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1 Introduction

Public finance has long been concerned with the optimal redistribution of labor income

inequality. Traditionally, the optimal redistribution problem has been studied under the

assumption that the labor market is frictionless and competitive and, hence, all of the

observed differences in labor income reflect differences in workers’ productivity (see, e.g.,

Mirrlees 1971, Diamond 1998 or Saez 2001). However, a large body of empirical evidence

documents the existence of substantial wage inequality among seemingly identical workers

(see, e.g., Mortensen 2003 or Autor, Katz and Kerney 2008). While this empirical evidence

is at odds with the view that the labor market is perfectly competitive, it has been shown

to be qualitatively and quantitatively consistent with the presence of search frictions in the

labor markets1 (see, e.g., Postel-Vinay and Robin 2002 or Mortensen 2003).

In this paper, we want to study the optimal redistribution of income inequality caused by

the presence of search frictions in the labor market. To accomplish this task, we consider a

labor market populated by a continuum of risk-averse workers who are ex-ante homogenous

and by a continuum of firms that are heterogeneous with respect to their productivity. We

assume that workers are ex-ante homogeneous in order to focus on the case where no income

inequality is attributable to differences in workers’ productivity, which is the opposite of the

case traditionally studied in the public finance literature. We assume that trade in the labor

market is decentralized and frictional as in Moen (1997) and Shimer (1996). First, firms

choose which wage to offer and workers choose whether to search for a job and, if so, which

wage to seek. Then, the firms and the workers offering and seeking the same wage are brought

together by a matching process described by a constant return to scale matching function.

Trade in the labor market is frictional because we assume that the matching function is such

that a worker is not guaranteed to find a job and, similarly, a firm is not guaranteed to find

an employee. Instead, we assume that the probability that a worker finds a job–and the

probability that a firm finds an employee–is a smooth function of the ratio between labor

supply and labor demand at each particular wage. Moreover, we assume that a worker’s

1In a recent paper, Hornstein, Krusell and Violante (2011) argue that properly calibrated search models
cannot account for much residual income inequality. Their analysis applies to a class of search models that
does not include the one that we consider in this paper. More importantly, we do not need to take a stand on
the magnitude of search-based income inequality, as we are mostly interested in understanding the optimal
way to redistribute this type of inequality, be it either large or small.
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search strategy is his private information.

Because of search frictions, different types of firms offer different wages. In particular,

more productive firms choose to offer higher wages in order to attract more job seekers and,

hence, to increase their probability of trade. Also because of search frictions, inherently

identical workers end up having different incomes. In particular, workers who are employed

at more productive firms have a higher income than workers who are employed at less

productive firms, and employed workers have a higher income than unemployed workers.

In order to find the optimal redistribution of labor income inequality, we begin by solv-

ing for the constrained efficient allocation–i.e. the allocation that maximizes the workers’

expected utility subject to the technological constraints related to production and matching

and to the incentive compatibility constraints associated with the workers’ private informa-

tion about their search strategy. We find that the constrained efficient allocation differs from

the equilibrium allocation along two dimensions. First, in the constrained efficient alloca-

tion, the number of workers seeking employment at high-productivity firms is greater than

in equilibrium, while the number of workers seeking employment at low-productivity firms

is smaller than in equilibrium. Second, in the constrained efficient allocation, the difference

between the consumption of workers employed at high-productivity firms and of workers em-

ployed at low productivity firms is lower than in equilibrium, while the consumption enjoyed

by unemployed workers is higher than in equilibrium.

The equilibrium is constrained inefficient because workers face an uninsured “search

risk”–i.e. a worker’s consumption is greater when his search is successful than when his

search fails. While some measure of risk is necessary to induce workers to search for jobs,

the equilibrium search risk is, in general, inefficiently high. Hence, firms need to pay a wage

premium to compensate workers for the excess search risk. And since the excess search risk

is increasing in the number of workers applying to a particular job, high-productivity firms

find it optimal to attract an inefficiently low number of applicants and, through general

equilibrium effects, low-productivity firms end up attracting an inefficiently large number of

applicants.

The constrained efficient allocation can be implemented by introducing a positive unem-

ployment benefit and an increasing and regressive labor income tax. The role of the positive
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unemployment benefit is to redistribute consumption between employed and unemployed

workers and, thus, to lower the search risk faced by workers. The role of the positive and

regressive labor income tax is not to redistribute consumption among employed workers, but

rather to make sure that the cost to a firm of attracting an additional applicant reflects the

value of an applicant to society.

The fact that the optimal labor income tax is regressive is the main result of the paper.

This result is startlingly robust, in the sense that it does not depend on the shape of the

utility function of workers, on the shape of the productivity distribution of firms, or on the

shape of the matching function that brings together workers and firms. Rather, this result

is a necessary implication of two properties of the equilibrium with optimal policy. First,

redistribution only takes place between workers who successfully and unsuccessfully search

for jobs offering the same wage, so that the net resources redistributed between workers who

search for jobs offering different wages is zero. This implies that the optimal tax level for

a worker at a job offering a particular wage should be proportional to the inverse of the

probability of finding the job. Second, workers are ex-ante indifferent between searching for

jobs offering different wages. This implies that utility from after-tax income from any job

should also be proportional to the inverse of the probability of finding the job. When utility

is strictly concave, these two conditions can hold simultaneously only if the tax schedule is

strictly concave, i.e. regressive.

The two properties of the equilibrium which guarantee that the optimal labor income tax

is regressive are related to the directed nature of the search process. With directed search,

wage differentials among employed workers do not reflect luck, but compensation for different

job-finding probabilities. For this reason, there is no need for redistribution among workers

employed at different wages and, hence, among workers seeking jobs offering different wages.

Moreover, with directed search, workers choose where to search. For this reason, workers are

ex-ante indifferent between searching for jobs offering different wages.

The optimality of a regressive labor income tax is a somewhat surprising result. Con-

ventional wisdom suggests that the larger is the component of income inequality that is

residual–i.e. that does not originate from differences in workers’ productivity–the more

progressive the optimal labor income tax should be (see, e.g., Varian 1980). In our model,
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the optimal labor income tax is regressive even though, by construction, all income inequality

is residual. Intuitively, in our model, a progressive labor income tax would not be optimal

because it would induce too many workers to seek employment at low-productivity firms and

too few workers to seek employment at high-productivity firms.

Our paper contributes to two strands of literature. First, our paper contributes to the

literature on optimal income taxation that was pioneered by Mirrlees (1971). This literature

is concerned with characterizing the properties of the income tax system that implements the

optimal redistribution of income inequality, where the extent of redistribution is limited by

the workers’ private information about their productivity. Some papers carry out this task in

a static environment (e.g., Diamond 1998, Saez 2001 and Laroque 2005), some in a dynamic

environment (e.g., Farhi and Werning 2011 or Golosov, Troshkin and Tsyvinski 2011), and

some in a frictional environment (e.g., Hungerbuhler et al. 2006 or Shaal and Taschereau-

Dumouchel 2012). Yet, all of these papers assume that the income inequality originates

from inherent productivity differences among workers. In contrast, our paper characterizes

the income tax system that implements the optimal redistribution of income inequality that

emerges among identical workers because of search frictions in the labor market.

Second, our paper contributes to the literature on optimal unemployment insurance that

was pioneered by Shavell and Weiss (1979). This literature is concerned with characterizing

the properties of the unemployment insurance system that implements the optimal redis-

tribution between employed and unemployed workers, where the extent of redistribution is

limited by the workers’ private information about their search effort. In this literature as in

our paper, workers are inherently identical and income inequality is caused by the presence

of search frictions in the labor market. However, in contrast to our paper, this literature

does not contain any insights on income taxation because it either assumes that all employed

workers earn the same wage (e.g., Hansen and Imrohoroglu 1992, Hopenhayn and Nicolini

1997, Acemoglu and Shimer 1999, and Wang and Williamson 2002), or it assumes that a

worker’s wage is his private information (e.g., Shimer and Werning 2008).

Another contribution of our paper is to sharpen some of the results in Acemoglu and

Shimer (1999). Acemoglu and Shimer study the effects of introducing an unemployment

benefit in a directed search model of the labor market in which both workers and firms are
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ex-ante homogenous. They prove that the unemployment benefit that maximizes aggregate

output is strictly positive (Proposition 6), and they conjecture that the unemployment ben-

efit that maximizes welfare also increases aggregate output (Conjecture 1). In this paper,

we show that the constrained efficient allocation is implemented by introducing a positive

unemployment benefit and, when firms are heterogeneous, a positive and regressive labor

earnings tax (Theorem 1). Moreover, we prove that aggregate output in the constrained

efficient allocation is higher than in the laissez-faire equilibrium (see the analysis following

Proposition 2). The first of our findings shows that a positive unemployment benefit is indeed

part of the policy mix that implements the constrained efficient allocation, so that Acemoglu

and Shimer’s focus on this policy instrument is without loss in generality. The second of

our findings shows that Conjecture 1 in Acemoglu and Shimer is correct and, moreover, it

generalizes to an environment with heterogeneous firms.

2 Laissez-faire equilibrium

In this section, we lay out our directed search model of the labor market, which is in the

spirit of Moen (1997) and Acemoglu and Shimer (1999). We characterize the equilibrium

allocation and we show that the model generates labor income inequality among inherently

identical workers. In particular, the model generates income inequality between employed

and unemployed workers and across workers employed by different firms.

2.1 Environment

The economy is populated by a continuum of homogeneous workers with measure 1. Each

worker has preferences that are described by the utility function u(c), where u : R+ → R is

a twice differentiable, strictly increasing and strictly concave function of consumption. Each

worker is endowed with one job application and one indivisible unit of labor.

The economy is also populated by a continuum of heterogeneous firms with measure

m > 0. The type of a firm is denoted by y ∈ [y, y], 0 < y < y, and the measure of firms with

type less than y is denoted by F (y), where F : [y, y] → [0,m] is a twice differentiable and

strictly increasing function with boundary conditions F (y) = 0 and F (y) = m. A firm of

type y owns a vacancy that, when filled by a worker, produces y units of output. Firms are
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owned by workers through a mutual fund.2 Hence, the objective of the firms is to maximize

expected profits.

