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1 Introduction

During the last decade, a number of newly industrialized countries, most prominently Russia, India, and

China, have exhibited rapid sustained growth, often at rates of 5 to 10 percent annually. While part of

this growth is attributable to factor accumulation, innovation, and rising revenues from natural resources,

the unusually fast pace is also due to the diffusion of technology from more advanced countries that has

been termed “catch-up.” Will these countries continue to grow quickly until they catch-up to the technology

frontier and then grow through innovation, or will growth slow down while these countries are significantly

behind the frontier where they can better exploit externalities from technology diffusion?

Emerging economies are not the only countries that have experienced catch-up. Many European countries

grew faster than the United States during the 1970s and 1980s. However, early in the 1990s their GDP per

capita relative to the U.S. began to stabilize at a value significantly below unity, perhaps providing evidence

for the future path of these rapidly growing low income countries.

Additionally, over the previous two decades a number of upper-middle income developed countries like

Portugal and Italy have been growing at rates slower than innovating countries at the technology frontier

like the United States. Are they falling behind despite their best efforts to keep up with the leader, or are

there free-rider incentives to let others innovate and push out the frontier that might make falling behind

optimal? If the intensity of technology diffusion is endogenous, might some middle-income countries choose

to “fall-back” in their relative technology level in order to consume more and grow through the diffusion of

new innovations from the frontier?1

Empirical explorations of the early Nelson and Phelps (1966) model based on the theory of technological

catch-up (Gerschenkron (1962), Lucas (2009)) suggest that the rate of productivity growth depends on the

distance to the technology frontier, modulated by factors like human capital (Benhabib and Spiegel (1994,

2005)) or political constraints and inertia (Parente and Prescott (1994)). Despite presenting compelling

empirical findings on the role of technology diffusion in explaining growth, these early papers do not explicitly

model economic variables that affect the rate of diffusion as subject to economic choice. Levels of human

capital or the political institutions, even if measured, are taken as exogenous. Some of the later literature,

for example Barro and Sala-i-Martin (1997), endogenize the investment expenditures in “imitation,” but

typically differentiate between leaders, with exogenously specified low innovation costs, and followers, with

high innovation but low imitation costs. A related approach is to endogenize the decision to undertake

research expenditures that increase the probability of adopting the leader’s technology. For example, in

Aghion, Howitt, and Mayer-Foulkes (2005) countries differ in their profitability as well as their research

costs: some find it profitable to engage in investments to optimize their probability of technology adoption,

while others with high costs or low profitability may choose zero investments in adoption and keep falling

behind.2,3

The main contribution of our paper is a stylized model in which agents optimally choose the amount to

invest in improving growth through innovation as well as through technology adoption. We examine how the

efficiency of technology diffusion determines whether agents will ultimately catch-up to the frontier, catch-

1Chapter 5 of the World Bank Golden Growth publication (Gill and Raiser (2012)) focuses on “Europe’s innovation deficit,”
discussing the American “innovation machine” and the European “convergence machine.” Some of the main questions in this
publication are “whether Europe has fundamental flaws in its economic environment that make its innovation deficit a fact of
life” and “what should European governments do to increase innovation?” From the perspective of this theory, imitation and
fall-back may be an optimal outcome. This force is discussed in the context of the “benefits to backwardness” in Klenow and
Rodriguez-Clare (2005).

2For an exposition see Aghion and Howitt (2009), pp. 152–158.
3Acemoglu, Aghion, and Zilibotti (2006) introduce a model where high skill entrepreneurs can enhance productivity growth

through innovation but not through technology adoption. When the distance to the frontier is large, firms may retain a low-
skill entrepreneur but replace the entrepreneur at some cost when the distance closes and innovation becomes important. This
introduces productivity growth that depends on the distance to the frontier. In our model, we allow the agents to optimally
choose any level of investment in innovation as well as in technology adoption, rather than having firms make discrete decisions
on the retention of low skill entrepreneurs. In both models, productivity growth and optimal actions depend on the distance to
the frontier.
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up part of the way to the frontier and then slow down, fall-back and continue to grow through technology

diffusion, or conduct autarkic innovation with no contribution from technology diffusion.

Agents in our model are identical except for their initial productivity levels: they do not differ in their

costs of investment, production or adoption technologies, or preferences. All agents can affect the rate

at which their productivity deterministically grows with expenditures that facilitate technology adoption

or innovation at some consumption cost, and they do so optimally. The optimal choice for an agent is a

portfolio of imitation and innovation investments, both of which affect the rate at which their productivity

grows depending on the relative return of each investment. Innovation is a simple technology with constant

marginal productivity that does not benefit from externalities. As imitation facilitates technology diffusion

from an agent at the frontier, the productivity of imitation will depend on characteristics of both the agent

itself and the agent it is imitating.4 This relationship is modeled with a catch-up function that determines

the amount of technology diffusion that occurs for a marginal investment in imitation.

This catch-up function for technology diffusion nests some the standard diffusion models, including the

logistic, the Gompertz, and the Nelson-Phelps (confined exponential). In this framework technology adoption

is gradual. The rate of growth of productivity due to imitation depends on investments that facilitate

technology diffusion as well as on a measure of the ease of adopting existing superior technologies—the

distance to the technology frontier.5,6

Engaging in imitation has a trade-off: the agent gains the advantage of higher productivity as they

exploit the diffusion externality, but if they move closer to the frontier, diffusion becomes less efficient and

more investment is necessary to maintain their productivity relative to the frontier. These competing forces

can eventually balance, where an agent chooses an equilibrium productivity that is permanently below the

technology frontier. Moreover, if agents have high relative productivity but the returns to innovation are

insufficient, they may choose to endogenously fall-back to a lower relative productivity level to gain the

advantage of more efficient technology diffusion. Very low productivity agents, on the other hand, may

invest to increase their productivity until the trade-offs are in balance.

We find that there is a threshold such that all agents with a ratio of their productivity to the technology

frontier above this threshold choose to invest only in innovation. All agents whose ratio of productivity to

the frontier is below the threshold entirely focus investment expenditures on facilitating technology diffusion.

The threshold will depend on the return of innovation relative to imitation for the agents, where the catch-up

function determines the rate of technology flow for a unit investment in imitation.

We define a balanced growth path (BGP) as a path where the productivities of all agents grow at the same

rate. Starting from an arbitrary initial distribution, we study the long run distribution of productivities on

the BGP, its dependence on fundamental cost and efficiency parameters, and the uniqueness and stability of

this equilibrium. We explore how the productivity distribution becomes segmented between those who pursue

imitation and those who specialize in innovation. All innovators grow at the same rate, and therefore the ratio

4The literature on technology and knowledge spillovers also explores a similar trade-off between an agent’s own investment in
R&D and exploiting externalities by investing in imitating the innovations of more productive firms. In Eeckhout and Jovanovic
(2002), the total factor productivity of an agent depends on both its own capital and that of all better firms in the economy.
Kortum (1997) instead has agents investing in a stochastic research technology, where the efficiency of new technologies depends
on a spillover from the entire stock of existing research.

5Technologies to produce goods could consist of various processes, not all of which are instantly adopted. For example,
production may start with an assembly plant and the manufacturing of parts. Associated processes may be gradually adopted
as know-how develops and accumulates. In 1977, on visiting a Samsung research lab in Korea, Ira Magaziner wrote: “[It]
reminded me of a dilapidated high-school science room. . .They’d gathered color televisions from every major company in the
world—RCA, GE, Hitachi—and were using them to design a model of their own.” See Magaziner and Patinkin (1990), pp. 24.

6Jones (2005) explores idea based models of growth and the role of non-rivalrous inputs in generating endogenous growth.
In our model, innovating agents have non-rivalrous productivity but are given no legal method to profit from imitation and
face no negative effects from being copied. Moreover, technology diffusion is slow, copying modest improvements of the frontier
sequentially as described in footnote 5. This is in contrast to models of directed imitation at lower levels of aggregation, where
agents make a rapid jump to the frontier by copying the most productive individual firms. In general, patent systems typically
require active monitoring and expensive litigation that are only optimal for cutting-edge products with high rents. Last, our
model exhibits no scale effects due to the structure of the catch-up function.
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of their productivity to the technology frontier remains unchanged. In the limit, the ratio of every imitator’s

productivity to the technology frontier converges to a common constant that lies below the threshold. All

imitators grow at the same rate as the frontier technology with growth only driven by technology diffusion.

Imitators do not necessarily disappear in the limit, nor is there universal convergence to the frontier. However,

if investment in productivity growth is significantly more efficient through innovation than through adoption,

the threshold ratio above which agents only invest in innovation may be zero. Similarly, if the technology for

diffusion is sufficiently inefficient, agents who optimally specialize their expenditures on technology diffusion

are nevertheless left progressively behind, so that their productivity ratio to the technology frontier converges

towards zero. Last, we find that a uniform increase in the productivity of both innovation and imitation will

not distort the proportion of agents conducting innovation, but will change the equilibrium productivity of

imitating agents.

An alternative approach to technology diffusion is to consider how agents might adopt the technology

of agents spread throughout the productivity distribution, on average adopting technologies much closer

to the mean productivity than the frontier. The recent works of Lucas and Moll (2012) and Perla and

Tonetti (2011) endogenize technology adoption as an optimal search decision made by firms taking draws

from the distribution of existing technologies. They then study the endogenous evolution of the productivity

distribution that results from this search process, without giving agents access to an innovation technology.

Both Lucas and Moll (2012) and Perla and Tonetti (2011) work within a stochastic search framework where

searching agents copy the technology of a random agent in the economy and immediately make a discrete jump

to the new productivity level. Imitation here is more in the spirit of Benhabib and Spiegel (1994, 2005).

