretation of this is that there are

measurement problems in the price series.7 Another is that the lag

structure of the model (27) is too simple. A third is that the observed

price series is not market clearing: fluctuations in the nominal rate
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signal changes in the ability to sell new homes at the current price, and

hence they are added dimensions of the real price facing builders.

This last interpretation is supported by the finding that time—to—

sale affects construction activity. The variable denoted "Months" in table

1 is the median time on the market for new single family houses that are for

sale in month t. It is included to control for the amount of time that

builders hold completed new housing units before they are sold. It

therefore reflects a real cost (or a reduction in price). Again, our

finding is that price alone is not sufficient for the supply decision: new

investment decreases when builders have to hold the existing stock longer.8

Though our estimates of supply price elasticities are not very sensitive to

the inclusion of this variable, these results suggest that the pure auction

model of trade in homogeneous units of capital is not completely accurate.

Since incentives to inventory units of housing must be minor at best, the

data suggest that builders cannot liquidate units instantaneously at the

observed market price. Search by buyers among heterogeneous units may play

a role in explaining this finding, and remains to be investigated.

We experimented with other cost shifters in the supply function,

including the Boeckh index of construction input costs, the manufacturing

wage, and the average wage of construction workers. None had important

effects. To illustrate, row (4) of the table reports estimates that control

for the hourly wage of construction workers. After instrumenting to account

for rising supply price of labor to the industry, we find no significant

evidence that fluctuations in wages were important exogenous cost shifters

during the period of our data. Rather, wage fluctuations are endogenously

determined from shifts in the derived demand for labor.
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Rows (5) and (6) of table 1 report variants of the rising supply

price model when the errors follow an AR(2) process. The main results are

not much different than in the unrestricted case, though substantial serial

correlation in the residuals is found. This may be a characteristic of

unobserved cost shifters, or it may indicate that the model is misspecified

by the omission of internal adjustment costs.

The discrete—time analogue of (19) is

(28) It = + + a81EI1 + 8P +
83't + Vt

where Et is the expectation operator given current (period t) information, a

is a discount factor, and the coefficient 8i is non—negative and increasing

in the degree of interval adjustment costs (C22 in the notation of section

IV). Of course 82 > 0 and 83 < 0. The appearance of and EIt+i in (28)

adds some econometric complications. We continue to assume that some

elements of the vector of cost shifters, y, are unobserved, which accounts

for the error term in (28). Note that the expectation EtIt+i is unobserved

and, as before, Pt is endogenous. To write (28) in an estimatable form,

exploit the hypothesis of rational expectations and replace the unobserved

expectation with its realization, It+i:

(29) It =
BQ

+ + a81I1 + 82Pt + 8y + Vt - a81c1

where = — EtIt+1 is orthogonal to the information at t under

rational expectations. By construction I÷ and the composite error term

are correlated, and is not exogenous. To proceed, we assume that

E(x.vt) = E(y.vt) 0 at all lags j, so that lagged supply and demand
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shifters are valid instruments for arid P. Note that if v follows

some arbitrary time series process then and are also

correlated with the error, so that in general these supply and demand

shifters are the only valid instruments. Thus under our assumptions,

instrumental variables applied to (29) produces consistent estimates of the

parameters of interest.

Denoting the composite errors in (29) as n vt - aB1t÷1, the

error covariance at lag one Is

(30) E(ntnti) = E(vtvt
—

a1E(vtc)

Innovations to marginal cost shifters in vt are components of the forecast

error so that the expectation (30) is generally non—zero. This is

related to a point made by Hansen [1982]. Since E(vt) is positive, the

errors in equation (29) will be negatively correlated at lag one even if

is white noise. If, in addition, the errors v are correlated, this

negative correlation in may persist at higher lags. For example, if

is AR(1) with parameter 1.1, then

j j—1 j—1(31) E(ntnt.) a a = i E(ntn,)

We allow the errors in (29) to follow the process characterized by

(31). Denote the associated error covariance matrix by . Denote the

matrix of instruments by Z and the right hand variables in (29) by Y. Then

the asymptotic covariance matrix of the instrumental variables estimator

applied to (29) is
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(32) V(8) = Z)1Z'1j

Applying (31) in the case of first—order correlation in Vt, a consistent

estimate of i is obtained from

tt—2(33) 1j=

zntTlt—1

which allows construction of a consistent estimate of the covariance matrix

2 and hence construction of a consistent estimate of V(s).