Workers and firms come together through a directed search process (see, e.g., Montgomery

1991, Moen 1997 and Acemoglu and Shimer 1999). In the first stage of the process, each firm

chooses which wage w to offer to a worker who fills its vacancy. Simultaneously, each worker

chooses whether to send a job application at the utility cost k > 0 and, if so, which wage

to seek. In making these decisions, firms and workers take as given the expected ratio q(w)

of applicants to vacancies associated with each wage w. Following Acemoglu and Shimer

(1999), we shall refer to q(w) as the queue length. In the second stage of the process, each

worker seeking the wage w matches with a firm offering the wage w with probability λ(q(w)),

where λ : R+ → [0, 1] is a strictly decreasing function of q with boundary conditions λ(0) = 1

and λ(∞) = 0. Similarly, a firm offering the wage w matches with an applicant seeking the

wage w with probability η(q(w)), where η : R+ → [0, 1] is a strictly increasing and strictly

concave function of q with boundary conditions η(0) = 0 and η(∞) = 1. The functions λ

and η satisfy the aggregate consistency condition λ(q)q = η(q).3 If a firm of type y matches

with a worker, it produces y units of output, it pays the wage w to the worker and it pays

the dividend y − w to the owners. If a firm remains unmatched, it does not produce any

output.

We assume that the application strategy of a worker is private information–i.e. the

public cannot observe whether a worker sent a job application and, if so, which wage he

sought–while the employment status of a worker is public information–i.e. the public

observes whether a worker is employed and, if so, at which wage. The above informational

assumptions induce a moral hazard problem: the public cannot distinguish a worker who

did not search for a job and a worker who searched for a job unsuccessfully.

2Qualitatively, the main result of the paper would be unchanged if we were to assume that firms are owned
by entrepreneurs rather than workers. That is, if firms were owned by workers, the optimal unemployment
benefit would still be positive and the optimal labor earning tax would still be increasing and regressive.
Different points on the utility possibility frontier of workers and entrepreneurs would be attained by lump-
sum transfers from one group of agents to the other.

3All of the matching processes commonly used in the literature satisfy these assumptions on λ and η. For
example, the assumptions are satisfied by the urn-ball matching function λ(q) = (1 − exp(−q))/q, by the
telephone-line matching function λ(q) = 1/(1 + q), and by the constant-elasticity of substitution matching
function λ(q) = (1 + qσ)−1/σ.
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2.2 Equilibrium

An allocation is a tuple (w, q, z, S). The first element of the tuple is a function w : [y, y]→

R+, with w(y) denoting the wage offered by a firm of type y. The second element is a

function q : R+ → R+, with q(w) denoting the queue length attracted by the wage w. The

third element, z ∈ R, denotes the dividend payment received by each worker. Finally, S ∈ R

denotes the maximized value of sending an application.

Now, we are in the position to define an equilibrium.

Definition 1: A competitive equilibrium is an allocation (w, q, z, S) that satisfies the follow-

ing conditions:

(i) Profit maximization: For all y ∈ [y, y],

w(y) ∈ argmax
w≥0

η(q(w))(y − w);

(ii) Optimal number of applications:Z
q(w(y))dF (y) ≤ 1 and S ≥ k, with comp. slackness;

(iii) Optimal direction of applications: For all w ∈ R+,

λ(q(w)) [u(z + w)− u(z)] ≤ S and q(w) ≥ 0, with comp. slackness;

(iv) Consistency of dividends and profits:

z =

Z
η(q(w(y)))(y − w(y))dF (y).

The above definition of equilibrium is standard (see, e.g., Moen 1997 and Acemoglu

and Shimer 1999). Condition (i) guarantees that the wage posted by a firm of type y

is profit maximizing. That is, w(y) maximizes the product of the probability of filling a

vacancy, η(q(w)), and the profit from filling a vacancy, y − w. Condition (ii) guarantees

that the measure of applications received by the firms is consistent with workers’ utility

maximization. That is, whenever S is strictly greater than k, all workers find it optimal to

search and, hence, the measure of applications received by firms is equal to one. Whenever

7



S is equal to k, workers are indifferent between searching and not searching and, hence,

the measure of applications received by the firms can be smaller than one. Condition (iii)

guarantees that the distribution of applications across wages is consistent with workers’

utility maximization. That is, whenever q(w) is strictly positive, the worker’s expected

utility from searching for the wage w, λ(q(w))(u(z + w)− u(z)), is equal to the maximized

value of searching S. Whenever, q(w) is equal to zero, the worker’s expected utility from

searching the wage w may be smaller than S.4 Finally, condition (iv) guarantees that the

dividends received by the workers are equal to the firms’ profits.

2.3 Characterization of the equilibrium allocation

Let p(q) be defined as the ratio between the expected wage bill paid by a firm, η(q)w(q), and

the number of applicants attracted by a firm, q, where w(q) denotes the wage that the firm

needs to offer to attract q applicants. We shall refer to p(q) as the price of an application.

From the equilibrium condition (iii) and the consistency condition η(q) = λ(q)q, it follows

that p(q) is given by

p(q|d, S) = λ(q)

∙
u−1

µ
S

λ(q)
+ u(z)

¶
− z

¸
≡ φ(q, z, S).

(1)

The first term on the right-hand side of (1) is the probability that the applicant is hired by

the firm. The second term on the right-hand side of (1) is the wage that the firm has to offer

in order to attract q applicants. It is useful to denote as φ(q, z, S) the right-hand side of (1).

The price of an application p(q) is the key object to understand the welfare properties

of the laissez-faire equilibrium and the difference between the equilibrium allocation and

the first and second best allocations. First, notice that p(q) is increasing in q, i.e. p0(q) =

φq(q, z, S) > 0. This property follows from the fact that workers are risk averse. Given two

jobs that offer the same expected payment, a risk-averse worker strictly prefers applying for

the job that offers a lower wage and that is easier to get. That is, given (w1, q1) and (w2, q2)

4As in Moen (1997) and Acemoglu and Shimer (1999), we impose condition (iii) not only for wages that
are posted in equilibrium, but also for wages that are off the equilibrium path. For equilibrium wages,
condition (iii) guarantees that q is consistent with the worker’s optimal search behavior. For off-equilibrium
wages, condition (iii) imposes a restriction on the firms’ beliefs about q. The restriction is in the spirit of
subgame perfection: when a firm entertains posting an off-equilibrium wage, it expects to attract a queue
length that is optimal from the workers’ perspective.
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such that q1 < q2 and λ(q1)w1 = λ(q2)w2, a risk-averse worker strictly prefers the safer job

(w1, q1) to the riskier job (w2, q2). This implies that, if a firm wants to attract a longer queue,

it has to offer a higher expected payment to each of its applicants to compensate them for

the additional risk they face. Second, notice that p(q) is increasing in the equilibrium value

of searching S, i.e. φS(q, z, S) > 0. Intuitively, the higher is S the higher is the expected

payment that a firm has to offer to each of its applicants.

The derivative p0(q) measures the premium that compensates workers for the extra risk

associated with joining a marginally longer queue. Notice that the marginal risk premium

p0(q) is increasing in the equilibrium value of searching S, i.e. φqS(q, z, S) > 0. Intuitively,

the higher is S, the larger is the difference between the consumption of the worker if his

application succeeds and if his application fails. Hence, due to the concavity of u, the worker

requires a higher wage increase in order to be willing to join a marginally longer queue. Also,

notice that the marginal risk premium p0(q) may be increasing or decreasing in z depending

on the shape of u, i.e. φqz(q, z, S) may be positive or negative. The results in Section 3 are

derived under the assumption that p0(q) is decreasing in z.5 The other results, including the

two main theorems in Sections 4 and 5, do not require any assumption about the relationship

between p0(q) and z.

Now, let qy denote the number of applicants attracted by a firm of type y. From equilib-

rium condition (i) and equation (1), it follows that qy is such that

qy = argmax
q≥0

η(q)y − p(q)q. (2)

For all y ∈ [y, y], qy satisfies the first order condition

η0(q)y ≤ p(q) + p0(q)q (3)

and q ≥ 0 with complementary slackness. The term on the left-hand side of (3) is the

productivity of the marginal applicant, which is equal to the product between the increase

in the probability that the firm fills its vacancy, η0(q), and the output produced by the firm if

5The assumption is satisfied when the utility function u has the HARA form

u(c) =
1− γ

γ

µ
αc

1− γ
+ β

¶γ
,

and the parameter γ belongs to the interval [1/2, 1].
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it fills its vacancy, y. The right-hand side of (3) is the cost of the marginal applicant, which

is equal to the sum between the price of the marginal applicant, p(q), and the increase in the

price of the infra-marginal applicants, p0(q)q. In Appendix A, we prove that the left-hand

side is strictly decreasing in q and strictly increasing in y, while the right-hand side is strictly

decreasing in q. Hence, qy is equal to zero for all y ≤ yc and qy is strictly increasing in y

for all y > yc, where the type cutoff yc is such that η0(0)yc = p(0). In words, firms of type

y ≤ yc do not enter the labor market, while firms of productivity y > yc enter the market

and attract a queue of applicants that is strictly increasing in y.

Next, let cy denote the consumption of a worker employed at a firm of type y ≥ yc. From

equilibrium condition (iii), it follows that cy is given by

cy = u−1
µ

S

λ(qy)
+ u(z)

¶
. (4)

Since qy is strictly increasing in y, equation (4) implies that the consumption of an employed

worker, cy, is increasing in the productivity of his employer, y. Also, since S ≥ k and k > 0,

equation (4) implies that the consumption of an employed worker, cy, is strictly greater than

the consumption of an unemployed worker, z.

Next, we characterize the consumption z of an unemployed worker. From equilibrium

condition (iv) and equation (4), it follows that z is such thatZ
η(qy)ydF (y) = z +

Z
η(qy)(cy − z)dF (y). (5)

Equation (5) states that the consumption of the unemployed is such that aggregate output–

which is the term on the left-hand side of (5)–is equal to aggregate consumption–which is

the term on the right-hand side of (5).

