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1 Introduction

As is now recognized, a Taylor-type interest-rate rule, when combined with
the Fisher equation, necessarily leads to multiple equilibria. In addition to
the intended steady state at the targeted inflation rate π = π∗, there is a
low-inflation unintended steady state, which in fact is likely to be deflation-
ary. See Figure 1, which plots the Fisher equation R = π/β, where π is
the inflation factor, R is the nominal interest rate factor and β−1 is the real
interest-rate factor for discount factor 0 < β < 1. The steady state Fisher
equation arises from the usual household Euler equation for consumption,
when consumption is at a steady state. The interest-rate rule R = 1 + f(π)
is drawn so that it cuts the Fisher inflation from below at the targeted steady
state π∗, in accordance with the Taylor principle. The zero lower bound for
the net interest rateR−1 then implies the unintended steady state at πL, pro-
vided that the interest rate rule is continuous. In fact, as shown by Benhabib,
Schmitt-Grohe, and Uribe (2001), there is a continuum of perfect foresight
paths, starting from an initial π < π∗, which converge asymptotically to πL.
The multiple equilibria issue was emphasized in Benhabib, Schmitt-Grohe,
and Uribe (2001) and Benhabib, Schmitt-Grohe, and Uribe (2002), using
perfect foresight analysis, and was studied under adaptive learning in Evans
and Honkapohja (2005), Evans, Guse, and Honkapohja (2008) and Evans
and Honkapohja (2010).

Figure 1: Multiple steady states under normal policy.
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The practical importance of the zero lower bound (ZLB) has become evident
in the US and Europe since the 2007-9 financial crisis, as well as in the US
during 2001-3 and in Japan since the mid 1990s.1 Recently Bullard (2010)
has stressed the risk of extended periods of deflation. These events have
led to extensive policy debates on the effectiveness of both fiscal policy and
quantitative easing when the economy is at the ZLB.
In principle the multiplicity problem can be eliminated by suitable mone-

tary or fiscal policies that ensures that inflation never falls below some value
π > πL. For example, Benhabib, Schmitt-Grohe, and Uribe (2002) argue
that commitment to an aggressive fiscal rule at low inflation rates would
eliminate multiple equilibria via the transversality condition and ensure that
under perfect foresight the economy will necessarily be at the π∗ steady state.
They argue that in some cases a commitment to suffi cient monetary expan-
sion at low inflation can also be effective. Similarly, Evans and Honkapohja
(2005) argue that in a flexible price economy a switch to a money growth rule,
if inflation threatens to fall below a threshold π > πL, will ensure convergence
to π∗ under learning.2 Under perfect foresight this mechanism depends on
policy credibility and wealth effects to eliminate all equilibria except the π∗

steady state. There are however two problems with this approach: (i) it relies
too heavily on perfect foresight, and (ii) the mechanism is “too powerful”:
bad outcomes never happen.
In this paper we explore policies designed to avoid and escape the ZLB

in New Keynesian (NK) models with agents who form expectations using
adaptive learning rules. We focus on NK models because, from the policy
viewpoint the problem with deflation has been associated with declining out-
put, high unemployment and/or stagnation. As we will see, these outcomes
can arise under learning if pessimistic expectations lead the economy into
the “deflation trap.”
Under the learning approach a deflation trap is possible. This can most

easily be seen using the one-step ahead Euler-equation (EE) learning ap-
proach, but is also seen under infinite-horizon (IH) learning. Can wealth
effects, like the traditional Pigou effect, ensure an eventual return to the
steady state? Under EE learning there is no role for wealth effects, so we

1The Japanese experience sparked renewed interest in the liquidity trap, see Krugman
(1998), Eggertsson and Woodford (2003), and Svensson (2003).

2A discontinuous non-monotonic interest-rate rule, switching to R > π/β for π ≤
πL would also eliminate the multiplicity. However, under learning this rule introduces
instabilities.
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consider IH learning. In Evans and Honkapohja (2010) we still see deflation
traps under IH learning. The transversality condition (TVC) fails to rule
out deflationary spirals (lower and lower deflation rates) because the per-
ceived TVC is always met along these disequilibrium paths. What about
the direct wealth effects of real money and bonds? In Evans and Honkapo-
hja (2010) these effects also fail because households are assumed Ricardian.
Thus bonds and money are not perceived as net wealth. This raises the ques-
tion of whether wealth effects would be effective in avoiding deflation traps
if households do not have Ricardian consumption functions. We investigate
this issue in detail and find that wealth effects can eventually return the
economy to the π∗ steady state, but these mechanisms can be slow and in
some cases this effect fails.3

If wealth effects or lower bounds on inflation are not suffi cient to avoid
the deflation trap then fiscal policy may be necessary. We therefore focus
on fiscal policies. We first consider policies that implement a temporary
fiscal stimulus or its converse, a policy of temporary fiscal austerity, under
the assumption that future taxes adjust to keep the government solvent in
the long-run. Under such policies government spending is increased or de-
creased for a fixed span of time. If designed carefully, these policies can yield
convergence of the economy to the intended steady state, and avoid getting
stuck in the liquidity trap. We show that a fiscal stimulus can be effective,
i.e. deliver convergence, if its magnitude is suffi cient and its duration is suffi -
ciently short. Interestingly, a policy of fiscal austerity, i.e. a temporary cut in
government spending, can also be effective. This however requires the fiscal
austerity period to be suffi ciently long, and the degree of initial pessimism
in expectations to be relatively mild. One disadvantage of fiscal stimulus
and fiscal austerity policies is that both their magnitude and duration have
to be tailored to the initial expectations, so they require swift and precise
discretionary action.
Therefore we turn to a second more automatic fiscal policy, a “switching

fiscal rule,”that ensures a return to the intended steady state π∗. This policy
also eliminates the unintended steady state and ensures that the economy
does not get stuck in a regime of deflation and stagnation. An advantage
of this rule is that it is triggered automatically and does not require discre-

3Another mechanism that can prevent a deflationary spiral is a lower bound π on
inflation due to asymmetric costs of price adjustment. However, it still can lead to falling
output, to stagnation, or to a very slow return to the π∗ steady state. See Appendix.
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tionary fiscal fine tuning.

