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ABSTRACT

Momentum strategies exhibit rare but dramatic losses (crashes), which we show are a result of the 
leverage dynamics of stocks in the momentum portfolio. When the economy is in a hidden 
turbulent state associated with a depressed and volatile stock market, the short-side of the 
momentum portfolio becomes highly levered, and behaves like a call option on the market index 
portfolio, making momentum crashes more likely. We develop a hidden Markov model of the 
unobserved turbulent state that affects the returns on the momentum strategy and the market 
index portfolios. We find that the use of a combination of Normal and Student-t distributions for 
the hidden residuals in the model to construct the likelihood of the realized momentum and 
market index returns dramatically improves the models ability to predict crashes. The same 
variable that forecasts momentum crashes also forecasts the correlation between momentum 
strategy and value strategy, two of the benchmark investment styles often used in performance 
appraisal of quant portfolio managers. The correlation is conditionally negative only when the 
probability of the economy being in a turbulent state is high. The conditional correlation is zero 
otherwise, which is two thirds of the time. Half of the negative value-momentum relation is due 
to leverage dynamics of stocks in the momentum strategy portfolio. The other half is due to a 
hidden risk factor, likely related to funding liquidity identified in Asness et al. (2013), which 
emerges only when the economy is more likely to be in the turbulent state.
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Price momentum can be described as the tendency of securities with relatively high (low)

past returns to subsequently outperform (underperform) the broader market. Long-short

momentum strategies exploit this pattern by taking a long position in past winners and an

offsetting short position in past losers. Momentum strategies have been and continue to be

popular among traders. A majority of quantitative fund managers employ momentum as a

component of their overall strategy, and even fundamental managers appear to incorporate

momentum in formulating their trading decisions.1

Notwithstanding their inherent simplicity, momentum strategies have been profitable

across many asset classes and in multiple geographic regions.2 Over our sample period of 1044

months from 1927:01 to 2013:12, our baseline momentum strategy produced monthly returns

with a mean of 1.18% and a standard deviation of 7.94%, generating an annualized Sharpe

ratio of 0.52.3 Over this same period the market excess returns (Mkt-Rf) had annualized

Sharpe Ratios of 0.41 and the CAPM alpha is 1.52%/month (t=7.10).4

While the momentum strategy’s average risk adjusted return has been high, the strategy

has experienced infrequent but large losses. The historical distribution of momentum strat-

egy returns is highly left skewed. Consistent with the large estimated negative skewness,

over our sample there are eight months in which the momentum strategy has lost more than

1Swaminathan (2010) shows that most quantitative managers make use of momentum. He further esti-
mates that about one-sixth of the assets under management by active portfolio managers in the U.S. large
cap space is managed using quantitative strategies. In addition Jegadeesh and Titman (1993) motivate their
study of price momentum by noting that: “. . . a majority of the mutual funds examined by Grinblatt and
Titman (1989; 1993) show a tendency to buy stocks that have increased in price over the previous quarter.”

2Asness et al. (2013) provide extensive cross-sectional evidence on momentum effects. Chabot et al.
(2014) find the momentum effect in the Victorian era UK equity market.

3Our baseline 12-2 momentum strategy, described in more detail later, ranks firms based on their cumu-
lative returns from months t−12 through t−2, and takes a long position in the value-weighted portfolio of
the stocks in the top decile, and a short position in the value-weighted portfolio of the bottom decile stocks.

4Over the same period, the SMB and HML factors by Fama and French (1993) had annualized Sharpe
Ratios of 0.26 and 0.39, respectively, and the Fama and French three-factor alpha is 1.76%/month (t=8.20).
From 1967:01 to 2013:12, the I/A and ROE factors by Hou et al. (2015) achieved annualized Sharpe Ratios
of 0.81 and 0.77, respectively, the Hou et al. (2015) four-factor alpha of momentum strategy returns is
0.39%/month (t = 1.07). Lastly, the annualized Sharpe Ratios of CMW and WMA factors in Fama and
French (2015) are 0.41 and 0.57, respectively, and the associated five-factor alpha is 1.34%/month (t=4.03).
The t-statistics are computed using the heteroskedasticity-consistent covariance estimator by White (1980).
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30%, and none in which it has earned more than 30% (the highest monthly return is 26.18%).

Moreover, the strategy’s largest losses have been extreme. The worst monthly return was

-79.57%, and six monthly losses exceed 40%. Normality can easily be rejected. Also, as

Daniel and Moskowitz (2016) document, these large losses cluster, and tend to occur when

the market rebounds sharply following a prolonged depressed condition.

The focus of this paper is modeling time variation in the tail risk of momentum strategies.

We argue that the way momentum strategy portfolios are constructed necessarily embeds

a written call option on the market portfolio, with time varying moneyness. The intuition

here follows Merton (1974): following large negative market returns the effective leverage

of the firms on the short side of the momentum strategy (the past-loser firms) becomes

extreme. As the firm value falls, the common shares move from being deep in-the-money

call options on the firm’s underlying assets, to at- or out-of-the-money options, and thus

start to exhibit the convex payoff structure associated with call options: the equity value

changes little in response to even large down moves in the underlying firm value, but moves

up dramatically in response to large up moves. Thus, when the values of the firms in the

loser portfolio increase—proxied by positive returns on the market portfolio—the convexity

in the option payoff results in outsized gains in the past loser portfolio. Since the momentum

portfolio is short these loser firms, this results in the dramatic losses for the overall long-short

momentum portfolio.

Interestingly, this same apparent optionality is observed not only in cross-sectional equity

momentum strategies, but also in commodity and currency momentum strategies (see Daniel

and Moskowitz (2016)). Related arguments suggest that effective leverage is likely to be the

driver of this same optionality: in the case of commodity momentum, this option-like feature

likely arises from the lower bound on variable costs associated with production, the option

to shut down, and the lead times involved in adjusting production. In the case of currencies,

central bankers tend to lean against the wind and when that effort fails currency prices tend
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to crash. Further, those who engage in currency carry trades borrow in the low interest rate

currency and lend in the high interest rate currency. When interest rate differentials change,

sudden unwinding of large currency trade positions due to margin calls can lead to large FX

momentum strategy losses. For example, during 1997-98, the US dollar interest rates were

higher than the Yen interest rates, and the US dollar was steadily appreciating against the

Yen before crashing in October 1998. One explanation for the sharp rise of the Yen against

the US dollar is the drop in US interest rates and the sudden unwinding of Dollar-Yen carry

trade positions by hedge funds with weaker capital positions from exposure to 1998 Russian

crisis.5

For US common stocks, we show that the dynamics of reported financial leverage are

consistent with this hypothesis: going into the five worst momentum crash months, financial

leverage of the loser portfolio averaged 47.2, more than an order of magnitude higher than

unconditional average of 3.97.6 However, a firm’s financial leverage is not a good proxy for

that firm’s effective leverage: firms have many fixed costs distinct from the repayment of their

debt, including the wages of crucial employees, the fixed costs associated with maintenance

of property, plant and equipment, etc. If these fixed costs are large, even a firm with zero

debt may see its equity start to behave like an out-of-the-money option following large losses.

A recent episode that is consistent with the view that non-financial leverage can increase

option like feature was the collapse of many “dot-com” firms in the 2000-2002 period, where

large drops in the values of these firms did not lead to large increases in financial leverage,

yet clearly affected the operating leverage of these firms.

Because it is difficult to directly measure the effective leverage—operating plus financial—

of the firms that make up the short-side of the momentum portfolio, we instead estimate the

leverage dynamics of the momentum portfolio using hidden Markov model that incorporates

this optionality. In the model, we assume that the economy can be viewed as being in one

5See 69th Annual Report of the Bank for International Settlements, page 107.
6These are the averages over the 1964-2013 period over which we have data on the book value of debt.
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of just two unobserved states, calm and turbulent. We develop a two-state hidden Markov

model (HMM) where the momentum return generating process is different across the two

states, and estimate the probability that the economy is in the unobserved turbulent state

using maximum likelihood. Our HMM specification can be viewed as a parsimonious dynamic

extension of the return generating process in Henriksson and Merton (1981) and Lettau et al.

(2014). One striking finding is that, while the momentum returns themselves are highly left-

skewed and leptokurtic, the residuals of the momentum return generating process coming

out of our estimated HMM specification are Normally distributed.7 A key component of the

HMM specification is the embedded option on the market; by looking for periods in time

where the optionality is stronger, we can better estimate whether a momentum “tail event” is

more likely. Consistent with this, we find that the HMM-based estimate of the turbulent state

probability forecasts large momentum strategy losses far better than alternative explanatory

variables such as past market and past momentum returns and their realized volatilities or

volatility forecasts from a GARCH model that can be viewed as realized volatility computed

using all past observations with more weight to the immediate past.

Interestingly, we find that it is the incorporation of the optionality in the HMM that

is key to the model’s ability to forecast these tail events. A version of the HMM which

incorporates all other model components (i.e., the volatilities and mean returns of the both

the market and the momentum portfolios), but which does not include the optionality, is not

as successful: the model without the optionality produces about 30% more false positives

than the baseline HMM specification, suggesting that the historical convexity in the relation

between the market and momentum portfolio allows better estimation of the turbulent state

probability. Intuitively, increasing leverage in the past loser portfolio, identified by the HMM

as an increase in the convexity of the momentum strategy returns, presages future momentum

7In contrast, the market-returns residuals have a Student-t distribution with 5 degrees of freedom. We ac-
count for this non-Normality in one our HMM specifications and find that accounting for this non-Normality
substantially improves the performance of the model in forecasting tail-events.
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crashes.

The literature examining price momentum is vast. While the focus in this literature has

been on documenting and explaining the strategy’s high average returns8 and unconditional

risk exposures, a more recent literature has focused on characterizing the time variation in the

moments. Barroso and Santa-Clara (2015) study the time-varying volatility in momentum

strategy returns. Daniel and Moskowitz (2016) find that infrequent large losses to momentum

strategy returns are pervasive phenomena — they are present in several international equity

markets and commodity markets — and they tend to occur when markets recover sharply

from prolonged depressed conditions. Grundy and Martin (2001) examine the time-varying

nature of momentum strategy’s exposure to standard systematic risk factors. In contrast

to most of this literature, our focus here is on the strategy’s tail risk. In particular, we

show how this tail risk arises, model it with our HMM, estimate this model and show that

it captures these important tail risks better than other forecasting techniques suggested by

the literature.

Our findings also contribute to the literature characterizing hidden risks in dynamic

portfolio strategies and the literature on systemic risk. For example, Mitchell and Pulvino

(2001) find that merger arbitrage strategy returns have little volatility and are market neutral

during most times. However the strategies effectively embed a written put option on the

market, and consequently tend to incur large losses when the market depreciates sharply.

When a number of investors follow dynamic strategies that have embedded options on the

market of the same type, crashes can be exacerbated with the potential to trigger systemic

responses.

While our focus is in modeling systematic stochastic variations in the tail risk of momen-

tum returns—which we find is due to its embedded option on the market like features—our

findings also have implications for estimating the abnormal returns to the momentum strat-

8 See Daniel et al. (1998), Barberis et al. (1998), Hong and Stein (1999) and Liu and Zhang (2008) for
examples.
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egy. It is well recognized in the literature that payoffs on self financing zero cost portfolios

that have positions in options can exhibit spurious positive value (alpha) when alpha is

computed using the market model or linear beta models in general.9 We therefore calcu-

late an option-adjusted abnormal performance for the momentum strategy. As might be

anticipated, we find that alpha of the momentum strategy is generally strongly positive and

statistically significant. However, when the ex-ante turbulent state probability is sufficiently

high—and there are several historical episodes where it is—the estimated alpha is negative

and statistically significant.

The rest of this paper is organized as follows. In Section 1, we examine the various

drivers of momentum crashes, and show that these arise as a result of the strong written call

option-like feature embedded in momentum strategy returns in certain market conditions.

In Section 2, we describe a hidden Markov model for momentum return generating process

that captures this feature of tail risk in momentum strategy returns. In Section 3, we

show the ability of our hidden Markov model to predict momentum crashes. In Section 4,

we evaluate the conditional alpha of momentum strategy returns based on the estimated

parameters of our hidden Markov model and option market prices. In Section 5 we show

that, in addition to forecasting the probability of momentum strategy “crashes,” the ex-

ante turbulent state probability reliably forecasts the value-momentum return correlation

and covariance. Interestingly, when the turbulent state probability is low, the conditional

value-momentum return correlation is zero. Section 6 concludes.

1 Momentum Crashes

In this section, we describe the return on a particular momentum strategy that we examine

in detail in this paper. We show that the distribution of momentum strategy returns is

heavily skewed to the left and significantly leptokurtic. We also find that the return on the

9See Jagannathan and Korajczyk (1986) for an example.
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momentum strategy is non-linearly related to the excess return of market index portfolio.

The nature of non-linear relationship depends on market conditions. This examination

motivates the two-state model that we develop in Section 2.

1.1 Characteristics of Momentum Strategy Returns

Price momentum strategies have been constructed using variety of metrics. For this study

we examine a cross-sectional equity strategy in US common stocks. Our universe consists

of all US common stocks in CRSP with sharecodes of 10 and 11 which are traded on the

NYSE, AMEX or NASDAQ. We divide this universe into decile portfolios at the beginning

of each month t based on each stock’s “(12,2)” return: the cumulative return over the 11

month period from months t−12 through t−2.10 Our decile portfolio returns are the market-

capitalization weighted returns of the stocks in that past return decile. A stock is classified

as a “winner” if its (12-2) return would place it in the top 10% of all NYSE stocks, and as

a “loser” if its (12-2) return is in the bottom 10%. Most of our analysis will concentrate on

the zero-investment portfolio “MOM” which is long the past-winner decile, and short the

past-loser decile.

Panel A of Table 1 provides various statistics describing the empirical distribution of the

momentum strategy return (MOM) and the three Fama and French (1993) factors.11 With-

out risk adjustment the momentum strategy earns an average return of 1.18%/month and an

impressive annualized Sharpe Ratio of 0.52. Panels B and C show that after risk adjustment,

the average momentum strategy return increases: its CAPM alpha is 1.52%/month (t=7.10)

and its Fama and French (1993) three factor model alpha is 1.76%/month (t=8.20).12 This

is not surprising given the negative unconditional exposure of MOM to the three factors.

10The one month gap between the return measurement period and the portfolio formation date is done
both to be consistent with the momentum literature, and to minimize market microstructure effects and to
avoid the short-horizon reversal effects documented in Jegadeesh (1990) and Lehmann (1990).

11The Mkt-Rf, SMB and HML return data come from Kenneth French’s database.
12 The t-statistics are computed using the heteroskedasticity-consistent covariance estimator by White

(1980).
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The focus of our study is the large, asymmetric losses of the momentum strategy: Panel

A of Table 1 shows that the MOM returns are highly left-skewed and leptokurtic. Figure 1.A

illustrates this graphically: we plot the smoothed empirical density for MOM returns (the

dashed red line) and a Normal density with the same mean and standard deviation. Over-

layed on the density function plot are red dots that represent the 25 MOM returns that

exceed 20% in absolute value (13 in the left tail and 12 in the right tail). Figure 1.B overlays

the empirical density of market excess returns which are scaled to match the volatility of

MOM returns over this sample period. The 20 Mkt-Rf∗ returns that exceed 20% in absolute

value (11 in the left tail and 9 in the right tail) are represented by blue dots.

