
NBER WORKING PAPER SERIES

A PRECAUTIONARY TALE OF UNCERTAIN TAIL FATTENING

Martin L. Weitzman

Working Paper 18144
http://www.nber.org/papers/w18144

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2012

I acknowledge funding from the National Science Foundation. The views expressed herein are those
of the author and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2012 by Martin L. Weitzman. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



A Precautionary Tale of Uncertain Tail Fattening
Martin L. Weitzman
NBER Working Paper No. 18144
June 2012
JEL No. Q5,Q54

ABSTRACT

Suppose that there is a probability density function for how bad things might get, but that the overall
rate at which this probability density function slims down to approach zero in the tail is uncertain.
The paper shows how a basic precautionary principle of tail fattening could then apply.  The worse
is the contemplated damage, the more should a decision maker consider the bad tail to be among the
relatively fatter-tailed possibilities.   A rough numerical example is applied to the uncertain tail distribution
of climate sensitivity.

Martin L. Weitzman
Department of Economics
Harvard University
Littauer 313
Cambridge, MA 02138
and NBER
mweitzman@harvard.edu



A Precautionary Tale of Uncertain Tail Fattening

Martin L. Weitzman∗

March 10, 2012

Abstract

Suppose that there is a probability density function for how bad things might get,

but that the overall rate at which this probability density function slims down to

approach zero in the tail is uncertain. The paper shows how a basic precautionary

principle of tail fattening could then apply. The worse is the contemplated damage,

the more should a decision maker consider the bad tail to be among the relatively

fatter-tailed possibilities. A rough numerical example is applied to the uncertain tail

distribution of climate sensitivity.

1 Introduction via Climate Change

A striking feature of the economics of climate change is that worst-case scenarios are both

highly unsure and non-negligible. Deep structural uncertainty about what might conceivably

go awry with the planet is coupled with essentially unlimited downside liability on the

ultimate extent of possible global damages. This can be a recipe for producing “fat tails” in

the extremes of critical probability distributions. There is a race being run in the extreme

tail between how rapidly probabilities are declining and how rapidly damages are increasing.

Who wins this race, and by how much, depends on how fat (with probability mass) the

extreme tails are. It is difficult to judge how fat the tail of really bad climate change might

be because it represents events that are very far outside the realm of ordinary experience.

Motivated by the example of climate change, this paper proposes a framework for gaining

insight into some of the basic issues involved in conceptualizing the tail probabilities of

catastrophic events.

∗Department of Economics, Harvard University (mweitzman@harvard.edu). Without necessarily tying

him to the contents of this paper, I am grateful for useful critical comments to Antony Milner.

1



The basic idea of this paper is along the following lines. Suppose that there is some

probability density function (PDF) for how bad things might get, but that this PDF itself

is uncertain. In particular, some aggregate measure of the overall rate of tail slimming of

the relevant PDF is itself a random variable. A Bayesian decision maker is then confronted

with a probability distribution over the degree of tail slimming of members of some family

of probability distributions. The basic insight of the paper is that the Bayesian aggregated

posterior-predictive PDF is then increasingly fat in its extremes (here the extreme “badness”

of the possible outcome). The deeper into the tail is the event being analyzed (the worse is

the possible outcome), the more relevant are the fatter-tailed probability assessments about

how slowly the tail might be slimming down. For the reduced-form aggregated PDF, the

posterior-predictive tail gets relatively fatter as it gets longer. A kind of precautionary

principle then applies for the probabilities of extreme events, since a decision maker should

then effectively act as if the relatively fatter-tailed possibilities are correct. In perhaps

overly colorful language, if you know a situation is bad, then it is likely worse than you

think.

Technically, the mathematical model relies on some neat aggregation properties of linearly-

related members of the same family of hazard functions. Each member of such a family

differs from each other member by a multiplicative constant representing the relative de-

gree of “slimming down” of the probabilities as the distribution goes deeper into the tail.

Some general insights into the process of posterior-predictive tail fattening are derived and

interpreted under this “proportional hazards” specification. By further imposing a gamma

distribution on families of hazard functions, the paper is able to obtain closed-form analytical

solutions.

A numerical example of this approach is applied to empirically derived PDFs of climate

sensitivity as a kind of case study. While extremely crude and subject to many possible

criticisms, this application illustrates concretely some of the basic ideas of the paper and

conveys some rough sense of the magnitude of tail fattening that might be involved in an

important application.

2 The Hazard Function as a Tail Slimming Rate

Let  be a random variable quantifying something bad, like global warming temperatures.