2 The Model

We start with the same economic framework as in Evans, Guse, and Honkapo-
hja (2008). There is a continuum of household-firms, which produce a dif-
ferentiated consumption good under monopolistic competition and price-
adjustment costs. There is also a government which uses both monetary
and fiscal policy and can issue public debt as described below.
The objective for agent s is to maximize expected, discounted utility

subject to a standard flow budget constraint:

Max E0

∞∑
t=0

βtUt,s

(
ct,s,

Mt−1,s

Pt
, ht,s,

Pt,s
Pt−1,s

− 1

)
(1)

st. ct,s +mt,s + bt,s + Υt,s = mt−1,sπ
−1
t +Rt−1π

−1
t bt−1,s +

Pt,s
Pt

yt,s, (2)

where ct,s is the Dixit-Stiglitz consumption aggregator, Mt,s and mt,s denote
nominal and real money balances, ht,s is the labor input into production,
bt,s denotes the real quantity of risk-free one-period nominal bonds held by
the agent at the end of period t, Υt,s is the lump-sum tax collected by the
government, Rt−1 is the nominal interest rate factor between periods t−1 and
t, Pt,s is the price of consumption good s, yt,s is output of good s, Pt is the
aggregate price level, and the inflation rate is πt = Pt/Pt−1. The subjective
discount factor is denoted by β. The utility function has the parametric form

Ut,s =
c1−σ1t,s

1− σ1
+

χ

1− σ2

(
Mt−1,s

Pt

)1−σ2
−
h1+εt,s

1 + ε
− γ

2

(
Pt,s
Pt−1,s

− 1

)2
,

where σ1, σ2, ε, γ > 0. The final term parameterizes the cost of adjusting
prices in the spirit of Rotemberg (1982).4 The household decision problem
is also subject to the usual “no Ponzi game”condition.
Production function for good s is given by

yt,s = hαt,s,

4We use the Rotemberg formulation in preference to the Calvo model of price stickiness
because it enables us to study global dynamics in the nonlinear system. The linearizations
at the targeted steady state are identical for the two approaches.
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where 0 < α < 1. Output is differentiated and firms operate under monopo-
listic competition. Each firm faces a downward-sloping demand curve given
by

Pt,s =

(
yt,s
Yt

)−1/ν
Pt. (3)

Here Pt,s is the profit maximizing price set by firm s consistent with its
production yt,s. The parameter ν is the elasticity of substitution between
two goods and is assumed to be greater than one. Yt is aggregate output,
which is exogenous to the firm.
The government’s flow budget constraint is

bt +mt + Υt = gt +mt−1π
−1
t +Rt−1π

−1
t bt−1, (4)

where gt denotes government consumption of the aggregate good, bt is the
real quantity of government debt, and Υt is the real lump-sum tax collected.
We assume that fiscal policy follows a linear tax rule for lump-sum taxes as
in Leeper (1991)

Υt = κ0 + κbt−1, (5)

where we will usually assume that β−1 − 1 < κ < 1. This restriction on
κ means that fiscal policy is “passive” in the terminology of Leeper (1991)
and implies that an increase in real government debt leads to an increase in
taxes suffi cient to cover the increased interest and at least some fraction of
the increased principal.
Initially we assume that gt is constant and given by

gt = ḡ. (6)

From market clearing we have

ct + gt = yt. (7)

Monetary policy is assumed to follow a global interest rate rule

Rt − 1 = f
(
πet+1, y

e
t+1

)
. (8)

The function f(π, y) is taken to be positive and non-decreasing in each ar-
gument. The rule (8) is a nonlinear forward-looking Taylor rule, where the
nominal rate is set by the central bank as a function of expected inflation
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and expected output.5 We assume the existence of π∗, R∗ and y∗ such that
R∗ = β−1π∗ and f(π∗, y∗) = R∗ − 1. Here π∗ can be viewed as the inflation
target of the Central Bank, and y∗ is the natural rate of output, i.e. the level
of output compatible with steady state inflation π∗.We assume that π∗ ≥ 1.
In the numerical analysis we will use the functional form

f(π, y) = (R∗ − 1)
( π
π∗

)AR∗/(R∗−1)( y

y∗

)φy
, (9)

which implies the existence steady state at (π∗, y∗). Using R∗ = π∗β−1, we
obtain fπ∗(π∗, y∗) = AR∗/π∗ = Aβ−1. We assume that A > 1. Equations
(6), (5) and (8) constitute “normal policy”.

2.1 Optimal decisions for private sector

As in Evans, Guse, and Honkapohja (2008), the first-order conditions for an
optimum yield

0 = −hεt,s +
αγ

ν
(πt,s − 1)πt,s

1

ht,s
(10)

+α

(
1− 1

ν

)
Y
1/ν
t

y
(1−1/ν)
t,s

ht,s
c−σ1t,s −

αγβ

ν

1

ht,s
Et,s(πt+1,s − 1)πt+1,s.

c−σ1t,s = βRtEt,s
(
π−1t+1c

−σ1
t+1,s

)
and

mt,s = (χβ)1/σ2

((
1−R−1t

)
c−σ1t,s

Et,sπ
σ2−1
t+1

)−1/σ2
,

where πt+1,s = Pt+1,s/Pt,s. We now make use of the representative agent
assumption. In the representative-agent economy all agents s have the same
utility functions, initial money and debt holdings, and prices. We assume
also that they make the same forecasts Et,sct+1,s Et,sπt+1,s, Et,sπt+1, as well
as forecasts of other variables that will become relevant below. Under these
assumptions all agents make the same decisions at each point in time, so that
ht,s = ht, yt,s = yt, ct,s = ct and πt,s = πt, and all agents make the same

5The main results below would also hold in the case of a contemporaneous-data Taylor
rule, which is used in Evans, Guse, and Honkapohja (2008).
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forecasts. Imposing the equilibrium condition Yt = yt = hαt , one obtains the
equations

αγ

ν
(πt − 1) πt = ht

(
hεt − α

(
1− 1

ν

)
hα−1t c−σ1t

)
+ β

αγ

ν
Et [(πt+1 − 1) πt+1] ,

c−σ1t = βRtEt
(
π−1t+1c

−σ1
t+1

)
,

mt = (χβ)1/σ2

((
1−R−1t

)
c−σ1t

Etπ
σ2−1
t+1

)−1/σ2
.

For convenience we make the assumptions σ1 = σ2 = 1, i.e. utility of
consumption and of money is logarithmic. It is also assumed that agents
have point expectations, so that their decisions depend only on the mean of
their subjective forecasts. This allows us to write the system as

mt = χβ(1−R−1t )−1ct, (11)

c−1t = βret+1(c
e
t+1)

−1, where ret+1 = Rt/π
e
t+1, and (12)

αγ

ν
(πt − 1) πt = ht

(
hεt − α

(
1− 1

ν

)
hα−1t c−1t

)
+ β

αγ

ν

[(
πet+1 − 1

)
πet+1

]
.