Consistent with the results in Table 1, Figure 1 reveals that both the market and momen-

tum strategy are leptokurtic. However, Panel B in particular shows the strong left skewness

of momentum. Again, one of the objectives of this paper is to show that this skewness is

completely a result of the time-varying non-linear relationship between market and momen-

tum returns that is a result of the time-varying leverage of the firms in the loser portfolio.

As a way of motivating our model, we next examine the influence of prevailing various state

variables on market conditions on momentum strategy returns.

To begin, Table 2 lays out the MOM returns in the 13 months when the MOM loss

exceeded 20%, and measures of various market conditions that prevailed during the months.

The first set of columns show that the large momentum strategy losses are generally as-

sociated with large gains on the past-loser portfolio rather than losses in the past-winner

portfolio. During the 13 large loss months, the loser portfolio earned an excess return 45.69%

whereas the winner portfolio earned only by 6.32%. Interestingly, these loser portfolio gains

are associated with large contemporaneous gains in the market portfolio, which earns an

average excess return of 16.14% in these months. However, the table also shows that market

return is strongly negative and volatile in the period leading up to the momentum crashes:

the market is down, on average, by more than 37% in the three years leading up to these
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crashes, and the market volatility is almost three times its normal level in the year leading up

to the crash.13 Given the past losses and the high volatility of the market, it is not surprising

that the past-loser portfolio has suffered severe losses: the threshold (breakpoint) for a stock

to be in the loser portfolio averaged -63.77% in these 13 months, about 2.7 times the average

breakpoint. Thus, at the start of the crash months, stocks in the past-loser portfolio are

likely very highly levered. Table 2 also shows that the average financial leverage (book value

of debt/market value of equity), during the 5 loss months after 1964 (when our leverage data

starts) is 47.2, more than an order of magnitude higher than the average leverage of the loser

portfolio of 3.97.

To summarize, large momentum strategy losses generally have occurred in volatile bear

markets, when the past-losers have lost a substantial fraction of their market value, and

consequently have high financial leverage, and probably high operating leverage as well.

Thus, following Merton (1974), the equity of these firms are likely to behave like out-of-the-

money call options on the underlying firm values which, in aggregate, are correlated with

the market. Consequently when the market recovers sharply, the loser portfolio experiences

outsized gains, resulting in the extreme momentum strategy losses we observe.

1.2 Time Varying Option-like Features of Momentum Strategy

Motivated by the evidence in the preceding Section, we here examine the time-variation in

the call-option-like feature of momentum strategy returns. This serves as motivation for the

two-state HMM model that we will develop in Section 2.

In particular, we consider the following augmented market model return generating pro-

13 Realized volatility is computed as the square root of the sum of squared daily returns and expressed as
annualized percentage.
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cess, similar to that considered by Henriksson and Merton (1981) and others.14

Re
p,t = αp + β0

pR
e
MKT,t + β+

p max
(
Re

MKT,t, 0
)

+ εp,t, (1)

where Re
MKT,t is the market portfolio returns in excess of risk free return for month t. We note

that αp, the intercept of the regression, is no longer a measure of the strategy’s abnormal

return, because the option payoff—max(Re
MKT,t, 0)—is not an excess return. We return to

this issue and estimate the abnormal return of the strategy in Section 4. For the moment, we

concentrate on the time-variation in β+, which is a measure of the exposure of the portfolio

p to the payoff on a one-month call option on the stock market or, equivalently, a measure

of the convexity in the relationship between the market return and the momentum strategy

return.

To examine this time-variation, we partition the months in our sample into three groups

on the basis of three state variables: the cumulative market return during the 36 month

preceding the portfolio formation month; the realized volatility of daily market returns over

the previous 12 months; and the breakpoints of the loser portfolio – i.e., the return over the

(12,2) measurement period of the stock at the 10th percentile. Based on each of these state

variables, we partition our sample of 1044 months into ‘High’, ‘Medium’ and ‘Low’ groups.

The High (Low) group is the set of months when the state variable is in the top (bottom)

20th percentile at the start of that month. The ‘Medium’ group contains the remaining

months (i.e., the middle 60%). We present the results from sorting on the basis of the past

14 To our knowledge, Chan (1988) and DeBondt and Thaler (1987) first document that the market beta
of a long-short winner-minus-loser portfolio is non-linearly related to the market return, though they do
their analysis on the returns of longer-term winners and losers as opposed to the shorter-term winners and
losers we examine here. Rouwenhorst (1998) demonstrates the same non-linearity is present for long-short
momentum portfolio returns in non-US markets. Daniel and Moskowitz (2016) show that the optionality is
time varying, and is particularly pronounced in high volatility down markets, and is driven by the behavior
of the short-side (loser) as opposed to the long (winner) side of their momentum portfolio. Moreover, Boguth
et al. (2011), building on the results of Jagannathan and Korajczyk (1986) and Glosten and Jagannathan
(1994), note that the interpretation of the measures of abnormal performance in Chan (1988), Grundy and
Martin (2001) and Rouwenhorst (1998) are biased. Lettau et al. (2014) propose a downside risk capital asset
pricing model (DR-CAPM) which they find explains the cross section of returns in many asset classes better.
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36-month market return in Table 3; the results from sorting on the other two state variables

are presented in Table 14 in the Online Appendix.15

Panel A presents the estimates of equation (1) for the momentum strategy returns

(RMOM), and for the returns of the winner and loser portfolio in excess of the risk free

rate (Re
WIN and Re

LOS). First, note that the estimated β+, the exposure to the market call

payoff is significant only when the past 36-month market returns are in ‘Low’ group: consis-

tent with the leverage hypothesis, the past-loser has a positive exposure to the market option

payoff of 0.72 (t= 3.60). That is, it behaves like a call option on the market. The MOM

portfolio, which is short the past-losers, thus has a significantly negative β+.16 In contrast, in

the ‘Medium’ and ‘High’ group, β+ of the MOM returns and of the long- and short-sides are

smaller in absolute value and are not statistically significantly negative.17 Interestingly the

Low State, the Adj.R2 is 48% for MOM returns, as compared to 6% in both the ‘Medium’

and ‘High’ states, a result of both the higher β0 and β+ in the Low state.

Panel C shows that large MOM losses (crashes) are clustered in months when the option-

like feature of β+ is accentuated; 11 out of 13 momentum losses occur during months in the

‘Low’ group. Table 14 shows that the results when the grouping is on other state variables:

i.e., realized volatility of market over the past 12 months or return breakpoints for stocks to

enter the loser portfolio.

The evidence in Panel D suggests that the large negative skewness of the momentum

strategy return distribution is mostly due to the embedded written call option on the market.

In the ‘Low’ group of Panel A, the skewness of the momentum strategy returns is -2.33, but

15Results are similar when we group based on other variables that capture market conditions: the cumu-
lative market return during the 12 month preceding the portfolio formation month; the realized volatility of
daily market returns over the previous 6 months and the ratio of the book value of debt to the market value
of equity (BD/MV) of the loser stock portfolio.

16 The t-statistics are computed using the heteroskedasticity-consistent covariance estimator of White
(1980).

17 We note that β+ of winner and loser portfolios exhibit interesting patterns: It is negative and significant
for winner stocks in ‘Low’ group. It is negative and statistically significant for loser stocks in the ‘High’ group.
Understanding why we see these patterns is left for future research.
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after we control for the non-linear exposure to the market through equation (1), the skewness

of residual drops to -0.48. In ‘Medium’ and ‘High’ group, the negative skewness of momentum

strategy returns is not that strong and it is not significantly reduced after controlling for the

embedded written call option on the market. This is consistent with the results in Panel A;

β+ is not significantly different from zero in the other two groups. The results reported in

Table 14 of the Online Appendix are consistent with the results presented here: the large

negative skew in momentum returns is due to the embedded written call option that gets

accentuated by market conditions.

The above results suggest that the embedded written call option on the market is the

key driver of momentum crashes, and that this optionality is a result of the high leverage

of the past-loser firms. However this leverage will not always be apparent in the financial

leverage of the past-loser portfolio. For example, it is likely that the operating leverage

of many of the firms that earned low returns in the post-March 2000 collapse of the tech

sector was quite high, even though these firms’ financial leverage was insignificant. The

evidence is consistent with this: the financial leverage of the loser portfolio was low during

two episodes of large momentum losses in 2001:01 and 2002:12.18 However, as can be seen

from Table 4, the optionality is large when we estimate the augmented market model return

generating process for momentum returns given by equation (1) for the 36 monthly returns

from 2000:01-2002:12—although it is not statistically significant due to the small sample

size.

In the next section, we model the option-like relation between the market and the mo-

mentum portfolio, with the goal of employing this model to forecast momentum crashes. The

evidence above suggests that a model based on Merton (1974), using debt and equity values

would not capture these periods. Alternatively, we could form a model with a functional

18 Refer to Table 2. In 2001:01 (2002:12), the momentum strategy loses -41.97% (-20.40%) and the financial
leverage (BD/MV) of loser portfolio was 0.68 (2.32). The average of financial leverage over all available data
from 1964 is 3.97.
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form relating the state-variables explored above (past-market returns, market volatility, etc.)

and the convexity. However, this requires choosing the length of the time window over which

these state-variables are measured, and that necessarily has to be rather arbitrary. Given

these difficulties, we instead posit a two-state model, with “calm” and “turbulent” states.

When the economy is in the turbulent state the option like feature of momentum return is

accentuated, and momentum crashes are likely. This naturally leads us to the two-state hid-

den Markov model (HMM) for identifying time periods when momentum crashes are more

likely, which we explore in the next Section.

2 The Two-State Hidden Market Model

In this section we develop a two-state hidden Markov model (HMM) in which a single state

variable summarizes the market conditions. The “turbulent” state is characterized by higher

return volatilities and by more convexity in the market-momentum return relationship. We

then show how the HMM allows ex-ante estimation of the probability that the hidden state

is calm or turbulent based on the history of momentum and market returns.

2.1 A Hidden Markov Model of Market and Momentum Returns

Let St denote the unobserved underlying state of the economy at time t, which is either

“calm” (C) or “turbulent” (T ) in our setting. Our specification for return generating process

of the momentum strategy is as follows:

RMOM,t = α(St) + β0(St)R
e
MKT,t + β+(St) max

(
Re

MKT,t, 0
)

+ σMOM(St) εMOM,t, (2)

where εMOM,t is an i.i.d random process with zero mean and unit variance. Equation (2) is

similar to equation (1). However, the option-like feature, β+(St), the sensitivity of momen-

tum strategy return to the market return, β0(St), and the volatility of momentum specific
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shock, σMOM(St), all differ across the unobserved turbulent and calm states of the economy.

We also let the intercept, α(St), vary across the two hidden states of the economy. We

assume that the return generating process of the market returns in excess of risk free rate is

given by:

Re
MKT,t = µ (St) + σMKT (St) εMKT,t, (3)

where εMKT,t is an i.i.d random process with zero mean and unit variance. That is, µ (St)

and σMKT (St) represent the state dependent mean and volatility of the market excess return.

Finally, we assume that the transition of the economy from one hidden state to another

is Markovian, with the transition probability matrix as given below:

Π =

 Pr(St = C|St−1 = C) Pr(St = T |St−1 = C)

Pr(St = C|St−1 = T ) Pr(St = T |St−1 = T )

 , (4)

where St, the unobservable random state at time t which, in our setting, is either Calm(C)

or Turbulent(T ) and Pr (St = st|St−1 = st−1) denotes the probability of transitioning from

state st−1 at time t−1 to state st at time t.19

2.2 Maximum Likelihood Estimation

We now estimate the set of parameters of the hidden Markov model in equations (2), (3),

and (4), which we summarize with the 14-element parameter vector θ0:

θ0 =



α (C) , β0 (C) , β+ (C) , σMOM (C) ,

α (T ) , β0 (T ) , β+ (T ) , σMOM (T ) ,

µ (C) , σMKT (C) , µ (T ) , σMKT (T ) ,

Pr (St = C|St = C) ,Pr (St = T|St = T)


. (5)

19Here, we use Pr(x) to denote the probability mass of the event x when x is discrete, and the probability
density of x when x is continuous.
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The observable variables are the time series of excess returns on the momentum portfolio

and on the market, which we summarize in the vector Rt:

Rt =
(
RMOM,t, R

e
MKT,t

)′
.

We let rt denote the realized value of Rt.

We follow Hamilton (1989) and estimate the HMM parameters by maximizing the log

likelihood of the sample, given distributional assumptions for εMOM,t and εMKT,t, in (2) and

(3). As shown in Appendix A, when the likelihood is misspecified, the ML estimator of

θ0 can be inconsistent. Hence, we choose the distribution of εMOM,t and εMKT,t so that

the unconditional variance, skewness, and kurtosis of momentum and market excess returns

implied by our HMM specification are closer to their sample analogues. As we discuss later

in more detail, while the momentum returns RMOM,t are highly skewed and leptokurtic, the

momentum return residuals (εMOM,t) appear Normally distributed. Interestingly, the market

return residual (εMKT,t) is non-Normal—it is better characterized as Student-t distributed

with d.f.=5.

Let θ̂ML denote the vector of HMM parameters that maximizes the log likelihood function

of the sample given by:

L =
T∑
t=1

log (Pr (rt|Ft−1)) , (6)

where Ft−1 denotes the agent’s time t−1 information set (i.e. all market and momentum

excess returns up through time t−1).

Given the hidden-state process that governs returns, the time-t element of this equation—

the likelihood of observing rt—is:

Pr (rt|Ft−1) =
∑

st∈{C,T}

Pr (rt, St = st|Ft−1) , (7)
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where the summation is over the two possible values of the unobservable state variable St.

The joint likelihood inside the summation can be written as:

Pr (rt, St = st|Ft−1) = Pr (rt|St = st,Ft−1) Pr (St = st|Ft−1)

= Pr (rt|St = st) Pr (St = st|Ft−1) . (8)

The first term of equation (8) is the state dependent likelihood of rt which can be computed,

given distributional assumptions for εMOM,t and εMKT,t in (2) and (3) as:

Pr (rt|St = st) = Pr (εMOM,t|St = st) · Pr (εMKT,t|St = st)

where

εMOM,t =
1

σMOM (st)

(
rMOM,t − α (st)− β0 (st) r

e
MKT,t − β+ (st) max

(
reMKT,t, 0

))
εMKT,t =

1

σMKT (st)

(
reMKT,t − µ (st)

)
.

The second term of equation (8) can be written as a function of the time t−1 state

probabilities as:

Pr (St = st|Ft−1) =
∑

st−1∈{C,T}

Pr (St = st, St−1 = st−1|Ft−1)

=
∑

st−1∈{C,T}

Pr (St = st|St−1 = st−1,Ft−1) Pr (St−1 = st−1|Ft−1)

=
∑

st−1∈{C,T}

Pr (St = st|St−1 = st−1) Pr (St−1 = st−1|Ft−1) , (9)

where third equality holds since the transition probabilities depend only on the hidden state.