Essentially, represents the magnitude of any undesirable event. Depending on the context,

 might stand for mean planetary surface temperature changes, earthquake energy, tsunami

heights, dollars of loss, fatalities, injuries, environmental degradation, or any other measure

of something bad. The bigger is , the worse is the situation. Really large values of 
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represent really bad outcomes. Huge values of  indicate catastrophes.

This paper is concerned with the behavior of the upper tail of the PDF of . More

specifically, the paper is interested in the rate at which the PDF of  declines towards

zero as  increases. In what follows, the parameter  (0    ∞) is conceptualized as
some aggregate measure of the overall rate of slimming down of the extreme tail, yet to be

specified. In this section, for the time being,  is quasi-fixed in the background and merely

carried along in the analysis as a “silent parameter.” (Later,  will be treated as a random

variable with its own PDF ().)

Because the primary object of study of this paper is the distribution of the upper tail of

the random variable , it is then natural (and more elegant) to condition all probabilities on

 already being in the upper tail. Let  represent the “beginning” of the upper tail region

(for all ). Of course  is arbitrary to at least some extent, but such a sharp distinction

between the pre-tail lower part of the probability distribution and the post-tail upper part

of the probability distribution is a simplifying assumption that is analytically useful for

obtaining crisp results. Let the probability that  exceeds  (for given ) be denoted

[ ≥ ]. (The square-bracket notation  [] stands for the probability of event , while

the square-bracket notation  [ | ] stands for the probability of event  conditioned on

event  having occurred.) Since the paper is ultimately concerned with an uncertain family

of post-tail PDFs, I merely assume that [ ≥  ] is parametrically specified as some value

 for all . Any desired value of  (0    1) can later be plugged into the model.

Throughout the rest of the paper we are dealing with the tail region, so  is any number

satisfying  ≥  and the paper works with conditional tail probability distributions of the

form [ ≥  |  ≥  ]. If for some reason we desired to know it, the unconditional

probability distribution [ ≥ ] could be recovered from [ ≥  |  ≥  ] by the

relationship [ ≥ ] =  [ ≥  |  ≥  ], where  ≡ [ ≥  ] is a quasi-constant of

the analysis that is treated as being fixed in the background.

Tail “fatness” and tail “thinness” have mirror-image properties because fatness is the

inverse of thinness. They differ only in polarity. For the mathematical purposes of this

paper, it is more elegant to use tail thinness as the basic primitive simply because it generates

neater aggregation formulas than tail fatness. Otherwise, there is no substantive difference

between the two concepts.

To proceed further in this paper requires a formal definition of tail thinness. A natural

measure of tail thinness is what I will call the tail “slimming rate”

() ≡ lim
↓0

∙
[ ≤  ≤ +  |  ≥ ]



¸
 (1)
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which quantifies how rapidly the tail is slimming down locally within a neighborhood of

 = .

The tail-conditional exceedance probability distribution  () is defined here as the func-

tion

 () ≡ [ ≥  |  ≥  ] (2)

which automatically incorporates the normalization  () = 1 that corresponds to the con-

dition of  being in the tail. (In reliability theory,  −  would have the interpretation of

tail-conditional time to failure and the function  () would be called the tail-conditional

survival probability distribution.)

Incorporating (2) into (1) and taking the limit shows, after some algebra, that the de-

finition of the “slimming rate” () given by (1) is equivalent to the well known “hazard

function”

() =
()

 ()
 (3)

where the tail-conditional PDF corresponding to (2) is () = − 0() (Conditioning or
not conditioning on  ≥  makes no difference to the value of () when properly calculated

because the normalization constant  cancels from the numerator and denominator of formula

(3)).

Throughout this paper I use the terms “hazard function” and “slimming rate” inter-

changeably.1

From (3), any given hazard function () implies a unique tail-conditional exceedance

probability distribution  () via the relationship

 () = exp (−())  (4)

where the cumulative hazard function () is defined as

() ≡
Z 



()  (5)

Note that the cumulative hazard function () is strictly monotone increasing in  provided,

as will be assumed, that the hazard function () is positive. Note also that () = 0,

which corresponds to  () = 1, and that in order for  (∞) = 0 to hold, it must be true
1The “hazard function” standardly refers to a situation where the random variable  has the interpre-

tation of “time to failure” and the exceedance probability distribution has the interpretation of “survival

probability distribution.” Whether the random variable  is interpreted as the magnitude of damages

or interpreted as the time to failure is mathematically irrelevant because the two concepts are formally

isomorphic.
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that (∞) =∞.
What does it signify in the present context when the hazard function (or slimming rate)

() is relatively small or relatively big? When () is small (indicative of relatively fatter

tails) the bad tail is slimming down slowly, which means that if you know a situation far out

in the tail is bad, then it is likely much worse than you think. Conversely, when () is big

(indicative of relatively thinner tails) the bad tail is slimming down rapidly, which means

that if you know a situation far out in the tail is bad, then it is likely not much worse than

you think.