(13)
Equation (13) is the nonlinear New Keynesian Phillips curve that describes
the optimal price-setting by firms. The term (πt − 1)πt arises from the
quadratic form of the adjustment costs, and this expression is increasing
in πt over the allowable range πt ≥ 1/2. To interpret this equation, note
that the bracketed expression in the first term on the right-hand side is the
difference between the marginal disutility of labor and the product of the
marginal revenue from an extra unit of labor with the marginal utility of
consumption. The terms involving current and future inflation arise from
the price-adjustment costs resulting from marginal variations in labor sup-
ply. Equation (12) is the standard Euler equation giving the intertemporal
first-order condition for the consumption path. Equation (11) is the money
demand function resulting from the presence of real balances in the utility
function. Note that for our parameterization, the demand for real balances
becomes infinite as Rt → 1.
We now proceed to rewrite the decision rules for ct and πt so that they

depend on forecasts of key variables over the infinite horizon. The IH learning
approach in New Keynesian models was first emphasized by Preston (2005)
and Preston (2006), and was used in Evans and Honkapohja (2010) to study
the properties of a liquidity trap.
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2.2 The infinite-horizon Phillips curve

We start with an infinite-horizon version of the Phillips curve (13). Let

Qt = (πt − 1) πt. (14)

The appropriate root for given Q is π ≥ 1
2
and so we need to impose Q ≥

−1
4
to have a meaningful model. Making use of the aggregate relationships

ht = y
1/α
t and ct = yt − gt we can rewrite (13) as

Qt =
ν

αγ
y
(1+ε)/α
t − ν − 1

γ
yt(yt − gt)−1 + βQe

t+1.

Solving this forward with gt = ḡ, we obtain

Qt =
ν

αγ
y
(1+ε)/α
t − ν − 1

γ
yt(yt − ḡ)−1 + (15)

ν

γ

∞∑
j=1

α−1βj
(
yet+j

)(1+ε)/α − ν − 1

γ

∞∑
j=1

βj
(

yet+j
yet+j − ḡ

)
,

where government spending is assumed to be constant over time. The ex-
pectations are formed at time t and variables at time t are assumed to be in
the information set of the agents. We will treat (15), together with (14), as
the temporary equilibrium equations that determine πt, given expectations
{yet+j}∞j=1. Later, we will consider a case where gt varies over time and then
yet+j − ḡ becomes netyet+j = (yt+j − gt+j)e in equation (15).
In the Phillip’s curve relationship (15) one might wonder why inflation

does not also depend directly on the expected future aggregate inflation rate.6

Equation (10) is obtained from the first-order conditions using (3) to elim-
inate relative prices. Because of the representative agent assumption, each
firm’s output equals average output in every period. Since firms can be as-
sumed to have learned this to be the case, we obtain (15). An alternative
procedure would be to start from (10), iterate it forward and use the demand
function to write the third term on the right-hand side of (10) in terms of
the relative price. This would lead to a modification of (15) in which future
relative prices also appear, but using the representative agent assumption
and assuming that firms have learned that all firms set the same price each
period, the relative price term would drop out.

6There is an indirect effect of expected inflation on current inflation via current output.
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2.3 The consumption function

To derive the consumption function from (12) we use the flow budget con-
straint and the NPG (no Ponzi game) to obtain an intertemporal budget
constraint. First, we define the asset wealth

at = bt +mt

as the sum of holdings of real bonds and real money balances and write the
flow budget constraint as

at + ct = yt −Υt + rtat−1 + π−1t (1−Rt−1)mt−1, (16)

where rt = Rt−1/πt. Note that we assume (Pjt/Pt)yjt = yt, i.e. the rep-
resentative agent assumption is being invoked. Iterating (16) forward and
imposing

lim
j→∞

(De
t,t+j)

−1at+j = 0, (17)

where

De
t,t+j =

j∏
i=1

ret+i,

with ret+j = Rt+j−1/π
e
t+j, we obtain the life-time budget constraint of the

household

0 = rtat−1 + Φt +
∞∑
j=1

(De
t,t+j)

−1Φe
t+j (18)

= rtat−1 + φt − ct +
∞∑
j=1

(De
t,t+j)

−1(φet+j − cet+j), (19)

where

Φe
t+j = yet+j −Υe

t+j − cet+j + (πet+j)
−1(1−Re

t+j−1)m
e
t+j−1 (20)

φet+j = Φe
t+j + cet+j = yet+j −Υe

t+j + (πet+j)
−1(1−Re

t+j−1)m
e
t+j−1

Here all expectations are formed in period t, which is indicated in the notation
for De

t,t+j but is omitted from the other expectational variables.
Invoking the relations

cet+j = ctβ
jDe

t,t+j, (21)
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which is an implication of the consumption Euler equation (12) we obtain

ct(1−β)−1 = rtat−1+yt−Υt+πt
−1(1−Rt−1)mt−1+

∞∑
j=1

(De
t,t+j)

−1φet+j. (22)

As we have φet+j = yet+j −Υe
t+j + (πet+j)

−1(1− Re
t+j−1)m

e
t+j−1, the final term

in (22) is
∞∑
j=1

(De
t,t+j)

−1(yet+j −Υe
t+j) +

∞∑
j=1

(De
t,t+j)

−1(πet+j)
−1(1−Re

t+j−1)m
e
t+j−1

and using (11) we have
∞∑
j=1

(De
t,t+j)

−1(πet+j)
−1(1−Re

t+j−1)m
e
t+j−1

=
∞∑
j=1

(De
t,t+j)

−1(πet+j)
−1(−χβRe

t+j−1c
e
t+j−1) = − χβ

1− β ct.

We obtain

ct
1 + χβ

1− β = rrbt−1 +
mt−1

πt
+ yt −Υt +

∞∑
j=1

(De
t,t+j)

−1(yet+j −Υe
t+j).

Finally, we invoke the flow budget identity bt+mt+Υt−gt = mt−1π
−1
t +rtbt−1,

see (4), and obtain the consumption function

ct

[
1 + χβ

1− β − χβ
Rt

Rt − 1

]
= bt + yt − gt +

∞∑
j=1

(De
t,t+j)

−1(zet+j), (23)

where zet+j = yet+j −Υe
t+j.