We can compute the expression on the left hand side of equation (9) using the elements of

the transition matrix, Pr (St = st|St−1 = st−1). The right hand side of equation (9)—the
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conditional state probability Pr (St−1 = st−1|Ft−1)—comes from Bayes’ rule:

Pr (St = st|Ft) = Pr (St = st|rt,Ft−1)

=
Pr (rt, St = st|Ft−1)

Pr (rt|Ft−1)
. (10)

where the numerator and denominator of equation (10) come from equations (8) and (7),

respectively.

Thus, given time 0 state probabilities, we can calculate the conditional state probabilities

for all t ∈ {1, 2, · · · , T}. In our estimation, we set Pr (S0 = s0|F0) to their corresponding

steady state values implied by the transition matrix.20 Table 5 gives the Maximum Likelihood

parameter estimates and standard errors of the hidden Markov model parameter vector in

equation (5) with our assumption that the momentum return residual (εMOM,t) is drawn

from standard Normal distribution and the market returns residual is drawn from Student-t

distribution with d.f.=5, which will be justified later.

The parameters in Table 5 suggest that HMM does a good job of picking out two distinct

states: Notice that β+, while still negative in the calm state, is more than twice as large

in the turbulent state. Similarly The estimated momentum and market return volatilities,

σMOM(St) and σMKT(St), are more than twice as large in the turbulent state. We see also

that the calm state is more persistent than the turbulent, at least based on point estimates.

An implication of the large β+(T ) is that MOM’s response to up moves in the market is

considerably more negative than the response to down-moves in the market. In the turbulent

state, MOM’s up market beta is -1.45 (=-0.32-1.14), but its down market beta is only -0.32.

The combination of this feature and the higher volatilities means that the left tail risk is

high when the hidden state is turbulent.

One rather striking feature of the numbers in Table 5 is the large differences in the market

20The vector of steady state probabilities is given by the eigenvector of the transition matrix given in
equation (4).
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parameters across the two states. For the calm state, the point estimates of the annualized

expected excess return and volatility of the market are, respectively, 13.3%/year and 14.0%,

giving an annualized Sharpe-ratio is 0.95. In contrast, the corresponding estimated param-

eters for the turbulent state are -4.6%/year and 29.0%. We caution the reader that the

hidden state is not observed, so these returns are not directly achievable. We also note that

these results are consistent with prior evidence on the inverse relationship between market

volatility and market Sharpe Ratios (Glosten et al., 1993; Breen et al., 1989; Moreira and

Muir, 2015).

A natural question that arises is whether our HMM specification is consistent with the

highly non-Normal momentum return distribution in our sample. We therefore compare the

unconditional sample moments of momentum strategy returns and market excess returns

implied by the HMM return generating process with their sample counterparts. For this

purpose, we consider the following distributions for (εMOM,t, εMKT,t): (Normal, Student-t),

(Normal, Normal), (Student-t, Normal), and (Student-t, Student-t). For each of these pair

of distributions, we estimate our HMM model and generate a 1044 month-long time series

of momentum strategy and market excess returns using Monte Carlo simulation and obtain

their first four moments. We then repeat this exercise 10,000 times to obtain the distribution

of the first four momentums implied by the HMM specification. Table 6 summarizes the

distribution of the first four moments of the momentum strategy returns and market excess

returns obtained in this way for the four pairs of distributions.

Panel A of Table 6 gives the result for our baseline specification of Normal (εMOM,t) and

Student-t (εMKT,t), which is the only case where all of the first four realized moments of mo-

mentum strategy returns, over our sample period 1044 months (1927:01-2013:12), fall inside

the 95% confidence interval for the HMM-implied moments obtained by simulation.21 These

21 If we perform the non-parametric test by Kolmogorov-Smirnov on the similarity between the empirical
CDFs of realized momentum returns and simulated momentum returns, any of the four distributional as-
sumptions is not rejected with 5% significance level due to the low power of the test. Hence, we examine the
distribution for each of the first four moments.
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findings are consistent with the hypothesis that the significant left skewed and leptokurtic

sample momentum strategy returns are due to the non-linear exposure to market returns.

In contrast, when we use Normal distributions for εMKT,t, the sample skewness of momen-

tum strategy returns lies outside of the 99 (95) % confidence interval of our HMM-implied

moments, as can be seen from Panel B (C) of Table 6. Furthermore, the sample kurtosis of

market excess returns exceeds the 99.5th percentile value of its HMM-implied distribution.

If we use Student-t distributions for both εMOM,t and εMKT,t, the realized skewness of mo-

mentum returns lies outside of the 95% confidence intervals of our HMM-implied moments

and the confidence intervals for kurtosis becomes much wider. When we compare the distri-

bution of kurtosis in Panel A with that in Panel D, the 95% confidence intervals of kurtosis

of momentum strategy returns is (6.87, 36.30) when εMOM,t have a Student-t distribution –

much wider than the corresponding 95% confidence intervals of (5.63, 29.79) when εMOM,t

has a Normal distribution. Given these finding, we assume that εMOM,t is drawn from a

Normal distribution and εMKT,t is drawn from a Student-t (d.f.=5) distribution.

We now proceed to examine the extent to which the estimated state probabilities can

forecast the momentum “crashes” we see in our sample.

3 Using the HMM to Predict Momentum Crashes

In this section, we examine the predictability of momentum crashes based on the esti-

mated probability of the economy being in the hidden turbulent state in a given month,

Pr (St = T|Ft−1). It is evident from Table 5 that when the hidden state is turbulent, the

written call option-like features of momentum strategy returns become accentuated, and

in addition both the momentum strategy and market excess returns become more volatile.

Hence, we should expect that the frequency with which extreme momentum strategy losses

occur should increase with Pr (St = T|Ft−1).
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Figure 2 presents scatter plots of realized momentum strategy returns on the vertical

axis against Pr (St = T|Ft−1), the estimated probability that the hidden state is turbulent,

on the horizontal axis. Momentum strategy losses exceeding 20% are in red and momentum

strategy gains exceeding 20% are in green. Panel A is based on in-sample estimates using

all 1044 months of data during 1927:01-2013:12. Consistent with results in the preceding

section, the large losses, highlighted in red, occur only when the estimated turbulent state

probability is high. The large gains (the green dots) are fairly evenly distributed across the

different state probabilities.

The analysis reflected in Panel A in-sample, meaning that the full-sample parameters (i.e.,

those presented in Table 5) are used to estimated the state probability at each point in time.

In Panel B, the turbulent state probability is estimated fully out-of-sample; the parameters

are estimated by the same QML procedure, but only up through the month prior to portfolio

formation. Here the sample is 1980:09-2013:12, giving us a sufficiently large period over

which to estimate the parameters. To further challenge the HMM estimation, we estimate

the HMM parameters using only from the slightly less volatile period following 1937:01. In

Panel B, just as in Panel A, there is again strong association between momentum crashes

worse than -20% (red dots) and high values of the (out-of-sample) estimated turbulent state

probability. In contrast, large momentum gains more than 20% (green dots) are dispersed

more evenly across high and low values of the estimated state probability.

Table 7 presents the number of large negative and large positive momentum strategy re-

turns during months when Pr (St = T|Ft−1) is above a certain threshold. Notice that all thir-

teen momentum crashes, defined as losses exceeding 20%, happen when the Pr (St = T|Ft−1)

is more than 80%. However, only eight out of twelve momentum gains exceeding 20% are

found when the Pr (St = T|Ft−1) is more than 80%, and three out of those large gains happen

when the Pr (St = T|Ft−1) is less than 30%.

Most quantitative fund managers operate with mandates that impose limits on their
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portfolios’ return-volatilities. Barroso and Santa-Clara (2015) demonstrate the benefit of

such mandates: when exposure to the momentum strategy is varied over time to keep its

volatility constant the Sharpe ratio significantly improves. A natural question that arises is

whether managing the volatility of the portfolio to be within a targeted range is the best

way to manage the portfolio’s exposure to left tail risk. We add to this literature by focusing

on tail risk, i.e., the probability of very large losses. As we saw before, left tail risk is related

to left skewness of returns, and there are no a priori reasons to believe that changes in left

skewness move in lock step with changes in the volatility of momentum strategy returns.

We therefore let the data speak, by comparing the performance of two tail risk measures:

the volatility of momentum strategy returns (measured either by realized volatility or by

GARCH) and the probability of the economy being in a turbulent state computed based on

the estimated HMM parameters in predicting momentum crashes.

Table 8 compares the number of false positives in predicting momentum crashes across

different tail risk measures. The number of false positives of a given tail risk measure is

computed as follows. Suppose we classify months in which momentum strategy returns

lost more than a threshold X. Let Y denote the lowest value attained by a given tail risk

measure during those momentum crash months. For example, consider all months during

which momentum strategy lost more than 20% (X=20%). Among those months, the lowest

value, attained by the tail risk measure of Pr (St = T|Ft−1), is 84% (Y=84%). During months

when the tail risk measure is above the threshold level of Y , we count the number of months

when momentum crashes did not occur and we denote it as the number of false positives.

Clearly, the tail risk measure that has the least number of false positives is preferable. Table

8 gives the number of false positives for different tail risk measures and different values of

threshold X=10%, 20%, 30%, 40%.

In Panel A, we use Pr (St = T|Ft−1) as a tail risk measure. The results in Panel A-1 are

from our original HMM model specified in (2), (3) and (4). To emphasize the importance
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of option-like feature β+(St) in (2), we impose the restriction β+(St) = 0 and report the

associated results in Panel A-2.

In Panel B, we use various estimates of the volatility of momentum strategy returns as

tail risk measures. Specifically, we estimate the volatility of the momentum strategy returns

using GARCH (1,1), and realized volatility of daily momentum strategy returns over the

previous 3, 6, 12, and 36 months. In Panel C, we use the volatility of the market return

estimated using GARCH(1,1) which can be viewed as realized volatility using all past returns

and realized volatility of the daily market return during the preceding 3, 6, 12, and 36 months

as tail risk measures. In Panel D, we use the market return during the preceding 3, 6, 12

and 36 month windows as tail risk measures.

When X=20%, we find that the number of false positives in Panel A-1 is always smaller

than other cases in Panel B, C and D. For example, in our 1930:01-2013:12 sample,22 we

find 114 false positives when we use the tail risk measure based on our main specification of

HMM. In contrast, if we use the realized volatility of daily momentum strategy returns over

the previous six months,23 the number of false positives increases to 187 months. The result

of Panel A-2 shows that the necessity of the option features in our HMM specification. If we

impose that β+(St) = 0 while estimating our HMM model, the performance becomes worse.

The number false positives increases from 114 to 150.

This establishes the link between the tail risk of momentum strategy returns and the

probability of the economy being in the hidden turbulent state. In the next section we

examine how the alpha of the momentum strategy return varies over time, as the probability

of the economy being in the turbulent state changes.

22Since we utilize momentum returns over the previous 36 months to construct risk measures, the sample
period becomes shorter.

23Barroso and Santa-Clara (2015) used this measure to imposing the volatility target of the momentum
strategy.
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4 Momentum’s Option Adjusted Alpha

We have shown that the two-state HMM effectively picks out changes in the market envi-

ronment that lead to dramatic shifts in the distribution of market and momentum returns.

Moreover, even when estimated out-of-sample, the HMM does a far more effective job of

forecasting momentum tail events or “crashes” than alternative methods.

These results raise the question of how the alpha of the momentum strategy varies over

time with changes in market conditions. While not the focus of our paper, in this section

we briefly examine this question, based on the estimated HMM model from Section 2. We

calculate the alpha from the perspective of an investor who can freely invest in the risk

free asset, the market index portfolio, and in at-the-money call options on the market index

portfolio without any frictions, but whose pricing kernel is otherwise uncorrelated with inno-

vations in the momentum strategy. Given this assumption our valuation requires the prices

of traded options on the market portfolio, which we proxy with one month, at-the-money

index options on the S&P 500.

Specifically, we assume that how the investor values payoffs on risky assets has the follow-

ing stochastic discount factor representation.24 Let Mt denote the stochastic discount factor,

and Ft−1 the investor’s information set at time t−1. Since the investor has frictionless access

to the risk free asset, the market portfolio, and call options on the market portfolio, the

followings relations hold:

1 = E [Mt(1 +Rf,t)|Ft−1]

0 = E
[
MtR

e
MKT,t|Ft−1

]
Vc,t−1 = E

[
Mt max

(
Re

MKT,t, 0
)
|Ft−1

]
,

24In our derivations, we follow the framework in Hansen and Jagannathan (1991) and Glosten and Jagan-
nathan (1994).
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where Rf,t is the risk free rate from t−1 to t and Vc,t−1 is the market price of the call option

which pays max
(
Re

MKT,t, 0
)

at the end of time t.

Regress Mt based on a constant, the market excess return, and the payoff on the call

option on the market based on the information set Ft−1. Let M̃t be the fitted part of Mt

and ẽt be the residual in that conditional regression. Then we can write Mt as follows:

Mt = M̃t + ẽt (11)

where

M̃t = λ0,t−1 + λ1,t−1R
e
MKT,t + λ2,t−1

(
Re

MKT,t, 0
)

(12)

E [ẽt|Ft−1] = E
[
Re

MKT,tẽt|Ft−1
]

= E
[
max

(
Re

MKT,t, 0
)
ẽt|Ft−1

]
= 0. (13)

The residual ẽt represents the risk that the investor cares about that is not an affine

function of the risk free return, market excess return, and the payoff of the call option on the

market excess return. M̃t is the dynamic analogue of the stochastic discount factor implied

by the downside risk capital asset pricing model proposed by Lettau et al. (2014)

In a similar manner, regress the momentum strategy return on a constant, the mar-

ket excess return, and the call option payoff on the market given the information set Ft−1.

Recall that when the hidden state St is turbulent, which occurs with the probability of

Pr (St = T |Ft−1), the momentum strategy return and market excess return generating pro-

cesses are given by equation (2), where St is either calm or turbulent, and where εMOM,t

and εMKT,t are assumed to be drawn from standard Normal and Student-t distributions

respectively.

We consider the following conditional regression given the information set Ft−1 that

24



includes the risk free return and the price of the call option on the market:

RMOM,t = αt−1 + β0
t−1R

e
MKT,t + β+

t−1 max
(
Re

MKT,t, 0
)

+ εMOM,t, (14)

where

E [εMOM,t|Ft−1] = E
[
εMOM,tR

e
MKT,t|Ft−1

]
= E

[
εMOM,t max

(
Re

MKT,t, 0
)
|Ft−1

]
= 0.