There are three major advantages to working with the hazard function () as a measure

of the degree of tale slimming. First, it has all of the right intuitive properties and is not

inferior in this regard to any other single function as a measure of how rapidly a tail is

slimming down. Second, the hazard function is familiar from probability theory, with

well-known properties that have been studied intensively and widely applied. Third, as

this paper will show, using () can bring to bear an elegant mathematical structure for

rigorously analyzing an important set of issues involving precautionary tail fattening.

3 A Model of Tail Slimming Uncertainty

Because (3) is mathematically identical with (4) and (5), hazard functions and probability

distributions are two sides of the same coin. Usually the probability distribution is concep-

tualized as being given first, while the hazard function is then defined in terms of it by (3).

Here the order in which they are introduced is decisively reversed. Because this paper is

focused on uncertain tail thinness, it begins with the tail hazard function as a given primitive

measure of tail thinness, while the corresponding tail probability distribution is then defined

in terms of the tail hazard function by (4), (5).

If the tail hazard function (aka tail slimming rate) were known to be () (i.e., if the

value of the parameter  was known), then the problem this paper is trying to address would

not exist. The problem here is that the rate of tail slimming is not known exactly because

observations of low-probability high-impact extreme events are rare and difficult to interpret

— or they do not even exist for many situations of interest (in which case they must somehow

or other be extrapolated from what is known).

One cannot proceed fruitfully when the hazard function specification remains in the

general form (). To go further with the analysis, one simply must specify more precisely

how  is supposed to represent tail thinness. It is difficult to obtain crisp neat results

without tying  crisply and neatly to some intuitive measure of the overall rate of tail

slimming. Crisp neat results can be obtained if the tail slimming rates (aka tail hazard
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functions) () are assumed to be multiplicative shifts of each other, with  representing

the multiplicative shift parameter. This multiplicative-shift specification is now introduced

and henceforth adopted throughout the rest of the paper.

The main given primitive in this setup is some “parent” hazard function (), which can

be any positive function satisfying the regularity requirementZ ∞



()  =∞ (6)

A family of hazard functions is then generated by imposing the specification that each

“child” hazard function is of the linear form

() =  × () (7)

which is an instance of what is called in the reliability literature the “proportional hazards”

assumption.

The positive parameter  in (7) represents the relative thinness of the tail probabilities

of a child hazard function within the family of all child hazard functions whose parent is

(). By assuming the multiplicatively-separable form (7), one can obtain fairly crisp and

neat results having an intuitive interpretation. Assumption (7) follows a long tradition in

economics of analyzing changes via parametric shifts of critical curves or functions. But

the “proportional hazards” assumption (7) is an imposed restriction nevertheless, which

amounts to assuming a uniform degree of relative tail thinness for each child distribution of

the same parent hazard function. I note for the low-probability extreme-event situations

relevant to this paper that there might typically be considered to be a lot of variability in

the shift parameter  because the appropriate degree of relative tail thinness might typically

be considered to be highly uncertain.

The cumulative parent hazard function is

() =

Z 



()  (8)

From (5) and (8), specification (7) implies that the cumulative hazard function for given

 is of the form

() =  × () (9)

Plugging (9) into (4) gives

 () = exp (− ())  (10)
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Before continuing on with developing the abstract model of this section, I want first to give

insight into the general approach by way of three specific examples based on three especially

simple functional forms for (). These three examples illustrate concretely how particular

hazard-function families satisfying the proportional hazards condition (7) conjugate with

their implied probability-distribution families via (4). Because the probability-distribution

families in these examples are more or less familiar, the examples should serve to strengthen

intuition about the general approach.

Example 1 The prototype example here is the exponential distribution. This example

serves as a template throughout the rest of this paper because, as the paper will show, tail-

fattening behavior in the exponential case readily translates into tail-fattening behavior in

the more general case (7). For the exponential family the given primitive parent hazard

function is

() = 1 (11)

From (7), the child hazard functions in the exponential case are of the form () = . The

cumulative hazard function (9) here is () =  ( − ). From (10), the tail-conditional

exceedance probability distributions for the exponential family are of the form




() = exp(− (− )) (12)

Example 2 The second example is the Pareto (or power) distribution. For the Pareto

family the given primitive parent hazard function is

() =
1


 (13)

From (7), the child hazard functions in the Pareto case are of the form 

() = . The

cumulative hazard function (9) here is 

() =  (ln− ln ). From (10), the tail-conditional

exceedance probability distributions for the Pareto (or power) family are of the form




() =
³


´−
 (14)

Example 3 An interesting third example begins with the given primitive parent hazard

function being of the form

() = −1 (15)

for some non-negative constant . When  = 1, then (15) implies () = () = 1.