3 Temporary Equilibrium and Learning

3.1 Equilibrium Conditions

We now assume that agents form expectations using steady state learning,
which is formulated as follows. Steady-state learning with point expectations
is formalized as

set+j = set for all j ≥ 1, and set = set−1 + ωt(st−1 − set−1) (24)
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for s = y, z, nety, π. Here ωt is called the “gain sequence,” and measures
the extent of adjustment of estimates to the most recent forecast error. In
stochastic systems one often sets ωt = t−1 and this “decreasing gain”learning
corresponds to least-squares updating. Also widely used is the case ωt = ω,
for 0 < ω ≤ 1, called “constant gain” learning. In this case it is usually
assumed that ω is small.7 Stability of the steady states is examined below
using the simple learning rules just described.
The temporary equilibrium equations with steady state learning are:

1. The aggregate demand

yt = gt +

[
1 + χβ

1− β − χβ
1 + f (πet )

f (πet )

]−1 [
bt + yt − gt +

∞∑
j=1

(De
t,t+j)

−1zet

]

= gt +

[
1 + χβ

1− β − χβ
1 + f (πet )

f (πet )

]−1 [
bt + yt − gt +

πet
1 + f (πet )− πet

zet

]
≡ gt + C(πet , z

e
t , bt, yt), (25)

where it is assumed that agents know the interest rate rule.

2. The nonlinear Phillips curve

πt = Q−1[K̃(yt, y
e
t+1, y

e
t+2...)] (26)

≡ Q−1[K(yt, y
e
t )]

≡ G2(yt, y
e
t ),

where

Q(πt) ≡ (πt − 1)πt (27)

K(yt, y
e
t ) ≡

ν

γ

(
α−1y

(1+ε)/α
t −

(
1− ν−1

) yt
(yt − gt)

)
(28)

+
ν

γ

(
β(1− β)−1

(
α−1(yet )

(1+ε)/α −
(
1− ν−1

) yet
netyet

))
,

and where until Section 4 we assume that netyet = yet − ḡ.
7For discussion and analytical results concerning adaptive learning in a wide range of

macroeconomic models, see for example Sargent (1993), Evans and Honkapohja (2001),
Sargent (2008), and Evans and Honkapohja (2009).
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3. Bond dynamics

bt +mt = g −Υt +
Rt−1

πt
bt−1 +

mt−1

πt
. (29)

4. Money demand

mt = χβ
Rt

Rt − 1
ct. (30)

5. Interest rate rule
Rt = 1 + f (πet , y

e
t ) .

The state variables are bt−1, mt−1, and Rt−1. The system in general has
four expectational variables: output yet , inflation π

e
t , income net of taxes z

e
t

and net output netyet . In cases where government spending is constant we
have netyet = yet − ḡ, so that it is not necessary to introduce expectations of
net output separately. The evolution of expectations is given by

yet = yet−1 + ω(yt−1 − yet−1) (31)

πet = πet−1 + ω(πt−1 − πet−1) (32)

zet = zet−1 + ω(zt−1 − zet−1) (33)

netyet = netyet−1 + ω(netyt−1 − netyet−1) (34)

We note that equation (33) is used below only in cases where the households
are Non-Ricardian.

3.2 The Case of Ricardian Consumers

The preceding derivation of the consumption function assumes households
that do not act in a Ricardian way, i.e. they do not impose the intertemporal
budget constraint (IBC) of the government. For Ricardian consumers we
modify the consumption function as in Evans and Honkapohja (2010).8 From
(4) one has

bt +mt + Υt = gt +mt−1π
−1
t + rtbt−1 or

bt = ∆t + rtbt−1 where

∆t = gt −Υt −mt +mt−1π
−1
t .

8Evans, Honkapohja, and Mitra (2012) state the assumptions under which Ricardian
Equivalence holds along a path of temporary equilibria with learning if agents have an
infinite decision horizon.
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By forward substitution, and assuming

lim
T→∞

Dt,t+T bt+T = 0, (35)

we get

0 = rtbt−1 + ∆t +
∞∑
j=1

D−1t,t+j∆t+j. (36)

Note that ∆t+j is the primary government deficit in t+ j, measured as gov-
ernment purchases less lump-sum taxes and less seigniorage. Under the Ri-
cardian Equivalence assumption, we assume that agents at each time t expect
this constraint to be satisfied, i.e.

0 = rtbt−1 + ∆t +
∞∑
j=1

(De
t,t+j)

−1∆e
t+j, where

∆e
t+j = get+j −Υe

t+j −me
t+j +me

t+j−1(π
e
t+j)

−1 for j = 1, 2, 3, . . . .

A Ricardian consumer assumes that (35) holds. His flow budget con-
straint (16) can be written as:

bt = rtbt−1 + ψt, where

ψt = yt −Υt −mt − ct + π−1t mt−1

The relevant transversality condition is now (35). Iterating forward and using
(21) together with (35) yields the consumption function

ct = (1− β)

(
yt − gt +

∞∑
j=1

(De
t,t+j)

−1(netyet+j)

)
. (37)

For details see Evans and Honkapohja (2010).
We now consider the case where government spending is constant gt = ḡ.

In this case we can assume that netyet+j = yet+j − ḡ. For simplicity, in this
section we drop the dependence of the interest rate rule on expected output
so that φy = 0 and Rt = 1+ f(πet ). With steady state learning this leads to
the aggregate output equation

yt = ḡ + (β−1 − 1)(yet − ḡ)

(
πet

1 + f(πet )− πet

)
(38)

≡ G1(y
e
t , π

e
t ).
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The temporary equilibrium is now given by the Phillips curve (26), the out-
put equation with Ricardian consumption function (38) and the independent
equation for the evolution of debt and money. Note that the Ricardian sys-
tem just depends on expectations of output and inflation, so that the paths
of inflation and output do not depend on the evolution of bonds and real
balances. The (small gain) dynamics can therefore be described by the E-
stability differential equation using a two-dimensional phase diagram. (See
Evans and Honkapohja (2001).)
The E-stability differential equations are given by

dye

dτ
= G1(y

e, πe)− ye (39)

dπe

dτ
= G2(y

e, πe)− πe,

where using (26) we define G2(ye, πe) = G2(G1(y
e, πe), ye). The steady state

equations for h, c and π are

c = hα − ḡ,

−h1+ε +
αγ

ν
(1− β) (π − 1) π + α

(
1− 1

ν

)
hαc−1 = 0

1 + f(π) = β−1π.