If the errors v are truly AR(1), then it might seem appropriate

to quasi—difference the data using the autoregressive parameter p. In this

case the model becomes

= (1 + - + + - 11t-2 + +

— + 3t - + -

— = u — a1c1 +

where u is a white noise process. Equation (314) can be estimated by

instrumenting the relevant variables and imposing the nonlinear restrictions

that are implied across the parameters. In this case, p is estimated

directly with the other parameters of the model. However, the appearance of

the forecast error in (35) means that current demand and supply shifters,

and x, can no longer be treated as exogenous: these variables are in

the information set at t, and inric ions to these series are components of
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c. Thus y in (314) must also be instrumented and current demand shifters

must be dropped from the instrument list. On the other hand, lags of

investment and price are valid instruments under this assumption, so some

tradeoff in efficiency is involved. For this reason, we report estimates of

the parameters of (29) in both differenced (equation (314)) and

nondifferenced form.1°

Table 2 reports the estimates for the adjustment cost model. Rows

(1) (14) are based on equation (29), using only lagged supply and demand

shifters as instruments for investment and price. No specific time series

process for v is assumed for these point estimates, though in calculating

the asymptotic standard errors from (32) the parameter j.1 from (33) is used.

In all specifications of the model, the error covariarice at lag one is

negative, as is clearly possible from (30) or (31) if the covariance between

v and c is sufficiently large. This does not imply that the "true" errors,

are negatively serially correlated: the estimated autoregressive

parameter for v, based on (33), is always positive. Positive

autocorrelation is plausible if Vt represents unobserved cost shifters, as

assumed. When the quasi—differenced form of the model is estimated (rows

(5) and (6)) and .i is estimated directly, the autoregressive parameter is

slightly smaller, though still positive.

The main result in table 2 is that the simple time—invariant

rising supply price model of table 1 is rejected: the estimated Internal

adjustment cost parameter is numerically large and always more than triple

its estimated standard error.11 We estimate slightly smaller adjustment

costs in the quasi-differenced form of the model, but the fundamental

finding of the importance of these costs is not affected. The estimated

effect of the current asset price on current investment is correspondingly
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smaller, indicating differences in the response of current investment to

permanent and transitory changes in price, as well as differences between

short and long run production adjustments. The estimated tradeoff between

adjustment costs and the response of investment to a change in the asset

price is somewhat sensitive to the model's specification: the model in row

(1) of the table shows large adjustment costs and only a small current

investment response to price changes, but when lagged interest rates and

median time on the market are included in the model the immediate response

of investment increases substantially. Excluding row (1), the long run

effects of price on investment are not much different among the models in

table 2.

To illustrate these effects along the lines of section IV,

consider the one-s1ded solution to the stochastic difference equation (29):

(36) It = _.Q-. + 't-i + K1P. + K1Y.

where K is the forward stable root of the characteristic polynomial of (29),

given by

K1j-_{1 /1I4a2!

Note that as rises to 1/2, K approaches unity, so the effect of lagged

investment is increasing in . Applying (36), the current impact of an

unanticipated unit pulse in price that is thereafter expected to last

exactly T periods is
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dl K T
(37) = K -j - (1 — KT)

tT aB1 i=O 1
K

which is increasing in T. Note that even for T = 1, the estimated response

exceeds the estimated coefficient on price reported in the table because the

experiment in (36) allows future levels of planned investment to adjust

optimally.

As in section IV, the time path of investment in response to a

permanent change in P allows comparison between short and long run

supply response. Straightforward calculations show this time path to be

dl.
(°8)

t+j 2 K 1
(1 K)3+1dP a1 1—K 1—K/a a

which is increasing in j. The change in long—run equilibrium levels of

investment is obtained by letting j -

dI* ____ K 1

dP a81 lK 1—K/a

Table 3 reports supply responses for models (1), (2), and (6) in

table 2. For ease of interpretation, the effects are expressed as

elasticities evaluated at sample means. For example, the first entry of

0.72 corresponds to equation (37) with T = 1, B1 = .496, and B2 = 805.76.