When  = 0, then (15) implies () = () = 1. This third example is interesting
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because the family of probability distributions having parent hazard function (15) subsumes

as special cases both the exponential family (12) for  = 1 (each member of which is a

prototype thin-tailed distribution) and the Pareto family (14) for  = 0 (each member of

which is a prototype fat-tailed distribution). From (7), the child hazard functions here are

of the form  () = −1. The cumulative hazard function (9) here is  () =  (−)
for   0 (and  () =  (ln− ln ) for  = 0). From (10), the tail-conditional exceedance
probability distributions for this family are of the form




 () = exp

µ
−
µ
 − 



¶¶
 (16)

which is describing a family of probability distributions having similar form and properties

to a corresponding family of Weibull distributions.

4 Insights and Implications

I return now to the broader situation where () represents any parent hazard function (not

just the special examples of last section where () = 1 or () = 1 or () = −1).

In the last section,  was treated as given and fixed. Throughout the rest of this paper

 is viewed as a random variable having prior PDF ().

Making use of (4) and (9), the posterior-predictive tail-conditional exceedance probability

distribution, denoted b (), is then
b () ≡ Z ∞

0

 () ()  =

Z ∞

0

exp(− ()) ()  (17)

From differentiating (17) and (8) with respect to , the corresponding posterior-predictive

hazard function (aka posterior-predictive tail slimming rate) is

b() ≡ − b 0()b () =

∙R∞
0

 exp (− ()) () R∞
0
exp (− ()) () 

¸
× () (18)

A more elegant way of seeing what (18) is trying to tell us comes from decomposing it

into three simpler parts. Viewed this way, (18) is equivalent to

b() = b()× () (19)

where b() = (()) (20)
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and the function () is defined by the equation

() =

R∞
0

 exp (− ) () R∞
0
exp (− ) ()   (21)

In analyzing the above trio of equations (19), (20), (21), notice that (19) is of the identical

form as the child hazard function (7) (with both sharing the same parent ()), except thatb() in (19) replaces  in (7). This signifies that, for any given , we are allowed the mental
convenience of conceptualizing the appropriate posterior-predictive rate of tail slimming as

if it were the child hazard function having the relative thinness parameter value b(). The
next issue to be investigated is the behavior of b() and what it depends upon.
From (20), b() depends on  in the particular nested form b() = (()). From

(8), the function () is strictly monotone increasing in  with derivative 0() = ()  0.

Therefore, if we can understand the basic properties of () as  increases, then we will

understand (up to a monotone transformation) the basic properties of b() as  increases.
To see in sharp relief the behavior of () as a function of , rewrite (21) as the weighted

average

() =

Z ∞

0

 (; )  (22)

where the non-negative weights are

(; ) ≡ exp (−) ()R∞
0
exp (−) ()  (23)

which sum to one because
R∞
0

(; )  = 1.

The behavior of () as a function of  can then be understood by examining the behavior

of the aggregation weights (; ) as joint functions of  and . It is readily apparent that,

as  increases for given , the exponential term exp (−) in (23) places less -weight on
relatively high values of  and places more -weight on relatively low values of . Therefore,

from (22), () is a declining function of , and consequently b() = (()) is also a

declining function of , beginning for  = 0 or  =  at the mean value of Z ∞

0

 ()  = (0) = b() (24)

and approaching asymptotically as  →∞ or →∞

inf { | ()  0} = (∞) = b(∞) (25)

Further insight into the behavior of () can be gained by differentiating (22), (23) with
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respect to , which, after rearranging terms, gives

0() = −
Z ∞

0

( − ())2 (; )  (26)

Note from (26) that the rate at which () declines is proportional to the weighted variance

of the distribution of . Other things being equal, a weighted-mean-preserving spread of 

accelerates the decline of () with respect to .

The reason why () decreases in , or why b() = (()) decreases in , runs deep

in the nature of the underlying problem. Other things being equal, tails that slim down

at a relatively faster rate also have tail exceedance probabilities that are relatively smaller.

As one moves further out in the tail, therefore, the posterior-predictive distribution is in-

creasingly dominated by the relatively higher survival probabilities of the relatively fatter

sub-distributions corresponding to lower values of . In a sense, the thinner-tailed child

distributions are discounting their own relevance out of existence, leaving the field to their

fatter-tailed siblings. A corollary is that the rate of slimming down of the posterior-predictive

distribution decreases further out in the tail. The posterior-predictive tail becomes fatter

as it gets longer, reflecting the higher survival rates of its fatter-tailed sub-distributions.