Finally, the equilibrium condition (ii) states that the value of searching S is such that

the number of applications received by firms is equal to the number of applications sent out

by workers. That is, S is such that Z
q(y)dF (y) ≤ 1 (6)

and S ≥ k with complementary slackness.
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Overall, any equilibrium can be represented as a tuple (q, c, z, S) that satisfies the system

of equations (3)—(6). Notice that the equilibrium does not attain the first-best allocation–i.e.

the allocation that maximizes the workers’ expected utility given the production technology

F (y) and the matching technology λ(q). In fact, in the first best allocation, the marginal

productivity of applicants is equalized across firms so as to maximize aggregate output,

and the marginal utility of consumption is equalized across workers so as to maximize the

workers’ expected utility given aggregate output. In contrast, in the equilibrium allocation,

the marginal productivity of applicants is different for different types of firms. In particular,

the marginal productivity of applicants at low-y firms is lower than the marginal productivity

of applicants at high-y firms. Moreover, in the equilibrium allocation, the marginal utility

of consumption is different across workers in different employment states. In particular,

the marginal utility of unemployed workers is higher than the marginal utility of employed

workers, and the marginal utilities of workers employed at low-y firms is higher than the

marginal utility of workers employed at high-y firms.

There are two reasons why the equilibrium allocation differs from the first-best allocation:

the fact that workers and firms trade labor rather than job applications and the fact that

workers are risk averse rather than risk neutral. To see this, suppose that workers and

firms could trade job applications at some competitive price p. If that was the case, every

worker would sell his application, enjoy a consumption of z + p, and have a marginal utility

of u0(z + p). Moreover, every firm would purchase applications up to the point where the

marginal productivity η0(q)y is equal to p. Hence, the equilibrium would implement the

first-best allocation. However, firms and workers cannot trade job application because firm

cannot observe workers who search unsuccessfully for their vacancies (and even if they did,

they would have no incentive to truthfully report that). Instead, firms and workers can only

trade successful applications. That is, they can only trade labor.

When workers and firms trade labor, workers face some consumption risk because their

search is rewarded only when it is successful. If workers are risk neutral, this “search risk”

does not matter. In this case, a market for labor is equivalent to a market for applications

and its equilibrium attains the first best.6 If workers are risk averse, the existence of search

6In Montgomery (1991), Moen (1997), Burdett Shi and Wright (2001) and Menzio and Shi (2011), workers
and firms trade labor. These papers find that the equilibrium attains the first best allocation only because
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risk implies that the marginal utility of consumption is not equalized among workers who are

in different employment states. Moreover, the existence of search risk implies that workers

demand a premium in order to seek jobs that attract longer queues of applicants. Hence,

p0(q) > 0 and the marginal productivity of applicants is not equalized across different types

of firms. Overall, under risk aversion, the equilibrium in a market where firms and workers

trade labor does not attain the first best.

3 Constrained efficient allocation

In the previous section, we established that the laissez-faire equilibrium cannot implement

the first best allocation. In this section, we ask whether the equilibrium can implement the

second best allocation, i.e. the allocation that maximizes the worker’s expected utility given

the production technology F (y), the matching technology λ(q), and given that workers have

private information about their application strategy. To answer this question, we set up

the mechanism design problem, we solve it and we compare the solution to the equilibrium

allocation. We find that, unless the search cost k is too high, the equilibrium does not

implement the second best. This is because workers face a search risk which is not insured

at all in the equilibrium, while it is partially insured in the second best.

3.1 Formulation of the mechanism design problem

The problem facing the mechanism designer is to maximize the workers’ expected utility by

choosing the search strategy that workers should follow and the consumption that workers

should receive conditional on the outcome of their search. The search strategy chosen by

the mechanism designer is subject to an incentive compatibility constraint, because the

mechanism does not know whether a worker applies for a job and, if so, where he applies for

a job. The consumption profile chosen by the mechanism designer is subject to a resource

constraint, because the amount of resources assigned to workers cannot exceed the amount

of resources produced by firms. Moreover, we restrict the mechanism designer to choose a

symmetric mechanism, i.e. a mechanism that recommend the same search strategy to all

workers are assumed to be risk neutral.
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workers.7

More specifically, a symmetric mechanism is a tuple (π, c, d, S). The first element of the

tuple is a differentiable function π : [y, y] → R+, where π(y) denotes the probability with

which a worker should apply to a firm of type ỹ ≤ y. The second element of the tuple

is a function c : [y, y] → R+, where c(y) denotes the consumption assigned to a worker

who is employed by a firm of type y. The third element of the tuple, z ∈ R+, denotes the

consumption assigned to a worker who is unemployed. Finally, S ∈ R+, denotes the worker’s

maximized value of sending an application. Notice that π(y) uniquely determines the queue

of applicants q(y) at firms of type y, q(y) = π0(y)/F 0(y), as well as the measure of workers a

who apply for jobs, a = π(y). Hence, we will think of the mechanism as a tuple (a, q, c, z, S)

rather than a tuple (π, c, d, S).

The mechanism designer chooses (a, q, c, z, S) so as to maximize the workers’ expected

utility Z
[λ(qy)u(cy) + (1− λ(qy))u(z)− k] qydF (y) + (1− a)u(z). (7)

There are qydF (y) workers applying to firms of type y. Each one of these workers has a

probability λ(qy) of becoming employed and consuming cy units of output, and a probability

1 − λ(qy) of remaining unemployed and consuming z units of output. In either case, the

worker incurs the disutility cost k. There are also 1− a workers who do not apply for jobs.

Each one of these workers consumes z units of output.

The mechanism designer’s choice of (a, q, c, d, S) must be technologically feasible. First,

the mechanism must be such that the aggregate output produced by the firms is greater

than the aggregate consumption enjoyed by the workers. That is,Z
η(qy)ydF (y)−

Z
[λ(qy)cy + (1− λ(qy))z] qydF (y)− (1− a)z ≥ 0. (8)

Second, the mechanism must be such that the measure of workers applying for jobs is smaller

7The restriction to symmetric mechanisms is quite natural. In fact, the literature on the game theoretic
foundation of directed search argues that search frictions emerge precisely when workers follow symmetric
strategies. In particular, when all workers apply to different firms with the same probability, some firms will
end up with too many applicants and some firms will end up with not enough applicants (see, e.g., Burdett,
Shi and Wright 2001, Shimer 2005 and Galenianos and Kircher 2012).
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than one and it is equal to the measure of applications received by the firms. That is,

1− a ≥ 0, (9)

a−
Z

qydF (y) = 0. (10)

The mechanism designer’s choice of (a, q, c, d, S) must be compatible with the workers’

incentives to follow the recommended mixed application strategy. Hence, a worker must be

indifferent between taking any one of the actions to which the mechanism assigns positive

probability, and he must prefer taking any one of these actions rather than an action to

which the mechanism assigns zero probability. This implies that, if y is such that qy > 0, the

worker’s expected utility from searching for a firm of type y must be equal to the maximized

value of searching and must be greater than the value of not searching. That is,

λ(qy) [u(cy)− u(z)]− S = 0, (11)

S − k ≥ 0. (12)

Instead, if y is such that qy = 0, the worker’s expected utility from searching for a firm of type

y must be smaller than the maximized value of searching. That is, λ(qy) [u(cy)− u(z)] ≤ S.

Moreover, if a < 1, the worker’s expected utility from not searching must be equal to the

maximized value of searching. That is,

(1− a)(S − k) = 0. (13)

Before characterizing the solution to the above mechanism design problem, some com-

ments are in order. The mechanism asks workers to randomize over different application

strategies. Then the mechanism assigns consumption to workers conditional on the outcome

of their application (i.e. whether they are employed or unemployed and at which firm they

are employed). The mechanism cannot condition consumption on the workers’ application

strategy (i.e. whether and where the workers apply for a job) because this strategy is their

private information. However, if workers were allowed to make a report about the outcome of

their randomization, the mechanism could condition consumption not only on the workers’

employment status, but also on the workers’ reported search strategy. In Appendix B, we

consider this alternative version of the mechanism design problem. We find that the solution
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of the mechanism design problem with workers’ reports is the same as the solution of the

problem without reports. Intuitively, the mechanism cannot exploit the reports because the

outcome of the randomization is the workers’ private information.

3.2 Solution to the mechanism design problem

Let (a∗, q∗, c∗, d∗, S∗) denote the solution to the mechanism design problem. Also, let μ∗1

denote the multiplier associated with the aggregate resource constraint on output (8) and

let μ∗2 denote the multiplier associated with the aggregate resource constraint on applications

(9). We shall refer to the solution to the mechanism design problem as either the constrained

efficient allocation or the second best allocation.

The constrained efficient value of searching is8

S∗ = k. (14)

To understand this result recall that S is the reward that a worker expects to obtain when

sending a job application. For any S < k, a worker would have no incentive to apply for

a job and, hence, production and consumption would be zero. For any S ≥ k, the worker

has the incentive to apply for a job. However, since the worker is rewarded for sending an

application only if his application is successful, the higher is S the greater the consumption

risk that he faces. Hence, the constrained efficient value of S is k.

The constrained efficient queue length is such that

η0(q∗y)y − λ(q∗y)(c
∗
y − z∗) + q∗yλ

0(q∗y)

∙
u(c∗y)− u(z∗)

u0(c∗y)
− (c∗y − z∗)

¸
=

μ∗2
μ∗1
, (15)

and q∗y ≥ 0, with complementary slackness. The left-hand side of (15) is the difference

between the value of making the worker apply to a firm of type y and the value of making

the worker not search. The first term on the left-hand side of (15) is the output produced by

the worker if he applies to a firm of type y. The second term is the negative of the amount of

output that needs to be assigned to the worker in order to compensate him for the disutility

of searching. The last term is the negative of the amount of output that needs to be assigned

to the other workers who apply to type-y firms in order to compensate them for the decline

8Appendix C contains the explicit derivation of the optimality conditions (14)-(18).
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in the probability of being hired that is caused by the marginal applicant. The right-hand

side of (15) is the maximum difference between the value of making a worker apply for a job

and the value of not making her search. That is, the right-hand side of (15) is the net value

of an application. Overall, (15) implies that the constrained efficient queue length is such

that the net value of the marginal application is equalized across different types of firms.

The constrained efficient allocation of consumption is

c∗y = u−1
µ

k

λ(q∗y)
+ u(z∗)

¶
, (16)

z∗ =

Z
η(q∗y)

£
y −

¡
c∗y − z∗

¢¤
dF (y). (17)

The consumption assigned to employed workers, c∗y, is such that an applicant is indifferent

between searching for a firm of type y and not searching at all. The consumption assigned

to unemployed workers is such that aggregate output equals aggregate consumption.

Finally, the value of an application μ∗2/μ
∗
1 is such thatZ

q∗ydF (y) ≤ 1 (18)

and μ∗2/μ
∗
1 ≥ 0, with complementary slackness. If the constrained efficient allocation is such

that some workers apply for jobs and some do not, then the value of an application is zero.