For these parameters the impact of adjustment costs on supply decisons is

large (K = .82), so adjustments are spread over a long period of time (see

panel B). The current response to a permanent price increase has an

elasticity of 4.0, and the long run supply elasticity is nearly 24.0. These
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estimates are very large because no allowance is made for time—to—sale

effects and is apparently overestimated in that specification. Tne other

two models produce smaller though still important effects of adjustment

costs. In these models, a permanent price increase has about a 50 percent

more impact on current investment than a one—period price shock. However,

almost all of this difference is accounted for by a relatively short

disturbance lasting one year. In our judgement the best estimate of' the

long run elasticity of supply is for model (2), which 'roduces an elasticity

of 2.76. For comparison, the rising supply price model in table yielded

an elasticity of 2.08 for both long and short run price changes.

VI. DEMAND

A large portion of our time and effort on this project has been

devoted to the demand side of the market, represented by the first equation

in (6), after making adjustments for income tax features of home ownership

in the rent—stock price equation (3) —— see appendix C.12 Per capita

income, unemployment rates, the rate of family formation, and fuel prices (a

proxy for operating costs) serve as observable demand shifters (x(t)). We

do not subscribe to a labor theory of value, so this section will be brief.

All attempts to estimate this equation have been unsuccessful. In

retrospect this failure is perhaps not surprising because of two serious

data problems.

Estimating the demand equation in (6) requires constructing a

time—series for the stock Kt using the perpetual inventory method.

Available benchmarks are subject to substantial error. Furthermore, data on

renovation and maintenance components of investment of existing homes are

not of the comparable quality as the new investment series. Measured
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investment represents such a small fraction of existing stock that the

imputed stock series is practically indistinguishable from a pure trend over

the sample period. There is simply not enough intertemporal variation in

the constructed stock series to provide usable information for estimating

the slope of a demand curve.

This difficulty is conceptually circumvented by taking quasi-

differences and estimating the discrete analog of (26b). Then only directly

measured I, not Kt, appears in the equation. But this solution introduces

another problem that is equally serious. Prices appear in second difference

form in (26b), and differencing compounds measurement errors and data timing

problems (see footnote 7) in the price series. It reduces the signal—to—

noise ratio to remarkably small proportions, especially given the extensive

statistical manipulations required to deal with simultaneity and serial

correlation induced from differencing. The resulting estimates of (26b) are

wildly unstable and unacceptably sensitive to minor changes in specification

and data period. They are worthless. Major research effort must be made to

generate more meaningful data before this can be taken as serious evidence

against the basic framework of the model.

Figure J4 shows a constructed time series for the ex post implicit

rental price Rt imputed from the tax adjusted equivalent of (3) using the

new house price series in section V. The scaling of Rt is in index form

because P is a price index. The noise in this series is to be expected

from the importance of capital gains in the formula, which varies from

quarter to quarter. A more disturbing aspect of figure 14 from the point of

view of theory is the low average level of implicit rent during the 971479

period, when the relative house prices increased dramatically. Feldstein

[982] has plausibly argued that inflation increases the subsidy to home
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ownership due to the personal income tax. This makes housing a more

attractive investment and causes housing prices to rise. Figure U shows

that the argument needs more detail. If the demand for housing services

remained unchanged, the first order effect of the greater subsidy is

capitalized In house prices. Rents would remain unchanged at given stocks.

There is a second order effect on rents because the increase in prices

signals more construction: rents fall as the stock rises. However, this

decline should be small because new construction adds only small increments

to the stock and the price elasticity for housing services is not inelastic

(it is thought to be around unity). Figure U shows that rents fell

substantially during 1974—79 and were actually zero or negativ. in many

quarters.

The series shown is ex—post, not ex—ante anticipated real rent.

Therefore it is possible that the ex ante series would show a much shallower

decline, If the market on average underpredicted capital gains over this

period (due to underprediction of general price inflation; recall that ex

post real interest rates were negative in this period). Our attempts to

estimate ex ante rent using instrumental variables methods produced

identical results as in figure 14, due to the overfitting—of—prices mentioned

above. We simply have no way of testing whether expected gains calculations

approximate "true" expectation over this volatile period.

There are other possibilities. First, the asset pricing equation

is built on the premise of certainty equivalence. Rosen, Rosen and Holz—

Eakin (984) have argued that the increase in relative house prices was

accompanied by Increased uncertainty. This is no doubt true, but it would

call for an increased risk premium in the mortgage interest rate.13 There

is no persuasive evidence that real mortgage rates rose over the period or
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that mortgage credit was seriously rationed. Since much of this risk would

be borne by creditors, it remains to be explained why banks and mortgage

institutions would be willing to eat so much of it without commensu•rate

compensation. Second, the decline in Rt may reflect excessive speculation

based on differential inflationary expectations. House financing charges

looked very cheap (even negative) to those persons anticipating very high

rates of inflation. Gains from trade would exist if others had the opposite

expectations. There is evidence that transactions and roll over of the

stock of existing homes increased during this period. Finally, the big drop

in Rt could reflect a decline in demand for services of single family homes.