Steady states are defined by R = 1 + f(π) together with the the Fisher
relationship R = πβ−1. For A > 1 there are two steady states, (y∗, π∗) and
(yL, πL) with πL < π∗. Local E-stability results for the Ricardian case are
given by Proposition 2 of Evans and Honkapohja (2010): the π∗ steady state
is locally stable under learning, while for small γ, the πL steady state is
locally unstable under learning, with the local learning dynamics taking the
form of a saddle.9

One can also look at the global learning dynamics using a phase diagram.
For typical parameter value the learning dynamics are as shown in Figure
2. The figure is constructed with the following parameter values A = 2.5,
π∗ = 1.02, β = 0.99, α = 0.7, γ = 350, υ = 21, ε = 1, and g = 0.2. While
A = 1.5 is the usual value for the interest rate rule, we choose A = 2.5 to

9Instability of the low inflation steady state under learning and the divergent paths were
earlier described in McCallum (2002), Eusepi (2007), and Evans, Guse, and Honkapohja
(2008). Bullard and Cho (2005) show the possibility of “escape paths” toward the low-
inflation outcome.
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clearly separate the intended and unintended steady states in the numerical
analysis. Our results are robust to using A = 1.5. The calibrations of the
target inflation rate π∗, the discount factor β, the labor share α, and the
approximate GDP share of government spending, g are standard. We set
the labor supply elasticity ε = 1. The value of υ = 21 was chosen so that the
implied markup of prices over marginal cost at the steady state is 5 percent,
which is consistent with the evidence presented by Basu and Fernald (1997).
Following Sbordone (2002), we set γ, the parameter governing the disutility
of deviating from the inflation target, at γ = −17.5(1 + ν) = 350. We
also assume that interest rate expectations ret+j = Rt+j−1/π

e
t+j revert to the

steady state value β−1 for j ≥ T . In Figure 2 we use T = 28, which under a
quarterly calibration corresponds to 7 years.10

Figure 2: Global learning dynamics —the Ricardian case.

The main features that stand out are first, the local stability of the π∗

steady state. There is in fact a “corridor of stability” defined by a set of
expectations that converge to the π∗ steady state. (The term “corridor” is
due to Leijonhufvud (1973).) This corridor is defined by the region enclosed
within the stable manifold of the unintended steady state (yL, πL). Second,
we see that convergence to π∗ is locally cyclical. Third, it can be seen that
there is a heteroclinic orbit connecting the πL steady state with the π∗ steady
state. Finally, we observe that for initial points outside the corridor of stabil-
ity the trajectory of expectations is (at least eventually) led into a deflation
trap in which (ye, πe) fall steadily over time. Along these paths we have

10This choice is roughly in line with data on the aftermath of financial crises. See
Reinhart and Rogoff (2009).
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falling actual output and inflation, intensifying as deflation sets in. Even
though the financial wealth of agents is getting very large over time along
such a deflationary path, Ricardian agents do not respond by suffi ciently in-
creasing consumption, as they expect that the increase in their wealth will
be offset by future growth in taxes.

3.3 Wealth Effects and Non-Ricardian Consumers

We next consider Non-Ricardian consumers. A traditional argument against
the liquidity trap dates back to Pigou (1943) and Patinkin (1965). In prin-
ciple, wealth effects could prevent a deflation trap: if declining prices lead
to higher perceived wealth, agents will increase their spending. This can be
investigated numerically. Our simulations indicate that wealth effects can
indeed stabilize the economy at π∗, although in some cases we have paths
that converge to πL, accompanied by exploding debt.
The dynamics under learning when consumers are not Ricardian are given

in sub-section 3.1. These describe the temporary equilibrium, and the adjust-
ment of expectations. Taken together they constitute the dynamic system
that determines the real-time evolution of the economy. Because government
bonds and real balances are state variables that affect consumption and out-
put, expectations ye, πe are no longer suffi cient statistics for the economy
and it is now not possible to characterize the dynamics of the system using
a phase diagram as in (39) and Figure 2. We therefore directly simulate the
real-time dynamics of the system under learning.
To illustrate the possibility of wealth effects successfully leading the econ-

omy back to the targeted steady state we provide a numerical simulation.
Assume that initial expectations are pessimistic, with πe(0) = 0.9425 and
ye(0) = 0.9925. These expectations are below the low inflation steady state
values and therefore in the deflation trap region when households are Ricar-
dian. In the case of non-Ricardian households discussed in Section 2.3 the
evolution of output and inflation also depend on wealth dynamics. We are
interested in whether these wealth dynamics can lead the economy to the
targeted steady state. We find that this indeed is possible, but that there
is sensitivity to the tax policy parameters and to the initial wealth of the
households.
As an illustration consider the tax function (5) with κ0 = 0.05 and κ =
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β−1−1+0.001, so that fiscal policy is passive in the sense of Leeper (1991).11

We set χ = 0.03 to match the fraction of real balances to consumption (see
(30)), and we set the gain parameter ω = 0.01. The initial values of real
balances and real bonds are m(0) = 0.75 and b(0) = 0.77, which are close to
the values of m and b at the targeted steady state for this tax function.
Figure 3 illustrates the dynamics of inflation and output from this starting
point.

Fig30

3.png

Figure 3: Inflation, output dynamics with non-Ricardian consumers

Figure 3 shows actual inflation and output on horizontal and vertical axes,
respectively. There is a wide clockwise cycle where inflation and output at
first overshoot (π∗, y∗), then spiral below (πL, yL) and finally follow a cyclical
convergent path to (π∗, y∗). The time paths of money and bonds eventually
also converge to their steady state values. Thus, in this example wealth effects
do lead to eventual convergence to the targeted steady state, in contrast to
the divergent deflationary path that would arise with Ricardian consumers.
However, the path in Figure 3 has an extended period of low output and
substantial deflation followed by big swings in inflation and output.
Convergence from pessimistic initial expectations to the targeted steady

state appears to be robust with respect to the level of initial wealth (in

11The other parameters are set at their previous values. The value of φy = 50 corre-
sponds to the output coeffi cient of linearized Taylor rule of 0.5 at the intended steady
state.
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particular real bonds) for this value of the tax parameter κ = β−1−1+0.001.
We find convergence from various starting values of m(0) and b(0), except
for initial bond values b(0) at levels that are very high, for example 20 times
that of GDP or higher. This result however is sensitive to the value of
κ. If κ is decreased, for example to κ = β−1 − 1 − 0.001 ≈ 0.0091, then
levels of money and bonds eventually explode. The reason is that now fiscal
policy is active in the sense of Leeper (1991). At the unintended steady
state, monetary policy is passive, and learning dynamics lead the economy
towards the intended steady state. However, at the intended steady state,
both fiscal and monetary policies are now necessarily active, and financial
wealth levels will diverge. We have examined this case numerically for non-
Ricardian consumers and found that it leads to instability under learning. In
simulations the economy appears to move around the targeted steady state
for a period but eventually bonds follow an explosive path and the economy
diverges.12

From a policy perspective, under some circumstances it is possible for
wealth effects to provide a mechanism for the economy to escape from a
deflationary situation and to return eventually to the targeted steady state.
However, this mechanism relies on consumers being non-Ricardian and on
appropriate tax policy. Furthermore, the path back to the targeted steady
state is cyclical with wide swings in inflation and output.