Specifically, the vector of regression coefficients
[
αt−1 β0

t−1 β+
t−1
]′

is determined as

[
αt−1 β0

t−1 β+
t−1
]′

= (E [xtx
′
t|Ft−1])

−1 E [xtRMOM,t|Ft−1]

where xt =
[
1 Re

MKT,t max
(
Re

MKT,t, 0
)]′

, and

E [xtx
′
t|Ft−1] = Pr (St = C|Ft−1)E [xtx

′
t|St = C] + Pr (St = T |Ft−1)E [xtx

′
t|St = T ]

E [xtRMOM,t|Ft−1] = Pr (St = C|Ft−1)E [xtRMOM,t|St = C]

+ Pr (St = T |Ft−1)E [xtRMOM,t|St = T ] .

Furthermore, the regression equation of (14) can be expressed in terms of excess returns as

follows:

RMOM,t = α∗t−1 + β0
t−1R

e
MKT,t + β+

t−1Vc,t−1

(
max

(
Re

MKT,t, 0
)

Vc,t−1
− (1 +Rf,t)

)
+ εMOM,t, (15)

where the quantity in parenthesis is the excess return on one-period call option on the

market.25

α∗t−1 = αt−1 + (1 +Rf,t)β
+
t−1Vc,t−1. (16)

25The strike price of the option is the level of the market index times (1 + Rf,t, which means that the
option will be at-the-money at expiration if Re

MKT,t = 0.
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We denote α∗t−1 as the option adjusted alpha of the momentum strategy return. When the

following assumption holds,
α∗
t−1

1+Rf,t
gives the value at the margin of the momentum strategy

return from the perspective of the marginal investor.

Assumption 1. E [ẽtεMOM,t|Ft−1] = 0 where ẽt and εMOM,t are given in equations (11) and

(15), respectively.

With Assumption 1, the following proposition holds.

Proposition 1. The value of momentum strategy return to the investor whose stochastic

discount factor is Mt, is
α∗
t−1

1+Rf,t
.

Proof.

E [MtRMOM,t|Ft−1]

= α∗t−1E [Mt|Ft−1] + β0
t−1E

[
MtR

e
MKT,t|Ft−1

]
+β+

t−1Vc,t−1

(
E
[
Mt max

(
Re

MKT,t, 0
)
|Ft−1

]
Vc,t−1

− (1 +Rf,t)E [Mt|Ft−1]

)
+E [MtεMOM,t|Ft−1]

=
α∗t−1

1 +Rf,t

+ E
[(
M̃t + ẽt

)
εMOM,t|Ft−1

]
=

α∗t−1
1 +Rf,t

+ E [ẽtεMOM,t|Ft−1]

=
α∗t−1

1 +Rf,t

,

where the first equality follows from equation (15). The second equality follows from the

assumption that the investor, whose stochastic discount factor is Mt, agrees with the market

prices of the risk free asset, market excess return, and the call option payoff and the decom-

position in equation (11). The third equality follows from equation (12) and the properties of

the conditional regression residual εMOM,t. The last equality follows from Assumption 1.

In what follows we compute the time series of the estimated option adjusted alpha, α∗,

in (16) based on the time series of risk free returns and the prices of call options. We then
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assess the validity of Assumption 1 by examining whether the residual in the equation (15) is

uncorrelated with various risk factors proposed in the literature. Figure 3 plots the time series

of α∗ calculated based on the estimated HMM model for the sample period 1996:01-2013:12.

Notice that the sample average of the α∗t−1’s is 1.17%/month, which is significantly positive.

However, α∗t−1 is negative during 1998:09-1998:10 (Russian crisis), 2002:09-2002:10 (dot-com

bubble bursts), 2008:10-2008:12 and 2009:02-2009:04 (financial crisis) – time periods when

months when option prices were high and the market was more likely to be in the hidden

turbulent state.

We compute the confidence intervals for the estimated option adjusted alphas as follows.

First, we simulate 10,000 sets of parameters from the asymptotic distributions obtained

from QML estimator, reported in Table 5. Then, for each set of parameters, we estimate

the probability for the hidden state being turbulent based on the realized market excess

returns and momentum strategy returns in our sample period 1996:01-2013:12 . With the

simulated parameters, the estimated probabilities, and the time series of risk-free returns

and call option prices, we construct the time series of α∗’s for the period 1996:01-2013:12

as described earlier. Finally, for each month, we find the 95% confidence intervals of α∗ by

choosing the top and bottom 2.5% quantiles from the simulated 10,000 α∗ in each month.

In Figure 3, we plot the time series of estimated α∗t−1 along with 95% the corresponding

confidence intervals. In 167 of the 216 months in the sample period 1996:01-2013:12, the

option-adjusted alpha is significantly positive. While the option adjusted alpha is negative

during 10 months, only during three months – both occur during the recent financial crisis

period 2008:11-2008:12 and 2009:03 – they are statistically significantly different from zero.

To assess the reasonableness of Assumption 1, we construct the time series of the residuals,

εMOM,t in equation (15), based on the estimated parameter values as follows.

εMOM,t = RMOM,t − α∗t−1 − β0
t−1R

e
MKT,t − β+

t−1Vc,t−1

(
max

(
Re

MKT,t, 0
)

Vc,t−1
− (1 +Rf,t)

)
.
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We regress the residual on commonly used economy wide risk factors in the literature: the

three factors of market excess returns (MKT), small minus big size (SMB), high minus

low book to market (HML) in Fama and French (1993); robust minus weak (RMW) and

conservative minus aggressive (CMA) factor in Fama and French (2015); investment to assets

(I/A) and return on equity (ROE) factor in Hou et al. (2015); quality minus junk (QMJ)

factor in Asness et al. (2014); liquidity risk factor (LIQ) in Pastor and Stambaugh (2003);

funding liquidity risk factor (FLS) in Chen and Lu (2015); betting against beta (BAB)

risk factor in Frazzini and Pedersen (2014); changes in 3-Month LIBOR (LIBOR), Term

Spread (the yield spread between the 10-year treasury bond and 3-month T-bill, TERM),

Credit Spread (the yield spread between Moody’s BAA bond and AAA bond, CREDIT), and

TED Spread (the yield spread between the 3-month LIBOR and 3-month T-bill, TED); and

returns of variance swap (VAR-SWAP) across different horizons (Dew-Becker et al., 2015);

and the changes in VIX as well as the changes in left jump variations (LJV) embedded in

option prices measured by Bollerslev et al. (2015).26 Specifically, we estimate the regression

equation

εMOM,t = intercept + coeff× systematic factort + et

and report coeff (t-stat) and R2 in Table 9. Except for HML and ROE factors, we do not find

any significant correlation between the residual we computed and systematic risk factors.27

These findings suggest the need for using dynamic versions of the Fama and French (1993)

26We obtain MKT, SMB, HML, CMA and RMW from Ken French’s data library: http://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html; QMJ and BAB data come from An-
drea Frazzini’s library: http://www.econ.yale.edu/~af227/data_library.htm; LIQ from Lubos Pas-
tor: http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2014.txt; LIBOR,
TERM, CREDIT, and TED from FRED: https://research.stlouisfed.org/fred2/ and VIX from the
CBOE: http://www.cboe.com/micro/vix/historical.aspx. Finally, we thank Zhuo Chen, Ian Dew-
Becker, and Grant Thomas Clayton for sharing FLS, VAR-SWAP, and LJV, respectively, and Lu Zhang
for supplying the I/A and ROE data.

27The momentum strategy returns have a Fama and French (1993) three-factor alpha of 1.25%/month
(t= 2.22) which is significantly positive and different from zero at 95% significance level during the period
1996:01-2013:12. Interestingly, the Hou et al. (2015) four-factor alpha is only 0.04%/month – which is not
statistically significantly different from zero during this sample period. The four-factor model by Hou et al.
(2015) seems to capture momentum strategy return risk profile well during this sample period.
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three-factor model and the Hou et al. (2015) four-factor model to value momentum strategy

returns in any given month based on all information available at that point in time. We

leave such extensions for future research.

5 Using the HMM to forecast Value and Momentum

Strategy Comovement

Up until now, we have concentrated on the demonstrating that a two-state HMM reliably

forecasts momentum’s tail events. In this section we show that the same state variable

also forecasts comovement between momentum and value strategy returns, and captures the

time-variation in this comvement better than other conditioning variables proposed in the

literature.

Many asset management firms now combine value and momentum strategies as part of an

integrated quantitative investment strategy.28 At least in part, the the motivation for doing

so is the empirically observed negative correlation between value and momentum strategy

returns; value serves as a natural hedge for momentum, and vice-versa. Asness et al. (2013)

show that the performance of a combined value and momentum strategy is far stronger than

the performance of the separate strategies as a result of the negative correlation between

value and momentum returns.

This observed negative comovement is intriguing in that the unconditional loadings of

value and momentum on the market are both close to zero. Thus, the negative correlation

suggests the that value and momentum both are exposed to latent factor other than the

market, but with opposite signs. Consistent with this, Asness et al. (2013) argue that this

latent factor is associated with funding liquidity.

Our contribution to this literature is first to show that this negative correlation is present

28For example, Numeric Investors L.P. in Perold and Tierney (1997) utilize both value and an earnings
momentum (Ball and Brown, 1968) metric in constructing their overall strategy.
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only in turbulent states. In addition we go on to investigate the source of this negative

comovement, and show that about half of the comovement is attributable to conditional

loading on the market factor. In turbulent states, the market beta of the momentum strategy

becomes negative and strong, while the beta of a value strategy is strongly positive, leading

to a negative correlation.

However, even after orthogonalizing (conditionally) the strategy returns to the market,

the strategies remain conditionally negatively correlated, and only in the turbulent state.

We investigate the source of this residual conditional correlation, and find that it is related

to liquidity variables, consistent with Asness et al. (2013).

5.1 Value-Momentum Strategy Return Correlations

For our analysis in this Section we define a zero-investment value portfolio VMG (Value-

Minus-Growth) which is consistent with our momentum portfolio. VMG invests $1 in the

value-weighted portfolio of firms in VAL—the top-decile of BE/ME—and which shorts $1

worth GRO—the corresponding bottom-decile portfolio—where NYSE decile breakpoints

are used. Monthly returns from the VAL and GRO decile portfolios from Ken French’s data

library.29

A striking finding is that the well documented negative correlation between value and

momentum strategy returns is present only when the market state is turbulent; in calm

states the estimated correlation is statistically indistinguishable from zero. In Table 10 we

show the results of an analysis where we first group the months in our sample into three

equal-sized tertiles (High, Med, Low) based on the predicted probability of the hidden state

being turbulent, Pr (St = Turbulent|Ft−1). Panel A of Table 10 reports the correlation

matrix for MOM, VMG, VAL (the high book-to-market portfolio), and GRO (the low book

29The construction of value and momentum factors by Asness et al. (2013) is slightly different. Refer to
equation (1) on page 938 of their paper for more details. We have confirmed that we achieve qualitatively
similar findings using either the Fama and French (1993) HML value portfolio or the AMP value portfolio.
Table 15 in the Online Appendix summarizes the conditional comovement of MOM with these value factors.
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to market portfolio), for the three sets of months. The right-most correlation matrix is

unconditional. A comparison of the MOM-VMG correlation across the three tertiles shows

that the overall negative correlation (-0.44 (p-value=0.00)) is primarily driven by the negative

correlation in High tertile: the MOM-VMG correlation in High tertile is -0.57 (p-value=0.00).

In contrast, it becomes statistically indistinguishable from zero: -0.07 (p-value=0.20) and

-0.07 (p-value=0.21) for Med and Low tertiles, respectively.

We now proceed to explore the underlying drivers of the strong negative conditional

correlation in turbulent states. One possible explanation of this pattern is that it results

from the time-varying market betas of the MOM and VMG portfolios as pointed out by

Kothari and Shanken (1997) and Grundy and Martin (2001). Specifically, in turbulent/high

volatility times, when the market has generally fallen, the market beta of the momentum

portfolio, which is short past losers, becomes strongly negative. Similarly, the value portfolio,

which is long past losers, will have a strongly positive market beta in these states.

However, we do not find the past market return to be the only driver. To see this, we

form three tertiles of Top, Middle (Mid), and Bottom (Btm) based on formation period

return of the market using all sample months as well as within each state-probability tertile.

The correlations between MOM and VMG returns from double sorts are reported in Panel

A-1 and A-2 of Table 10.

First, we note that the sort on the predicted probability for the turbulent state shows a

clearer separation on the correlation between MOM and VMG than the sort on the formation

period market return. While the correlations in High, Med, and Low groups—formed by

using the predicted probability for the turbulent state as a sorting variable—are -0.57, -0.07,

and -0.07, respectively, those in Bottom, Middle, and Top groups – formed by using the

formation period market return as a sorting variable – are -0.58, -0.44, and -0.13, respectively.

Also, we find that the additional sorting on the formation period market returns does not

change the broad pattern in the correlation between MOM and VMG conditional on the
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predicted probability for the turbulent state as shown in Panel A-1. Across subgroups of

Bottom, Middle, and Top, the correlations between MOM and VMG are substantially more

negative in the High tertile than in the Med or Low tertiles. That is, the concentration of

negative correlation between MOM and VMG due to the high probability for the hidden state

to be turbulent is a phenomenon different from, though related to, the effect of formation

period market returns. Further, we change the order of double sorts: we first sorted on the

formation period market return, and then on the predicted probability of the underlying

state being turbulent. Results are in Panel A-2. Note that even for the Middle tertile of

the formation period market returns, further sorting on the probability of the underlying

state being turbulent gives dispersion in the correlation between MOM and VMG. When

the probability of the underlying state being turbulent is low, the correlation is not different

from zero (0.03). In contrast, when the probability of the underlying state being turbulent

is high, the correlation is strongly negative (-0.60).

A striking illustration of the effectiveness of the state probability in forecasting correlation

comes from comparing Panel A-1 and A-2. In Panel A-1, when the predicted probability is

in Medium tertile, the difference in the conditional correlation when moving from Bottom

to Top tertile of the formation period return is 0.11. In contrast, in Panel A-2, when

the formation period market return is in Middle tertile, moving from High to Low state

probability, the conditional correlation changes by 0.63, i.e. higher by a factor of 6.

We next perform a more direct test of whether the negative conditional correlation be-

tween VMG and MOM in the turbulent state results from the common loading on the market.

For all the months in each “state” (High, Med, and Low), we regress the MOM, VMG, VAL

and GRO returns on the excess market return in univariate time-series regressions:

Re
p,t = α + β0Re

MKT,t + ep, (17)

where Re
MKT,t is the market excess return and Rp,t is the portfolio returns of our interest
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with p = MOM,VMG,VAL,GRO. The slope coefficients, t-statistics and regression R2s

are reported in the top part of Panel B of 10. In the bottom part of Panel B we report

the correlation of the sets of residuals from these four regressions. Consistent with our

conjecture, when the probability that the hidden state is high, β̂MOM = −0.89 (t=−6.83),

while β̂VMG = 0.58 (t= 4.56). Also, the VMG-MOM residual correlation of -0.25 is about

half as large as the correlation of -0.57 reported in Panel A.

Panel C of Table 10 performs essentially the same analysis as in Panel B, except that

now we use the Henriksson and Merton (1981) specification in each regression:

Re
p,t = α + β0Re

MKT,t + β+ max
(
Re

MKT,t, 0
)

+ ep, (18)

where Re
MKT,t is the market excess return and Rp,t is the portfolio returns of our interest

with p = MOM,VMG,VAL,GRO. The same patterns in the residual correlations that we

see in Panel B are also present here.