The productivity slowdown, increased fuel prices, declining rates of family

formation, increasing marital instability and declining fertility rates all

work in the direction of reduced demand. But these changes could not

produce negative rentals and were not exclusively confined to 19714—79. They

cannot fully account for the pattern in figure 14.

VII. SUMMARY AND CONCLUSIONS

This work has explored the connection between prices and

investment in new single family dwelling units in the U.S. during the past

20 years. Informal evidence that investment is positively correlated with

factor prices and construction costs and also with housing prices supports a

view of investment based on rising supply price in a competitive

construction sector. A formal model of this idea was spelled out and shown

to be related to adjustment cost and q—theory. Its main predictions are

consistent with what is generally known about this market, that investment

in new housing increases when the demand for new housing services increases

or when the marginal cost of construction declines. Housing construction
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falls off when interest rates rise. There are more subtle implications

about timing and current response to anticipated future chanegs in demand

and supply as well. The most important practical implication of this simple

model is that all these events are filtered through a decentralized market

mechanism in which asset prices play their familiar resource allocating

role. This mechanism is socially efficient if expectations are rational

because asset prices serve as sufficient statistics embodying all available

information. This model implies a direct and important behavioral supply

relationship linking current asset prices to current investment that is easy

to estimate.

This simplicity, however, comes at a considerable cost because it

rests on the key assumption that there are no differences between short— and

long—run elasticities of supply. Short run immobility of factors tends to

provoke such differences. These are approximated by a model in which

internal adjustment costs are superimposed on increasing marginal cost.

This model simulates one in which long—run housing supply is more elastic

than short—run supply. Furthermore, the response to transitory changes in

demand and supply shifters and interest rates is smaller than the response

to permanent changes. The sufficiency of current price data for supply

decisions is lost in this enriched model. Builders must anticipate future

prices in making current construction decisions when supply is not time-

invariant. Nevertheless, a conceptually straightforward, though

computationally complex procedure for estimating the supply function is

available in this case.

The empirical findings strongly support the view that housing

prices influence the level of construction activity. The estimates

definitely favor a model in which short—run supply is less elastic than
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long—run supply, but they also show that the differences between short— and

long—run supply converge rapidly, within the time frame of a year. There

are good economic reasons for this. Labor is not 'highly specific to the

house construction Industry and huge seasonal and cyclical fluctuations in

construction activity promote a type of adaptability and built—in

flexibility In industrial organization that enables resources to flow in and

out rapidly in quick response to changing conditions. We expect less

adaptability for other investment goods industries in the economy and

therefore greater differences between short- ari long-run supply than are

found in the home builiding industry. Since q—theory is essentially a

version of the model in which supply is time invariant (so only "current q"

matters), we expect an improvement in the fit of these models from the

considerations raised in this work.

Inadequacies of data have not allowed meaningful estimates of the

demand side of this market. However, our empirical investigation has

uncovered some apparent anomolies with asset pricing theory that will have

to be incorporated into a more complete model. First, nominal interest

rates affect supply decisions. Many investigators have attributed this to

credit market imperfections, and it is certainly true that the interest rate

measures used here do not include elements of availability and rationing of

credit. Even so, most of these factors should be reflected in house prices

and work themselves out in that indirect way rather than directly. A

related finding Is that the time required to sell a finished house exerts an

important direct effect on housing investment. Incomplete data we have

uncovered on total house sales suggests that the level of construction

activity is highly correlated with transactions volume and overall sale

activity among existing homes. Asset pricing theory of homogeneous goods
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makes no reference whatsoever to the volume of transactions. Whatever the

technology of supply all available current information should be embodied in

current house prices: the volume of overall trans3ctions activity or time—

to-sale should have no independent effects. We conjecture that analysis of

heterogeneity of dwelling units and search and matching considerations

between buyers and sellers will be necessary to fully understand these

findings. However that works out, convincing evidence has been presented

that the supply of new housing has substantial price elasticity. Surely

elastic supply price is an important consideration for understanding the

great variability in housing construction activity.
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FOOTNOTES

*UCLA and University of Chicago, respectively. We are indebted to
Lars Hansen, Kevin M. Murphy and Michael Mussa for helpful discussions and
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David Ross provided excellent research assistance.