4 Fiscal Policy

We now examine the role of fiscal policy when large adverse expectation
shocks make deflation traps and stagnation a serious risk.13 We focus on
changes in government purchases of goods and services, rather than tax
changes with unchanged government spending, because in our set-up, if
households are Ricardian, then tax changes by themselves are neutral. In
practice, tax changes financed by changes in government debt can have

12These results are not surprising in view of the (flexible-price, short decision-horizon)
results in Evans and Honkapohja (2005). In that paper under steady state learning there is
convergence to π∗ but with debt exploding under active fiscal policy. In the current paper
with non-Ricardian households the explosive debt path eventually destabilizes inflation
and output as well.
13Evans and Honkapohja (2010) show that for some points within the deflation trap

region, even committing to zero net nominal interest rates forever may be insuffi cient for
escaping the inflation trap.
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macroeconomic effects, e.g. if some households are liquidity constrained or
are non-Ricardian.14 However, our objective is to demonstrate that suitable
fiscal rules, based on temporary increases in government spending, can pre-
vent the economy from falling into or becoming stuck in the deflation trap
and can return the economy to the targeted steady state, even if tax changes
by themselves are neutral. Therefore in this section we focus on Ricardian
households. We will briefly return to the non-Ricardian consumers in the
next section.

4.1 Temporary Fiscal Stimulus

A traditional countercyclical policy for an economy facing deflation with
declining or stagnant output is a fiscal stimulus taking the form of increased
government expenditures above their normal levels for a finite time horizon,
after which they revert to lower levels. We want to study the effectiveness of
such a policy under the Ricardian assumption that the government remains
solvent in the long run, and that consumers know and expect this. In this IH
learning framework agents know the trajectory of government expenditures,
including the date at which the expenditures will return to lower levels,
and they incorporate this knowledge into their optimal consumption and
pricing decisions. Then the consumption function, aggregate demand and
the Phillips curve reflect these forward-looking expectations of the agents.
More explicitly, we consider a simple case of anticipated changes in gov-

ernment policy. Suppose that there is an initial pessimistic expectations
shock that lowers πe(0) and ye(0) suffi ciently so that the economy is in the
deflation trap region. Under normal policy the economy will fail to return
to the targeted steady state. We therefore consider fiscal policies in which
there is a temporary increase in ḡ (from its initial steady state level ḡ = ḡ1),
taking the form

gt =

{
ḡ0 for t = 0, ..., T0
ḡ1 for t = T0 + 1, ...

,

where ḡ0 > ḡ1. Here we assume that the policy is announced at t = 0 and is
credible. Thus agents understand that government spending will be contin-
ued at the higher level ḡ0 through period T0 and that it will be reduced to its
previous level beginning at T0 + 1. We are here studying the economy under

14There is empirical evidence of positive impacts of tax reductions on aggregate output
—see Romer and Romer (2010).
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adaptive learning, but with anticipated future policy changes, as discussed
in Evans, Honkapohja, and Mitra (2009).
For gross output agents are assumed to have expectations given by the

simple adaptive rules described in Section 3. For net output, however, ex-
pectations are given by

netyej =

{
yej − ḡ0 for j = t, ..., T0
yej − ḡ1 for j = T0 + 1, ...

, (40)

so that agents incorporate the known future path of government spending
into their forecasts.
The variables netyej that appear in the Phillips curve (15), and in the

consumption function (37) are now defined according to (40). This requires
evaluating the weighted sums of netyej using the appropriate value of govern-
ment expenditures for each j. The computations are straightforward, and
the consumption function is now given by:

ct = (1− β)

(
yt − ḡ0 + (yet − ḡ0)

1− (ret )
t−T0

(ret )− 1
+ (yet − ḡ1)

(ret )
t−T0

(ret )− 1

)
For the interest rate rule (9) we set A = 2.5 and φy = 50, a calibration

approximately consistent with the standard Taylor-rule parameters.

Fig40
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Figure 4: y and π under a fiscal stimulus.

Given a specific fiscal stimulus, we can proceed as in Section 3.2, except
that we now report real-time dynamics based on the adaptive learning rules
of Section 3. Figure 4 illustrates one example of the dynamics of output and
inflation for T0 = 6, and with ḡ0 = 0.21, ḡ1 = 0.2. Thus there is a fiscal
stimulus, taking the form of a 5% increase in government spending for six
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periods. We set initial expectations at ye[0] = 0.9425 and πe[0] = 0.993.
These are in the deflation trap region, and without the fiscal stimulus there
would be falling inflation and output. Under the fiscal stimulus the economy
instead converges to the intended steady state, though after a wide swing
that takes inflation well above the intended steady state.
An important feature of the policy is that the length of the temporary

fiscal stimulus is crucial for its effi cacy. For example, if, holding ḡ0 = 0.21,
ḡ1 = 0.2, we set T0 = 1, 2 or T0 ≥ 37 then the fiscal stimulus does not enable
the economy to return to the targeted steady state. In fact, the size of the
stimulus and the degree of pessimism of expectations also matter for the
effi cacy of fiscal stimulus. We now examine this more systematically.15

We consider four different degrees of pessimism of expectations as follows:
Mild: πe = 0.993 and ye = 0.9425.
Large: πe = 0.991 and ye = 0.9425
Severe: πe = 0.985 and ye = 0.9425
Extreme: πe = 0.985 and ye = 0.9.