We see the correlation drop of about 50% (i.e., from -0.57 to only -0.25/-0.31 in Panels

B and C, respectively) after controlling for market exposure, suggesting that about half of

the VMG/MOM comovement is unexplained by the market. However, this statistic could

be misleading. Since the correlation is equal to the the covariance (comovement), dividend

by the product of the volatilities, it could be, for example, that approximately 90% of the

covariance is explained by the market exposure, but the residual of each series variance falls

by approximately 80% after controlling for the market.

To address this concern we can ask what fraction of the negative covariance between

MOM and VMG is explained by market exposure. We do this in Table 11, where we report

the residual covariance matrix. The comparison between Panel A and B of Table 11 reveals

that 44% (=1-(35.58/64.05)) of negative covariance between MOM and VMG in the high

group is explained by the opposite exposure to the market risk. Analyzing the negative

comovement between MOM and VMG using the Henriksson-Merton specification makes the
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picture clearer. As can be seen from Panel C of Table 10, the difference between MOM

and VMG on the exposure to the systematic risks in the High state is mostly due to the

difference on the option-like features. For MOM, β+ is -1.10 (t=−3.78). However, VMG

has a significantly large β+ of 0.94 (t= 2.93) but β0 of VMG is very weak. Interestingly,

the non-linearity of VMG in the High state is driven by the value side, not the growth side.

VAL has β+ of is 0.85 (t= 3.18) but β+ of GRO is only -0.09 (t=−1.36). Comparing the

covariances between MOM and VMG in Panel A and C of Table 11, we can see that the linear

and non-linear exposures to the market in MOM and VMG explain 55% (=1-(28.83/64.05))

of the negative covariance between MOM and VMG in High tertile.

The residual negative comovement between MOM and VMG may be due to the omit-

ted factors such as liquidity (Asness et al., 2013). To examine this possibility, we regress

the residuals from the CAPM and Henriksson-Merton (HM) specifications on proxies for

economy-wide liquidity shocks. We consider (i) the funding liquidity shock measured by the

innovations in AR(2) model of TED spread, the 3-month interbank LIBOR minus the 3-

month T-bill rate, as well as (ii) the innovations in the aggregate market liquidity estimated

by Pastor and Stambaugh (2003). We take the negative of the TED spread so that it repre-

sents the level of liquidity. Panel A (B) of Table 12 reports regression results using CAPM

(HM) residuals. Consistent with the hypothesis of Asness et al. (2013), we find the positive

(negative) dependence of the residual MOM (VMG) returns on liquidity shock proxies over

the whole sample period, as shown in the last column of Table 12.

Interestingly, in the state-conditional regressions, the coefficient on the liquidity shocks

are significant only in the High state. Furthermore, although the estimated coefficients are

not always significant, the size of coefficients is much larger in the High state (first column)

than the whole sample (last column). These findings highlight the importance of liquidity

shocks that do not appear in MOM and VMG during times when the market is calm (2/3rd

of the sample) and emerge when the market becomes turbulent. Economy-wide liquidity
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shocks affect stocks in the past loser and value portfolios in a similar manner. Since MOM

strategy is short past losers and VMG is long value stocks, liquidity shocks that emerge during

turbulent market conditions drive a significant part of the negative correlation between value

and momentum strategy returns.

5.2 Conditionally Hedging Value and Momentum Strategies

Asness et al. (2013) observe that a combined value/momentum portfolio, with constant

weights on value and momentum, earns a considerably higher unconditional Sharpe ratio

than either portfolio alone. This improvement follows from the unconditional negative corre-

lation between value and momentum returns. However, as we showed earlier, the correlation

between value and momentum is almost zero except when the state proability is high. This

suggests that a modification of the Asness et al. (2013) strategy by hedging MOM with VMG

only in the high probability state will improve the Sharpe ratio further.

Table 13 gives the summary statistics of monthly returns for the following five portfolios

over our sample period of 1044 months from 1927:01 to 2013:12: i) MOM, ii) VMG, iii)

50/50-static: a portfolio with constant weights of 0.5 on the MOM and VMG portfolios, iv)

50/50-dyn: a portfolio which puts the weights of 0.5 on both MOM and VMG in the High

tertile, and the weights of 1.0 on MOM and 0.0 on VMG otherwise (Med and Low tertiles), v)

Conditional MVE: a mean-variance efficient portfolio which puts weights of w = (γsΣs)
−1µs

on VMG and MOM in each of two groups (High tertile / Med and Low tertiles) — that is,

the portfolio weight in each group is conditional on ex-post mean and variance.

As documented in Asness et al. (2013), we find that the performance of MOM is greatly

improved by adding VMG unconditionally: the SR of “50/50-static” is 0.76, which is much

higher than those of MOM (0.52) and VMG (0.28). Also, the “50/50-static” portfolio ex-

perience far fewer large losses than either MOM or VMG. For example, while there are

32 (9) large losses worse than -15% in MOM (VMG) portfolio from 1927:01 to 2013:12,
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“50/50-static” portfolio suffers from losses exceeding -15% only three times.

If the benefit of combining MOM with VMG is evenly spread out over our sample period,

a portfolio of combining MOM with VMG only during sub sample periods would perform

worse than the “50/50-static”. However, we find the opposite to be true. By combining

MOM with VMG only in High tertile, the SR improves substantially from 0.76 (50/50-

static) to 0.91 (50/50-dyn). The occurrence of monthly losses exceeding 10% decreases from

13 (50/50-static) to 8 (50/50-dyn). Interestingly, the performance of “50/50-dyn” portfolio

is not much different from that of the “Conditional-MVE” portfolio. This implies that

combining MOM with VMG only when the state probability is high is close to the optimal

strategy.

6 Conclusion

There is a vast literature documenting that the rather simple strategy of buying past win-

ners and selling past losers, commonly referred to as a momentum strategy, generates high

average risk adjusted returns. However, such a strategy also experiences infrequent but large

losses. We provide an explanation for the phenomenon, i.e., why we see such large losses

occurring at periodic but infrequent intervals. We show that the way momentum portfolios

are formed embeds features that resemble a written call option on the market portfolio into

the momentum strategy returns. These features become accentuated in prolonged bear mar-

kets when the market is volatile due to increased financial and operating leverage. These

dynamics lead to large momentum strategy losses when the market recovers.

The intuition for the optionality follows Merton (1974): following large negative market

returns the effective leverage of the firms on the short side of the momentum strategy (the

past-loser firms) becomes extreme. As the firm values fall, driven both by the market and

other factors, the common shares move from being deep in-the-money call options on the
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firm’s underlying assets to at- or even out-of-the-money options, and thus start to exhibit

the convex payoff structure associated with call options: the equity value changes little in

response to even large down moves in the underlying firm value, but moves up dramatically

in response to up moves. Thus, when the values of the firms in the loser portfolio increase—

proxied by positive returns on the market portfolio—the convexity in the option payoff results

in outsized gains in the past loser portfolio. Since the momentum portfolio is short these

loser firms, this results in the dramatic losses for the overall long-short momentum portfolio.

High leverage of the past-loser portfolio is the driver of the tail-risk of the momentum

strategies in our model. Consistent with this we show that, just preceding the five worst

momentum crash months in the 1964-2013 period, the average financial leverage of the past

loser portfolio was 47.2, compared with an unconditional average over this period of 3.97.

However effective leverage—both financial and operating leverage affect—drives the option-

ality of the past loser portfolio, and effective leverage is difficult to measure. Consequently

we proceed to estimate the time-varying tail risk of momentum strategies two-state hid-

den Markov model (HMM) where the embedded option-like features of momentum strategy

returns become accentuated in the hidden turbulent state. Empirically, we find that the

behavior of both the market and the momentum portfolio are consistent with this model.

When the economy is in the latent turbulent state, the levels of market and momentum

strategy volatility are more than double their values in the calm state. In the tubulent state

the option-like features of the momentum strategy are pronounced; in the calm state they

are dramatically attenuated.

We find that momentum crashes tend to occur more frequently during months in which

the hidden state is more likely to be turbulent. The turbulent state occurs infrequently in

the sample: the probability that the hidden state is turbulent exceeds 80% in only 155 of

the 1044 months in our 1927:01-2013:12 sample. Yet in each of the 13 severe loss months,

the ex-ante probability that the hidden state is turbulent exceeds 80 percent. Interestingly,
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the average momentum strategy return during those 155 months is only -1.01% per month.

We derive the conditional alpha of the momentum strategy for a given month based on

the information available till the end of the previous month using HMM return generating

process for momentum strategy returns and market excess returns and the price of call

options on the market and the risk free rate. Over the 216 month period for which we have

call option prices (1996:01-2013:12) the average conditional alpha is 1.17%/month, which

is significantly positive. However, the conditional alpha is negative during 49 out of the

216 months and significantly negative for three months 2008:11-2008:12 and 2009:03 of the

financial crisis period.

We show that QML estimator of HMM parameters need not to be consistent when

the wrong likelihood is maximized. We find that the Normally distributed residuals for

momentum strategy returns and Student-t (d.f.=5) distributed residuals for market excess

returns best describe the data. Our HMM model has the least number of false positives

in predicting momentum crashes when compared to models on historical realized volatility,

GARCH or past market returns.

We show that the same turbulent state probability that forecasts momentum crashes also

reliably forecasts the value-momentum strategy return correlation. Interestingly, when the

ex-ante turbulent state probability is low, the conditional value-momentum strategy return

correlation is statistically indistinguishable from zero. However, when the turbulent state

probability is at the highest levels, the conditional correlation is below -0.5.

We find that value is a good hedge for momentum only during turbulent times. During

those time periods, half the negative covariance between value and momentum arises from

nonlinear exposure to the market factor. The other half of the negative covariance is due

to exposure to an economy wide pervasive risk factor factor that emerges during turbulent

times. There is some empirical support for the view that this pervasive risk factor is related

to liquidity risk identified by Asness et al. (2013).
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Table 1: Summary Statistics of Momentum Strategy Returns

Panel A reports the mean, standard deviation (SD), annualized Sharpe ratio (SR), skewness
(skew), kurtosis (kurt), maximum (max), and minimum (min) of momentum strategy returns
(MOM) along with those of market excess returns (Mkt-Rf), and scaled market excess returns
(Mkt-Rf∗) with the standard deviation equal to that of momentum strategy returns. Panel
B reports the average risk adjusted monthly return (alpha), calculated as the intercept from
time series regressions of the MOM return on the Market along with the corresponding risk
exposures (betas). The sample period is 1927:01-2013:12. The t-statistics are computed
using the heteroskedasticity consistent covariance estimator (White, 1980). The mean, SD,
max and min in Panel A and α in Panel B are reported in percentage per month.

Panel A: Summary Statistics

mean SD SR skew kurt max min

MOM 1.18 7.94 0.52 -2.43 21.22 26.18 -79.57
Mkt-Rf 0.64 5.43 0.41 0.16 10.35 38.04 -29.10
Mkt-Rf∗ 0.94 7.94 0.41 0.16 10.35 55.74 -42.64

Panel B: Risk Adjusted MOM Returns

α βMkt−Rf Adj.R2

estimate 1.52 -0.52 0.13
(t-stat) (7.10) (-4.82)
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Table 2: Market Conditions during Momentum Crashes

Panel A presents the momentum strategy returns (RMOM), and the excess returns of winner portfolio, loser portfolio and market portfolio, denoted by

Re
WIN, Re

LOS and Mkt-Rf, respectively, during months with the momentum crashes worse than -20% during 1927:01-2013:12 along with the breakpoints for

the winner and loser portfolios, i.e., the threshold values for the cumulative returns over the measurement period from month t−12 to t − 2, i.e., (12-2

Ret) for entering the winner and loser portfolios , and the ratio of the book value of debt to the market value of equity (BD/ME) of the winner and loser

portfolios, the cumulative market returns in percentage during the 36 and 12 months preceding the month in which the momentum portfolios are formed,

and the realized volatility of daily market returns during the 12 and 6 months preceding the month in which the momentum portfolios are formed. Sample

averages of the variables across thirteen months in which the momentum crashes were realized are reported in Panel B and the averages of those variables

across all available data are reported in Panel C. The book value of debt (BD) is available from 1964 onwards. Realized volatility is computed as the square

root of the sum of squared daily returns and reported as annualized percentage. All of the variables except BD/ME are reported in percentage.

Winner Portfolio Loser Portfolio Past Mkt Ret Past Mkt RV

Date RMOM Re
WIN Re

LOS Mkt-Rf
Break-
points

BD
/ME

Break-
points

BD
/ME

36 Mos. 12 Mos. 12 Mos. 6 Mos.

Panel A: Momentum Crash Months

1931:06 −29.03 8.17 37.20 13.79 −0.64 n.a. −74.07 n.a. −36.67 −45.68 22.74 20.90
1932:07 −60.37 13.95 74.32 33.60 −33.12 n.a. −88.35 n.a. −81.52 −65.87 41.73 40.23
1932:08 −79.57 14.36 93.93 36.46 −30.61 n.a. −86.25 n.a. −76.45 −51.19 41.60 38.91
1932:11 −22.68 −20.83 1.85 −5.61 50.00 n.a. −50.00 n.a. −67.25 −27.00 44.65 50.32
1933:04 −41.94 28.77 70.71 38.04 55.17 n.a. −54.55 n.a. −72.52 −12.66 45.55 39.33
1933:05 −28.03 19.27 47.30 21.38 114.00 n.a. −41.94 n.a. −61.25 46.97 45.32 40.36
1938:06 −33.34 10.45 43.79 23.72 −9.16 n.a. −68.93 n.a. 8.60 −39.09 32.45 29.26
1939:09 −44.57 7.92 52.49 16.96 51.22 n.a. −33.33 n.a. −16.29 −0.96 19.64 19.54
2001:01 −41.97 −6.94 35.03 3.12 94.09 0.08 −55.17 0.68 37.67 −11.58 24.48 22.15
2002:11 −20.40 2.12 22.52 5.96 64.42 0.12 −48.34 2.32 −30.71 −13.63 23.99 30.04
2009:03 −39.31 4.81 44.12 8.95 7.25 0.06 −79.52 70.55 −38.37 −42.63 42.11 56.03
2009:04 −45.89 −0.13 45.76 10.19 −1.76 0.07 −82.44 106.89 −34.05 −37.00 43.60 56.15
2009:08 −24.80 0.21 25.01 3.32 15.98 0.10 −66.10 55.57 −15.22 −18.90 45.14 32.77

Panel B: Averages Across Momentum Crash Months
−39.38 6.32 45.69 16.14 28.99 0.09 −63.77 47.20 −37.23 −24.56 36.39 36.62

Panel C: Average Across All Available Sample Months
1.18 1.24 0.06 0.64 76.08 0.10 −23.24 3.97 38.37 11.95 14.82 14.58

43



Table 3: Option-like Feature of Momentum Returns and Market Conditions

We partition the months in our sample into three groups on the basis of the cumulative market
return during the 36 months immediately preceding the momentum portfolio formation date. The
‘High’ (’Low’) group consists of all months in which this variable is in the top (bottom) 20th
percentile. The rest of the months are classified as ‘Medium’. We estimate equation (1): using
ordinary least squares for the months within each group, and report the results in Panel A. The
dependent variable is either: the momentum strategy returns (RMOM), or the returns of the winner
or loser portfolio in excess of risk free return (Re

WIN and Re
LOS). For comparison, in Panel B we

report the estimates for the CAPM, without the exposure to the call option on the market in
(1). Panel C counts the number of momentum losses worse than 20% within each group. Panel
D reports the skewness of Re

p,t with that of estimated ε of (1). α is reported in percentage per
month. The t-statistics are computed using the heteroskedasticity-consistent covariance estimator
by White (1980). The sample period is 1929:07-2013:12.