1Large seasonal variations in construction activity mask longer
term fluctuations. Annual data are shown to highlight the major cyclical
movements, though quarterly data are used in the empirical work. Construc-
tion activity in the summer is twice as large as in the winter, so seasonals
rival cyclical components in amplitude. Since this industry is geared to
moving substantial resources in and out from quarter—to—quarter, we expect
this built—in flexibility to carry over to longer term fluctuations and
sustain a relatively large elasticity of supply. This intuition is con-
firmed in the estimates.

2These statements require symmetry in costs between construction
and demolition. Analysis is more complicated if investments are irrevers-
ible or if stock reductions involve a different cost structure than stock
additions. These refinements are ignored because they are well known and
because negative gross investment is not observed in the aggregate data.

3me method described does not cover the case of a variable inter—
est rate because then one of the coefficients in (6) is time—varying.
However, the pasting algorithm covers this case so long as the time path of
r(t) can be approximated by step functions. For example, the reader is
invited to verify that the qualitative solution for an anticipated positive
pulse in r(t) is very similar to the experiment described in figure 3, but
with opposite signs. If the pulse is not anticipated (a "surprise"), the
first unstable arrow does not apply —— the system jumps immediately to the
second unstable arrow. In either case, changes in interest rates have the
usual predictable consequences for construction activity and asset prices in
this model: increasing Interest rates reduce investment and decrease
prices.

It is well known that complex roots and endogenous cyclicality do
not arise in most economic problems where there is a single state variable.
The model of section III is a primary example. Higher order dynamics must
be built into the system or there must be several state variables to produce
complex roots. The current problem Is an example of the former, since costs

may be thought of as a function of K and K. Benhabib and Nishimura [1979]
present an interesting recent example of the latter.

5The instruments are listed at the bottom of the table. We chose
not to Include lagged endogenous variables in the instrument list due to the
possibility of more complicated error structures than the one we estimate.
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6The real rate used is the one-step—ahead forecast from an
estimated AR(2) regression in the first differences of the real rate,
following a method of Fama and Gibbons [1982]. Since r is estimated,

standard errors must be corrected. The methods derived by Topel and Murphy
[1985] are used for this.

7lhere may be selection problems in these data because they are
constructed from actual transactions. For example, if there are no sales in
a particular location in some quarter, that location gets no weight in the
price index. We do not view this as a serious problem for ascretairiing the
overall connection between construction and price movements, because it
approximates the appropriate "marginal't concept. However, it may interfere
with making more detailed inferences concerning timing and lags. Also,
approximately 25 percent of units are built on contract and the rest for the
market at large. This introduces some noise, for our purposes, in linking
starts with prices on a quarter—to—quarter basis. Experiments with one—

quarter leads and lags of prices and with two—quarter price averages
revealed that the estimates of supply parameters are insensitive to these
refinements.

8We have considered the case where Months is endogenous. The
results when this variable is instrumented differ trivally from those
reported here.

9This assumption affects only the calculations of standard errors
In equation (32) with our estimation procedure. Point estimates are inde-
pendent of assumptions about the error process for Vt.

10Higher order AR process for v were also estimated, but the

results were not materially different from those reported in table 2.

111n estimating the coefficients on and EI+i are

restricted to differ only by the discount factor a, which was set at .98.
This restriction was not rejected in any form of the model at any
conventional significance level. The estimates are insensitive to the
choice of a in this neighborhood, that is, a is not precisely estimated.

12The stochastic version of (3) is in the form of the efficient—
market—hypothesis in finance. Rt plays the same role as the dividend yield

on a stock. Asset prices do not necessarily follow a martingale (random
walk) unless the dividend return is properly accounted. Single family
housing is largely owner—occupied so Rt is not observed but is a regression

function of and x, by (1). Thus housing prices will not follow a random

walk unless and x do (which is implausible in this model). In fact the

price series for new houses is well described by an AR(2) process over the
entire sample period.
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13For dramatic illustration, suppose agents expect the market to
crash at some random time in the future, and that if it does crash, housing
will lose all value thereafter. f(t) is the probability that the market
will crash at t and 1 — F(t) is the probability it will survive longer than
t, with f(t) = F'(t). Then the probability of death at t given survival up