Conversely, if the value of an application is strictly positive, then the constrained efficient

allocation is such that all workers apply for jobs.

In order to understand the relationship between the constrained efficient allocation and

the equilibrium allocation, it is useful to notice that the optimality condition for q∗y can be

written as

η0(q∗y)y = p∗(q∗y) + p∗0(q∗y)q
∗
y, (19)

where

p∗(q) = φ(q, z∗, k) +
μ∗2
μ∗1
. (20)

That is, the constrained efficient queue length q∗y is the same queue length that a profit-

maximizing firm would choose if the price of an application was p∗(q), where p∗(q) is the

sum of two components. The first component, φ(q, z∗, k), is the amount of output that com-

pensates a worker for the disutility of sending an application. The second component, μ∗2/μ
∗
1,

16



is the value of an application to society (net of the disutility of sending the application). In

contrast, the equilibrium queue length qy maximizes the profits of the firm given that the

price of an application is p(q) = φ(q, z, S).

From the previous observation, it follows that the constrained efficient allocation can be

decentralized as an equilibrium when μ∗2/μ
∗
1 = 0, but not when μ∗2/μ

∗
1 > 0. In fact, when

μ∗2/μ
∗
1 = 0, q

∗
y satisfies the optimality condition (19), which is the same as the equilibrium

condition (3); c∗y satisfies the optimality condition (16), which is the same as the equilibrium

condition (4); z∗ satisfies the optimality condition (17), which is the same as the equilibrium

condition (5); and S∗ = k satisfies the equilibrium condition (6). In contrast, when μ∗2/μ
∗
1 >

0, the constrained efficient allocation cannot be decentralized as an equilibrium because the

optimality condition (19) is different from the equilibrium condition (3).

The following proposition summarizes the above findings and establishes conditions under

which the value of an application to society, μ∗2/μ
∗
1, is equal to zero and conditions under

which μ∗2/μ
∗
1 is strictly positive.

Proposition 1 (Welfare Properties of Equilibrium): Let (a∗, q∗, c∗, z∗, S∗) denote the so-

lution to the mechanism design problem and let (μ∗1, μ
∗
2) the multipliers associated with the

aggregate resource constraints (8) and (9). (i) If μ∗2/μ
∗
1 = 0, then (q

∗, c∗, z∗, S∗) is an equi-

librium. (ii) If μ∗2/μ
∗
1 > 0, then (q

∗, c∗, z∗, S∗) is not an equilibrium. (iii) There exist k and

k, with 0 < k ≤ k <∞, such that μ∗2/μ∗1 = 0 for all k > k and μ∗2/μ
∗
1 > 0 for all k < k.

Proof : See Appendix D.

There is a simple intuition behind the results stated in Proposition 1. The mechanism

designer sets the workers’ reward to searching, S∗, equal to the disutility of searching, k.

Since workers are rewarded for their search only when their search is successful, setting S∗ = k

minimizes the workers’ consumption risk subject to satisfying their incentive compatibility

constraint. The mechanism designer redistributes the additional value of a worker’s search,

μ∗2/μ
∗
1, among all workers, independently of whether their search is successful or not. Hence,

μ∗2/μ
∗
1 is a measure of the extent of insurance implicitly provided by the optimal mechanism.

Since workers are not provided with any insurance in the decentralized economy, it is clear

that the equilibrium can attain the constrained efficient allocation only if μ∗2/μ
∗
1 = 0, and
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it is constrained inefficient whenever μ∗2/μ
∗
1 > 0. Moreover, as one would expect, μ∗2/μ

∗
1 is

strictly positive when the amount of consumption risk required to induce workers to search

is not too large. Hence, μ∗2/μ
∗
1 is strictly positive when k is not too large.

3.3 Comparing equilibrium and second best allocations

Now, we want to examine how the constrained inefficiency of the equilibrium manifests itself

in terms of allocations of inputs and output. To this aim, we compare the equilibrium

and the second best in terms of the number of applicants assigned to firms of type y, qy

and q∗y, in terms of the consumption assigned to unemployed workers, z and z∗, and in

terms of the consumption assigned to workers employed by firms that attract q applicants,

c(q) = u−1(S/λ(q) + u(z)) and c∗(q) = u−1(k/λ(q) + u(z∗)). We carry out the comparison

under the assumption that μ∗2/μ
∗
1 > 0 and S > k. The first assumption guarantees that the

equilibrium is constrained inefficient. The second assumption guarantees that all workers find

it optimal to search in equilibrium. We make this assumption for expositional convenience.

The following proposition presents the result of the comparison between equilibrium and

second best allocations.

Proposition 2 (Equilibrium and Second Best Allocations): Let (q∗, c∗, z∗, S∗) be the solu-

tion to the mechanism design problem with μ∗2/μ
∗
1 > 0, and let (q, c, z, S) be a competitive

equilibrium with S > k. (i) There exists a y0 ∈ (yc, y) such that q(y0) = q∗(y0), q(y) > q∗(y)

for all y ∈ (yc, y0), and q(y) < q∗(y) for all y ∈ (y0, y). (ii) There exists a q0 ∈ (0,∞) such

that c(q0) = c∗(q0), c(q) < c∗(q) for all q ∈ (0, q0), and c(q) > c∗(q) for all q ∈ (q0,∞).

Moreover, z < z∗.

Proof : See Appendix E.

Proposition 2 shows that the constrained inefficiency of the equilibrium manifests itself

in terms of both the allocation of inputs (part i) and the allocation of output (part ii). More

specifically, part (i) of Proposition 2 shows that, in equilibrium, the number of applicants

assigned to low-y firms is higher than in the second best, while the number of applicants

assigned to high-y firms is lower that in the second best. Part (ii) of Proposition 2 shows

that the consumption assigned to unemployed workers is lower in the equilibrium than in the

18



second best. Moreover, in the equilibrium, the consumption assigned to workers employed

at low-q firms is lower than in the second best, while the consumption assigned to workers

employed at high-q firms is higher than in the second best.

The results in Proposition 2 are intuitive. In equilibrium, workers face too much con-

sumption risk when applying for a job and, consequently, firms have to pay an excessive

risk premium in order to attract applicants to their vacancies. Moreover, the excess con-

sumption risk faced by a worker when applying for a job is higher the higher the number of

workers who seek the same job. Consequently, the excess risk premium that a firm has to

pay is increasing in the number of applicants that the firm wants to attract. Formally, the

excess risk premium is given by the difference between p(q) − p(0) and p∗(q) − p∗(0), and

the derivative of the excess risk premium with respect to q is given by p0(q)− p∗0(q), which

is equal to φq(q, z, S) − φq(q, z
∗, k). The derivative of the excess risk premium is strictly

positive because–as discussed in Section 2–φq(q, z, S) is decreasing in z and increasing in

S and–as discussed above–z < z∗ and S > k. Since the excess risk premium is increasing

in q, high-y firms choose to attract fewer applicants than in the second best and, through

general equilibrium effects, low-y firms end up attracting more applicants than in the second

best. Moreover, the fact that the excess risk premium is increasing in q also implies that

the consumption of workers employed by high-q firms is higher than in the second best and,

again through general equilibrium effects, the consumption of workers employed by low-q

firms is lower than in the second best.

Proposition 2 has some important implications for aggregate variables. First, the propo-

sition implies that aggregate output in the equilibrium, Y =
R
η(qy)ydF (y), is lower that

aggregate output in the second best, Y ∗ =
R
η(q∗y)ydF (y). To see why this is the case, it is

sufficient to notice that

Y − Y ∗

=

Z y0

y

hR qy
q∗y

η0(q)ydy
i
dF (y)−

Z y

y0

hR q∗y
qy

η0(q)ydy
i
dF (y)

<

Z y0

y

η0(q∗y0)y0
£
qy − q∗y

¤
dF (y)−

Z y

y0

η0(q∗y0)y0
£
q∗y − qy

¤
dF (y) = 0,

(21)

where the second line uses the fact that qy > q∗y for y < y0 and qy < q∗y for y < y0, the

inequality in the third line uses the fact that η0(qy)y < η0(q∗y)y < η0(q∗y0)y0 for y < y0
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and η0(qy)y > η0(q∗y)y > η0(q∗y0)y0 for y > y0, and the last equality uses the fact that

qydF (y) and q∗ydF (y) both integrate up to one. Intuitively, aggregate output is lower in the

equilibrium that in the second best because, in the second best, the marginal productivity of

an application is higher at firms with a higher y and, in equilibrium, there are more workers

applying to low-y firms and fewer workers applying to high-y firms than in the second best.

Similarly, Proposition 2 implies that aggregate unemployment in the equilibrium, U =

1 −
R
η(qy)dF (y), is higher than in the second best, U∗ = 1 −

R
η(q∗y)dF (y). To see this,

notice that

U − U∗

=

Z y

y0

hR q∗y
qy

η0(q)dy
i
dF (y)−

Z y0

y

hR qy
q∗y

η0(q)dy
i
dF (y)

<

Z y

y0

η0(qy0)
£
q∗y − qy

¤
dF (y)−

Z y0

y

η0(qy0)
£
qy − q∗y

¤
dF (y) = 0,

(22)

where the second line in (22) uses the fact that q∗y > qy for y > y0 and qy > q∗y for y < y0, and

the third line uses the fact that η0(q∗y) < η0(qy) < η0(qy0) for y > y0 and η0(q∗y)y > η0(qy)y >

η0(qy0)y0 for y < y0. Intuitively, unemployment is lower in equilibrium than in the second

best because, in equilibrium, applicants are more evenly distributed across different types of

firms and the vacancy filling probability, η(q), is a concave function of applicants.

4 Policy implementation

In this section, we prove that the constrained efficient allocation can be implemented as an

equilibrium by introducing a positive unemployment benefit and a positive, increasing and

regressive tax on labor income.