Another approach, taken by Luttmer (2011), studies how imitation by new entrants can drive aggregate

growth, with the productivity of incumbents evolving according to an exogenous stochastic process as opposed

to a controlled innovation decision. In our framework we are able to focus on the portfolio choice of allocating

expenditures between imitation and innovation and on the endogenous evolution of the frontier, allowing the

key economic incentives for catch-up and fall-back through innovation and imitation to be clearly illuminated.

2 The Model

Agents are heterogeneous over their productivity level, z, and choose to invest in improving productivity

through imitation and innovation. The cost of generating productivity growth through imitation (or technol-

ogy adoption) is sz and the cost of generating productivity growth through innovation is γz. The parameters

σ > 0, c > 0 measure the efficiency of innovation and technology adoption expenditures, r is the discount

rate, and utility is logarithmic. Output is given by Bz, B > 0. The initial distribution of productivities is

Φ̃ (0, z), with min support > 0 and max support ≡ F (0) > 0. The distribution of productivities at time t

is Φ̃(t, z) on (0, F (t)], where F (t) is the frontier. It is often convenient to work in productivities as ratios

compared to the frontier: x(t) ≡ z(t)
F (t) . In that case, the distribution of x is Φ(t, x) defined on (0, 1].7 This

distribution fully characterizes the aggregate state of the economy.

Catch-up Technology The efficiency of expenditure on imitation depends on the distance of the imitating

agent to the technology frontier. Our catch-up function (or technology adoption function) parametrically

specifies how technology adoption expenditures affect productivity growth as a function of distance to the

technology frontier. Our specification nests the logistic and Nelson-Phelps technology diffusion processes

and is flexible enough to allow for the flow of technology diffusion to decrease, for a fixed investment, as the

distance to the frontier increases. Since the catch-up function only depends on distance to the frontier and

7A ·̃, such as Φ̃(t, z), in our notation indicates objects in (t, z) space, while its absence indicates the transformation to (t, x)
space.
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no other statistics of the productivity distribution, the evolution of each initial productivity relative to the

frontier can be studied independently.8

All agents choose their expenditures in innovation and in technology adoption optimally, both of which

promote the rate of productivity growth. Spending γz on innovation produces growth of z at rate γσ. For an

investment of sz in imitation, the agent produces growth of z at a rate sD̃(t, z). Given parameters controlling

the rate of technology diffusion, c and m, the catch-up function for technology growth at time t is given by

D̃ (t, z;m) = c
m

(

1−
(

z(t)
F (t)

)m)

(1)

where expenditures s ≥ 0 and m ∈ (−∞,∞). Since the catch-up function specifies the marginal return to

an investment in imitation it critically affects agents dynamic behavior. Setting m = 1 gives the familiar

logistic diffusion, while m = −1 gives the Nelson-Phelps (confined exponential) diffusion.9 Letting m → 0

yields, after using L’Hopital’s rule, the Gompertz diffusion model:

D̃(t, z; 0) = −c ln
(

z(t)
F (t)

)

Note that D̃ (t, F (t);m) = 0 for all t,m. Hence, the returns to imitation for the frontier agent are always

0.

The General Optimization Problem Our model allows for the endogenous growth of heterogeneous

agents: productivity growth depends linearly on optimally chosen expenditures on innovation and adoption,

γ and s. The benefits of innovation and diffusion, γσ and sD̃ (t, z;m), and their respective costs, γ(t)z(t)

and s(t)z(t), are flow variables in continuous time. Consumption is Bz(t) − s(t)z(t) − γ(t)z(t). Given an

initial idiosyncratic productivity level, z(0), and an initial productivity distribution across agents, Φ̃(0, z),

all agents solve the same problem:

max
s(t),γ(t),z(t)

∫ ∞

0

(ln (Bz − sz − γz)) e−rtdt (2)

s.t.
ż

z
= σγ + D̃(t, z;m)s (3.a)

s ≥ 0, γ ≥ 0 (3.b)

Calculating the current value Hamiltonian for this system with λ̃ as the Lagrange multiplier on the law

of motion, assuming m 6= 0 and plugging in our D̃(·) function yields

H̃ = ln ((B − s− γ) z) + λ̃σγz + λ̃zs
c

m

(

1−

(

z

F (t)

)m)

(4)

The first order necessary conditions of this Hamiltonian are augmented with complementarity conditions to

ensure s ≥ 0 and γ ≥ 0. H is concave in s, γ, but the full second order conditions are addressed in Section

8Using the frontier (the maximum statistic) to summarize the distribution provides a great deal of analytical tractability.
Perla and Tonetti (2011) and Lucas and Moll (2012) use random search models to focus on the feedback relationship between the
entire endogenously determined productivity distribution and optimal technology adoption decisions. Alvarez, Buera, and Lucas
(2011) combine a similar random search structure with a model of trade to explicitly micro-found technology diffusion across
countries. These papers do not feature an innovation technology or an endogenously evolving technology frontier. Dependence
only on the frontier can be thought of as directed search with no differential search costs. The effect of directed investment in
imitation, with imitation costs increasing as the distance to the imitated grows, is left for future research.

9Note that in the logistic case (m = 1) the increase in productivity ż (t) from diffusion, z(t)D̃ (t, z; 1) = cz (t)
(

1−
(

z(t)
F (t)

))

,

is zero when z (t) = 0 or when z (t) = F (t), and it is maximized at z (t) = F (t) /2. By contrast in the Nelson-Phelps case

(m = −1), z(t)D̃ (t, z;−1) = cz (t)
((

F (t)
z(t)

)

− 1
)

= c (F (t)− z (t)), the larger the distance to the frontier, the larger is the

diffusion flow.
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4. Note that given log utility, it will not be optimal to set (B − s− γ) = 0.

3 Frontier

Because the imitation policies of all agents not at the frontier depend on the behavior of the frontier, the

frontier agent’s problem must be solved first. Since improving productivity through imitation is not possible

at the frontier, the leader sets s = 0. The problem for the leader then simplifies to

H̃ = ln ((B − γ) z) + λ̃σγz (5)

with

ż = σγz (6)

and

˙̃
λ = −

∂H̃

∂z
+ rλ̃ = −z−1 + λ̃ (r − σγ) (7)

Defining µ̃ = λ̃z, we have

˙̃µ =
˙̃
λz + żλ̃ = −1 + µ̃ (r − σγ) + σγµ̃ = −1 + rµ̃ (8)

The solution is

µ̃ (t) = ert
(

µ̃ (0)−
1

r

)

+
1

r
(9)

and the transversality condition

lim
t→∞

e−rtµ̃ (t) = 0 (10)

immediately requires

µ̃ (t) =
1

r
(11)

Maximizing the Hamiltonian with respect to γ yields

−1

B − γ
+ λ̃zσ ≤ 0 (12)

Using equation 11 we get

γ ≥ B −
r

σ
(13)

Assumption 1: σB − r > 0

From equation 13, under Assumption 1 it is clear that the optimal investment in innovation at the frontier

is strictly positive.10 Assumption 1 ensures that for the frontier agent the discount rate is small enough that

the benefits of increasing future productivity through innovation are larger than the benefits of immediately

10It is straightforward to show that the maximized Hamiltonian, maxz H̃
(

z, λ̃
)

is concave in z, so that this is indeed an

optimal solution. See Appendix B for details.
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consuming more by not innovating. With Assumption 1 the growth rate at the frontier is a strictly positive

constant: g ≡ Ḟ (t)
F (t) = σγ = σB − r > 0. Section 4.2 shows that agents initially behind the frontier will chose

optimal growth rates such that they remain behind the leader at all times.

4 Followers

For z(t) < F (t), the returns to imitation are strictly positive. Since the productivity of imitation depends on

the distance to the frontier, followers take into account that the frontier grows at a constant rate g = Bσ−r.

The following results are derived for the m 6= 0 case. As is discussed in footnote 14, the solution is continuous

for the Gompertz case at m = 0.

Before solving the follower’s problem, it is useful to transform the problem with a change of variables.

Optimization Problem in x A major advantage of this form of catch-up function is that since it only

depends on the ratio of an agent’s productivity to the frontier, the optimization problem becomes time

invariant given a simple change of variables. Using the ratio of productivity to the frontier

x(t) ≡
z(t)

F (t)
(14)

examination of equation 1 shows that there is no dependence on time in the catch-up function except through

x

D̃ (t, x(t)F (t);m) = c
m

(

1−
(

x(t)F (t)
F (t)

)m)

= c
m (1− xm) (15)

≡ D(x;m) (16)

The growth of x is

ẋ(t)

x(t)
= σγ(t) +D(x(t);m)s(t)− Ḟ (t)

F (t) (17)

Since the frontier grows at a constant rate, Ḟ (t)
F (t) = g as proved in Section 3, the law of motion for x is time

homogeneous.

ẋ(t)

x(t)
= σγ(t) +D(x(t);m)s(t)− g (18)

Transforming the objective function in equation 2 using the change of variables yields

∫ ∞

0

(ln(x) + ln(B − s− γ)) e−rtdt+

∫ ∞

0

ln(F (t))e−rtdt

7



Given an F (t), which this agent does not control, the last term is a constant. Since this constant is finite,

Ḟ (t)/F (t) = g = σB − r, the term does not affect optimal controls. Thus the optimization problem in x

space is

max
s(t),γ(t),x(t)

∫ ∞

0

(lnx+ ln(B − s− γ)) e−rtdt+
g + r ln(F (0))

r2
(19)

ẋ

x
= σγ +D(x;m)s− g (20.a)

s ≥ 0, γ ≥ 0 (20.b)

The current value Hamiltonian ignoring the constant in the objective function and the complementarity

conditions is given by

H = ln(x) + ln(B − s− γ) + λx
(

σγ + c
m (1− xm)s− g

)

(21)

The Lagrange multiplier on the law of motion in x is λ. As previously mentioned, this problem is now

autonomous when compared to equation 4.