t
to t is f(t)/(1—F(t)) h(t). It follows that 1 — F(t) exp —fh(t)dt. If

0
t

a house survives exactly t periods an owner will receive value JR(s)e rsd5
0

This occurs with probability f(t), so the expected value of a house under
these circumstances is

t t

ff(t)fR(s)e rsdd 1(1 - F(t))R(t)etdt = IR(t)exp(-rt - fh(-r)d-r)dt. The
0 0 0 0 0

possibilities of a crash increase the effect rate of discount and require an
extra risk premium. If h(t) = h for all t the connection between stock and

flow prices becomes R P(r + + h — PIP).
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APPENDIX A

Compare the text model (1) — (5) with the conditions necessary to

maximize social surplus in the presence of adjustment costs. Consider a

central planner choosing to maximize the social surplus of housing services

over an infinite horizon and facing a social adjustment cOst technology

C(I), with positive and increasing marginal cost: C', C" > 0. Let F(K) be

the inverse demand function for housing services at any time. Then the

total flow valuation of housing stock level K is the area under the demand

K( t)

curve or f F(z)dz = V(K(t)).
0

Following Lucas [1981] an altruistic social planner chooses a net

investment sequence c<(t) to maximize the present value of net social

surplus,

K(t)
(A.1) J [ f F(z)dz — C(1(t) + SK(t))]e'tdt

0 0

subject to the boundary condition K(O) = K0. One necessary condition for

maximization of (A.1) is the Euler condition (recalling I = K + K)

(A.2) F(K(t)) - Co + r)C'(I(t)) = C'(It)

The other is a transversality condition: limC,(I)ert = 0, which provides a
t-

boundary condition for solving (A.2). The solution is

(A.3) C'(I(t)) = I F(K(s))e(05t)ds
t
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Now F(K(t)) is nothing more than the demand price for the services of the

stock at t, or R(t), so the right hand side of (A.3) is the marginal social

value of a unit of stock. The left hand side is its marginal social cost.

Thus (A.3) implies that if intertemporal prices are consistent in the sense

of condition (3), then competitive market production decisions that equate

marginal construction costs to the price of a house are surplus maximizing.

In a competitive market, (A.2) is equivalent to (3), and (A.3) is equivalent

to (5). Equation (2) —— the market supply function —— reflects the price

equals marginal cost conditions since the integral in (A.3) is P(t).

Finally equation (1) is just the definition of F(K). The decentralized

market solution duplicates the surplus maximization problem, so long as the

market can enforce boundary condition (a). If we assume a set of rational

speculators, then the transversality condition must be satisfied to keep

their wealth bounded, though we have little to add to the extensive

literature on this particular point (e.g., see Scheinkman).

Early applications of adjustment cost theory proceeded by approxi-

mating the Euler equation and deriving flexible accelerator formulations of

investment, though with inadequate treatment of expectations. Another

approach estimates the complete solution to (A.2) based on quadratic ap-

proximations to F(K) and C(I). Neither method exploits information on the

market value of a unit of capital. A third method, related to q-theory, is

based on an envelope theorem type result. Write the maximized value of the

expression in (A.1) as V(K0). Then V(K0) is the market value of a "firm"

with capital stock K0 and the gradient of this function gives the shadow

price of an additional unit of capital (Mussa [1977]; Ben Veniste and

Scheinkman [1979]). This provides a basis for estimating the "demand price"
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for a unit of capital from stock and bond market data relating to "average—

q" (e.g., Summers [1981]). The virtue of the housing market data at our

disposal is that it gives a direct reading of Vt(K0), which is simply the

price of a house arid which is directly observed in the data. No fancy

manipulations are needed to estimate the structural equation (2).
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APPENDIX B

We sketch the nature of the solution to (26). Define the operator

A = rD - D2. Writing (26) in matrix form and inverting shows that the pair

of second order equations can be written as two fourth order equations, one

for 1(t) and the other for P(t). The one for 1(t) is

(B.) [(1 + BA)(1 + A) — 11(t) f(t).
22

where

(B.2) f(t) = — [B( + ox) - (1 +
BA)(C1

+
rC2

+
C13y)].22

Factoring the polynomial in A in (B.1) as (A — p1)(A
—

p2), the solution for

investment is of the form

(B.3) 1(t) [(A - p1)(A
- p2)]1f(t),

with characteristic roots

—(B+) + / [B+ 2—14B(l— .)]
(B.14) p

2B8

Unlike section III, these roots may be either real or complex. In either

case, corresponding to each root p. there are roots (A11, A12) that solve

the polynomial D2 - rD + = 0, and which therefore satisfy X2 = r - A.
Thus, of the four roots two, say A and A21, are positive and larger than r
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(or have positive real parts), and two are negative, say A12 and A22 (or

have negative real parts). If the p—roots are complex, then the A—roots

must be also.