4.1 Environment and equilibrium

A policy is a couple (Bu, Te). The first element of the couple, Bu ∈ R+, denotes the benefit

paid by the policy maker to an unemployed worker. The second element of the couple is a

function Te : R+ → R+ with Te(w) denoting the tax paid to the policy maker by a worker

employed at the wage w. We are now in the position to define an equilibrium.
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Definition 2: A competitive equilibrium with policy (Bu, Te) is an allocation (w, q, z, S) that

satisfies the following conditions:

(i) Profit maximization: For all y ∈ [y, y],

w(y) ∈ argmax
w≥0

η(q(w))(y − w);

(ii) Optimal number of applications:Z
q(w(y))dF (y) ≤ 1 and S ≥ k, with comp. slackness;

(iii) Optimal direction of applications: For all w ∈ R+,

λ(q(w)) [u(z + w + Te(w))− u(z +Bu)] ≤ S and q(w) ≥ 0, with comp. slackness;

(iv) Consistency of dividends and profits:

z =

Z
η(q(w(y))) [y − w(y)] dF (y);

(v) Balanced budget:

Bu =

Z
η(q(w(y))) [Te(w(y)) +Bu] dF (y).

The first four conditions in Definition 2 are nearly identical to those in Definition 1. The

only difference is that, here, the consumption of an unemployed worker is given by the sum of

dividends, z, and unemployment benefits, Bu, and the consumption of an employed worker

is given by the sum of dividends, z, and after-tax wages, w − Te(w). The fifth condition in

Definition 2 guarantees that the budget of the policy-maker is balanced given the optimal

behavior of firms and workers. We shall denote with q̂y the number of applicants attracted

by a firm of type y and with ŵ(q) the wage that a firm needs to offer in order to attract q

applicants.

4.2 Optimal policy

The following theorem states the main result of our paper.

Theorem 1 (Optimal Policy): The constrained efficient allocation can be implemented as

a competitive equilibrium with policy (B∗u, T
∗
e ). The optimal unemployment benefit B∗u is
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positive. Specifically, B∗u = μ∗2/μ
∗
1. The optimal tax on labor income T

∗
e is positive, increasing

and regressive. Specifically, for w ≤ y∗c T ∗e (w) = 0, and for w > y∗c T ∗e (w) is such that

T ∗0e (w) =

∙
B∗u +

k

u0(z∗ −B∗u + w − T ∗e (w))

¸−1
B∗u. (23)

Proof : See Appendix F.

There is a simple intuition behind Theorem 1. The constrained efficient allocation of

consumption, (c∗y, z
∗), is such that the workers’ expected benefit from applying to a job, S∗,

is equal to the cost of applying to a job, k. The constrained efficient allocation of applicants,

q∗y, is the same the would be chosen by profit-maximizing firms if the price of an application

was p∗(q) = φ(q, z∗, k)+μ∗2/μ
∗
1, where the first component of the price is the cost of providing

applicants with the expected reward k and the second component of the price is the value of

an application to society (net of the disutility cost k). The optimal unemployment benefit

B∗u makes sure that–in equilibrium–the workers’ benefit from applying to a job is k. The

unemployment benefit achieves this goal by redistributing consumption from successful to

unsuccessful applicants. The optimal labor tax T ∗e makes sure that–in equilibrium–firms

face the application price p∗(q). The labor tax attains this goal by raising the price of an

application beyond the cost of providing applicants with the expected benefit k. As we shall

explain below, the labor tax is regressive because of two properties of the optimum: (a)

redistribution only takes place between workers who apply to the same type of firms, and

(b) workers are ex-ante indifferent between applying to different types of firms.9

It is useful to flash out the above intuition. Given the policy (Bu, Te), the equilibrium

queue of applicants, q̂y, is such that

q̂y = argmax
q

η(q)y − p̂(q)q, (24)

9Theorem 1 proves that the constrained efficient allocation can be implemented using an unemployment
benefit and a labor income tax. While these policies are quite natural in the context of our model, they
are not the only ones that a policy maker could use to implement the constrained efficient allocation. For
example, a policy maker could use a labor income tax and a “consumption subsidy” that is paid to a worker
independently of his employment status. Alternatively, a policy maker could use an unemployment benefit
and a “vacancy tax” that varies according to the wage offered by the firm and that is paid by the firm
independently of whether or not it fills its vacancy.
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where the price of an application p̂(q) is

p̂(q) = λ(q)ŵ(q),

and
T (q) = Te(ŵ(q)),

ŵ(q) = u−1
µ

S

λ(q)
+ u(z +Bu)

¶
− z + T (q).

In words, the equilibrium queue of applicants, q̂y, maximizes the profits of the firm given that

the price of an application, p̂(q), is the product between the probability that the application

is successful, λ(q), and the gross wage that the firm needs to offer in order to attract q

applications, ŵ(q).

The equilibrium queue of applicants, q̂y, is equal to the constrained efficient queue of

applicants, q∗y, if and only if the the equilibrium price of an application p̂(q) is equal to p
∗(q).

Notice that p̂(q) can be written as φ(q, z+Bu, S)+λ(q)(Bu+T (q)), while p∗(q) can be written

as φ(q, z∗, S∗) + μ∗2/μ
∗
1. Hence, the equilibrium queue length is equal to the constrained

efficient queue length if and only if z + Bu = z∗, S = S∗ and λ(q)(Bu + T (q)) = μ∗2/μ
∗
1.

These are necessary conditions for the equilibrium to implement the constrained efficient

allocation.

Now, we can use the above necessary conditions to derive the optimal unemployment

benefit. In fact, notice that

Bu =

Z
η(q̂y) [Te(ŵ(q̂y)) +Bu] dF (y)

=
μ∗2
μ∗1

Z
q∗ydF (y) =

μ∗2
μ∗1
,

(25)

where the first equality follows from the equilibrium condition (v), the second equality follows

from the necessary condition λ(q)(Bu+T (q)) = μ∗2/μ
∗
1 and the consistency condition η(q) =

λ(q)/q, and the last equality follows from the fact that μ∗2/μ
∗
1 and q∗y satisfy condition (18).

The optimal unemployment benefit is equal to the ratio of multipliers μ∗2/μ
∗
1. This finding is

easy to understand. In the constrained efficient allocation, the value of an application to a

worker is k, but the value of an application to society exceeds k by μ∗2/μ
∗
1. This excess value

is redistributed to all the workers independently of whether their application is successful

or not. The optimal unemployment benefit carries out this redistribution in equilibrium.
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Unemployed workers receive μ∗2/μ
∗
1 directly in the form of an unemployment benefit, while

employed workers receive μ∗2/μ
∗
1 indirectly in the form of the wage premium that compensates

them for the loss of the unemployment benefit. Hence, it is the optimal unemployment benefit

that guarantees that the equilibrium value of an application to a worker is k.

Next, we can use the necessary conditions for the constrained efficiency of the equilibrium

in order to derive the optimal labor income tax. In fact, notice that λ(q)(Bu+T (q)) = μ∗2/μ
∗
1

implies

Te(w(q)) =
1

λ(q)

μ∗2
μ∗1
−Bu

=

µ
1

λ(q)
− 1
¶
Bu,

(26)

where the second equality uses the fact that Bu = μ∗2/μ
∗
1. Equation (26) implies that the

optimal labor tax is such that the taxes paid by the workers who successfully apply to a

given type of firm are equal to the unemployment benefits paid to the workers who apply

unsuccessfully to the same type of firms, i.e. λ(q)T (q) = (1 − λ(q))Bu. This property

implies that the optimal policy involves redistribution between workers who apply to the

same type of firm, but not across workers who apply to different types of firms. In turn,

this implies that the difference in the amount of labor taxes paid by workers employed at

different wages does not serve a redistributive purpose. Rather, differences in labor taxes are

necessary to make sure that the equilibrium price of an application, p̂(q), reflects the social

cost of an application, p∗(q). In this sense, labor taxes are Pigovian. The fact that there is no

redistribution across workers employed at different wages should not be surprising because–

in a directed search environment–wage differences do not reflect luck, but compensation for

different job-finding probabilities.10

In order to understand the shape of the optimal labor tax, we differentiate (26) with

respect to q and we obtain

T 0e(ŵ(q)) = T 0(q)/ŵ0(q)

=

∙
Bu +

k

u0(z∗ −Bu + ŵ(q)− Te(ŵ(q)))

¸−1
Bu,

(27)

where the second line makes use of the equilibrium condition (iii). The marginal tax on labor
10In a basic random search environment (e.g. Pissarides 1985 or Mortensen and Pissarides 1994), differences

in labor income among employed workers are only due to luck and, hence, they should be fully redistributed
away.

24



earnings is positive because both the numerator and the denominator in (27) are positive.

The marginal tax on labor earnings is smaller than one because the numerator in (27) is

smaller than the denominator. And the marginal tax is decreasing in labor earnings because

the after-tax wage ŵ − Te(ŵ) is increasing in w. Hence, the optimal tax on labor income is

regressive.

The regressivity of the optimal labor income tax is a startlingly sharp result. It does not

depend on the shape of the workers’ utility function, u(c), on the shape of the distribution

of firms’ productivity, F (y), or on the shape of the matching function, λ(q). Rather, the

regressivity of the labor income tax follows directly from two properties of the equilibrium

with optimal policy: (a) redistribution only takes place between workers applying to the

same type of firm and (b) workers are ex-ante indifferent between applying to different types

of firms. In fact, these two properties are

Te(w(q)) =

µ
1

λ(q)
− 1
¶
Bu,

u(z + w(q)− Te(w(q)))− u(z +Bu) =
k

λ(q)
,

and, together, they imply

Te(w) =

∙
u(z + w − Te(w))− u(z +Bu)

k
− 1
¸
Bu. (28)

The functional equation (28) can only be satisfied by a regressive labor income tax. Under

any progressive tax, the left-hand side of (28) would be a convex function of w, while the

right-hand side of (28) would be a concave function of w.

5 Insurance market implementation

In this section, we prove that the constrained efficient allocation could be decentralized

as a laissez-faire equilibrium if there was a competitive insurance market where workers

could purchase insurance against the search risk. The result implies that the constrained

inefficiency of the economy analyzed in Section 2 is caused by the absence of this insurance

market. Similarly, the result implies that the optimal unemployment benefit and the optimal

labor income tax derived in Section 4 serve the purpose of substituting the missing insurance

market.
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5.1 Environment and equilibrium

We consider an economy with an insurance market operating alongside the labor market. The

insurance market is populated by a continuum of insurance companies. We assume that each

insurance company offers contracts of the type (w, bu, te), where w ∈ R+ denotes the wage

that the insurance company asks the worker to seek, bu ∈ R+ denotes the payment that the

insurance company makes to the worker if his search is unsuccessful, and te ∈ R+ denotes

the payment that the worker makes to the insurance company if his search is successful.