We find that a temporary fiscal stimulus always works for a range of govern-
ment spending ḡ0 and length of stimulus T0. For T0 = 1, a temporary fiscal
stimulus works for suffi ciently large ḡ0. Often, increasing length of stimulus
T0 somewhat allow the use of a smaller value of ḡ0 to achieve convergence to
the intended steady state.
Some specific results are as follows:

Mild pessimism: ḡ0 = 0.205 yields desired convergence for stimulus of
length T0 = 11, . . . , 22, while with this g0, the policy fails if T0 is outside this
range. A smaller value of ḡ0 = 0.204 is never effective while ḡ0 = .25 makes
the T0 range larger.
Large pessimism: A large value of spending ḡ0 = 0.25 delivers desired
convergence for T0 = 1, . . . , 37. A smaller value ḡ0 = 0.21 fails.
Severe pessimism: With T0 = 1, ḡ0 = 0.34 is effective.
Extreme pessimism: With T0 = 5, ḡ0 = 0.8 is effective.
Thus, the fiscal stimulus must be adequate in size and length to push

the economy out of the deflation trap region. The intuition for these results
is that the demand stimulus from a temporary increase in g outweighs the

15Also the parameter T describing statistical forecasting horizon affects the quantitative
results. Through period t + T agents use their forecasts πe(t), whereas after t + T , they
assume that the real interest rate has reverted to normal and set ret+j(t) = β−1 for j > T .
We set T = 28 i.e. agents think it will take 7 years for real interest rates to return to
normal steady state.
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partially offsetting reduced consumption from the higher present value of
taxes, which for Ricardian households equals the present value of government
spending. A permanent increase in ḡ in this set-up does not lift the economy
out of the deflation trap, because the permanently higher taxes exactly offset
the increase in government spending. In contrast, a large enough increase in
government spending for a limited period will add enough stimulus to lead
the economy back to the targeted steady state.

4.2 Fiscal Austerity

Perhaps surprisingly, it turns out that a carefully designed restrictive fiscal
policy can in certain cases lift the economy out of the liquidity trap, provided
it is applied for a suffi cient long period of time. We now examine this pos-
sibility for the different degrees of pessimism of expectations.16 The results
are as follows:
Mild pessimism: cutting government spending to ḡ0 = 0.19 is effective in
moving the economy out of the deflation trap when the length of the policy
is in the range T0 ≥ 33 but this policy fails for smaller values of T0. A more
severe policy ḡ0 = 0.15 is effective also for T0 ≥ 28.
Large pessimism: ḡ0 = 0.19 is effective for length T0 ≥ 67.
Severe pessimism: ḡ0 = 0.15 is effective for length T0 ≥ 100.
Extreme pessimism: Fiscal austerity is never effective.
We remark that in terms of the length of policy T0, stimulus and austerity

policies have an interesting contrast. The effi cacy of the former requires a
limited duration whereas a very long period of the latter is necessary. In
all our examples the effi cacy of stimulus policies imply that the austerity
policies of same absolute magnitude and duration are not effective and vice
versa. However, there are also cases for which neither policy is effective for
certain intermediate durations. As an example consider the stimulus policy
ḡ0 = 0.25 under mild pessimism for a forecasting horizon T = 60. A stimulus
policy with T0 ≥ 25 is ineffective in lifting the economy out of the deflation
trap as is an austerity policy of ḡ0 = 0.15 for T0 < 28.
In general, we note that effi cacy of austerity policies is more sensitive to

the degree of pessimism of expectations as suggested by the following subtle
intuition. If the economy is in a region in which the ex-ante real interest rate

16In this section the forecasting horizon is set at T = 60. For shorter horizons, for
example for T = 28, fiscal austerity seems to be ineffective. On the other hand, temporary
fiscal stimuli continue to be effective for large values of T.
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factor is less than β−1 then the consumption function dictates an increase
in consumption flow stemming from a fixed permanent decrease in taxes,
which is larger than the decrease in g. The present value is the same when
measured by re, but because re < β−1, households will substitute toward
current consumption. Formally consider a permanent change in government
spending to ḡ0 < ḡ1. Then actual output, for given expectations, is given by

yt = ḡ0 + (β−1 − 1)(yet − ḡ0)/(ret − 1) > ḡ1 + (β−1 − 1)(yet − ḡ1)/(ret − 1),

provided β−1 > ret . This effect only holds for a range of π
e in which monetary

policy delivers a low re. For larger deflation rates, however, i.e. πe < 0.985,
this policy cannot work for initial expectations in which πe(t) falls over time
under normal policy. Thus for suffi ciently pessimistic initial expectations we
would expect permanent or very long cuts in government spending to fail as
a policy that takes the economy to a steady state.
The above analysis also implies that under adaptive learning, whether

households are Ricardian or not, a fiscal stimulus can give rise to a “fiscal
multiplier”quite different than a policy of fiscal austerity, depending on the
magnitude and duration of the policy and on the initial expectations. This
suggests that in an adaptive learning context, results of empirical studies
of the fiscal multiplier will be sensitive to initial expectations and to the
duration and magnitude of policies.
In this section we have shown that the success of the temporary fiscal pol-

icy in general depends on fine tuning the magnitude, direction and duration
of the policy. We next look at an endogenous switching rule for government
spending that eliminates deflation and stagnation and that also appears to
have reasonable performance overall.

5 Fiscal Switching Rules

To prevent deflationary spirals, or deflation with declining or stagnant out-
put, we now explore government spending policies designed to keep inflation
above a certain threshold π̃ > πL. When πe > π̃ the government sets g = ḡ.
However, if expected inflation drops below π̃, and actual inflation would be
below expected inflation with g = ḡ, then the government increases g to
achieve an output level y such that realized inflation exceeds expected infla-
tion πet . We will call such a fiscal policy rule a fiscal switching rule.
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To implement this fiscal switching policy, we assume that the government
monitors expectations. Given expectations, from equation (25), it can set g
to achieve a level of y.17 From equations (26), (27) and (28) it is apparent
that y can be chosen to attain the required level of inflation. This procedure
ensures that eventually πe ≥ π̃. We simulate this economy using the same
parameters used in Figure 4 above for Ricardian consumers, except that we
now use the fiscal switching rule.18

Fig50
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Figure 5: y and π under a fiscal switching rule, Ricardian households

Two further points should be noted about this form of fiscal policy. First,
it is not necessary to decide in advance the magnitude and duration of the
fiscal stimulus. Second, in contrast to the preceding section we now do not
assume that agents know the future path of government spending. Instead
agents use adaptive learning to forecast the future values of their net income
in addition to forecasts of inflation and output.