Using the identity A = rD — D2, some algebra establishes the

operator in (B.3) is as

[(A - p1)(A
- p)]1 = A [(D - A11)1

- (D -
A12)1]

p1 p2 11 12

—

A21 A22

[(D -
A21)1

— (D —
A22)J}

where the operators (D — A)1 were defined in section III. Applying these

formulas and the transversality condition that investments have finite

present value, the complete solution for current investment is

—A (s—t) —A (s—t)
(B.5) 1(t) = - )(X -A )

J f(s)e ds + - )(A -A )
I f(s)e 21

ds

p1 p2 11 12 t p1 p2 21 22 t

A t t —A (s—t)
12 1 r 12

+
A1e

— ( — )(A —A )
f(s)e ds

p1 p2 11 12 0

A t t —A (s—t)
22 1 r 22

+
A2e

+
C — )(A —A )

J f(s)e ds
p1 p2 21 22 0

where A1 and A2 are constants that can be determined by specifying the

initial conditions 1(0) and f(0). Since A12 and A22 have negative real

parts, these terms vanish for large t.

The solution (B.5) is of interest for studying investment

dynamics because it is not possible to use phase—plane methods. The
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definition of f(t) in (B.2) implies that increases in the demand shifters

increase the forcing function while increasing cost shifters reduce it.

Examining (B.5), the weight on f(s) for arbitrary s is, when the roots are

real,

—A21(s—t) —A11(s—t)
(B.6)

1 e — e
j for s > t12 2A21—r 2A11—r

—A22(s—t) —A12(s—t)
1 re e
— I — j for s<t

' p2 2A1—r 2A11—r

making use of the fact that A. r — A. . To evaluate these effects, let
11

p1 be the large root. Then p = A11(r
—

A11) implies, for real roots, that

r < A21 < A11, so the weight on the forward looking part in the first

expression in (B.6) is positive. The building—ahead—of—anticipated—future—

demand feature of the simpler model is preserved here. A similar argument

for the negative roots establishes that A12 is smaller than A22. Since the

(s—t) term is negative in the backward looking second expression in (B.6),

the overall expression is negative. The second term in that expression is

larger than the first. For example, events that increased demand in the

past tend to make investment negative at the present time, reflecting the

natural response to the previous building that occurred to meet those prior

increases in demand. All—in—all the distributed lag and lead responses to

anticipated demand and supply shifters are qualitatively similar to those of

section III. However, the responses to a similar type of demand shift are

not as large due to the added adjustment cost. Internal adjustment costs on

top of rising supply price dampen the output responses to shifts in demand.



B.11

These effects are less obvious when the roots are complex, say

p1 = a + bi and p2 = a — bi. In this case the four A—roots of the

characteristic polynomial in (B.1) occur in complex conjugate pairs, so that

X11
+ j, 21 = — Yl where I = b(r —

2A0)1 and I < 0. Using the

identity e = cos x + isin x, the lead and lag effects in (B.5) are

'-A0(s—t)
e

2 2
{2IcosI(s — t) +

(2A0
— r)sinI(s — t)}, S > t

I(2A0—r)[(2A0—r) +Lrr ]

(B .7)

—(r+A0) (s—t)
e

2 2
{2IcosI(t — 5) +

(2A0
— r)sinI(t — 5)1, s < t

I(2A0—r)[(2A0—r) +'4y i

I < 0 implies that these effects on period t investment are always positive

when s is sufficiently close to t, and their magnitude is declining in

s — t, as above. Curiously however, these effects are negative for some

values of s. The weight functions have wiggles which drop off in a

damped sinusoidal manner. At certain leads and lags increases in the flow

demand for capital may reduce current investment. The response to a

predicted or past positive demand disturbance can produce damped oscilla-

tions in investment in which production actually falls below its long—run

equilibrium level in some periods. Inspection of the definitions of the

roots shows that oscillations in investment can occur only when demand is

sufficiently inelastic.
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APPENDIX C

Time series data used in the empirical work were obtained from the

following sources:

1. New Single Family Housing Prices: The price data are obtained

from a survey conducted by the Bureau of the Census since 1963. The data

are for new single family homes actually sold during the reference period.