State Variable: Past 36 Months Market Returns

Low Medium High

Re
p : RMOM Re

WIN Re
LOS RMOM Re

WIN Re
LOS RMOM Re

WIN Re
LOS

A: Henriksson-Merton Estimates

α 3.00 1.12 -1.88 2.62 1.03 -1.59 0.59 0.65 0.06
t(α) (3.28) (2.88) (-2.93) (5.20) (3.44) (-6.03) (1.04) (1.82) (0.17)
β0 -0.44 0.97 1.41 -0.08 1.27 1.35 0.20 1.40 1.19
t(β0) (-3.14) (12.45) (16.60) (-0.42) (11.80) (13.23) (1.89) (17.93) (13.45)
β+ -1.01 -0.29 0.72 -0.49 -0.26 0.23 0.26 -0.12 -0.38
t(β+) (-3.17) (-2.02) (3.60) (-1.51) (-1.37) (1.39) (0.94) (-0.78) (-1.92)
Adj.R2 0.48 0.77 0.83 0.06 0.71 0.72 0.06 0.81 0.62

B: CAPM Estimates

α 0.05 0.27 0.22 1.81 0.60 -1.21 1.08 0.41 -0.67
t(α) (0.08) (1.05) (0.45) (7.42) (4.62) (-7.42) (2.74) (1.90) (-2.45)
β -1.02 0.80 1.82 -0.32 1.14 1.47 0.31 1.35 1.04
t(β) (-6.60) (13.38) (18.01) (-3.40) (21.17) (27.93) (3.45) (30.06) (15.37)
Adj.R2 0.43 0.76 0.82 0.05 0.71 0.71 0.06 0.81 0.62

C: Number of Momentum Losses worse than -20%

11 2 0

D: Conditional Skewness

Re
p -2.33 -0.21 1.74 -0.98 -0.59 0.07 0.17 -0.73 -0.61

εp -0.48 -0.59 0.59 -0.76 -0.21 0.94 -0.12 1.07 0.81
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Table 4: Option-like Feature of Momentum Returns during Dot-com Crash

We estimate equation (1) with the momentum strategy return (RMOM) and the winner and loser
portfolio excess returns (Re

WIN and Re
LOS) as a candidate dependent variable. We use 36 monthly

data on returns during 2000:01-2002:12. α is reported in percentage per month. The t-statistics
are computed using the heteroskedasticity-consistent covariance estimator by White (1980).

Re
p : RMOM Re

WIN Re
LOS

α 3.41 1.57 -1.84
t(α) (0.92) (0.85) (-0.71)
β0 -0.42 1.25 1.67
t(β0) (-0.71) (3.06) (4.31)
β+ -1.35 -0.54 0.82
t(β+) (-1.26) (-0.81) (1.11)

Table 5: Maximum Likelihood Estimates of HMM Parameters

We maximize the likelihood of data with the assumption that εMOM,t in (2) is drawn from a standard
Normal distribution and εMKT,t in (3) is drawn from a Student-t distribution with d.f.=5. The
parameters are estimated using data for the period 1927:01-2013:12. α, σMOM, and σMKT are
reported in percentage per month.

Hidden State
St = Calm(C) St = Turbulent(T )

Parameter estimates (t-stat) estimates (t-stat)

α (%) 1.95 (7.35) 4.05 (3.82)
β0 0.34 (3.79) −0.32 (−1.90)
β+ −0.46 (−3.27) −1.14 (−4.63)
σMOM (%) 4.31 (17.21) 11.02 (20.56)
µ 1.11 (8.13) −0.38 (−0.74)
σMKT (%) 4.04 (26.74) 8.36 (15.80)
Pr (St=st−1|St−1 =st−1) 0.98 (9.52) 0.94 (10.34)
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Table 6: Momentum and Market Excess Returns: Sample Moments vs HMM-implied Moments

We compare the HMM-implied moments of momentum strategy returns and market excess returns with the corresponding moments
in our sample. After we estimate HMM parameters, we generate εMOM,t and εMKT,t in our HMM specification of (2)) and (3)) using
monte carlo simulation from various combinations of Normal and Student-t distributions. Then, we construct a 1044 month-long
time series of momentum strategy and market excess returns using HMM specification and compute their first four moments. We
then repeat this exercise 10,000 times to obtain the distribution of the first four momentums.

Momentum Strategy Returns: RMOM,t Market Excess Returns: Re
MKT,t

Realized Quantiles (%) of Realized Quantiles (%) of
Moments Simulated Moments Moments Simulated Moments

0.5 2.5 50 97.5 99.5 0.5 2.5 50 97.5 99.5
Panel A: Normal (εMOM,t) and Student-t (εMKT,t)

mean 1.18 0.49 0.66 1.21 1.69 1.81 0.64 0.04 0.23 0.67 1.08 1.19
std.dev 7.94 6.18 6.62 8.20 9.87 10.20 5.43 4.61 4.87 5.69 6.61 6.96
skewness -2.43 -5.83 -2.45 -0.60 0.00 0.16 0.16 -3.51 -1.81 -0.27 1.58 4.37
kurtosis 21.22 5.28 5.63 7.94 29.79 79.53 10.35 5.12 5.54 8.45 40.00 80.70

Panel B: Normal (εMOM,t) and Normal (εMKT,t)
mean 1.18 0.46 0.63 1.13 1.61 1.72 0.64 0.17 0.28 0.65 0.99 1.09
std.dev 7.94 6.26 6.59 7.76 8.95 9.34 5.43 4.58 4.76 5.39 6.05 6.27
skewness -2.43 -1.40 -1.20 -0.58 0.01 0.24 0.16 -0.88 -0.74 -0.34 0.08 0.22
kurtosis 21.22 5.83 6.27 8.09 11.51 13.05 10.35 4.52 4.76 5.79 7.47 8.37

Panel C: Student-t (εMOM,t) and Normal (εMKT,t)
mean 1.18 0.62 0.79 1.28 1.75 1.92 0.64 0.10 0.25 0.66 1.02 1.11
std.dev 7.94 5.88 6.33 7.78 9.35 9.96 5.43 4.30 4.56 5.37 6.23 6.46
skewness -2.43 -3.27 -1.78 -0.50 0.80 2.19 0.16 -0.94 -0.80 -0.39 0.03 0.16
kurtosis 21.22 6.17 6.80 9.86 28.46 64.22 10.35 4.40 4.68 5.76 7.51 8.32

Panel D: Student-t (εMOM,t) and Student-t (εMKT,t)
mean 1.18 0.78 0.93 1.42 1.89 2.05 0.64 0.15 0.30 0.75 1.13 1.24
std.dev 7.94 5.56 6.03 7.67 9.53 10.17 5.43 4.33 4.58 5.42 6.45 6.87
skewness -2.43 -4.36 -2.25 -0.49 0.93 2.38 0.16 -3.34 -1.72 -0.29 1.15 2.74
kurtosis 21.22 6.27 6.87 10.66 36.30 82.36 10.35 5.02 5.54 8.49 32.09 75.30
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Table 8: False Positives In Predicting Momentum Crashes

We compare the number of false positives in predicting momentum crashes across different tail
risk measures. The number of false positives of a given tail risk measure is computed as follows.
Suppose we classify months in which momentum strategy returns lost more than a threshold X.
Let Y denote the lowest value attained by a given tail risk measure during those momentum crash
months. During months when the tail risk measure is above the threshold level of Y , we count the
number of months when momentum crashes did not occur and we denote it as the number of false
positives. We consider X=10%, 20%, 30%, 40%. In Panel A, we use Pr (St = Turbulent|Ft−1) as a
tail risk measure. The results in Panel A-1 are from our original HMM model specified in (2), (3)
and (4). To emphasize the importance of option-like feature β+(St) in (2), we impose the restriction
β+(St) = 0 and report the associated results in Panel A-2. In Panel B, we use various estimates
of the volatility of momentum strategy returns as tail risk measures. Specifically, we estimate the
volatility of the momentum strategy returns using GARCH (1,1) and realized volatility of daily
momentum strategy returns over the previous 3, 6, 12, and 36 months. In Panel C, we use the
volatility of the market return estimated using GARCH(1,1) and realized volatility of the daily
market return during the preceding 3, 6, 12, and 36 months as tail risk measures. In Panel D, we
use the market return during the preceding 3, 6, 12 and 36 month windows as tail risk measures.

Momentum Crash Threshold (-X)

Tail Risk Measure ≤ −40% ≤ −30% ≤ −20% ≤ −10%

Panel A: HMM

A-1: Main Specification

Pr(St = T|Ft−1) 121 119 114 902

A-2: Without the option-like feature β+(St) = 0

Pr(St = T|Ft−1) 157 155 150 891

Panel B: Momentum Strategy Returns Volatility

GARCH(1,1) 263 261 256 829
RV(3 Months) 234 232 227 922
RV(6 Months) 194 192 187 892
RV(12 Months) 154 152 147 866
RV(36 Months) 180 178 173 951

Continued on next page
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Table 8 – continued from previous page

Panel C: Market Returns Volatility

GARCH(1,1) 188 186 181 809
RV(3 Months) 166 164 159 889
RV(6 Months) 183 181 176 920
RV(12 Months) 191 189 184 796
RV(36 Months) 179 177 172 858

Panel D: Past Market Returns

3 Months 618 616 980 948
6 Months 131 129 918 944
12 Months 249 247 966 938
36 Months 491 489 484 930
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Table 7: Extreme Losses/Gains Conditional on Pr (St = Turbulent|Ft−1)

This table presents the fraction of the total number of extreme losses/gains greater than a given
value that occur when Pr (St = Turbulent|Ft−1) is larger than a given threshold. The sample
period is 1927:01-2013:12.

Pr (St=T |Ft−1)
# Extreme losses during turbulent months

/# Extreme losses in the sample
# of

is more than ≤ −20% ≤ −17.5% ≤ −15% ≤ −12.5% ≤ −10% Months

90% 10/13 15/21 18/32 22/37 25/56 108
80% 13/13 19/21 23/32 27/37 30/56 155
70% 13/13 19/21 23/32 27/37 31/56 178
60% 13/13 19/21 23/32 27/37 33/56 206
50% 13/13 20/21 25/32 29/37 37/56 236
40% 13/13 21/21 27/32 31/37 40/56 265
30% 13/13 21/21 28/32 32/37 42/56 285
20% 13/13 21/21 29/32 33/37 43/56 317
10% 13/13 21/21 31/32 35/37 47/56 385

Pr (St=T |Ft−1)
# Extreme gains during turbulent months

/# Extreme gains in the sample
# of

is more than ≥ 20% ≥ 17.5% ≥ 15% ≥ 12.5% ≥ 10% Months

90% 5/12 6/15 10/28 17/45 26/74 108
80% 8/12 10/15 16/28 24/45 33/74 155
70% 8/12 10/15 16/28 27/45 37/74 178
60% 8/12 10/15 16/28 27/45 38/74 206
50% 9/12 11/15 19/28 30/45 43/74 236
40% 9/12 11/15 20/28 31/45 44/74 265
30% 9/12 11/15 20/28 32/45 49/74 285
20% 10/12 12/15 21/28 33/45 52/74 317
10% 11/12 14/15 23/28 36/45 60/74 385
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Table 9: Systematic Risk in Momentum Strategy Returns

This table presents the results of regressing εMOM,t in (15) on various systematic risk factors,
εMOM,t = intercept + coeff× systematic factort + et. Results are obtained by using the data from
1996:01 to 2013:12 (216 months) where we can reconstruct εMOM,t from the market prices of call
option on S&P 500 from OptionMetrics. Details on systematic factors are described in the main
text.

Panel A: General Factors

systematic factor coeff t(coeff) R2(%) First Month Last Month N

MKT -0.12 -0.78 0.41 1996:01 2013:12 216
SMB 0.25 0.94 1.08 1996:01 2013:12 216
HML -0.52 -1.97 4.36 1996:01 2013:12 216
RMW -0.03 -0.09 0.01 1996:01 2013:12 216
CMA -0.04 -0.09 0.01 1996:01 2013:12 216
I/A -0.27 -0.59 0.48 1996:01 2013:12 216

ROE 0.99 2.99 13.00 1996:01 2013:12 216
QMJ 0.51 1.68 3.66 1996:01 2013:12 216

Panel B: Liquidity Related Factors

systematic factor coeff t(coeff) R2(%) First Month Last Month N

LIQ 0.26 1.32 1.59 1996:01 2013:12 216
FLS 0.07 0.56 0.71 1996:01 2012:10 202
BAB 0.21 0.82 1.14 1996:01 2012:03 195

∆ LIBOR 0.05 1.23 1.73 1996:01 2013:12 216
∆ TERM -0.04 -1.39 1.18 1996:01 2013:12 216

∆ CREDIT 0.03 0.86 0.22 1996:01 2013:12 216
∆ TED -0.02 -0.49 0.13 1996:01 2013:12 216

Panel C: Tail Risk Related Factors

systematic factor coeff t(coeff) R2(%) First Month Last Month N

VAR-SWAP 1M 0.00 -0.52 0.06 1996:02 2013:09 212
VAR-SWAP 3M 0.01 0.70 0.09 1996:02 2013:08 210
VAR-SWAP 6M 0.02 1.41 0.44 1996:08 2013:08 203
VAR-SWAP 12M 0.01 0.57 0.09 1997:03 2013:08 193

∆ VIX 0.00 1.03 0.39 1996:01 2013:12 216
∆ LJV -0.77 -0.42 0.09 1996:01 2013:12 216
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Table 10: Realized Correlation, CAPM-implied Correlation, and HM-implied Correlation Conditional on Pre-
dicted Probability for the Turbulent State

This table represents the conditional nature of the correlation between MOM and VMG. We group the months in our sample into three
equal-sized tertiles (High, Med, Low) based on the predicted probability of the hidden state being turbulent, Pr (St = Turbulent|Ft1).
The state probability breakpoints for the three tertiles are 14% and 3%. Panel A reports the correlation matrix for MOM, VMG, VAL
(the high book-to-market portfolio), and GRO (the low book to market portfolio), for the three sets of months. The right-most correlation
matrix is unconditional. To separate the effect of the past market returns on the correlation, we form three tertiles of Top, Middle (Mid),
and Bottom (Btm) based on formation period return of the market using all sample months as well as within each state-probability tertile.
When we use all 1044 months, the breakpoints for formation period market returns are 19.22% and 4.49% . The correlations from double
sorts are reported in Panel A-1 and A-2. In Panel B, we estimate the following time series regressions: Re

p,t = α + β0Re
MKT,t + ep, where

Re
MKT,t is the market excess return and Rp,t is the portfolio returns of our interest with p = MOM,VMG,VAL,GRO. In Panel C, we use

the the Henriksson and Merton (1981) specification in each regression: Re
p,t = α + β0Re

MKT,t + β+ max
(
Re

MKT,t, 0
)

+ ep, where Re
MKT,t is

the market excess return and Rp,t is the portfolio returns of our interest with p = MOM,VMG,VAL,GRO. The t-statistics are computed
using the heteroskedasticity consistent covariance estimator (White, 1980) and reported in parentheses in Panel B and C.