Equations like (22) and (26) are merely formulas that express these basic ideas concisely.

The results of this section indicate that as  increases by going deeper into the tail,

then, for any given parent hazard function (), the posterior-predictive hazard functionb() declines monotonically relative to () from the “average” child hazard function cor-

responding to (24) towards the fattest possible child hazard function corresponding to (25).

In this sense the posterior-predictive tail gets ever fatter for ever larger  within the class of

child hazard functions derived from any given parent hazard function. To say more precisely

than this what exactly is the posterior-predictive probability distribution requires further

restricting the PDF () to some analytically tractable form.

5 Gamma Tail Fattening

The gamma probability distribution is ideally suited for further analysis here because of the

neat way it integrates to simplify various complicated formulas involving proportional hazard

functions. Henceforth I assume the PDF () is of the gamma form

() =
1

 Γ()
−1− (27)
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with positive parameters  and . I presume that the reader has (or can acquire) a basic

knowledge of the gamma PDF. In this and the next section, repeated use is made of the

formula Z ∞

0

−1−  =  Γ() (28)

for various values of   0 and   0.

Plug (27) into (17). Then use the formula (28) for  =  and  = 1[1 + ()]. Re-

arrange terms to derive the closed-form expression for the posterior-predictive tail-conditional

exceedance probability distribution

bΓ() = [1 +  ()]− (29)

where () is the cumulative parent hazard function (8).

It is striking to compare equation (29) with equation (10). The child probability dis-

tribution (10) is exponential in (). The posterior-predictive distribution (29) is poly-

nomial in (). The effect of imposing a gamma PDF (27) is to fatten the tail of the

posterior-predictive distribution by moving () from an exponential distribution class into

a polynomial distribution class. For the exponential parent (11), (12), the effect is to

change the exceedance probability from the form 


() = exp(− ( − )) to the fatter-

tailed form b 
Γ() = [1 + ( − )]−. For the Pareto parent (11), (12), the effect is to

change the exceedance probability from the form 


() = ()
−
to the fatter-tailed formb 

Γ() = [1 + (ln− ln )]−.
Further insight can be obtained by noting that the mean of the gamma PDF (27) is

 = , while the variance of the gamma PDF (27) is 2 = 2. Inverting these expressions,

(29) can be rewritten as bΓ() = [1 + ()2]−
22  (30)

It can readily be shown that expression (30) increases with . The greater the variance

of  for a given mean, the greater is the posterior-predictive exceedance probability. In the

limit  → 0, the expression (30) becomes exp(− ()), which is of the same form as (10).

With no variance, the posterior-predictive exceedance probability reverts to the unfattened

child distribution having the point value  = .

6 A Numerical Application to Climate Sensitivity

There are so many sources of uncertainty in climate change that a person almost does not

know where or how to begin cataloging them. In this section I make an extremely crude
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attempt to apply the model of this paper to a particular numerical example concerning

one particular aspect of climate-change uncertainty. For specificity, I focus here on the

uncertainty of so-called “equilibrium climate sensitivity.”

“Equilibrium climate sensitivity” (hereafter denoted  to conform with previous no-

tation) is a key macro-indicator of the eventual temperature response to greenhouse gas

changes. It is defined as the global average surface warming that follows a sustained dou-

bling of atmospheric carbon dioxide (CO2), after the climate system has reached a new

equilibrium.2 Calculating the actual time trajectory of temperatures is a complicated task

that requires sophisticated computer modeling based on general circulation models with

hundreds of parameters and variables. The human mind being what it is, however, there

is a compelling need to reduce such a complicated dynamic reality to some comprehensible

aggregate indicator. This is a simplistic reduction that overlooks important temporal and

spatial aspects of climate change. Temporally, really high atmospheric warming would take

a very long time to equilibrate because the oceans must first absorb tremendous amounts of

heat (which itself might be considered a scary proposition). Spatially, regional climate ef-

fects are far more unpredictable than global average warming. Despite many complications,

the concept of equilibrium climate sensitivity can still serve as a useful aggregate proxy for

the overall severity of the climate change problem.