Without loss in generality, we assume that each insurance company only offers contracts

(w, bu, te) that satisfy the worker’s participation constraint–in the sense that the terms

of the contract induce the worker to participate–and that satisfy the worker’s incentive

compatibility constraint–in the sense that the terms of the contract induce the worker to

seek the prescribed wage. Each insurance company chooses which contracts to offer taking

as given the equilibrium queue length q(w). The labor market is populated by firms and

workers and operates as in Section 2. Each firm chooses which wage to offer and each worker

chooses which wage to seek taking as given the equilibrium queue length, q(w), and the

equilibrium insurance contracts, (bu(w), te(w)).

Now, we are in the position to define a competitive equilibrium.

Definition 3: A competitive equilibrium is an allocation (w, q, bu, te, z, U) that satisfies the

following conditions:

(i) Firm’s profit maximization: For all y ∈ [y, y],

w(y) ∈ argmax
w≥0

η(q(w))(y − w);

(ii) Insurance company’s profit maximization: For all w ∈ R+,

(bu(e), te(e)) ∈ argmax(bu,te) λ(q(w))te − (1− λ(q(w)))bu, s.t.

λ(q(w))u(z + w − te) + (1− λ(q(w)))u(z + bu)− k ≥ U ,

λ(q(w)) [u(z + w − te)− u(z + bu)] ≥ k;

(iii) Zero profits in the insurance market: For all w ∈ R+,

λ(q(w))te(w)− (1− λ(q(w))bu(w) = 0
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and q(w) ≥ 0, with complementary slackness;

(iv) Optimal number of applications:Z
q(w(y))dF (y) ≤ 1 and U ≥ u(z), with comp. slackness;

(v) Optimal direction of applications: For all w ∈ R+,

λ(q(w))u(z + w + te(w)) + (1− λ(q(w)))u(z + tu(w))− k ≤ U

and q(w) ≥ 0, with complementary slackness;

(vi) Consistency of dividends and profits:

z =

Z
η(q(w(y))) [y − w(y)] dF (y).

Condition (i) guarantees that the wage w(y) maximizes the profit of a firm of type y.

Condition (ii) guarantees that (w, bu(w), te(w)) is the feasible contract that maximizes the

profits of an insurance company. To see why this is the case, notice that a contract (w, bu, te)

satisfies the worker’s participation constraint if λ(q(w))u(z + w − te) + (1 − λ(q(w)))u(z +

bu) − k ≥ U . A contract (w, bu, te) satisfies the worker’s incentive compatibility constraint

if λ(q(w))[u(z + w − te) − u(z + bu)] ≥ k. And, if the contract (w, tu, te) is feasible, the

insurance company obtains a profit of λ(q(w))te−(1−λ(q(w)))bu. Condition (iii) guarantees

that competition in the insurance market drives the profits generated by the equilibrium

contract (bu(w), te(w)) down to zero. Conditions (iv) and (v) guarantee that the measure of

applications received by firms offering different wages is consistent with the workers’ utility

maximization. Finally, condition (vi) guarantees that the dividends received by the workers

are equal to the profits of the firms. As in Sections 2 and 4, we denote with qy the number

of applicants attracted by a firm of type y, and with w(q) the wage that a firm needs to offer

in order to attract q applicants.

5.2 Constrained efficiency of equilibrium

The following theorem is the second major result of our paper.11

11The proof of the theorem is sketched in the following pages. The complete proof is available upon
request.
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Theorem 2 (Efficiency of Equilibrium with Insurance Markets): Consider the allocation

(q, w, bu, te, z, U), where qy = q∗y, w(q) = u−1(S∗/λ(q) + u(z∗)) + (μ∗2/μ
∗
1)/λ(q)− z∗, bu(w) =

B∗u, te(w) = T ∗e (w), z = z∗ − B∗u, and U = u(z∗). (i) The allocation (q, w, bu, te, z, U) is

a competitive equilibrium for the version of the economy with insurance markets. (ii) The

competitive equilibrium (q, w, bu, te, z, U) is constrained efficient.

The second part of Theorem 2 is not surprising. In the proposed equilibrium, the equilib-

rium insurance contracts exactly reproduce the optimal tax system. That is, the equilibrium

insurance contracts are such that, if the worker remains unemployed, the payment from the

insurance company to the worker, bu(w), is equal to the optimal unemployment benefit, B∗u.

And if the worker finds a job at a firm offering the wage w, the payment from the worker to

the insurance company, te(w), is equal to the optimal labor earning tax, T ∗e (w). Since the

optimal tax system (B∗u, T
∗
e ) implements the constrained efficient allocation, it is not sur-

prising that an equilibrium in which insurance contracts reproduce the optimal tax system

is also constrained efficient.

The first part of Theorem 2 is less obvious. In particular, one might wonder why insurance

companies, in equilibrium, choose to offer contracts that exactly reproduce the optimal tax

system (B∗u, T
∗
e ). To answer the question, consider the profit maximization problem of an

insurance company

max(bu,te) λ(q)te − (1− λ(q))bu,

s.t. λ(q)u(z + w(q)− te) + (1− λ(q))u(z + bu)− k ≥ U ,

λ(q) [u(z + w(q)− te)− u(z + bu)] ≥ k.

(29)

Notice that the contract (bu, te) that maximizes the profits of the insurance company must be

such that the worker’s participation constraint holds with equality. Otherwise, by lowering

bu by some small amount �, the insurance company would still be able to satisfy the worker’s

participation constraint, it would relax the worker’s incentive compatibility constraint, and

it would increase its profits. Similarly, notice that the contract (bu, te) that maximizes

the profits of the insurance company must be such that the worker’s incentive compatibility

constraint holds with equality. Otherwise, there would exist � and δ such that–by increasing

bu by � and by reducing te by �(1−λ(q))/λ(q)−δ–the insurance company would still satisfy

the worker’s incentive compatibility constraint, it would relax the worker’s participation
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constraint and it would increase its profits.

Since the contract (bu, te) that maximizes the profits of an individual insurance company

must satisfy both the participation and the incentive compatibility constraints with equality,

it follows that u(z + tu) = U and λ(q) [u(z + w(q)− te)− U ] = k. Moreover, since U =

u(z + B∗u) and w(q) = u−1(S∗/λ(q) + u(z∗)) + T ∗e (w(q)) − z, it follows that bu is equal to

B∗u and te is equal to T ∗e (w(q)). That is, the contract that maximizes the profits of an

individual insurance company reproduces the optimal tax system. Finally, since the optimal

tax system has the property that revenues and expenditures are balanced job-by-job, i.e.

λ(q)T ∗e (w(q)) = (1−λ(q))B∗u, it follows that the maximized profits of an insurance company

are equal to zero. Thus, the profit-maximizing contract is consistent with perfect competition

in the insurance market.

6 Conclusions

In this paper, we studied the optimal redistribution of income inequality caused by the pres-

ence of search and matching frictions in the labor market. We carried out the analysis using

a directed search model of the labor market populated by homogenous workers and hetero-

geneous firms. In the first part of the paper, we characterized and compared the equilibrium

allocation and the constrained efficient allocations. We found that the equilibrium is not

constrained efficient because workers are not insured against the risk of not finding the job

that they seek. As a result of this lack of insurance, the equilibrium number of workers

seeking employment at high-productivity firms is inefficiently small, while the equilibrium

number of workers seeking employment at low-productivity firms is inefficiently large. More-

over, the consumption of an employed worker is an inefficiently steep function of the number

of workers who apply for the same type of job.

In the second part of the paper, we proved that the constrained efficient allocation can

be implemented by introducing a positive unemployment benefit and an increasing and

regressive labor income tax. We showed that the unemployment benefit serves the purpose

of lowering the search risk faced by workers, and that the labor tax serves the purpose of

aligning the cost to a firm of an applicant with the value of an applicant to society. Moreover,

we showed that the regressivity of the optimal labor income tax does not depend on the shape
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of the workers’ utility function, on the shape of the distribution of firms’ productivity, or

on the shape of the matching function. Rather, the regressivity of the labor income tax

is a necessary implication of two properties of the equilibrium with optimal policy: (a)

redistribution only takes place between workers applying to the same type of firm and (b)

workers are ex-ante indifferent between applying to different types of firms.

In this paper, we studied the optimal redistribution of residual labor income inequality in

the context of a simple model of the labor market. The simplicity of our model afforded us a

clear exposition of the properties and of the role of the optimal unemployment benefits and of

the optimal labor income tax. However, in order to make substantive policy recommendation,

we would have to enrich the model along several dimensions. First, we would have to consider

a dynamic environment. Second, since many workers move from one employer to the other

without an intervening spell of unemployment, we would have to consider an environment

in which workers can search both off and on the job. Finally, since income inequality is

likely to be caused by both productivity differences and by search frictions, we would have

to introduce some degree of inherent heterogeneity among workers.
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Appendix

A Concavity of the firm’s problem

We establish the strict concavity with respect to q of the firm’s profit function

η(q)y − p(q)q. (A1)

The first term in (A1) is the expected revenue of the firm. The second term in (A1) is the

expected wage bill of the firm, which we have written as the product between the number of

applicants attracted by the firm, q, and the price of an applicant, p(q). Recall that the price

of an applicant p(q) is defined as λ(q)w(q), where w(q) is given by

w(q) = u−1
µ

S

λ(q)
+ u(z)

¶
− z. (A2)

The expected revenue of the firm is strictly concave with respect to q because η(q) is a

strictly concave function. Hence, in order to establish the strict concavity of the firm’s profit

function, we only have to show that the expected wage bill of the firm is convex with respect

to q. That is, we only have to show that p00(q)q + 2p0(q) ≥ 0. To this aim, notice that the

first derivative of p(q) with respect to q is given by

p0(q) = −λ0(q)
∙
u(z + w(q))− u(z)

u0(z + w(q))
− w(q)

¸
. (A3)

The second derivative of p(q) with respect to q is given by

p00(q) = −λ00(q)
∙
u(z + w(q))− u(z)

u0(z + w(q))
− w(q)

¸
+
(λ0(q))2

λ(q)

∙
u(z + w(q))− u(z)

u0(z + w(q))

¸2 −u00(z + w(q))

u0(z + w(q))
.