Marginal Productivity of Innovation and Imitation Since equation 20.a is linear in both s and

γ, the marginal productivity for an investment in either s or γ is constant. That is, an investment in γ

has a marginal productivity of innovation σ. Given a fixed value of x, an investment in s has a marginal

productivity of imitation D(x). Since ∂D(x;m)
∂x < 0, the marginal productivity of imitation decreases with x.

Because the efficiency of technology adoption depends on the distance to the frontier, forward looking agents

will consider the negative effect on the marginal productivity of imitation from increasing x.

4.1 First Order Necessary Conditions

The first order necessary conditions can be derived using the Hamiltonian in x space (equation 21).

H = ln(x) + ln(B − s− γ) + λx
(

σγ + c
m (1− xm)s− g

)

(22)

The Euler equation is

λ̇ = −
∂H

∂x
+ rλ

= −
1

x
− λ (σγ + sD(x) + sxD′(x)− g) + λr (23)

= −
1

x
− λ

(

σγ + c
m (1− xm)s− g

)

+ λcsxm + λr (24)

= −
1

x
− λ

ẋ

x
+ λcsxm + λr (25)

Note that D′(x) = −cxm−1 is embedded in equation 23, so the agent considers the effect of varying x on

future catch-up costs.

8



The first-order conditions for s, including the complementarity condition, are

0 = s
∂H

∂s
,
∂H

∂s
≤ 0

1

B − s− γ
≥ λxD(x) (26)

1

B − s− γ
≥ λx

c

m
(1− xm) (27)

The first-order conditions for γ, including the complementarity condition, are

0 = γ
∂H

∂γ
,
∂H

∂γ
≤ 0

1

B − s− γ
≥ λxσ (28)

The transversality condition is

lim
t→∞

e−rtλ(t)x(t) = 0 (29)

It can be seen from the the first-order conditions in equations 26 and 28 that an agent considers the marginal

productivity of innovation or imitation when optimizing its investment portfolio, where λ is the shadow price

of x.

To solve for the equilibrium, it is useful to define a new variable: µ(t) ≡ λ(t)x(t) =⇒ µ̇(t) = λ̇x+ λẋ. µ(t)

is the agent’s valuation of its state x(t) at shadow price λ(t). Let ·̄ denote steady state values (e.g. s̄ and

x̄). The Euler equation (equation 25) can be rewritten as

λ̇x = −1− λẋ+ λxcsxm + λxr

µ̇ = −1 + µ(r + csxm) (30)

At steady state µ̇ = 0, so

µ̄ =
1

r + cs̄x̄m
(31)

4.2 Solution to Followers Problem

The followers problem can be solved by analyzing all cases of the complementarity conditions for s and γ.

4.2.1 Simultaneous Innovation and Imitation

For the case where agents do both innovation and imitation, s > 0 and γ > 0. This can only happen at a

unique x∗, which separates regions of innovation and imitation. For both s and γ to be interior, the first

order conditions, equations 27 and 28, must be equal.

λx∗σ = λx∗ c

m
(1− x∗m)

σ = D(x∗) (32)

σ =
c

m
(1− x∗m)

x∗ ≡ (1− σm
c )1/m (33)

9



Hence, an agent is indifferent between innovating and imitating at a time-invariant knife edge productivity

ratio, x∗, which is strictly between zero and one for all m 6= 0 given the following assumption.

Assumption 2: σm
c < 1

x∗ ∈ (0, 1) means that there are both followers that prefer to innovate and followers that prefer to imitate.

Assumption 2 guarantees this by ensuring that the productivity of innovation is not too large compared

to the productivity of imitation and that the productivity of imitation is not too large compared to the

productivity of innovation, since these forces are modulated by σ,m, and c. At any x other than x∗ both

equation 27 and equation 28 cannot hold with equality simultaneously, and therefore both s and γ cannot

be simultaneously strictly positive except at x∗.11

When making the portfolio choice on the extensive margin, equation 32 shows that the agent only needs

to compare the instantaneous marginal productivity of innovation to the marginal productivity of imitation.

In particular, the change in the marginal product of imitation as x changes, D′(x), does not affect the agent’s

decision.

Lemma 1. Given Assumptions 1 and 2, there exists an interior time-invariant x∗ such that:

x∗ =
(

1−
σm

c

)1/m

(34)

x < x∗ =⇒ s(x) ≥ 0, γ(x) = 0 (35)

x > x∗ =⇒ s(x) = 0, γ(x) > 0 (36)

Proof. Section 4.2.1 has shown that both s > 0 and γ > 0 can only occur at a single x. From the FOCs, for

innovation to be preferred over imitation, it must be that σ > c
m (1− xm), which is satisfied by all x > x∗

for both positive and negative m. The imitation region follows directly. The fact that γ is strictly positive

in the innovation region is proved in Section 4.2.2.12

When the marginal productivity of innovation is high enough to violate Assumption 2, it is possible for

x∗ to be = 0, and no imitation will take place, as can be seen from equation 34. As long as Assumption

2 is satisfied, no matter how high the marginal productivity of imitation, there is always a region where

innovation is optimal.

4.2.2 Innovation Only: x > x∗

In the region x > x∗ only innovation will occur, as stated in Lemma 1.

11If mσ
c

> 1 then x∗ = 0 and there is no imitation region. In this case, all agents choose to innovate at the same rate, as is
shown in Section 4.2.2.

12Since x and λ are continuous on an optimal path, at the threshold x∗ =
(

1− σm
c

)1/m
, from the left,

ẋ

x
= s

c

m
(1− xm)− g = s

c

m

(mσ

c

)

− g = sσ − g

and from the FOC, coming from the left,

B − s =
(

λx
c

m
(1− xm)

)−1
=

(

1

r

c

m

(mσ

c

)

)−1

s = B − r

σ
> 0

ẋ

x
= sσ − g = Bσ − r − g = 0

So the growth rate is continuous and equal to the leader’s growth rate from the left as x → (1− mσ
c

)1/m. Note though that s
will not be continuous at the threshold.

10



Using equation 28 and s = 0 yields:

1

B − γ
= λxσ (37)

Assuming that an agent with s = 0 will never enter the region x < x∗ where s ≥ 0, as is later verified,

equation 11 can be substituted into equation 37 to find

γ =
Bσ − r

σ
(38)

This is the same level of investment as that of the frontier agent, given in equation 13. Plugging this into

the LOM for x

ẋ

x
= σ

Bσ − r

σ
− g = 0 (39)

Given the solution for the frontier, g = Bσ − r, this proves that ẋ
x = 0. All agents in this region grow at

the same rate as the frontier by choosing the same level of investment in innovation. Since ẋ
x = 0 and x∗ is

time-invariant, it is verified that an agent in x > x∗ chooses γ > 0 and will never enter the x < x∗ region.

To verify transversality, note that since an agent will never change regions, s = 0 for all t for x > x∗.

Thus, using µ̄ from equation 31 with s = 0 yields

lim
t→∞

e−rtλ(t)x(t) =
1

r
lim
t→∞

e−rt = 0 (40)

4.2.3 Imitation Only: x < x∗

In the region x < x∗, only imitation will occur, as stated in Lemma 1.

To solve for the policy functions of agents in this region it is useful to perform another change of variables,

where the relative distance of the agent to the frontier is distorted by the diffusion parameterm: q(t) ≡ x(t)m.

Using the chain rule:

q̇ = mq
ẋ

x

The law of motion for q is obtained using this change of variables together with the law of motion for x

(equation 20.a) when γ = 0:

q̇

q
= m

(

c
m (1− q)s− g

)

(41)

The first order necessary condition in equation 27, with γ = 0, gives

µ =
m

c(B − s) (1− q)
(42)

The law of motion for µ in terms of q is obtained from equation 30

µ̇ = −1 + µ(r + csq) (43)

11



Equations 41, 42, and 43 form a system in the variables µ, q, s. Eliminating µ via substitution will create a

2x2 system. First, differentiating equation 42

µ̇ =
m ((B − s)q̇ + (1− q)ṡ)

c(1− q)2(B − s)2
(44)

Substituting equations 42 and 44 into 43, and rearranging for ṡ

ṡ =
(B − s) ((−1 + q)(−Bc+mr + cs+ cq(B + (−1 +m)s)) +mq̇)

m(−1 + q)

Substituting for q̇ from the law of motion in equation 41, generates a first order ODE in s and q

ṡ =
(B − s)

(

Bc−mr + q(−2Bc+m(−gm+ r) +Bcq)− c(−1 + q)2s
)

m(−1 + q)
(45)

Equations 41 and 45 are a system of 2 nonlinear first-order ODEs in q and s. Stacking the equations and

defining the vector valued function Ψ yields

d

dt

(

s(t)

q(t)

)

= Ψ(s(t), q(t)) ≡

(

(B−s(t))(Bc−mr+q(t)(−2Bc+m(−gm+r)+Bcq(t))−c(−1+q(t))2s(t))
m(−1+q(t))

mq(t)
(

c
m (1− q(t))s(t)− g

)

)

(46)

Stationary solution for s ≥ 0, γ = 0 Define the stationary points of this system as s̄ and q̄ (or equivalently

x̄). Evaluating the first order condition in equation 42 at the stationary value s̄ yields

s̄ = B −
1

c/mµ̄(1− q̄)
(47)

Substituting for µ̄ from equation 31 and solving for s̄ gives

s̄ =
B 1

m (1− q̄)− r
c

1
m (1− q̄) + q̄

(48)

From Assumption 1 and Lemma 1 it follows that s̄ > 0. Thus agents choose strictly positive expenditure on

imitation at the stationary point in equilibrium.13

To determine the stationary solution for q(t), q̄, substitute this expression into the stationary law of motion

in equation 41

q̇

q
= 0 = m

(

c
m (1− q̄)

B 1
m (1− q̄)− r

c
1
m (1− q̄) + q̄

− g

)

(49)