The economics of climate change consists of a very long chain of sometimes tenuous

inferences fraught with big uncertainties in every link. It should be understood clearly that

under the rubric of “equilibrium climate sensitivity” I am trying to aggregate together a large

suite of uncertainties. Empirically, it is not the fatness of the tail of the climate sensitivity

PDF alone, or the reactivity of damages to high temperatures alone, or the degree of relative

risk aversion alone, or the rate of pure time preference alone, or any other factor alone, that

counts, but rather the combination of all such factors in determining the upper-tail fatness

of the PDF of the relevant measure of overall expected welfare. So climate sensitivity as a

random variable  is to be understood here as a prototype example or a metaphor, which

is being used primarily to illustrate much more generic issues in the economics of highly

uncertain extreme climate change. The insights and results of this paper are not intended

to stand or fall on the narrow issue of accurately modeling uncertain climate sensitivity per

se.

2In scientific jargon,  is a so-called “fast equilibrium” concept based upon “fast feedbacks” (geologically

speaking). The concept omits slower-acting feedbacks, such as changes in land albedo, changes in biological

sinks or sources, temperature-induced releases of carbon, and the like. So-called “earth system sensitivity”

includes slower-acting feedbacks and is presumably larger, perhaps significantly so. For a time horizon on

the scale of a century or so, it is not implausible that “earth system sensitivity” might be the more relevant

concept. Greater details are available, e.g., in Hansen et al (2008). See also the useful survey article of

Knutti and Hegerl (2008).
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The Intergovernmental Panel on Climate Change in its IPCC-AR4 (2007) Executive

Summary explains climate sensitivity this way: “The equilibrium climate sensitivity is a

measure of the climate system response to sustained radiative forcing. It is not a projection

but is defined as the global average surface warming following a doubling of carbon dioxide

concentrations. It is likely to be in the range 2 to 4.5◦C with a best estimate of 3◦C, and

is very unlikely to be less than 1.5◦C. Values substantially higher than 4.5◦C cannot be

excluded, but agreement of models with observations is not as good for those values.” Using

the IPCC definition of “likely” a fair interpretation might be that  [ ≥ 45◦C] ≈ 17%.3
Overall, the IPCC statement might be construed as saying that the upper tail of the PDF

of  has a disturbingly large amount of total probability mass (and that the IPCC also

“thinks” that, whatever is the total probability mass in the tail, there is a disturbingly large

amount of uncertainty about how this probability mass is actually distributed throughout

the tail region  ≥ 45◦C).
For further background and motivation on the unsure degree of fatness of the upper-tail

PDF of , along with some data, this paper relies on a recent study that conducted personal

interviews with 14 leading climate scientists, using formal methods of expert PDF elicitation

(Zickfeld et al 2010). The 14 experts were listed by name in the study, but the association

of numbers with names was not published in order to protect the anonymity of respondents.

There are so many serious problems and difficulties with the way I am using numbers

from this study that, in the interest of brevity, I simply move along without attempting to

justify each step in detail. The only possible overall justification of my quick and dirty

approach is that the underlying issue is important and superior data for the purposes of

this paper simply do not exist. What I am presenting here, then, should merely be seen

as a suggestive numerical example that illustrates concretely some of the basic ideas of this

paper and conveys, however crudely, some rough sense of the magnitude of tail fattening

that might be involved in an important application. I claim nothing more than this.

In the part of the (Zickfeld et al 2010) study most relevant to this paper, the 14 scientific

experts were asked to enumerate their 25% and 5% upper confidence levels for high values

of equilibrium climate sensitivity, denoted here, respectively, by 25% and 5%. In the

notation of this paper, expert  (for  = 1 2  14) believes that  [ ≥ 25% ] = 25 and

 [ ≥ 5% ] = 05. Results of this part of the (Zickfeld et al 2010) survey of expert

opinions are reproduced in Table 1 below.4 The last row of Table 1 gives what might be

3The study of Zickfeld et al (2010), for example, reads the IPCC definition as signifying  [ ≥
45◦C]=17%.

4I am indebted to Karen Zickfeld for providing the spreadsheet upon which the numbers in my Table 1

are based. These numbers were not given explicitly in the published paper (Zickfeld et al 2010).
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called empirical estimates of the “tail one-fifth-life” in degrees centigrade, 
15
 ≡ 5% −25% .