(A4)

From the above expressions, it follows that p00(q)q + 2p0(q) is given by

p00(q)q + 2p0(q) = − (2λ0(q) + λ00(q))

∙
u(z + w(q))− u(z)

u0(z + w(q))
− w(q)

¸
+
(λ0(q))2q

λ(q)

∙
u(z + w(q))− u(z)

u0(z + w(q))

¸2 −u00(z + w(q))

u0(z + w(q))
.

(A5)

The first term on the right-hand side of (A5) is strictly positive. To see this, first notice that

[u(z + w)− u(z)] /u0(z + w) − w > 0 because u(c) is a strictly concave function and w is
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strictly positive. Then, notice that 2λ0(q)+λ00(q) is strictly negative because λ00(q)+2λ0(q) =

η00(q) < 0. The second term on the right-hand side of (A5) is also positive because u(c) is a

concave function. These observations imply p00(q)q + 2p0(q) > 0. ¥

B Mechanism with reports

In this appendix, we consider a version of the mechanism design problem in which the

mechanism recommends workers to follow a mixed application strategy and workers are

required to report the outcome of their mixing before implementing their strategy. More

specifically, the mechanism asks workers to draw their recommended search action from the

cumulative distribution function π, where π(y) denotes the probability that the worker seeks

for a firm of type ỹ ≤ y. Notice that the function π uniquely determines the applicant-to-firm

ratio q and the measure of applicants, a. Hence, we can think that the mechanism chooses

a and q rather than π. After workers draw their recommended action, they make a report

to the mechanism and chooses whether and where to search for a job. Then, the mechanism

assigns cy(ŷ) units of consumption to workers who report seeking for firms of type y and

end up being employed at firms of type ŷ. Similarly, the mechanism assigns c0(ŷ) units of

consumption to workers who report not searching and end up being employed at firms of

type ŷ. The mechanism assigns zy units of consumption to workers who report seeking for

firms of type y and end up being unemployed, and z0 units of consumption to workers who

report not searching and end up being unemployed.

The mechanism designer chooses (a, q, c, z) so as to maximize the worker’s expected utilityZ
[λ(qy)u(cy(y)) + (1− λ(qy))u(zy)− k] qydF (y) + (1− a)u(z0). (B1)

The mechanism is subject to incentive compatibility, truth telling and resource con-

straints. First, we describe the incentive compatibility constraints. Consider an arbitrary y

such that qy > 0. The mechanism must induce a worker that reports seeking a firm of type

y to actually seek a firm of type y rather than a firm of type ŷ 6= y. That is, for all ŷ 6= y,

the mechanism must be such that

λ(qy)u(cy(y)) + (1− λ(qy))u(zy)− k ≥ λ(qŷ)u(cy(ŷ)) + (1− λ(qŷ))u(zy)− k. (B2)
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Moreover, the mechanism must induce a worker that reports seeking a firm of type y to

actually seek a firm of type y rather not to search. That is, the mechanism must be such

that

λ(qy)u(cy(y)) + (1− λ(qy))u(zy)− k ≥ u(zy). (B3)

Similarly, if a < 1, the mechanism must induce a worker that reports not seeking for a job

to actually do so. That is, for all ŷ, the mechanism must be such that

u(d0) ≥ λ(qŷ)u(c0(ŷ)) + (1− λ(qŷ))u(z0)− k. (B4)

Next, we describe the truth telling constraints. Again, consider an arbitrary y such that

qy > 0. The mechanism must induce a worker that draws y to report that he is searching

for a firm of type y rather than to report that he is searching for a firm of type ŷ 6= y. That

is, for all ŷ 6= y such that qŷ > 0, the mechanism must be such that

λ(qy)u(cy(y)) + (1− λ(qy))u(zy) ≥ λ(qŷ)u(cŷ(ŷ)) + (1− λ(qŷ))u(zŷ). (B5)

Moreover, if a < 1, the mechanism must make sure that the worker does not report that he

is not searching. That is, the mechanism must be such that

λ(qy)u(cy(y)) + (1− λ(qy))u(zy)− k ≥ u(z0). (B6)

Also, if a < 1, if the worker’s randomization instructs him not to search, then the worker

must have the incentive to truthfully report this to the mechanism. That is, for all ŷ such

that qŷ > 0

u(d0) ≥ λ(qŷ)u(cŷ(ŷ)) + (1− λ(qŷ))u(zŷ)− k. (B7)

Finally, the mechanism has to satisfy the resource constraint on outputZ
η(qy)ydF (y)−

Z
[λ(qy)u(cy(y)) + (1− λ(qy))u(zy)] dF (y)− (1− a)z0, (B8)

and the resource constraint on applications

1− a ≥ 0, (B9)

a−
Z

qydF (y) = 0. (B10)

We claim that the above mechanism design problem is equivalent to problem that we
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analyzed in Section 3. First, note that we can abstract from the incentive compatibility

constraint (B2) because this constraint can always be satisfied by choosing cy(ŷ) = 0 and

the choice of cy(ŷ) does not affect any other constraint or the objective function. Similarly,we

can abstract from the incentive compatibility constraint (B4). Second, note that the truth

telling constraints (B5)-(B7) are equivalent to say that there exists a U such that the worker’s

expected utility from following any recommended action is equal to U and the worker’s

expected utility from following any non-recommended action is non-greater than U . In light

of the above observations, we can replace the incentive compatibility constraints (B2)-(B4)

with

U − u(zy) ≥ 0. (B11)

And we can replace the truth telling constraints (B5)-(B7) with

λ(qy)u(cy(y)) + (1− λ(qy))u(zy)− U = 0, (B12)

U − u(z0) ≥ 0, (B13)

(1− a) (U − u(z0)) = 0. (B14)

After rewriting the incentive compatibility and the truth telling constraint, it is immediate

to see that the only difference between the above mechanism design problem and the one

in Section 3 is that the consumption of unemployed workers can be made contingent upon

the worker’s search strategy. However, we will now show that the mechanism designer finds

it optimal not to use these contingencies. Let φ1 and φ2 denote the multipliers associated

with the constraints (B13) and (B14). Let ρ1,ydF (y) and ρ2,ydF (y) denote the multipliers

associated with the constraints (B11) and (B12). Finally, let μ1, μ2 and μ3 denote the

multipliers associated with the resource constraints (B8), (B9) and (B10). Consider an

arbitrary y. The first order condition with respect to zy is given by

u0(zy)
£
(1− λ(qy))(qy + ρ2,y) + ρ1,y

¤
= μ1qy(1− λ(qy)). (B15)

The first order condition with respect to cy(y) is given by

u0(cy(y))
£
qy + ρ2,y

¤
= μ1qy. (B16)

If ρ1,y = 0, then the first order conditions (B15) and (B16) imply zy = cy(y). However, this
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violates the incentive compatibility constraint (B11). Hence, for all y, we have ρ1,y > 0 and

U − u(zy) = 0. In turn, this implies that zy = z for all y. That is, the mechanism designer

finds it optimal to equate the consumption among all of the unsuccessful job seekers. If a = 1,

z0 does not matter and it can be set equal to z without loss in generality. If a < 1, the truth

telling constraint (B14) implies z0 = z. That is, the mechanism designer needs to equate

the consumption between workers who do not search and workers who search unsuccessfully.

¥

C Optimal mechanism

In this appendix, we derive the optimality conditions (14)-(18) for the solution to the mech-

anism design problem. To this aim, we need to introduce some additional notation. Let

μ1, μ2 and μ3 denote the multipliers associated with the aggregate resource constraints (8)—

(10). Let ρydF (y) denote the multiplier associated to the incentive compatibility constraint

(11). Finally, let ν1 and ν2 denote the multipliers associated to the incentive compatibility

constraints (12) and (13).

A solution to the mechanism design problem consists of an allocation (a, q, c, z, S), a list

of multipliers on the resource constraints (μ1, μ2, μ3), and a list of multipliers on the incentive

compatibility constraints (ρy, ν1, ν2). The solution to the mechanism design problem must

satisfy a number of first order conditions. The first order condition for cy is

qyu
0(cy) + ρyu

0(cy) = μ1qy. (C1)

The first order condition for z is

u0(z)

∙
1−

Z
λ(qy)qydF (y)

¸
= u0(z)

∙Z
ρyλ(qy)dF (y)

¸
+ μ1

∙
1−

Z
λ(qy)qydF (y)

¸
. (C2)

The first order condition for qy is

{u(z) + S − k + qyλ
0(qy) [u(cy)− u(z)]}

+ μ1 {η0(qy)y − λ(qy)cy − (1− λ(qy))z + qyλ
0(qy) [cy − z]}

≤ μ3 − ρyλ
0(qy) [u(cy)− u(z)],

(C3)
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The first order condition for a is

u(z) + μ2 = μ1z + μ3. (C4)

The first order condition for S is

ν1 + ν2(1− a) =

Z
ρydF (y). (C5)

In addition to the first order conditions (C1)-(C5), a solution to the mechanism design prob-

lem must satisfy the resource constraints (8) and (10), as well as the incentive compatibility

constraints (11) and (13). Moreover, a solution to the mechanism design problem must be

such that

1− a ≥ 0, μ2 ≥ 0 and (1− a)μ2 = 0, (C6)

S − k ≥ 0, ν1 ≥ 0 and (S − k)ν1 = 0. (C7)

Using equation (C2) to solve for μ1 and equation (C1) to solve for ρy, it follows that the

right-hand side of (C5) is strictly positive and, hence, ν1+ν2(1−a) > 0. First, suppose that

the solution to the mechanism design problem is such that a = 1. In this case, ν1+ν2(1−a) >

0 implies ν1 > 0. In turn, ν1 and (C7) imply S = k. Next, suppose that the solution to the

mechanism design is such that a < 1. In this case, the incentive compatibility constraint

(13) implies S = k. Therefore, the solution to the mechanism design problem is always such

that

S = k. (C8)

Solving equation (C1) for ρy and equation (C4) for μ2 and substituting the solutions into

the first order condition (C3), we obtain

η0(qy)y − λ(qy)(cy − d) + qyλ
0(qy)

∙
u(cy)− u(d)

u0(cy)
− (cy − d)

¸
=

μ2
μ1
. (C9)

Solving the incentive compatibility constraint (11) for cy and using the fact that S = k, we

obtain

cy = u−1
µ

k

λ(q)
+ u(z)

¶
. (C10)
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Solving the resource constraint (8) for z, we obtain

z =

Z
η(qy) [y − (cy − z)] dF (y). (C11)

Finally, using the optimality condition (C7) and the resource constraint (10), it is straight-

forward to verify that

1−
Z

qydF (y) ≥ 0,
μ2
μ1
≥ 0 and

µ
1−

Z
qydF (y)

¶
μ2
μ1
= 0. (C12)

The optimality conditions (C8)-(C12) are the same as the conditions (14)-(18). ¥

D Proof of Proposition 1

In the main text, we proved parts (i) and (ii) of the proposition. In this appendix, we prove

part (iii). Let (a∗, q∗, c∗, z∗, S∗) denote the solution to the mechanism design problem and

let μ∗1 and μ∗2 denote the multipliers associated with the resource constraints (11) and (12).