Using the known value of g, this becomes a quadratic equation in q̄

σB − r

B
=

( c
m (1− q̄)− r

B

1 + q̄(m− 1)

)

(1− q̄) (50)

12



This can be further simplified (see Appendix E)

0 =
c

m
(1− q̄)

2
−

r

B
(1− q̄)−

(σB − r)

B
(1 + q̄(m− 1)) (51)

0 = q̄2 −

(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)

q̄ +
(

1−
mσ

c

)

(52)

The roots of this quadratic are

q̄1,2 = 1
2

(

(

2− mσ
c + m2

c

(

σ − r
B

)

)

±

(

(

2− mσ
c + m2

c

(

σ − r
B

)

)2

− 4
(

1− mσ
c

)

)1/2
)

(53)

As is proven in Appendix A.1, the unique interior stationary solution, x̄ ∈ (0, x∗), is

x̄ =

[

1
2

(

(

2− mσ
c + m2

c

(

σ − r
B

)

)

− sign(m)

(

(

2− mσ
c + m2

c

(

σ − r
B

)

)2

− 4
(

1− mσ
c

)

)1/2
)]1/m

(54)

In Proposition 1 and Proposition 2 we show that the unique stationary point (x̄, s̄) is stable. Therefore

paths that converge to (x̄, s̄) automatically satisfy the transversality condition. Substituting these values

into equation 31 yields

lim
t→∞

e−rtλ(t)x(t) = lim
t→∞

e−rtλ̄x̄ =
1

r + cs̄x̄m
lim
t→∞

e−rt = 0 (55)

It remains to show that the agent’s optimization problem satisfies the second order sufficiency condi-

tions. It is sufficient to prove the concavity of the maximized Hamiltonian with respect to x (see Seierstad

and Sydsaeter (1977) Theorems 3 and 10). The following parameter restrictions are sufficient to satisfy the

second order conditions. See Appendix B for details.14

Assumption 3: m ≥ −1 and c
σ < m+ 2

Note that both conditions in Assumption 3 restrict the efficiency of technology diffusion. Concavity may be

lost as technology diffusion becomes too easy, with high c or low m.

Summary Lemma 1 summarizes the threshold productivity ratio, x∗, that separates agents into innovators

and imitators. As proven in Section 4.2.2, for x > x∗ all agents choose to innovate at the same rate and

grow at the same rate. As proven in Section 4.2.3, for x < x∗ all agents exclusively imitate, and stability

of the system Ψ(s(t), q(t)) implies that there exists a unique steady state productivity ratio, x̄, to which all

imitating agents converge. Agents below x̄ invest in imitation to take advantage of the high efficiency of

technology diffusion and catch up to x̄. Agents below x∗ but above x̄ endogenously choose to fall back to x̄

to reach the optimal trade-off between consumption and investment in imitation, dictated by the strength

13By Assumption 1, σB > r > 0, so it is sufficient to show B 1
m
(1− q̄)− σB

c
> 0. By Lemma 1, in this region 1

m
(1− q̄) > σ

c
.

14 The solution for the m = 0 case needs to be solved with the Hamiltonian directly in terms of D(x; 0) = −c ln(x) as discussed
in Section 2. Using similar methods to those in Section 4.2, it can be shown that the stable solution is:

x∗ = exp
(

−σ
c

)

, x̄ = exp

(

− σ
2c

+

√
−4cr+4Bcσ+Bσ2

2c
√
B

)

, s̄ =
−Bσ+

√
B
√

−4cr+4Bcσ+Bσ2

2c

Finally, it can be shown that this solution is the same as the limit of the m 6= 0 case, ensuring that there is no discontinuity at
m = 0.
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of the incentive to adopt technology that is governed by the catch-up function. Imitators do not disappear

in the limit, nor is there universal convergence to the frontier.15

5 The Dynamic Solution

Proposition 1 states the main result of the paper: the existence, uniqueness, and stability of the stationary

solution.

Proposition 1. Let Assumptions 1, 2, and 3 hold, then for arbitrary Φ(0, x)

A: There exists a threshold ratio x∗ =
(

1− mσ
c

)1/m
such that all agents with x > x∗, including the leader,

do only research. They set s = 0, γ = B − r
σ > 0, and grow at the rate σB − r. For x > x∗, the distribution

Φ(t, x) = Φ(0, x) for all t.

B: All agents with initial conditions x < x∗ invest only in technology adoption with s(t) ≥ 0 and γ(t) = 0.

There exists a strictly positive BGP productivity ratio 0 < x̄ < x∗ such that all initial productivity ratios

x < x∗ converge to x̄.

Proof. See the cases in Section 4 and the conditions in Appendix A.

If we denote the cases where m > 0 as logistic diffusions and the cases where m < 0 as Nelson-Phelps

diffusions, Figure 1 illustrates system dynamics and Proposition 1 for several values of σ and D(x;m). The

stylized arrows show how convergence might look towards steady state values for x. As can be seen in

the lower part of the graph, when the marginal productivity of innovation is greater than the marginal

productivity of imitation, the agent chooses to invest entirely in γ.16

Proposition 2 characterizes the asymptotic dynamics of the distribution of productivities.

Proposition 2. A balanced growth path equilibrium is a growth rate g = σB − r, a steady state imitator

productivity ratio x̄, an innovator threshold x∗, and an asymptotic distribution Φ(∞, x) such that

1. The growth rate of all agents is ż
z = g = σB − r, so ẋ

x = 0 for all x.

2. For arbitrary Φ(0, x),

Φ(∞, x) =



















0 for 0 ≤ x < x̄

Φ(0, x∗) for x̄ ≤ x < x∗

Φ(0, x) for x∗ ≤ x ≤ 1

(56)

Proof. See Proposition 1.

Any initial distribution Φ(0, x) will converge to this unique balanced growth path. In particular, all initial

distributions that agree over support x > x∗ will converge to the same BGP, since all agents initially below

x∗ converge to x̄.

This proposition is illustrated in Figure 2 for an arbitrary initial distribution Φ(0, x) and the unique

BGP distribution Φ(∞, x). The dynamics and asymptotic distribution are independent of the initial frontier

15There is no mixing in the evolution technology, in that the relative productivity rankings of agents is constant for all
time. Additionally, innovators never become imitators and imitators never become innovators. This is because the model is
deterministic and investments gradually improve growth rates as opposed to facilitating discrete advances in productivity levels.
Shocks to productivity would introduce leapfrogging and switches between innovation and imitation.

16For some numerical examples that fulfill Assumptions 1, 2, and 3:

Nelson-Phelps (m = −1): x∗ = 0.5263 and x̄ = 0.3148, when σ = 1; c = .9;B = 2; r = 0.05

Gompertz (m = 0): x∗ = 0.4066 and x̄ = 0.2258, when σ = .9; c = 1;B = 2; r = 0.05

Logistic (m = 1): x∗ = 0.1 and x̄ = 0.0520, when σ = .9; c = 1;B = 2; r = 0.05
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Nelson-Phelps (m = −1) Gompertz (m = 0) Logistic (m = 1)

σσσ

Figure 1: Equilibrium for D(x;m) and σ

F (0). For any initial distribution, the CDF of the upper tail does not change, while a mass of Φ(0, x∗) will

accumulate at the equilibrium point x̄.

One of the main findings of Benhabib and Spiegel (2005) was that in the logistic case, if their distance to

the frontier is too large, “the follower will not be able to keep up, growth rates will diverge, and the income

ratio of the follower to the leader will go to zero.” This is because there exists a range of productivities

such that the flow of technology diffusion for a given investment in imitation is decreasing in the distance

to the frontier. Once the imitation expenditure is endogenized this finding is reversed, as agents invest in

technology diffusion such that they converge to a positive BGP productivity ratio, x̄, and grow at the same

rate as the leader.

1

1

1

1

Initial CDF of Agents: Φ(0, x)

xx

Asymptotic CDF of Agents Φ(∞, x)

x̄x̄ x∗x∗

Φ(0, x∗)

Figure 2: Balanced Growth Path Distribution
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5.1 Catch-up, Fall-back, and the Shadow Value of x(t)

The Euler equation characterizes the dynamic trade-offs an agent faces. Joint analysis of the Euler equation

and the shadow price and shadow value of x provides intuition for the determinants of equilibrium and the

forces that lead to the BGP.

From the Euler equation in 23,

r =
λ̇

λ
+

1

x
+ (σγ + sD(x)− g) + sxD′(x) (57)

As usual, the Euler equation states that at each point in time the total benefit of a marginal unit of x,

represented by sum of the terms on the right, must equal the discount rate. The term λ̇
λ is the appreciation

in the shadow price of x while 1
x is marginal utility of x. The terms (σγ + sD(x)− g) represent the marginal

product of x, both through innovation and through technology diffusion. The final term, sxD′(x), tempers the

marginal product of x because a higher x reduces the distance to the frontier and therefore the productivity

of future imitation. To see this, note that in our model D′(x) < 0. The agents optimally choose s to

determine the rate at which they catch-up, or alternatively fall-back. Hence the strength of catch-up or fall-

back depends on the magnitude of sxD′(x) with D′ (x) exerting a negative force on catch-up or, equivalently,

a positive force for fall-back. If however the agent optimally sets s = 0, then D′(x) has no direct effect on

the change.