 = 1 2 3 4 5 6 7 8 9 10 11 12 13 14

25% 4.25 5.1 4 3.6 4.5 4.9 4.2 3.8 4 4.1 5 4.5 3.9 5

5% 6 6.1 8 4.4 6.5 7 5.5 5 5.5 5.4 7 8 4.5 7.2


15
 1.75 1 4 .8 2 2.1 1.3 1.2 1.5 1.3 2 3.5 .6 2.2

Table 1: Expert estimates of tail probabilities for climate sensitivity (in
◦
C)

From now on I concentrate just on the tail one-fifth-life estimates 
15
 (= 5% − 25% ) in

the last row of Table 1. This is my primitive data. (I do not know how representative

is this sample, but will later simply presume it is a representative sample of all scientific

opinions.) I next attempt to force the {15 } numbers of Table 1 into the framework model
of this paper. I arbitrarily assume that the tail begins at =4.5◦C and condition all further

tail probabilities on being in this tail region. In the interest of plowing ahead, I make an

audacious assumption that the one-fifth-life estimate 
15
 applies uniformly all throughout

the tail region  ≥4.5◦C. This amounts to postulating a thin-tailed exponential PDF, in
the spirit of Example 1, throughout the entire tail region. Thus, I am effectively presuming

that

[ ≥  |  ≥  ] = exp(− (− )) (31)

The next question to be addressed is: where do the {} come from? I assume that

the {} are a random sample of draws from the gamma PDF (10), which represents the

population distribution of scientific thought concerning .5 We do not observe realizations

of  directly. The primitive data are considered to be the realizations of 
15
 from the

last row of Table 1, including their assumed-independent additive observation errors. The

random variable 15 is related to the random variable  by the relationship

15 =
ln 5


 (32)

Making repeated use of (28), brute force calculations with the gamma PDF (27) applied

to (32) yields


£
15

¤
= ln 5

∙
1



¸
=

ln 5

(− 1)  (33)

5This is not the only way of representing or interpreting expert opinion. For a discussion of some of the

relevant issues, see Clement and Winkler (1999).
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and


£
15

¤
= (ln 5)

2


∙
1



¸
=

(ln 5)
2

(− 1)2 (− 2)  (34)

The sample mean of {15 } denoted , is an unbiased estimate of the population mean

(33). The (corrected by dividing the sum of squared deviations by  − 1 = 13) sample

variance of {15 }, denoted , is an unbiased estimate of the population variance (34).

Using these two sample moments in place of the two population moments allows (33) and

(34) to be inverted, yielding the values

 = 2 +
2


(35)

and

 =
 ln 5

( +2)
 (36)

From the last row of Table 1, the sample mean of {15 } is calculated to be=1.8036 and
the (corrected, unbiased) sample variance of {15 } is calculated to be =.9302. From (35)
and (36), the corresponding parameters for the gamma PDF (27) are =5.497 and =.1984.

The calculated values =5.497 and =.1984 can be used to check how good is the fit of

the gamma population PDF (27) of  for generating the observed sample values of {15 }. In
Table 2 below are enumerated the population quartiles generated by the gamma PDF (27)

for =5.497 and =.1984, as transformed by (32) into corresponding population quartile

values of 15. The last row of Table 2 gives the sample quartiles observed in the last row

of Table 1.

quartile of 15 25% 50% 75%

population 15 = 118 15 = 157 15 = 214

sample 10 ≤ 15 ≤ 12 15 ≤ 15 ≤ 175 21 ≤ 15 ≤ 22

Table 2: A Comparison of Population and Sample Quartiles for 15

As is evident from Table 2, there is a good quartile fit to the story that 
15
 =ln 5,

where values of {} are generated as iid draws from the gamma PDF (27). In this story

the gamma PDF parameters are =5.497 and =.1984, which have been determined by the

first two sample moments of {15}.
For the exponential tail exceedance probabilities of the form 



() = exp(− (− )) in

(12), the cumulative parent hazard function (8) is () = −  . Plugging values =5.497

15



and =.1984 into (29) for () = −  turns (29) into

b 
Γ() = [1 + 1984 (− 45)]−5497 (37)

I now want to compare the posterior-predictive tail-conditional exceedance probability

distribution (37) with an “average” tail-conditional exceedance probability distribution of

the underlying exponential form (10). The mean value of the gamma PDF (27) is  = .

From (24), taking  =  ensures the normalization b() = , which means that both of the

two hazard rates from the two different probability distributions are initialized to be equal

at the beginning of the tail region  = 45◦C. Picking  =  therefore ensures a kind of

level playing field in the sense that the initial rate of tail slimming of this “representative”

child probability distribution is the same as the initial rate of tail slimming of the posterior-

predictive probability distribution.

Using parameter values =5.497 and =.1984 gives  = 10908. For purposes of compar-

ison, I take this average value of  =  = 10908 as the “representative” child distribution

here. Then (10) becomes




() = exp(−10908 (− 45)) (38)

Table 3 below compares tail-conditional “representative” tail probabilities from (38) with

tail-conditional posterior-predictive tail probabilities from (37).