Suppose that μ∗2/μ
∗
1 = 0. When μ∗2/μ

∗
1 = 0, the constrained efficient queue length is such

that

η0(q∗y)y = λ(q∗y)
¡
c∗y − z∗

¢
− q∗yλ

0(q∗y)

∙
u(c∗y)− u(z∗)

u0(c∗y)
− (c∗y − z∗)

¸
(D1)

and the constrained efficient consumption for employed workers is such that

c∗y = u−1
µ

k

λ(q∗y)
+ u(z∗)

¶
. (D2)

Moreover, the constrained efficient consumption for unemployed workers satisfies the resource

constraint for output

z∗ =

Z
η(q∗y)(y − (c∗y − z∗))dF (y), (D3)

and the constrained efficient queue satisfies the resource constraint on applicantsZ
q∗ydF (y) = a∗ ≤ 1. (D4)

Let q̃(y, z, k) denote the solution for q to the equations (D1) and (D2) with respect to q. It

is straightforward to verify that q̃(y, z, k) is increasing in y, increasing in d and decreasing

in k.

Now, let k be the search cost such that
R
q̃(y, 0, k)dF (y) = 1. Such a k exists because

40



limk→0 q̃(y, z, k) = ∞ for any y ∈ [y, y] and any z ∈ R+. For any k <k, the constrained

efficient queue length is such that Z
q∗(y)dF (y)

=

Z
q̃(y, z∗, k)dF (y)

>

Z
q̃(y, 0, k)dF (y) = 1.

(D5)

This implies that, for k <k, there is no solution to the system of equations (D1)-(D4). Hence,

the solution to the mechanism design problem must be such that μ∗2/μ
∗
1 > 0. In an analogous

way, one can prove that there exists a k such that, for k > k, μ∗2/μ
∗
1 = 0. ¥

E Proof of Proposition 2

First, we compare the consumption assigned to unemployed workers in the equilibrium and

in the second best. To this aim, notice that the workers’ expected utility is equal u(z)+S−k

in the equilibrium, and it is equal to u(z∗) + S∗ − k in the second best. Since μ∗2/μ
∗
1 > 0,

the equilibrium is constrained inefficient and, hence, the workers’ expected utility is strictly

lower that in the second best. That is,

u(z) + S − k < u(z∗) + S∗ − k. (E1)

Since S > k and S∗ = k, the above inequality implies z < z∗.

Next, we compare the consumption assigned to employed workers in the equilibrium and

in the second best. In the equilibrium, the consumption assigned to a worker employed

at a firm that attracts q applicants is c(q) = u−1(S/λ(q) + u(z)). In the second best, the

consumption assigned to a worker employed at a firm that attracts q applicants is c∗(q) =

u−1(S∗/λ(q) + u(z∗)). The derivatives of c and c∗ with respect to q are

c0(q) = − λ0(q)

λ(q)2
S

u0(c(q))
,

c∗0(q) = − λ0(q)

λ(q)2
S∗

u0(c∗(q))
.

(E2)

Notice that since S > S∗, c(q0) = c∗(q0) implies that c0(q0) > c∗0(q0). Using this observation

and the behavior of c(q) and c∗(q) at q = 0 and q = ∞, it follows that there exists one
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q0 ∈ (0,∞) such that c(q0) = c∗(q0), c(q) < c∗(q) for q ∈ (0, q0) and c(q) > c∗(q) for

q ∈ (q0,∞).

Finally, we compare the allocation of applicants across firms in the equilibrium, qy, and

in the second best, q∗y. Differentiating the first order condition (3) with respect to y and

using the fact that p(q) = φ(q, z, S), we obtain

q0y =
η0(qy)y

−η00(qy)y + 2φq(q, z, S) + φqq(q, z, S)q
. (E3)

Similarly, differentiating the first order condition (19) with respect to y and using the fact

that p∗(q) = φ(q, z∗, S∗) + μ∗2/μ
∗
1, we obtain

q∗0y =
η0(q∗y)y

−η00(q∗y)y + 2φq(q, z∗, S∗) + φqq(q, z
∗, S∗)q

. (E4)

The differential equations (E3) and (E4) are identical, except that the function φ is evaluated

at (q, z, S) in the first equation and at (q, z∗, S∗) in the second equation. First, using the

fact that φq(q, z, S) is strictly increasing in S and strictly decreasing in z and the fact that

z < z∗ and S > S∗, we can prove that 2φq(q, z, S) + φqq(q, z, S)q is strictly greater than

2φq(q, z
∗, S∗) + φqq(q, z

∗, S∗)q. This property implies that if qy = q∗y then q0y < q∗0y . In turn,

this implies that there exists at most one y such that qy = q∗y. Second, using the fact that

qydF (y) and q∗ydF (y) both integrate up to one, we can prove that there must exist at least

one y ∈ (yc, y) such that qy = q∗y. Taken together the two observations imply that there exist

a y0 such that qy0 = q∗y0, qy > q∗y for y ∈ (yc, y0), and qy < q∗y for y ∈ (y0, y). ¥

F Proof of Theorem 1

Given the unemployment benefit B∗u and the labor earning tax T ∗e , consider the allocation

(q̂, ŵ, ẑ, Ŝ) where ẑ = z∗ −B∗u, Ŝ = S∗ q̂y = q∗y and

ŵ(q) = u−1
µ

S∗

λ(q)
+ u(z∗)

¶
+ T ∗(q)− ẑ. (F1)

First, we claim is that the queue length function q̂y solves the problem of the firm

max
q≥0

η(q)y − p̂(q)q,

p̂(q) = λ(q)

∙
u−1

µ
S∗

λ(q)
+ u(z∗)

¶
+ T ∗(q)− ẑ

¸
.

(F2)
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To see this, notice that the problem (F2) is strictly concave and, hence, q̂y is a solution if

and only if it satisfies the first order condition

η0(q)y = p̂(q)q + p̂(q), if q > 0,

η0(q)y ≤ p̂(q)q + p̂(q), if q = 0.
(F3)

Since q̂y = q∗y, q̂y satisfies the first order condition of the mechanism design problem

η0(q)y = p∗(q)q + p∗(q), if q > 0,

η0(q)y ≤ p∗(q)q + p∗(q), if q = 0.
(F4)

Now, notice that the price of an applicant p̂(q) is such that

p̂(q) = λ(q)

∙
u−1

µ
S∗

λ(q)
+ u(z∗)

¶
+ T ∗(q)− ẑ

¸
= λ(q)

∙
u−1

µ
S∗

λ(q)
+ u(z∗)

¶
− z∗

¸
+

μ∗2
μ∗1

= p∗(q),

(F5)

where the second line uses the definition of ẑ and the fact that λ(q)[T ∗(q) + B∗u] = μ∗2/μ
∗
1.

From (F5), it follows that q̂y satisfies the first order condition (F3) and, hence, it solves the

problem of the firm (F2).

Second, we claim that the wage function ŵ(q) is consistent with the worker’s optimal

search strategy. To see this notice that the worker’s expected utility from seeking a job that

attracts q applicants is

λ(q) [u(ẑ + ŵ(q)− T ∗e (ŵ(q)))− u(ẑ +B∗u)]

= λ(q)

∙
u

µ
u−1

µ
S∗

λ(q)
+ u(z∗)

¶¶
− u(z∗)

¸
= S∗ = Ŝ,

(F6)

where the second line uses the definition of ẑ and ŵ(q) and the third line uses of the definition

of Ŝ.

Third, we claim that the value of searching Ŝ is consistent with the worker’s optimal

search strategy. To this aim,it is sufficient to notice that Ŝ = k andZ
q̂ydF (y) =

Z
q∗ydF (y) ≤ 1. (F7)

Fourth, we claim that the dividends received by the workers are equal to the profits
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earned by the firms. To see this, notice that the profits earned by the firms areZ
η(q̂y) [y − ŵ(q̂y)] dF (y)

=

Z
η(q∗y)

£
y − u−1

¡
S∗/λ(q∗y) + u(z∗)

¢
+ z∗ − B∗u/λ(q)

¤
dF (y)

=

Z
η(q∗y)

£
y −

¡
c∗y − z∗

¢¤
dF (y)−

Z
q∗yB

∗
udF (y)

= z∗ −B∗u = ẑ,

(F8)

where the second line uses the definitions of q̂y and ŵ(q), the third line uses the equations

ẑ + B∗u = z∗ and λ(q)[B∗u + T ∗(q)] = B∗u, the fourth line uses the fact that q
∗, S∗ and z∗

satisfy the incentive compatibility constraint (10), and the last line uses the fact that q∗, c∗

and z∗ satisfy the resource constraint (11).

Fifth, we claim that the budget of the policy maker is balanced. To see this, notice that

the budget of the policy maker isZ
η(q̂y) [T

∗
e (ŵ(q̂y)) +B∗u] dF (y)−B∗u

=

Z
q∗yλ(q

∗
y)
£
T ∗(q∗y) +B∗u

¤
dF (y)−B∗u

=

Z
q∗y (μ

∗
2/μ

∗
1) dF (y)− μ∗2/μ

∗
1 = 0,

(F9)

where the second line uses the fact that q̂y = q∗y, the third line uses the fact that λ(q
∗
y)
£
T ∗(q∗y) +B∗u

¤
=

μ∗2/μ
∗
1 and B

∗
u = μ∗2/μ

∗
1, and the last line uses the fact that either μ

∗
2/μ

∗
1 = 0 or

R
q∗ydF (y) =

1.

Taken together, the above observations show that the allocation (q̂, ŵ, ẑ, Ŝ) is an equilib-

rium that implements the solution to the mechanism design problem. ¥
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