Recall µ(t) can be interpreted as the agent’s valuation of its state x(t) at shadow prices λ(t). The Euler

equation at steady state can be arranged as

µ̄ =
1

r − s̄x̄D′(x̄)
=

1

r + cs̄x̄m
≤

1

r
(58)

λ̄ =
1

x̄

(

1

r − s̄x̄D′(x̄)

)

(59)

Equations 58 and 59 show the role of s̄x̄D′(x̄) on imitation and innovation in equilibrium. In a region

of innovation where s̄ = 0 the discounted value of the utility flow for a marginal unit of x̄ per period is

the marginal utility 1
x̄ discounted by r. In fact, in the innovation region where s = 0, logarithmic utility

implies that everywhere along the optimal path the marginal utility of an additional unit of x is 1
x while its

marginal product is constant. This yields the value of the stock x(t) evaluated at the shadow price λ(t) as

µ(t) = λ(t)x(t) = 1
r , and λ(t) = 1

r
1

x(t) . In the imitation region where s > 0 the marginal product of x is no

longer constant because, as discussed earlier, D(x) is not constant and D′(x) < 0. An increase in the BGP x̄

brings the agent closer to the frontier and diminishes the marginal productivity of imitation. This is reflected

by the term s̄x̄D′(x̄) < 0 which augments the effective discount rate that must be applied to the flow of

utility. At the BGP productivity ratio in the imitation region the effective discount rate is r − s̄x̄D′(x̄) > r

(see equation 58). This captures the negative impact of higher productivity on the endogenously chosen flow

of diffusion. This is the active force in the region of imitation below the innovator threshold x∗ that causes

agents close to the threshold to choose to fall-back to x̄. These agents let their relative productivity slip in

order to benefit from a higher flow of technology diffusion.

6 Comparative Dynamics

Propositions 1 and 2 document that the unique BGP can be characterized by g, x∗, and x̄, but how do these

equilibrium values depend on fundamental parameters? This section studies how the balanced growth path

equilibrium changes as parameters modulating the productivity of investment—σ, m, and c—are varied.
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6.1 Comparative Dynamics for Hicks-Neutral Technical Change

The ratio θ ≡ σ
c is a measure of the relative productivity of innovation to imitation and is an important

determinant of the equilibrium. As can be seen by rewriting equation 34,

x∗ = (1−mθ)
1/m

(60)

the threshold for imitation versus innovation depends on the ratio θ rather than on the levels of σ and c

independently. This is because x∗ is determined by the ratio of instantaneous marginal productivities that

are linear in σ and c, as captured in equation 32. This is analogous to the optimal capital to labor ratio

in a neoclassical growth model, where a Hicks-neutral technology shock does not alter the optimal relative

expenditures. Here, changes in σ and c that keep θ constant may act like a Hicks-neutral technical change,

since they keep this measure of relative productivity constant.

However, equation 54 shows the lack of neutrality on x̄.

x̄ =

[

1

2

(

2 + (m2 −m)θ −m2 r
cB − sign(m)

(

(

2 + (m2 −m)θ −m2 r
cB

)2
− 4 (1−mθ)

)1/2
)]1/m

(61)

The direct dependence of x̄ on c comes from the fall-back incentive. Since ∂2D(x;c)
∂x∂c < 0, as c increases,

the strength of the fall-back incentive, D′(x; c), increases. Hence, a seemingly Hicks-neutral increase in the

productivity of growth technologies can change the equilibrium outcome. To see this, fix the ratio θ̄ = σ̄
c̄

and multiply these by a total factor productivity term, A: σ = Aσ̄ and c = Ac̄.

Proposition 3. An increase in the TFP of growth technologies

1. Does not alter the equilibrium ratio of innovators: dx∗

dA = 0

2. Decreases the equilibrium BGP productivity ratio of imitators: dx̄
dA < 0

3. Increases the equilibrium expenditure on imitation: ds̄
dA > 0

Proof. dx∗

dA = 0 follows directly from the definition of x∗. For dx̄
dA < 0 and ds̄

dA > 0 see Appendix C.

A seemingly Hicks-neutral change in the technology level of the economy has no effect on x∗, but by

increasing the strength of the fall-back incentive the change is not neutral in its effect on x̄. Even though the

growth technology has improved, the growth rate Bσ̄A − r increases with A, so imitators have to increase

investment in imitation, s̄, to keep up with the higher growth rate. The optimal response is to increase

investment some to keep up, but, in response to a better imitation technology, to fall back a bit and benefit

from the more efficient flow.

To see how the economy responds to ever increasing TFP in growth technologies take the limit of A → ∞.

Clearly x∗ is unchanged. For x̄, the terms with a c in equation 61 go to zero. Hence,

lim
A→∞

x̄(A) =

[

1

2

(

2 + (m2 −m)θ̄ − sign(m)
(

(

2 + (m2 −m)θ̄
)2

− 4
(

1−mθ̄
)

)1/2
)]1/m

> 0

Thus x̄ decreases as TFP grows, but stays strictly above 0. This result is in contrast to the comparative

dynamics of taking c to ∞, where both x∗ and x̄ converge to 1, as discussed in Section 6.4.

Figure 3 provides a numerical simulation of these results for both m = .5 and m = −.5, demonstrating

x̄(A) is decreasing in A. In order to better compare the two m values, the figure is normalized by A = 1.17

17The parameters used in this simulation are σ̄ = 1.25, c̄ = 1, B = 2 and r = 0.05. Using these parameters, Figure 3 plots

x̄(A) for m = −.5 and m = .5. When m = 0.5,
x̄(∞)
x̄(1)

= 0.989. When m = −.5,
x̄(∞)
x̄(1)

= 0.991. For visual clarity, the plotted

axes do not intersect at the origin.
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Figure 3: Equilibrium with Hicks-Neutral Technical Change

6.2 Comparative Dynamics of m

m is a key parameter that affects the efficiency of technology diffusion and distorts imitation incentives

depending on the distance to the frontier.

As discussed in Section 4.2.1, the decision of agents to imitate or innovate, summarized by x∗, depends

only on the instantaneous marginal productivity of innovation and imitation (i.e., D(x;m) vs. σ). A change

in m alters the incentives for agents to choose to imitate, as an increase in m decreases the efficiency of

technology diffusion. Since ∂D(x;m)
∂m < 0, as m increases the marginal productivity of imitation decreases.18

As imitation becomes less productive, or equivalently as technology diffusion becomes less efficient, more

agents will choose to be innovators and there will be less imitators. This is captured in Proposition 4.

Proposition 4. As curvature in the catch-up function changes to make imitation less efficient, the innovator

threshold decreases. That is dx∗

dm < 0.

Proof. Taking the derivative of x∗ from equation 34 with respect to m

dx∗

dm =

(

1− mσ
c

)
1
m

(

mσ + (c−mσ) log
(

1− mσ
c

))

m2(−c+mσ)

First, we analyze the case ofm 6= 0. Assumption 2 ensures that 1− σm
c > 0, making the denominator negative

and the first term of the numerator positive. It remains to show that the second term in the numerator is

positive. That is, we need to show

mσ + (c−mσ) ln
(

1−
mσ

c

)

= c
[mσ

c
+ (1−

mσ

c
) ln
(

1−
mσ

c

)]

> 0

This term as a function of mσ
c achieves a unique global minimum of 0 at σm

c = 0.19 Since Assumption 2

restricts σm
c > 0, this term is strictly positive, and thus dx∗

dm < 0.20

Contrary to x∗, x̄ captures the optimal intensity of investment in imitation. An increase in m decreases

the instantaneous marginal productivity of imitation, D(x;m), as well as the fall-back incentive, D′(x;m),

which will cause agents to adjust their optimal x̄ and s̄ levels.

18To see this, first note, using a first order Taylor expansion of the convex function xm aroundm = 0, that 1−xm > −mxm lnx.

Then using this inequality,
d( c

m
(1−xm))
dm

= c
m2 (xm − 1−mxm lnx) < c

m2 (xm − 1 + (1− xm)) = 0.
19The first derivative of the term is ln(1− σm

c
) and the second derivative is positive: 1

1−σm

c

> 0 for 1− σm
c

> 0.

20Note: limm→0+
dx∗

dm
= limm→0−

dx∗

dm
= −σ2

2c2
e

−σ

c < 0.
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Figure 4: Equilibrium indexed by m

Intuitively, decreasing the efficiency of technology diffusion by increasing m also decreases the incentive

to fall-back. Formally, d
dm (D′(x;m)) = ∂2D(x;m)

∂x∂m = −cx−1+m ln(x) > 0. Since D′(x;m) < 0, increasing m

lowers the absolute value of D′(x;m) which lowers the fall-back incentive and decreases x̄.

Proposition 5. As curvature in the catch-up function changes to make imitation less efficient, the BGP

productivity ratio of imitators decreases if m
q̄

dq̄
dm < ln q̄. That is dx̄

dm < 0.

Proof. See Appendix D.2. In Appendix D.1, dq̄
dm < 0 is shown using just Assumptions 1, 2, and 3.

Proposition 6. For the parameter restrictions in Appendix D.3, as curvature in the catch-up function

changes to make imitation less efficient, the BGP level of expenditure on imitation increases. That is ds̄
dm > 0.

Proof. See Appendix D.3.

The parameter restrictions in Propositions 5 and 6 are in addition to those in Assumptions 1, 2, and 3.

However, in all numerical exercises we have examined, Assumptions 1, 2, and 3 alone have ensured dx̄
dm < 0

and ds̄
dm > 0.

Figure 4 illustrates the comparative dynamics of the economy with respect to changes in the efficiency of

technology diffusion, m. Proposition 4 states that decreasing the efficiency of diffusion causes x∗ to fall. That

is, as technology diffusion becomes less efficient, a larger mass of agents become innovators and fewer choose

to be imitators. As Proposition 5 shows, not only are there fewer imitators as m increases, but imitators

choose a BGP productivity ratio, x̄, that decreases with m. With a lower efficiency diffusion process,

imitating agents optimally respond by letting the ratio of their productivity to the technology frontier slip

lower and they benefit from the higher diffusion rate that comes from falling behind the frontier. Since s̄

is increasing in m, along a new BGP with less efficient diffusion, imitators increase expenditures that aid

technology diffusion, even as they fall further behind the technology frontier.

If we think of the recent trend of globalization and improvements in information technology as a decrease

in m, this theory suggests that the new BGP would feature fewer innovators and more imitators, with

the imitators spending less to increase diffusion and having a relatively higher ratio of productivity to the

technology frontier.
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6.3 Does Less Efficient Diffusion Technology Always Lower x̄?