 = 5◦C 6◦C 7◦C 8◦C 9◦C 10◦C 11◦C 12◦C




()= 58% 19% 6.5% 2.2% .74% .25% .08% .03%b 
Γ()= 59% 23% 11% 7.0% 3.0% 1.7% 1.1% .66%

Table 3: Comparison of Tail-Conditional Exceedance Probabilities

The representative tail-conditional exceedance probability distribution 


() given by

formula (38) is of the classical thin-tailed exponential form. The posterior-predictive tail-

conditional exceedance probability distribution b 
Γ() given by formula (37) is of the fat-

tailed polynomial form. The distinction between the two forms does not much show itself in

Table 3 for relatively low values of climate sensitivity  at the beginning of the tail region

 ≥ 45◦C. (Note that  

(45) =
b 
Γ(45) = 100% by definition.) However, Table 3 shows

that the degree of posterior-predictive tail fattening is quite pronounced at higher values of 

located further out in the tail. Rough as this numerical example is, it might be construed as

a crude warning that a kind of precautionary principle could apply to at least some critical

unknowns in climate change. The results of Table 3 are hinting that when probabilities of
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extreme climate sensitivity are being considered in situations where the rate of tail slimming

is unknown, it might be wise to err on the side of caution by accepting fatter-tailed estimates

as being more appropriate for decision making.

The numerical example of Table 3 illustrates the operation of a basic underlying tail-

fattening mechanism. Of course the underlying data are far from ideal, several challengeable

assumptions are being made, and the example is stretched, to put it mildly. Overall, this

numerical application is far more illustrative of underlying principles than it is directly

informative for policy advice. Nevertheless, basic principles are important and it is useful

to have an actual numerical example indicating how a principle might apply to a real-world

situation, even if it is a stretched application.

7 Concluding Comments

To this point, I think the paper largely speaks for itself. When there is some PDF for how

bad things might get, but the overall degree of tail slimming of this PDF is itself uncertain,

then the deeper into the tail is the event being analyzed, the more relevant are the fatter-

tailed probability assessments about how slowly the tail might be slimming down. A

kind of precautionary principle then applies for the probabilities of extreme events, since a

decision maker should then effectively act as if the relatively fatter-tailed underlying PDFs

are appropriate.

To model and derive this version of a Bayesian precautionary principle, several assump-

tions were made throughout the paper. Some of these assumptions might legitimately be

challenged. Based on a linear family of hazard functions that quantifies the overall degree

of tail slimming, the paper shows that uncertainty about the overall degree of tail slimming

ends up fattening tails. It remains an open research question to what extent the kind of

relatively tractable results this paper derives can be broadened to encompass significantly

more general settings. In a sense the paper is more about a class of examples than it is

a general theory of tail fattening under uncertainty. I attempt to flag the limited scope of

this paper by characterizing it as a “precautionary tale” rather than trying to pretend it is

some broader-sounding general theory.

The remaining remarks of this concluding section are a few brief reflections on what it

all might mean.

The basic nature of uncertainty has long been a controversial subject. Situations where

it is difficult to assign numerical probabilities are often characterized as having ambiguity.

Ambiguous situations often end up putting relatively more weight on the worst-case scenar-

ios, and in so doing effectively promote the inclusion in decision making of some version of
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a so-called precautionary principle, which emphasizes avoiding the more scary or unpleasant

situations.6

The economics of climate change constitutes one vast laboratory for trying out various

ideas about uncertainty. The primary purpose of this paper has been to show that a kind

of precautionary principle (in the form of posterior-predictive tail fattening) can emerge

naturally from a purely Bayesian setup focused on the uncertain rate of tail slimming of

bad events. Furthermore, this Bayesian posterior-predictive tail-fattening approach has a

sufficiently operational component to generate some numerical implications in at least one,

admittedly greatly over-simplified, data-based situation pertaining to climate change.

Whether this Bayesian reductionism is a good thing or not depends on one’s viewpoint.

For me it is useful because the Bayesian framework has an appealing overall rational consis-

tency and it is interesting to examine what it might have to say on the subject of this paper.

For those who believe that the principles of ambiguity aversion override Bayesian princi-

ples in situations with uncomfortably non-quantifiable probabilities, so that a precautionary

principle does not need to rely on a Bayesian foundation, there will be plenty of legitimate

criticisms that can be leveled at this paper and my interpretations of what it might mean.

In any event I think that an attempt to apply various theories of uncertainty to actual exam-

ples — here the economics of climate change — is bound to be a good thing generally because

without such applications it is difficult to see what the theories might mean in practice and

the theories can therefore tend to become ingrown.

The one thing that seems nearly certain is that a debate over the meaning and significance

of a precautionary principle will continue, and that it will continue to have relevance for the

economics of climate change.
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