17In effect the government observes inflation monthly, and would be able to adjust
spending in order to maintain π̃ < π on a quarterly basis. Aggressive automatic stabilizers
may be useful for this purpose.
18The results are essentially unchanged if we modify the interest rate rule so that the

nominal rate now depends on the net output expectations relative to net output at targeted
steady state. An interest rate rule based on net output may appear more appealing because
it would insure that monetary policy does not work against the fiscal stimulus when the
economy is subject to a deflation trap. However, in our simulations interest rates remain
near zero during the initial fiscal stimulus, so using gross rather than net output for the
interest rate rule makes little difference.
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We start with the case in which consumers are Ricardian. In contrast
to the economy depicted in Figure 2, the fiscal switching rule eliminates the
unintended steady state with the inflation rate πL: the path starting in the
vicinity of πL converges to the intended steady state. This is illustrated in
Figure 5. A strong fiscal stimulus generates a steep rise in output and lifts
the economy out of the deflation trap and the economy eventually converges
to the intended steady state. For initial expectations in Figure 5, which are
the same as in Figure 4, the dynamics would be unstable without the fiscal
switching rule.

Fig60
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Figure 6: y and π dynamics under fiscal switching rule, non-Ricardian
households

The results with non-Ricardian consumers are similar: the fiscal switching
rule eliminates the unintended steady state πL. Figure 6, using the same
parameters used for the non-Ricardian case of Figure 3, illustrates these
results.
As illustrated in Figures 5 and 6, in both Ricardian and Non-Ricardian

cases the fiscal switching rule, together with our interest rate rule, yields con-
vergence to the targeted steady state after an initial overshooting of inflation
and output. The overshooting arises from the necessary big initial policy
responses that are needed to counteract the initial pessimistic expectations.
We also checked that with this combination of rules there is convergence to
the targeted steady state from even more pessimistic initial expectations.
In summary, our analysis suggests that one policy that might be used

to combat stagnation and deflation, in the face of pessimistic expectations,
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would consist of a fiscal switching rule combined with a Taylor-type rule for
monetary policy. The fiscal switching rule applies when inflation expecta-
tions falls below a critical value. The rule specifies increased government
spending to raise inflation above inflation expectations in order to ensure
that inflation is gradually increased until expected inflation exceeds the crit-
ical threshold. This part of the policy eliminates the unintended steady state
and makes sure that the economy does not get stuck in a regime of deflation
and stagnation. Furthermore, unlike the temporary fiscal policies discussed
in the previous section, the switching rules do not require fine tuning and
are triggered automatically. Remarkably, our simulations indicate that this
combination of policies is successful regardless of whether the households are
Ricardian or non-Ricardian.

6 Conclusion

We have studied how the an economy can fall into a deflation or low inflation
trap with declining or stagnant output, and explored the design of policies
to avoid such outcomes. Under the perfect foresight view, announced money
growth and/or fiscal policies can in principle avoid low inflation. The ef-
fectiveness of such policies however depends on the assumption of perfect
foresight, on policy credibility, and on wealth effects to eliminate all equilib-
ria except the targeted π∗ steady state. Furthermore such policies are “too
powerful”under perfect foresight: bad outcomes never happen.
If we adopt a more plausible adaptive learning view, outcomes with low

inflation and output are still possible. We find that policies of temporary
fiscal stimulus, and in some cases fiscal austerity, can eliminate liquidity traps
and can lead the economy back to its intended steady state. However, such
policies require careful fine tuning of the magnitude, direction and duration of
the policy. A “fiscal switching rule”that automatically triggers a stimulus of
high government expenditures when inflation falls below a critical threshold is
equally effective in stabilizing the economy, but does not require complicated
and discretionary fine tuning, and therefore seems preferable.
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7 Appendix: Asymmetric Price Adjustment

If the costs of price adjustment are asymmetric and are higher for reductions
in prices, then this can provide a lower bound on deflation.19 Consider for
example the case where the cost of price adjustment in the utility function
takes the form

Cost =

{
γ
2

(πs,t − 1)2 for πs,t ≥ π
+∞ for πs,t < π,

where πs,t = Ps,t/Ps,t−1. To examine the implications of asymmetric price-
adjustment costs, we return to the case of Ricardian consumers discussed in
Section 3.2. The temporary equilibrium map for inflation is modified to

πt =

{
G2(yt, y

e
t ) for G2(yt, y

e
t ) ≥ π

π for G2(yt, yet ) < π.

Because the Ricardian case is a forward-looking two-dimensional system with
adaptive learning, one can illustrate the possible results using phase diagrams
showing the expectational learning dynamics. There are three cases:

1. π > πL. In this case π∗ is globally stable, since π < πL is no longer
possible.

2. π < πL. The deflation trap continues to exist. If πL − π is small,
however, in the region π < πe < πL there is gradually falling output.

3. π = πL. The stagnation regime. In this case there can be convergence
to any 0 < y < yL with π = πL.

Figures 7 illustrates the phase diagram for the E-stability differential
equations in (πe, ye)-space for the case π < πL in which a deflation trap
continues to exist. In this case the targeted steady state π∗ is locally stable
and, as can be seen, the basin of attraction can be fairly large. However,
if output expectations are low, the economy may converge to the trap even
if initially inflation expectations are low but above πL. The main difference
from the symmetric price-adjustment cost set-up examined in the paper is
that deflation is now bounded from below at rate π. Thus, in this case,
persistently low and falling output is compatible with steady deflation at low
levels.
19See Evans (2012) for the stagnation regime.
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Figure 7: asymmetric cost adjustment with π < πL.

We briefly describe the other two cases of asymmetric adjustment costs.
In all cases the targeted steady state is locally stable under learning. If
π = πL, there is also a locally stable continuum of steady states at π =
πL = π and y < yL, where yL is the level of output associated with the
usual πL steady state. E-stability dynamics indicate that under learning the
economy can converge to any point on the continuum from initial conditions
πe(0) & π and ye(0) suffi ciently low. Similar convergence to the continuum
can happen for initial πe(0) . π and ye(0) suffi ciently low. In the case π > πL
the economy under learning is globally stable at the targeted steady state
π∗. However, for π only slightly above πL, pessimistic initial expectations
(πe(0), ye(0)) can lead to extended periods of low output and mild deflation
before inflation expectations are pulled up towards π and a recovery begins.
As noted, for example, by Bullard (2010), we do observe economies ex-

hibiting extended periods of very low inflation or mild deflation. The cases
π = πL and π < πL show that steady mild deflation is consistent with a de-
flation trap region that leads to persistently falling or persistently low levels
of output. The analysis of fiscal policy provided in this paper could easily be
extended to the various cases of asymmetric price adjustment.
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