Proposition 5, shows that as m increases and imitation gets less efficient, the BGP productivity ratio of

imitators always decreases. Imitators choose x̄ optimally to balance the incentives for catch-up and fall-

back. Since m is not the only parameter controlling the efficiency of technology diffusion, do imitating agents

always choose to fall-back as imitation becomes less efficient? Equivalently, does there exist a sequence of

D(x) functions where imitation becomes strictly less efficient and agents choose to increase x̄?

To show that such a non-monotonicity can occur, Figure 5 conducts a variation of the experiment de-

scribed in Section 6.2. To construct the sequence of D(x), this new experiment will vary m while changing

c to keep x∗(m) constant. Hence, instead of the constant ĉ with the catch-up function D(x;m, ĉ), the mul-

tiplicative term on the catch-up function will be adjusted to D(x;m, c(m)). The c(m) function is implicitly

defined by
(

1− mσ
c(m)

)m

= x∗(ĉ). For all agents in the imitation region, ∂D(x;m,c(m))
∂m < 0 for all x < x∗,

so an increase in m makes imitation less productive. This particular way of changing c and m also has the

advantage of keeping x∗ constant, which isolates the change in economic incentives on the intensive margin.

Figure 5 compares the results of changing both c and m to those of Section 6.2 where only m changes.21

The left column shows results for an experiment where c is held constant at ĉ and only m varies—similar to

Figure 4. The top row showsD(x;m, ĉ) for several values ofm and the bottom row shows x̄(m, ĉ) and x∗(m, ĉ)

as a function of m. The right column presents the new results, where the top row shows D(x;m, c(m)) and

the bottom row shows x̄(m, c(m)) and x∗(m, c(m)).

The results show the non-monotonicity of x̄(m, c(m)) even while x∗(m, c(m)) is constant. For m < 0, the

fall-back incentive dominates and agents choose to decrease x̄. For m > 0, the imitation technology becomes

so inefficient that the catch-up incentive dominates and agents choose to increase x̄.

mm

00

00

x∗(m)

x∗(m)

x∗(m)

x∗(m)
x̄(m)

x̄(m)

xx

D(x;m, ĉ) for m = {−.5, .5, 1}

−.5−.5 .5.5 11

Experiment with D(x;m, c(m))

σ σ

1 1

Experiment with D(x;m, ĉ)

D(x;m, c(m)) for m = {−.5, .5, 1}

Figure 5: Non-monotonicity of x̄

21The parameters used in this simulation are σ = 0.9, ĉ = 2, B = 2 and r = 0.05. The normalization parameter ĉ is chosen
such that x∗ and x̄ are equal across the two experiments at m = 1. Figures are not drawn to scale.
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6.4 Comparative Dynamics of c

While both c and m determine the marginal productivity of imitation, m has a distorting effect depending on

the distance to the frontier, while c changes the marginal productivity of innovation linearly and uniformly

for all x.

From equation 52 and Proposition 1, it follows that as c grows large, both x̄ and x∗ go to 1 and the

region where imitators fall behind will disappear. For agents below x̄, growth rates increase and approach

infinity as they approach the frontier. So for large c, we expect only the frontier to do research and all other

agents to be infinitesimally close to the frontier doing imitation.22

A critical feature of our catch-up specification is that technology diffusion is not instantaneous; the growth

of productivity at each instant depends on some measure of the distance to the frontier. The productivities

of firms or countries grow incrementally through diffusion from existing superior technologies at a rate that

depends on their investment in diffusion. This formulation differs from instantaneous one-shot adoption which

allows the implementation of a new technology drawn from the distribution of existing superior technologies,

as in Perla and Tonetti (2011) or Lucas and Moll (2012). The limits for large c give us a way to see how a

nearly instantaneous jump occurs, albeit here agents jump to the unique frontier rather than jumping to the

productivity of another agent in the economy, as in Perla and Tonetti (2011) or Lucas and Moll (2012).

7 Conclusion

All agents are identical except for their initial levels of productivity and they choose the intensity of their

investments to promote growth through imitation and innovation optimally. Innovation is a simple tech-

nology with a constant marginal productivity that does not benefit from externalities. Imitation facilitates

technology diffusion from the frontier, with the marginal productivity of imitation modeled by a catch-up

function that increases with distance to the technology frontier. In equilibrium, agents optimally segment

into innovators and imitators and converge to a unique and stable balanced growth path. All innovators grow

at the same rate, and therefore the ratio of their productivity to the technology frontier remains unchanged.

In the limit, the ratio of every imitator’s productivity to the technology frontier converges to a value that

lies below the threshold, where the incentives for catch-up and fall-back are balanced. When agents find

their productivities far below the technology frontier, they choose investments to facilitate the diffusion of

technology and catch-up to the balanced growth path by growing quickly. If agents are close to or at the

frontier, they focus their investments on promoting technological innovation. Agents with relatively high

productivity, but not high enough to innovate, optimally fall-back to the balanced growth path of imitators

to take advantage of more efficient technology diffusion. By focusing on the portfolio choice of allocating ex-

penditures between imitation and innovation we describe the key forces that provide incentives for imitators

to fall-back and converge to a balanced growth path that lies below the technology frontier.

22These arguments are loose in that the sufficient conditions for concavity do not necessarily hold for large c. Also, note
that the flow costs s(t)z(t) of an instantaneous jump to the frontier are negligible in our setup as c → ∞. If there is a discrete
as opposed to flow consumption cost proportional to z(t) for enabling technology diffusion, whether a jump occurs or not will
depend on the discrete benefit of jumping to the frontier technology relative to the discrete cost.
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Appendix A Stability and Uniqueness

A.1 Uniqueness of Interior Stationary x̄

Lemma 2. For any quadratic of form y2 − ay + b with roots y1 and y2, if a, b > 0 and Discriminant > 0,

then both roots are real and positive. Furthermore, y1, y2 /∈ [min{b, 1},max{b, 1}] if a > 1 + b.

Proof. The result that roots are real and positive is a standard property of quadratic equations, as b is the

product of the roots and a is the sum of the roots. Assume that there exists a root ŷ ∈ [min{b, 1},max{b, 1}].

Note that the product of the roots is given by P (ŷ) = ŷ(a − ŷ). Since P (ŷ) is concave, the argmin of P

is either b or 1. If we show that P (b) > b and P (1) > b, then we have a contradiction. P (1) = a − 1 and

P (b) = ba − b2, so P (1) > b if a > 1 + b and P (b) > b if a > 1 + b. Thus if a > 1 + b, ŷ can not be in

[min{b, 1},max{b, 1}].

To show that a unique root x̄ ∈ (0, x∗) exists, we take equation 52 in the form of q̄2 − aq̄ + b. For this

function,

a = 2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

b = 1−
mσ

c

b > 0 from Assumption 2. a > 0 using Assumptions 1 and 2. Additionally, the discriminant is positive:

D =

((

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

))2

− 4
(

1−
mσ

c

)

>
(

2−
(mσ

c

))2

− 4
(

1−
mσ

c

)

(A.1)

= 4− 4
(mσ

c

)

+
(mσ

c

)2

− 4 + 4
(mσ

c

)

=
(mσ

c

)2

≥ 0 (A.2)

Thus the q̄ roots are real and positive, and hence x̄ roots are real and positive. It remains to show that there

is a unique x̄ ∈ (0, x∗). That is, there exists a unique q̄ s.t. q̄
1
m < b1/m. Using Assumption 1, the conditions

in Lemma 2 are satisfied, i.e., a > 1 + b

a− (1 + b) = 2−
mσ

c
+

m2

c

(

σ −
r

B

)

− (1 + 1−
mσ

c
)

=
m2

c

(

σ −
r

B

)

> 0

Thus, by Lemma 2, q̄1, q̄2 /∈ [min{1− mσ
c , 1},max{1− mσ

c , 1}]. Note for m > 0, if both roots were less than

1− mσ
c < 1 or both roots were greater than one, the product could not be 1− mσ

c . Note for m < 0, if both

roots were greater than 1− mσ
c > 1 or both roots were less than one, the product could not be 1− mσ

c . Let

convention be that q̄1 < q̄2. Thus q̄1 < 1− mσ
c and q̄2 > 1− mσ

c .

Note if m > 0, then x̄ < (1 − mσ
c )1/m iff q̄ < (1 − mσ

c ) and if m < 0, x̄ < (1 − mσ
c )1/m iff q̄ > (1 − mσ

c ).

Therefore, the smaller root, q̄1, is the unique stationary solution if m > 0 and the larger root, q̄2, is the

unique stationary solution if m < 0. Thus there exists a unique root x̄ ∈ (0, x∗).

A.2 Stability of BGP

The proof of stability for the entire parameter space is completed as follows: First, prove stability for a

particular r by ensuring the determinant of the Jacobian of the dynamic system Ψ(·, ·), JΨ(·, ·), is negative.

Then, use a homotopy argument to show that the system must remain stable as r is varied throughout the
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rest of the valid parameter space.