Series are available that both include and exclude the estimated site value.

The index itself is obtained from a hedonic regression of actual price data

on a vector of house characteristics in each year, and the index used refers

to predictions from this procedure using characteristics of a standard 1977—

quality house. Source: U.S. Bureau of the Census, New One—Family Houses

Sold and for Sale, Construction Reports c25.

2. Investment: Housing starts are new one—unit structures on

which construction was started during the reference period. Source: U.S.

Bureau of the Census, Construction Reports, series c20.

3. Interest Rates: The nominal rate of interest at time t for

the supply function is the three month treasury bill rate quoted on the last

day of period t—1 . These are taken from the quote sheets of Salomon

Brothers, and are available in machine readable form from the Center for

Research in Securities Prices at the University of Chicago. The

decomposition of the nominal rate into a real and expected inflation

components is described in footnote 6. Mortgage interest rates for first

mortgage loans on single family homes are published by the Federal Home Loan

Bank Board. The series used refers to the effective interest rate on

twenty—five—year maturity loans with a loan to price ratio of 25 percent.



C.2

4. Months: Median time (in months) on the market for new single

family housing units that are sold during the reference period. Source:

unpublished data obtained from the Bureau of the Census.

5. Boeckh Cost Index for small residential structures: A

weighted average of construction Input prices, with weights depending on

survey responses. Source: U.S. Department of' Commerce, Bureau of

Industrial Economics, Construction Review.

6. Lumber Price Index: Source: U.S. Bureau of Labor Statistics,

Producer Prices and Price Indexes.

7. Personal Consumption Expenditures. Source: U.S. Bureau of

Economic Analysis, The National Income and Product Accounts of the U.S.

8. Hourly wage rates for construction and manufacturing: U.S.

Department of Labor, Bureau of Labor Statistics, Employment and Earnings,

various issues.

9. Families: The number of married couple family households.

Source: U.S. Bureau of the Census, Current Population Reports, series p-20.

10. Fuel Price Index: Source: U.S. Department of Labor, Bureau

of Labor Statistics, Monthly Labor Review.

fl. Real Implicit Rental Price: Define the Income—tax—adjusted

real interest rate as r — (1 — i)i — ir, where is the nominal mortgage

Interest rate, is the marginal income tax rate, and is the rate of

Inflation. Familiar manipulations of the present value formula yield the

anticipated real rent as the expected present value of a round—trip buy and

sell transaction over one quarter (Ignoring transactions costs):

Rt = P —
EPt+,(l_6)/(l+rt), where is the real asset price described
t

above and is the quarterly depreciation rate, calculated at .0035 per

quarter from a perpetual inventory method. This expression ignores
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maintenance expenditures and property taxes, and assumes full mortgage

finance and no taxation of capital gains (see Hendershott and Hu [198] for

a discussion of those refinements). The ex post numbers shown in figure

replace the expectation with realized values, and assume that capital gains

are taxed at rate r. Assuming no taxation of capital gains yields a series

with the same general appearance but with more pronounced fluctuations and a

much larger drop In rent during 19714—79. Several alternative estimates of

were tried. One is Barro and Sahasakul's [1983] estimates of the average

marginal tax rate; the other is the estimated tax bracket that makes tax—

free municipal bonds a marginally profitable investment. is set at 0.3

in figure 14• The time—series character of the series is insensitive to

these differences in taxes.
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Table 3

Estimated Supply Elasticities for

Permanent and Transitory Price Changes

(evaluated at sample means)

A: B:

Current Response to a Price Response by Quarter T to a

Shock Lasting T Quarters Perii.nent Price Increase

T=1 T=lt T=8 T=co T1 T=l T=8 T='

Model 1: A.82 O.T2 2.18 3.15 3.91k 3.914 12.27' 18.22 23.83

Model 2: X=.3 1.014 i.61 1.68 1.68 i.68 2.69 2.76 2.76

Model 3: A.22 1.18 1.51 1.51 1.51 1.52 1.93 1.93 1.93

Note: A is the forward—stable root of the characteristic polynorninal of Euler

equation (5.14).