Panel A: Realized Correlation conditional on Predicted Probability for the Turbulent State
High Med Low All

MOM VMG VAL MOM VMG VAL MOM VMG VAL MOM VMG VAL
VMG -0.57 VMG -0.07 VMG -0.07 VMG -0.44
VAL -0.66 0.84 VAL 0.04 0.68 VAL 0.00 0.63 VAL -0.48 0.79
GRO -0.47 0.28 0.75 GRO 0.12 -0.03 0.72 GRO 0.07 -0.19 0.64 GRO -0.28 0.14 0.72

A-1: Corr(MOM,VMG) by double sorts on 1) predicted probability and 2) formation period return of market
High Med Low All

Btm Mid Top Btm Mid Top Btm Mid Top Btm Mid Top
-0.69 -0.54 -0.30 -0.14 -0.05 -0.03 -0.10 -0.20 0.07 -0.58 -0.44 -0.13

A-2: Corr(MOM,VMG) by double sorts on 1) formation period return of market and 2) predicted probability
Btm Mid Top All

High Med Low High Med Low High Med Low High Med Low
-0.63 -0.53 -0.17 -0.60 -0.15 0.03 -0.22 -0.10 0.07 -0.57 -0.07 -0.07

Continued on next page
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Table 10 – continued from previous page

Panel B: CAPM-implied Residual Correlation conditional on Predicted Probability for the Turbulent State
High Med Low All

β R2 β R2 β R2 β R2

MOM -0.89 0.30 MOM 0.08 0.01 MOM 0.05 0.00 MOM -0.52 0.13
(-6.83) (1.07) (0.81) (-4.82)

VMG 0.58 0.21 VMG 0.23 0.05 VMG 0.12 0.01 VMG 0.43 0.13
(4.56) (3.45) (1.72) (4.91)

VAL 1.58 0.74 VAL 1.28 0.72 VAL 1.15 0.66 VAL 1.44 0.71
(14.29) (23.72) (21.36) (18.87)

GRO 0.99 0.92 GRO 1.05 0.89 GRO 1.03 0.85 GRO 1.01 0.90
(43.19) (43.89) (40.51) (63.85)

eMOM eVMG eVAL eMOM eVMG eVAL eMOM eVMG eVAL eMOM eVMG eVAL

eVMG -0.25 eVMG 0.02 eVMG 0.01 eVMG -0.13
eVAL -0.47 0.40 eVAL 0.06 0.19 eVAL 0.04 0.09 eVAL -0.30 0.31
eGRO -0.53 0.45 0.83 eGRO 0.07 0.21 0.80 eGRO 0.04 0.10 0.75 eGRO -0.34 0.34 0.80

Continued on next page
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Table 10 – continued from previous page

Panel C: HM-implied Residual Correlation conditional on Predicted Probability for the Turbulent State
High Med Low All

β0 β+ R2 β0 β+ R2 β0 β+ R2 β0 β+ R2

MOM -0.31 -1.10 0.35 MOM 0.19 -0.21 0.01 MOM 0.26 -0.42 0.02 MOM -0.06 -0.89 0.17
(-2.28) (-3.78) (1.44) (-0.92) (2.74) (-2.01) (-0.52) (-3.12)

VMG 0.08 0.94 0.28 VMG 0.57 -0.66 0.09 VMG 0.06 0.12 0.01 VMG 0.17 0.50 0.15
(0.63) (2.93) (5.66) (-4.00) (0.60) (0.54) (1.85) (1.95)

VAL 1.12 0.85 0.76 VAL 1.54 -0.51 0.73 VAL 1.04 0.21 0.66 VAL 1.19 0.48 0.72
(10.20) (3.18) (20.04) (-3.97) (14.31) (1.22) (14.95) (2.22)

GRO 1.04 -0.09 0.93 GRO 0.97 0.14 0.89 GRO 0.98 0.09 0.85 GRO 1.02 -0.02 0.90
(33.57) (-1.36) (26.86) (2.15) (24.39) (1.23) (45.34) (-0.32)

eMOM eVMG eVAL eMOM eVMG eVAL eMOM eVMG eVAL eMOM eVMG eVAL

eVMG -0.31 eVMG 0.03 eVMG 0.00 eVMG -0.16
eVAL -0.51 0.44 eVAL 0.07 0.21 eVAL 0.03 0.09 eVAL -0.32 0.32
eGRO -0.52 0.44 0.82 eGRO 0.07 0.20 0.79 eGRO 0.04 0.10 0.75 eGRO -0.34 0.34 0.80
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Table 11: Covariance decomposition of MOM and VMG returns / residuals

This table represents the conditional nature of the covariance between MOM and VMG. We group the months in our sample into three
equal-sized tertiles (High, Med, Low) based on the predicted probability of the hidden state being turbulent, Pr (St = Turbulent|Ft1).
Panel A reports the covariance matrix for MOM (WIN-LOS) and VMG (VAL-GRO) for the three sets of months. The right-most
covariance matrix is unconditional. In Panel B, we estimate the following time series regressions: Re

p,t = α + β0Re
MKT,t + ep, where

Re
MKT,t is the market excess return and Rp,t is the portfolio returns of our interest with p = MOM (WIN-LOS) and VMG (VAL-GRO),

and report the covariance of residual terms. In Panel C, we use the the Henriksson and Merton (1981) specification in each regression:
Re
p,t = α + β0Re

MKT,t + β+ max
(
Re

MKT,t, 0
)

+ ep, where Re
MKT,t is the market excess return and Rp,t is the portfolio returns of our

interest with p = MOM (WIN-LOS) and VMG (VAL-GRO), and report the covariance of residual terms. All numbers are reported in
percentage squared per month.

Panel A: Covariance Decomposition of Returns
High Med Low All

VMG VAL -GRO VMG VAL -GRO VMG VAL -GRO VMG VAL -GRO
MOM -64.05 MOM -1.63 MOM -1.12 MOM -22.36
WIN 66.45 -48.52 WIN 35.87 -28.40 WIN 19.46 -17.16 WIN 40.51 -31.37
-LOS -174.14 92.16 -LOS -34.56 25.46 -LOS -19.47 16.05 -LOS -75.92 44.41

Panel B: Covariance Decomposition of CAPM Residuals
High Med Low All

eVMG eVAL -eGRO eVMG eVAL -eGRO eVMG eVAL -eGRO eVMG eVAL -eGRO

eMOM -35.58 eMOM -2.01 eMOM -1.21 eMOM -15.74
eWIN -7.90 -1.61 eWIN 1.88 -0.62 eWIN 0.59 -0.25 eWIN -2.84 -0.96
-eLOS -22.67 -3.39 -eLOS -2.67 -0.60 -eLOS -1.43 -0.12 -eLOS -10.39 -1.54

Panel C: Covariance Decomposition of HM Residuals
High Med Low All

eVMG eVAL -eGRO eVMG eVAL -eGRO eVMG eVAL -eGRO eVMG eVAL -eGRO

eMOM -28.83 eMOM -2.32 eMOM -1.14 eMOM -14.14
eWIN -5.59 -1.37 eWIN 1.67 -0.68 eWIN 0.66 -0.28 eWIN -2.22 -0.94
-eLOS -18.89 -2.99 -eLOS -2.70 -0.61 -eLOS -1.38 -0.14 -eLOS -9.46 -1.51
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Table 12: Regression of CAPM and HM fitted residuals on liquidity shocks

This table reports results of regressing the residuals from the CAPM and Henriksson-Merton (HM) specifications on
proxies for economy-wide liquidity shocks. We consider (i) the funding liquidity shock measured by the innovations
in AR(2) model of TED spread, the 3-month interbank LIBOR minus the 3- month T-bill rate, as well as (ii) the
innovations in the aggregate market liquidity estimated by Pastor and Stambaugh (2003). We take the negative of
the TED spread so that it repre- sents the level of liquidity. Panel A (B) reports regression results using CAPM (HM)
residuals as regressands.

Panel A: Regression of CAPM residuals on liquidity risk
High Med Low All

Liquidity Risk eMOM eVMG eMOM eVMG eMOM eVMG eMOM eVMG

TED Spread 3.73 -3.86 -1.22 1.16 -1.01 -0.28 1.75 -1.97
(1.40) (-2.17) (-0.45) (0.75) (-0.64) (-0.21) (1.09) (-1.80)

Pastor-Stambaugh 9.40 -16.06 -10.63 5.50 -1.96 5.56 6.83 -8.47
(0.97) (-2.21) (-1.29) (0.90) (-0.32) (1.10) (1.04) (-1.99)

Panel B: Regression of HM residuals on liquidity risk
High Med Low All

Liquidity Risk eMOM eVMG eMOM eVMG eMOM eVMG eMOM eVMG

TED Spread 2.46 -2.78 -1.11 1.50 -1.54 -0.13 1.08 -1.60
(0.91) (-1.55) (-0.40) (0.99) (-1.02) (-0.09) (0.70) (-1.53)

Pastor-Stambaugh 2.95 -10.56 -11.13 3.92 -5.07 6.46 1.21 -5.33
(0.31) (-1.50) (-1.37) (0.65) (-0.96) (1.38) (0.20) (-1.31)
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Table 13: Performance of Combined Value-Momentum Strategies

This table presents summary statistics for the monthly returns for five portfolios. MOM is the zero-investment
momentum portfolio that is long the top-decile past winners and short the bottom-decile past losers. VMG is the
zero-investment portfolio that is long the top-decile B/M stocks in short the bottom-decile B/M stocks. “50/50-
static” is a portfolio with weights of 0.5 on the MOM and VMG portfolios. The “50/50-dyn” portfolio has weights
of 0.5 on both the MOM and VMG portfolios when the turbulent state probability is in High tertile, and otherwise
holds only the momentum portfolio. Finally, the “ conditional MVE” puts weights of w = (γsΣs)

−1µs on VMG
and MOM in each of two groups (High tertile and the rest) — that is, the portfolio in each group is the conditional
ex-post mean variance efficient portfolio.

No. Rets <
portfolio mean std SR skew. kurt. -10% -15% -20%
MOM 1.18 7.94 0.52 -2.43 21.22 56 32 13
VMG 0.52 6.46 0.28 2.62 24.96 27 9 3
50/50-static 0.85 3.87 0.76 -0.50 6.04 13 3 0
50/50-dyn 1.01 3.87 0.91 -0.33 4.45 8 2 0
Conditional MVE 1.18 3.87 1.05 0.35 5.33 8 1 0
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Figure 1: Empirical Frequency of Momentum Strategy Returns (MOM)

Panel A plots the smoothed empirical density of the MOM and the Normal density with the
same mean and standard deviation. To highlight the left skew of momentum strategy returns, we
represent 25 MOM returns (13 in left tails and 12 in right tails) that exceed 20% in absolute value.
Panel B plots the empirical density of MOM along with the empirical density of scaled market
excess returns, Mkt-Rf∗, with standard deviation equal to that of momentum strategy returns.
The sample period is 1927:01-2013:12.
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Figure 2: Momentum Returns and Probability of the Hidden State being Turbulent

The figure presents a scatter plot of momentum strategy return on the vertical axis and
Pr (St = Turbulent|Ft−1), the probability that the hidden state is turbulent, on the horizontal
axis. Momentum strategy returns below -20% are highlighted in red, and returns of exceeding
20% are in green. Figure (a) is based on in-sample estimates using all 1044 months (1927:01-
2013:12). For each month t of the last 400 months in 1980:09-2013:12, we skip first 10 years
over 1927:01-1936:12 and estimate our HMM using data from 1937:01 till month t−1 to compute
Pr (St = Turbulent|Ft−1). Figure (b) reports out-of-sample results.
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Figure 3: Time Series of Option Adjusted Alpha

Option adjusted alpha, α∗, is computed by (16). The sample period is 1996:01 to 2013:12 where
we can find the market price of call option on S&P 500 from OptionMetrics. 95% confidence
intervals are computed as follows. First, we simulate 10,000 sets of parameters from the asymptotic
distributions of parameters obtained from ML estimator. Then, for each set of parameters, we
compute the monthly time series of α∗. Lastly, in each month, we find 95% confidence intervals of
α∗ by choosing top and bottom 2.5% quantiles from the simulated 10,000 observations of α∗.

59



Tail Risk in Momentum Strategy Returns

Online Appendices

Appendix A Inconsistency of QML

In many settings, it useful to assume that residuals are drawn from Normal distributions in estimat-
ing a statistical model. When the true distribution of the residual is not Normal, these estimates
are Quasi-Maximum Likelihood (QML). Wooldridge (1986) provides sufficient conditions for the
consistency and asymptotic normality of QML estimators. These conditions are not satisfied in
our case. Below, we provide an example where the HMM return generating process innovations are
drawn from a non-normal distribution and the resulting QML estimator—obtained by maximizing
the misspecified normal likelihood—gives an asymptotically biased (inconsistent) estimate of the
true parameter value.

Suppose Rt follows the process given below:

Rt = σ (St) εt, (A.1)

where σ (St) is either σH or σL, depending on the realization of hidden state of St which is either
H or L. The transition probability matrix that determines the evolution of the hidden state St is
given by

Π =

[
Pr(St = H|St−1 = H) Pr(St = L|St−1 = H)
Pr(St = H|St−1 = L) Pr(St = L|St−1 = L)

]
=

[
p 1− p

1− p p

]
. (A.2)

An econometrician observes the time series of {Rt}Tt=1 but not the underlying state. The parameters
p and σL are known. The econometrician estimates the unknown parameter σH by QML, that is
by assuming that εt is drawn from the standard normal distribution, whereas εt is either 1 or -1
with equal probability. In what follows, we show that when

σH = 1.5, σL = 1, and p = 0.52, (A.3)

the QML estimator of σH is inconsistent.
The misspecified normal log likelihood of {Rt}Tt=1 is given by

1

T

T∑
t=1

log (L (Rt)) , (A.4)

where

L (Rt) = λt−1φ (Rt|σH) + (1− λt−1)φ(Rt|σL), (A.5)

φ (x|σ) = 1
σ
√
2π

exp
(
− x2

2σ2

)
is the density function of N (0, σ2), and λt−1 is the probability for

St = H given the information set Ft−1 = {R1, R2, · · · , Rt−1} when the econometrician uses the
(incorrect) normal density for inference. When the true likelihood is used, let λ∗t−1 denote the
probability of St = H given Ft−1. Since St is hidden, both λt−1 and λ∗t−1 are weighted averages of
p and 1− p and the following should be satisfied:

1− p ≤ λt−1, λ
∗
t−1 ≤ p (A.6)
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for every Ft−1.
The QML estimate σ̂H is obtained by maximizing (A.4), giving rise to the first order condition:

1

T

T∑
t=1

∂ log (L (Rt))

∂σH
|σH=σ̂H = 0. (A.7)

If σ̂H converges to σ0
H, the LHS of (A.7) converges to the true expectation as

1

T

T∑
t=1

∂ log (L (Rt))

∂σH
|σH=σ̂H

p−→ E
[
∂ log (L (Rt))

∂σH

]
σH=σ0

H

(A.8)

under mild regularity conditions. Noting that the RHS of (A.7) is always zero, it follows that

E
[
∂ log (L (Rt))

∂σH

]
σH=σ0

H

= E
[
E
[
∂ log (L (Rt))

∂σH
|Ft−1

]]
σH=σ0

H

= 0. (A.9)

We show the inconsistency of σ̂H by verifying that (A.9) cannot hold. When σH = σ0
H, there exists

δ > 0 such that E
[
∂ log(L(Rt))

∂σH
|Ft−1

]
< −δ for every Ft−1, implying that E

[
∂ log(L(Rt|σH))

∂σH

]
< −δ.