Repeating equation 46,

d

dt

(

s

q

)

= Ψ(s, q) ≡

(

(B−s)(Bc−mr+q(−2Bc+m(−σB−rm+r)+Bcq)−c(−1+q)2s)
m(−1+q)

mq
(

c
m (1− q)s− σB − r

)

)

Taking the Jacobian of this and simplifying

JΨ(s, q) =













−2Bc+mr−q(m(1+m)r−B(4c+m2σ)+2Bcq)+2c(−1+q)2s

m(−1+q)

(B−s)(−m2r+B(c+m2σ)+Bc(−2+q)q−c(−1+q)2s)
m(−1+q)2

−c(−1 + q)q m(r −Bσ) + (c− 2cq)s













(A.3)

For the starting point of the homotopy argument, take the limit as r → σB, where g → 0. As proven in

Appendix A.1, q̄1 is the unique stationary root if m > 0, and q̄2 is the unique stationary root if m < 0. In

either case, the stationary solution, Ψ(s̄, q̄) = 0, as r → σB is

s̄ = 0, q̄ = 1− mσ
c (A.4)

Substituting these into the the Jacobian in equation A.3

JΨ(s̄, q̄) =

(

−Bc− (1 +m)r + cr
σ +B(2 +m)σ

Bc(−cr+Bcσ+Bσ2)
mσ2

mσ
(

1− mσ
c

)

m(r −Bσ)

)

Taking r → σB and simplifying further

=

(

Bσ (B2c)/m

mσ
(

1− mσ
c

)

0

)

(A.5)

The determinant of this Jacobian evaluated at the steady state in the limit as r → σB is

det (JΨ̄) ≡ det (JΨ(s̄, q̄)) = B2σ(mσ − c) (A.6)

The parameter restriction in Assumption 2 ensures that (mσ − c) < 0, and thus det (JΨ̄) < 0. Thus for a

small neighborhood around r = σB the system has local saddle-point stability. For clarity of exposition, let

Γ(s, x) be the equivalent system to Ψ(s, q) in x space. Since det (JΨ̄) < 0 near r = Bσ, then det (JΓ̄) < 0

near r = Bσ.

To complete the proof, use a homotopy argument for varying r, by parameterizing the system of equations

by r: Γr(s(r), x(r)). Let y(r) = (s(r), x(r)) and the steady state, ȳ(r) = (s̄(r), x̄(r)), be defined by Γ̄r ≡

Γr (ȳ) = 0 for r ∈ S where S = {ε,Bσ − ε} for small ε > 0. Since det
(

JΓ̄r

)

< 0 near r = Bσ, it is negative

at r = Bσ − ε for small ε > 0.

Let {ȳ(r)} =
{

Γ−1
r (0)

}

for isolated zeros of Γr(ȳ). For r ∈ S let ȳ(r) ∈ D ⊂ (0, B) × (0, 1), where D is

chosen so that there are no ȳ(r) ∈ ∂D. Then the homotopy invariant Poincare-Hopf degree on the boundary

∂D of D is
∑

y∈{ȳ(r)}

sign det (JΓr
(y)) = 1 or −1. See Milnor (1965). Since the stationary point x̄(r), and

therefore ȳ(r), is always unique for r ∈ S, then sign det (JΓr
(ȳ(r))) = sign det JΓr

(ȳ (Bσ − ε)) = −1.

If the roots of JΓr
(ȳ(r)) are real, then they must be of opposite sign. Therefore det (JΓr

(ȳ(r))) < 0 for
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r ∈ S and the system is locally saddle-point stable: given x(0) we can choose s(0) on the stable manifold

converging to ȳ (r). Note that the roots of det (JΓr
(ȳ(r))) cannot be complex since the determinant, the

product of the roots, would have to be positive in that case. Therefore x is a continuous function of time

described by the solution of ẋ = σγx + s (x)x c
m (1− xm) with s (x) optimally chosen for r ∈ S. Therefore

the BGP has to be globally stable since dx
dt 6= 0 at points other than at the unique x̄(r), or the BGP would

not be unique. Thus, it must be that dx
dt > 0 to the left of x̄ and dx

dt < 0 to the right of x̄, so the unique

BGP is stable: all agents with productivities x(t) < x∗ eventually end up at x̄ (r).

Appendix B Concavity and Sufficient Parameter Restrictions

For the Hamiltonian

H (x, s, γ, λ) = ln(x) + λxσγ + ln(B − s− γ) + λx
(

c
m (1− xm)s− g

)

define Ĥ (x, λ) = maxγ,s H (x, s, γ, λ) .

Lemma 3. The maximized Hamiltonian, Ĥ (x, λ) is concave in x if m ≥ −1 and c
σ < m+ 2.

Note that both conditions in the Lemma above restrict the efficiency of technology diffusion.

Proof. Differentiating H (x, s, γ, λ)

Hss = −
1

(B − s− γ)
2 ; γ = 0 (B.1)

Hsx = c
mλ (1− (1 +m)xm) ; γ = 0 (B.2)

Hxx = −
1 + c(1 +m)λsx1+m

x2
; γ = 0 (B.3)

Hγγ = −
1

(B − s− γ)
2 ; s = 0 (B.4)

Hγx = λσ; s = 0 (B.5)

Hxx = −x−2 ; s = 0 (B.6)

Over the innovation only region x > x∗, γ (x, λ) > 0, so we can compute ∂γ
∂x from the first order condition

Hγ = 0. Then by the envelope condition dĤ
dx = Hx + Hγ

∂γ
∂s and d2Ĥ

dx2 = Hxx + Hxγ
∂γ
∂s , which must be

non-positive to assert the concavity Ĥ (x, λ) in x. The concavity of Ĥ (x, λ) in that region will then follow

if d2Ĥ
dx2 = Hxx + Hxγ

∂γ
∂x = Hxx −

(Hxγ)
2

Hγγ

≤ 0 since γ > 0 and thus Hγ = 0. Therefore in the region
c

mσ (1− xm) < 1 where s = 0, γ > 0 we have Hγγ = − (B − γ)
−2

< 0, Hxx = −x−2 < 0, Hγz = σλ > 0,

Hxx −
(Hγx)

2

Hγγ
= −x−2 + (B − γ)

2
(σλ)

2
(B.7)

= −x−2 +
(σλ)

2

(zσλ)
2 = 0 (B.8)

This is enough to establish the required concavity over the range (x∗, 1) where s = 0, and together with the

first order optimality conditions establishes the optimal solution for the region where γ(x, λ) > 0 and s = 0.

The range x < x∗, where s ≥ 0, and γ = 0, is more complicated. Since γ = 0 over the latter region,

either s = 0 over the interior of a sub-interval where ∂s
∂x = 0, or s > 0 so that ∂s

∂x can be computed from the

first order condition Hs = 0. So either Hs = 0 or ∂s
∂x = 0. Then by the envelope condition dĤ

dx = Hx +Hs
∂s
∂x
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and d2Ĥ
dx2 = Hxx + Hxs

∂s
∂x , which must be non-positive to assert the concavity Ĥ (x, λ). The concavity of

Ĥ (x, λ) in that region will then follow if d2Ĥ
dx2 = Hxx +Hxs

∂s
∂x = Hxx −

(Hxs)
2

Hss

< 0 if Hs = 0 or, d2Ĥ
dx2 = Hxx

if s is in the interior of a sub-interval where s = 0. We have:

Hss = −
1

(B − s)
2 ; γ = 0 (B.9)

Hsx = c
mλ (1− (1 +m)xm) ; γ = 0 (B.10)

Hxx = −
1 + c(1 +m)λsx1+m

x2
; γ = 0 (B.11)

Therefore we need Q = Hxx − (Hsx)
2

Hss

< 0. Evaluating we obtain:

Q = −
1 + c(1 +m)λsx1+m

x2
+
(

c
mλ (1− (1 +m)xm)

)2
(B − s)

2
(B.12)

The first order condition for s in the range x < x∗ is:

1

B − s
≥ λx

c

m
(1− xm) (B.13)

B − s ≤
(

λx
c

m
(1− xm)

)−1

(B.14)

(B − s )
2

≤
(

λx
c

m
(1− xm)

)−2

(B.15)

From equation B.12, Ĥ(x, λ) is concave if Q < 0 and since x > 0, Ĥ(x, λ) is concave if Qx2 < 0. Using the

FOC:

Qx2 = −
(

1 + c(1 +m)λsx1+m
)

+ x2
(

c
mλ (1− (1 +m)xm)

)2
(B − s)

2
(B.16)

≤ −
(

1 + c(1 +m)λsx1+m
)

+ x2
(

c
mλ (1− (1 +m)xm)

)2
(

λx
c

m
(1− (x)

m
)
)−2

(B.17)

Then, Ĥ (x, λ) is concave in x if

−
(

1 + c(1 +m)λsx1+m
)

+ x2
(

c
mλ (1− (1 +m)xm)

)2
(

λx
c

m
(1− (x)

m
)
)−2

< 0

x2
(

c
mλ (1− (1 +m)xm)

)2
(

λx
c

m
(1− xm)

)−2

< 1 + c(1 +m)λsx1+m (B.18)

Since 1 + c(1 + m)λsx1+m ≥ 1 for m ≥ −1, we can obtain sufficient conditions for Q < 0 by checking for

conditions under which

x2
(

c
mλ (1− (1 +m)xm)

)2
(

λx
c

m
(1− xm)

)−2

< 1

for the range x < x∗. Reorganizing equation B.18,

(

(

c
mλ (1− (1 +m)xm)

)

(

λ c
m (1− xm)

)

)2

< 1 ≤ 1 + c(1 +m)λsx1+m (B.19)

(

1−
mxm

1− xm

)2

< 1 (B.20)

Therefore, we need

− 1 < 1−
mxm

1− xm
< 1 (B.21)
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The inequalities on the right holds since mxm

1−xm > 0 for any m 6= 0, so we focus on

− 1 < 1−
mxm

1− xm
(B.22)

First, if m < 0 then

xm − 1 > 1− xm −mxm (B.23)

(2 +m)xm > 2 (B.24)

Note that (2 + m)xm is decreasing in x for 0 > m > −2. Since in this region x is bounded above by x∗,

(2 +m)xm is bounded below by (2 +m)x∗m. Substituting x∗ =
(

1− mσ
c

)
1
m into the above yields

(2 +m)
(

1−
mσ

c

)

> 2 (B.25)

m
(

1− 2
σ

c
−

mσ

c

)

> 0 (B.26)

1− 2
σ

c
−

mσ

c
< 0 (B.27)

c

σ
< m+ 2 (B.28)

Similarly, if m > 0 then

xm − 1 < 1− xm −mxm (B.29)

(2 +m)xm < 2 (B.30)

Note that (2+m)xm is increasing in x for m > 0. Since in this region x is bounded above by x∗, (2+m)xm

is bounded above by (2 +m)x∗m. Substituting x∗ =
(

1− mσ
c

)
1
m into the above yields

(2 +m)
(

1−
mσ

c

)

< 2 (B.31)

m
(

1− 2
σ

c
−

mσ

c

)

< 0 (B.32)

1− 2
σ

c
−

mσ

c
< 0 (B.33)

c

σ
< m+ 2 (B.34)

Thus, Ĥ (x, λ) is concave in x if m ≥ −1 and c
σ < m+ 2.