Hereafter, we will evaluate the conditional expectation at σH = σ0
H. From (A.5), note that

E
[
∂ log(L(Rt))

∂σH
|Ft−1

]
is decomposed as follows:

E
[
∂ log (L (Rt))

∂σH
|Ft−1

]
= E

[
λt−1
L (Rt)

∂φ (Rt|σH)

∂σH
|Ft−1

]
+ E

[
1

L (Rt)
(φ (Rt|σH)− φ (Rt|σL)) |Ft−1

]
∂λt−1
∂σH

. (A.10)

To determine the sign of each component in RHS of (A.10), we need the conditional distribution of
Rt. Since λ∗t−1 is the true probability of St = H given Ft−1 and εt in (A.1) is drawn from a binomial
distribution of 1 or -1 with equal probability, the probability mass of Rt over (−σH,−σL, σL, σH)

equals
(
λ∗t−1

2
,
1−λ∗t−1

2
,
1−λ∗t−1

2
,
λ∗t−1

2

)
.

First, we determine the sign of E
[
λt−1

L(Rt)
∂φ(Rt|σH)

∂σH
|Ft−1

]
. From the properties of the normal

density, it follows that ∂φ(x|σ)
∂σ

= φ(x|σ)
(
− 1
σ

+ x2

σ3

)
and φ(−x|σ) = φ(x|σ). Hence

E
[
λt−1
L

∂φ (Rt|σH)

∂σH
|Ft−1

]
=

λ∗t−1
2

∑
Rt=−σH,σH

λt−1
L (Rt)

φ(Rt|σH)

(
− 1

σH
+
R2
t

σ3
H

)
+

1− λ∗t−1
2

∑
Rt=−σL,σL

λt−1
L (Rt)

φ(Rt|σH)

(
− 1

σH
+
R2
t

σ3
H

)

=

(
1− λ∗t−1

)
λt−1

L(σL)
φ(σL|σH)

(
− 1

σH
+
σ2
L

σ3
H

)
< − (1− p)2 φ(σL|σH)

φ(σL|σL)

(
σ2
H − σ2

L

σ3
H

)
, (A.11)

where the last inequality is from (A.6) and L(σL) < φ(σL|σL).
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Next, from the property, φ(−x|σ) = φ(x|σ), and the fact that φ (x|σ) = 1
σ
√
2π

exp
(
− x2

2σ2

)
, the

sign of E
[
1
L (φ (Rt|σH)− φ (Rt|σL)) |Ft−1

]
is determined as follows:

E
[

1

L
(φ (Rt|σH)− φ (Rt|σL)) |Ft−1

]
=

λ∗t−1
2

∑
Rt=−σH,σH

(
φ (Rt|σH)− φ (Rt|σL)

L (Rt)

)
+

1− λ∗t−1
2

∑
Rt=−σL,σL

(
φ (Rt|σH)− φ (Rt|σL)

L (Rt)

)
= λ∗t−1

(
φ (σH|σH)− φ (σH|σL)

L (σH)

)
+
(
1− λ∗t−1

)(φ (σL|σH)− φ (σL|σL)

L (σL)

)
= λ∗t−1

(
φ (σH|σH)− φ (σH|σL)

L (σH)

)
+
(
1− λ∗t−1

) L (σH)

L (σL)

(
φ (σL|σH)− φ (σL|σL)

L (σH)

)
>

1

L (σH)

(
λ∗t−1 (φ (σH|σH)− φ (σH|σL)) +

(
1− λ∗t−1

)
(φ (σL|σH)− φ (σL|σL))

)
>

1

L (σH)
((1− p) (φ (σH|σH)− φ (σH|σL)) + p (φ (σL|σH)− φ (σL|σL))) > 0, (A.12)

where the last three inequalities can be verified by (A.6) and the given parameter values of (A.3).
Finally, we show that ∂λt−1

∂σH
≤ 0 by induction. We assume that λ0 is determined as the steady

state distribution determined by (A.2). Since λ0 does not depend on σH, the following holds:

∂λ0
∂σH

= 0. (A.13)

Next, we show that ∂λt−1

∂σH
≤ 0 implies ∂λt

∂σH
≤ 0. Note that the process of {λt}Tt=0 is constructed by

the following recursion:

λ̃t =
λt−1φ (Rt|σH)

λt−1φ (Rt|σH) + (1− λt−1)φ (Rt|σL)
, (A.14)

and

λt = pλ̃t + (1− p)
(

1− λ̃t
)
. (A.15)

Equation (A.14) describes how the econometrician updates the probability on the hidden state of
St using the misspecified normal likelihood after observing Rt. Equation (A.15) shows how the
econometrician predicts the hidden state of St+1 with the given information set Ft through the
transition matrix given in (A.2). Combining (A.14) and (A.15), we get

λt + p− 1

2p− 1
=

λt−1φ (Rt|σH)

λt−1φ (Rt|σH) + (1− λt−1)φ (Rt|σL)
. (A.16)

Taking the derivative of (A.16) with respect to σH, we obtain the following:

1

2p− 1

∂λt
∂σH

=
∂ λt−1φ(Rt|σH)
λt−1φ(Rt|σH)+(1−λt−1)φ(Rt|σL)

∂λt−1

∂λt−1
∂σH

+
∂ λφ(Rt|σH)
λφ(Rt|σH)+(1−λ)φ(Rt|σL)

∂φ (Rt|σH)

∂φ (Rt|σH)

∂σH
. (A.17)
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To determine the sign of each component in RHS of (A.17), we use the following properties:

∂ λm
λm+(1−λ)n

∂λ
=

mn

(λm+ (1− λ)n)2
> 0 (A.18)

∂ λm
λm+(1−λ)n

∂m
=

λ(1− λ)n

(λm+ (1− λ)n)2
> 0 (A.19)

for m,n > 0 and λ ∈ (0, 1). Further, using the properties of ∂φ(x|σ)
∂σ

= φ(x|σ)
(
− 1
σ

+ x2

σ3

)
and

φ (x|σ) = φ (−x|σ), we have that

∂φ (σH|σH)

∂σH
= φ(σH|σH)

(
− 1

σH
+
σ2
H

σ3
H

)
= 0

∂φ (σL|σH)

∂σH
= φ(σL|σH)

(
− 1

σH
+
σ2
L

σ3
H

)
< 0,

implying

∂φ (Rt|σH)

∂σH
≤ 0 (A.20)

for every possible realization of Rt from {−σH,−σL, σL, σH}. With the assumption that ∂λt−1

∂σH
≤ 0,

inequalities of (A.18), (A.19), and (A.20) ensure that RHS of (A.17) is non-positive. Hence, with
p > 1/2 as assumed in (A.3), it follows that ∂λt

∂σH
≤ 0. Combining (A.13) with this finding, we

conclude that

∂λt−1
∂σH

≤ 0, (A.21)

for every possible information set of Ft−1.
Recall that we want to show that (A.10) is strictly negative. Finally, combining (A.11), (A.12),

and (A.20), we conclude that

E
[
∂ log (L (Rt|σH))

∂σH
|Ft−1

]
< −δ, (A.22)

where

δ = (1− p)2 φ(σL|σH)

φ(σL|σL)

(
σ2
H − σ2

L

σ3
H

)
> 0, (A.23)

completing the proof that QML estimate of σ̂H in (A.7) will not converge to the true parameter
value.
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Appendix B Additional Tables

Table 14: Option-like Feature of Momentum Returns and Market Conditions

We partition the months in our sample into three groups: ‘High’ group is made up of months
when variable describing the market conditions (past market returns, realized volatility of the
market, or leverage of loser portfolio stocks) was in the top 20th percentile and the ‘Low’ group
corresponds to months when the market condition variable was in the bottom 20th percentile. The
rest of the months are classified as ‘Medium’. For Panel A, the sample period is 1929:07-2013:12.
For Panel B and C, the sample period is 1927:07-2013:12. In Panel A, we group the sample on
the basis of cumulative market return during the 36 months preceding the month in which the
momentum portfolios are formed. In Panel B, we group the months based on the realized volatility
of daily market returns over the previous 12 months. In Panel C, we use the breakpoints of the
loser portfolio for grouping. We then pool the months within each group and analyze the behavior
of momentum strategy returns. Specifically, we estimate equation (1) with ordinary least squares
using momentum strategy returns (RMOM) and the returns of winner and loser portfolio in excess
of risk free return (Re

WIN and Re
LOS) as LHS variables and report results in Panel A-1-i, B-1-i, and

C-1-i. For comparison, we report the estimates for the CAPM, without the exposure to the call
option on the market in (1), in Panel A-1-ii, B-1-ii, and C-1-ii. Then, we count the numbers of
large momentum losses worse than negative 20% within the groups and report those in Panel A-2,
B-2, and C-2. Finally, we compare the skewness of Re

p,t with that of estimated ε of (1) in Panel
A-3, B-3, and C-3. α is reported in percentage per month. The t-statistics are computed using
the heteroscedasticity-consistent covariance estimator by White (1980).

Continued on next page
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Table 14 – continued from previous page

Panel B: Past 12 Months Realized Volatility of Market Returns

High Medium Low

LHS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS

B-1: Option-like features

B-1-i: Henriksson-Merton Estimates

α 2.90 1.07 -1.83 1.93 0.77 -1.16 2.40 1.38 -1.02
t(α) (2.96) (2.71) (-2.58) (5.73) (4.05) (-5.01) (4.55) (4.21) (-2.98)
β0 -0.59 0.94 1.52 0.16 1.35 1.19 0.54 1.55 1.02
t(β0) (-4.83) (13.78) (17.78) (1.72) (25.36) (18.24) (3.00) (14.91) (8.23)
β+ -0.91 -0.27 0.63 -0.25 -0.19 0.06 -0.63 -0.46 0.17
t(β+) (-3.23) (-2.14) (3.39) (-1.38) (-1.93) (0.51) (-1.92) (-2.39) (0.79)
Adj.R2(%) 0.49 0.74 0.83 0.00 0.78 0.68 0.03 0.73 0.57

B-1-ii: CAPM Estimates

α 0.12 0.23 0.11 1.48 0.43 -1.04 1.58 0.78 -0.80
t(α) (0.18) (0.82) (0.20) (6.69) (3.58) (-6.96) (4.87) (4.16) (-3.56)
β -1.10 0.78 1.88 0.05 1.27 1.22 0.19 1.30 1.11
t(β) (-8.43) (14.68) (21.61) (0.78) (41.31) (29.99) (1.83) (23.47) (15.56)
Adj.R2 0.45 0.73 0.82 0.00 0.78 0.68 0.01 0.72 0.57

B-2: Number of Momentum Losses worse than -20%

13 0 0

B-3: Conditional Skewness

LHS -1.88 -0.21 1.42 -0.17 -0.65 -0.23 0.00 -0.13 0.16
ε -0.62 -0.86 0.70 -0.11 0.33 0.41 -0.01 0.59 0.48

Continued on next page
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Table 14 – continued from previous page

Panel C: Breakpoints of Loser Portfolio

Low Medium High

LHS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS RMOM Re
WIN Re

LOS

C-1: Option-like features

C-1-i: Henriksson-Merton Estimates

α 2.67 0.96 -1.71 2.79 1.21 -1.58 0.81 0.32 -0.50
t(α) (2.67) (2.35) (-2.38) (5.82) (6.23) (-4.50) (1.40) (0.84) (-1.51)
β0 -0.65 0.91 1.56 0.22 1.39 1.17 0.52 1.48 0.96
t(β0) (-5.46) (14.09) (17.98) (1.83) (25.31) (13.89) (2.96) (10.89) (13.27)
β+ -0.92 -0.29 0.63 -0.61 -0.35 0.26 -0.14 -0.09 0.05
t(β+) (-3.31) (-2.37) (3.34) (-2.07) (-3.18) (1.23) (-0.42) (-0.44) (0.27)
Adj.R2 0.50 0.70 0.83 0.03 0.80 0.67 0.16 0.81 0.75

C-1-ii: CAPM Estimates

α -0.07 0.10 0.16 1.76 0.62 -1.14 0.57 0.17 -0.40
t(α) (-0.09) (0.33) (0.31) (8.50) (5.77) (-7.58) (1.86) (0.76) (-2.50)
β -1.15 0.75 1.91 -0.08 1.22 1.30 0.45 1.43 0.98
t(β) (-9.05) (14.61) (22.14) (-0.95) (34.29) (20.93) (4.67) (25.29) (16.17)
Adj.R2 0.47 0.69 0.82 0.00 0.79 0.67 0.17 0.81 0.75

C-2: Number of Momentum Losses worse than -20%

12 1 0

C-3: Conditional Skewness

LHS -1.70 -0.02 1.44 -1.21 -0.73 0.50 0.04 -0.51 0.07
ε -0.39 0.06 0.75 -0.72 -0.05 0.69 -0.09 0.31 0.70
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Table 15: Conditional covariance of momentum and value factor returns

This table presents the conditional covariance of MOM with three value factors: the HML factor by FF (Fama and
French, 1993) and two value factors by AMP (Asness et al., 2013) – i) “Value Everywhere” which utilizes all assets
across many markets and countries and ii) “Value US Equity” which uses only assets in US equity market. We
group the months in our sample into three equal-sized tertiles (High, Med, Low) based on the predicted probability
of the hidden state being turbulent, Pr (St = Turbulent|Ft1). All numbers are reported in percentage squared per
month.

Value Factor Sample Period High Med Low All

HML(FF) 1927:01-2013:12 (1044 months) -29.97 -1.20 -0.46 -10.51
Value Everywhere (AMP) 1972:01-2013:12 (504 months) -14.16 -2.60 -1.32 -6.14
Value US equity (AMP) 1972:02-2013:12 (503 months) -31.96 -7.31 -3.07 -14.20
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