Appendix C Proofs for Hicks-Neutral Technical Change

Note that fixing θ̄ ≡ σ̄
c̄ , defining σ = Aσ̄, c = Ac̄, and taking derivatives with respect to A is mathematically

equivalent to varying c and keeping θ̄ constant by varying σ. For mathematical convenience, we will use this

alternative approach to the proofs.

C.1 Proof of dx̄
dA

< 0

Differentiating x̄ = q̄
1
m ,

dx̄

dc
=

1

m
q̄

1
m

−1 dq̄

dc
(C.1)

Differentiating q̄ defined in equation 53:
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For m > 0 the smaller root, q̄1, is the unique stationary root.

dq̄

dc
=

1

2

m2r

Bc2
−

1

4

(

(

2 +mθ̄ (m− 1)−
m2r

Bc

)2

− 4
(

1−mθ̄
)

)−.5
(

2

(

2 +mθ̄ (m− 1)−
m2r

Bc

)(

m2r

Bc2

))

=
1

2

m2r

Bc2






1−

1

2

(

2
(

2 +mθ̄ (m− 1)− m2r
Bc

))

(

(

2 +mθ̄ (m− 1)− m2r
Bc

)2
− 4

(

1−mθ̄
)

).5







<
1

2

m2r

Bc2






1−

1

2

(

2
(

2 +mθ̄ (m− 1)− m2r
Bc

))

(

(

2 +mθ̄ (m− 1)− m2r
Bc

)2
).5







=
1

2

m2r

Bc2



1−
1

2

(

2
(

2 +mθ̄ (m− 1)− m2r
Bc

))

(

2 +mθ̄ (m− 1)− m2r
Bc

)





=
1

2

m2r

Bc2
(1− 1) = 0

Hence for m > 0, dq̄
dc < 0 which, together with equation C.1, proves dx̄

dc < 0.

For m < 0 the larger root, q̄2, is the unique stationary root.

dq̄

dc
=

1

2

m2r

Bc2
+

1

4

(

(

2 +mθ̄ (m− 1)−
m2r

Bc

)2

− 4
(

1−mθ̄
)

)−.5
(

2

(

2 +mθ̄ (m− 1)−
m2r

Bc

)(

m2r

Bc2

))

=
1

2

m2r

Bc2
+

1

4

(

(

2

(

1 +
m2

c

(

σ −
r

B

)

+
(

1−
mσ

c

)

))2

− 4
(

1−
mσ

c

)

)−.5

·

(

2

(

1 +
m2

c

(

σ −
r

B

)

+
(

1−
mσ

c

)

)(

m2r

Bc2

))

Using results from Appendix A.1,
(

1 + m2

c

(

σ − r
B

)

+
(

1− mσ
c

)

)

is the sum of roots, which is positive and
(

2
(

1 + m2

c

(

σ − r
B

)

+
(

1− mσ
c

)

))2

− 4
(

1− mσ
c

)

is the discriminant, which is positive. Hence for m < 0,
dq̄
dc > 0 which, together with equation C.1, proves dx̄

dc < 0.

Thus dx̄
dc < 0 for constant θ, which implies dx̄

dA < 0.

C.2 Proof of ds̄
dc

> 0

ds̄

dc
=

∂s̄

∂c
+

∂s̄

∂q̄

dq̄

dc
(C.2)

Solving first for ∂s̄
∂q̄ :

s̄ =
B − rm

c (1− q̄)
−1

(

1 +mq̄ (1− q̄)
−1
) =

B
(

1
m (1− q̄)

)

− r
c

1
m (1− q̄) + q̄

> 0 (C.3)

∂s̄

∂q̄
= −

1

c

m

(mq̄ − q̄ + 1)
2 (r +Bc−mr) (C.4)

Thus,
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ds̄

dc
=

∂s̄

∂c
+

∂s̄

∂q̄

dq̄

dc
(C.5)

=
r
c2

1
m (1− q̄) + q̄

−
1

c

m

(mq̄ − q̄ + 1)
2 (r +Bc−mr)

dq̄

dc
(C.6)

=
1

c2
rm

(1− q̄) +mq̄
−

1

c

m

(mq̄ − q̄ + 1)
2 (r +Bc−mr)

dq̄

dc
(C.7)

=
1

c

m

(mq̄ − q̄ + 1)

(

r

c
−

(r +Bc−mr)

(1− q̄) +mq̄

dq̄

dc

)

(C.8)

There is no θ̄ in the equation for s̄ (equation 48), but this productivity ratio is built into the dq̄
dc term by

taking θ = σ
c constant.

From Appendix C.1, if m > 0 then q̄ < 1 and dq̄
dc < 0. Then,

ds̄

dc
> 0 if 0 < m ≤ 1, or better, if r (1−m) +Bc > 0 (C.9)

From Appendix C.1, if m < 0 then q̄ > 1 and dq̄
dc > 0. Then (1− q̄) +mq̄ < 0. So,

ds̄

dc
> 0 (C.10)

Appendix D Comparative Dynamics for m

D.1 q̄(m) is Decreasing

To find dq̄
dm , take the total derivative of equation 52 with respect to q̄ and m,

2q̄dq̄ −

(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)

dq̄ −

(

−
σ

c
+

2m

c

(

σ −
r

B

)

)

q̄dm−
σ

c
dm = 0

(

2q̄ −

(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

))

dq̄ −

((

−
σ

c
+

2m

c

(

σ −
r

B

)

)

q +
σ

c

)

dm = 0

Reorganizing,
dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c (1− q̄)

2q̄ −
(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

)) (D.1)

Lemma 4. dq̄
dm ≤ 0

Proof. Analyze the case of m > 0 and m < 0 separately.

Case m > 0: The unique stable root is q̄1.

q̄1 =
1

2





(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)

−

(

(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)2

− 4
(

1−
(mσ

c

))

)0.5




dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c (1− q̄)

(

(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

))

−
(

(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

))2
− 4

(

1−
(

mσ
c

))

)0.5
)

−
(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

))
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dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c (1− q̄)

−
(

(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

))2
− 4

(

1−
(

mσ
c

))

)0.5 < 0

since, as we have shown, the discriminant
(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

)

)2

− 4
(

1−
(

mσ
c

))

> 0.

Case m < 0: The unique stable root is q̄2.

q̄2 =
1

2





(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)

+

(

(

2−
(mσ

c

)

+
m2

c

(

σ −
r

B

)

)2

− 4
(

1−
(mσ

c

))

)0.5




dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c (1− q̄)

2q̄ −
(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

))

dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c (1− q̄)

(

(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

))

+
(

(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

))2
− 4

(

1−
(

mσ
c

))

)0.5
)

−
(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

))

dq̄

dm
=

2m
c

(

σ − r
B

)

q̄ + σ
c (1− q̄)

(

(

2−
(

mσ
c

)

+ m2

c

(

σ − r
B

))2
− 4

(

1−
(

mσ
c

))

)0.5 < 0

since here m < 0 and q̄ > 1.

D.2 Parameter Restrictions for dx̄
dm

Now consider x̄,

x̄ = q̄
1
m , 0 < x̄ < 1

dx̄

dm
= −

1

m2
q̄

1
m ln q̄ +

1

m
q̄

1
m

−1 dq̄

dm
dx̄

dm
=

1

m2
q̄

1
m

(

m

q̄

dq̄

dm
− ln q̄

)

(D.2)

Using equation D.2, we can come up with an expression to verify that the x̄(m) is decreasing in m:

0 >
m

q̄

dq̄

dm
− ln q̄ (D.3)

Here, we can use the analytic expressions for dq̄
dm from equation D.1 and q̄ from equation 53.

We suspect, but have not been able to analytically show, that Assumptions 1, 2, and 3 imply this restriction

always holds. Numerically, for all parameter values within Assumptions 1, 2, and 3 we have tried, this

requirement has not been violated.

D.3 Parameter Restrictions for ds̄
dm

Looking at the expression for s̄(m) in equation 48, we will need to take its derivative with respect to m. We

need to find the derivative of s̄ with respect to m. Since s̄ is a function of other equilibrium values,

ds̄

dm
=

∂s̄

∂m
+

∂s̄

∂q̄

dq̄

dm
(D.4)
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These partials are taken using the expression for s̄(m) in equation 48

∂s̄

∂m
=

1

c
(r +Bcq̄)

q̄ − 1

(mq̄ − q̄ + 1)
2 (D.5)

∂s̄

∂q̄
= −

1

c

m

(mq̄ − q̄ + 1)
2 (r +Bc−mr) (D.6)

An expression for dq̄
dm < 0 is given in Lemma 4. Compiling the elements of the total derivative in equation

D.4,

ds̄

dm
=

1

c
(r +Bcq̄)

q̄ − 1

(mq̄ − q̄ + 1)
2 −

(

1

c

m

(mq̄ − q̄ + 1)
2 (r (1−m) +Bc)

)

dq̄

dm
(D.7)

Hence, we can get a parameter constraint on ds̄
dm < 0 by substituting for q̄ from equation 53 and for dq̄

dm from

equation D.1 into the following inequality:

0 <
1

c
(r +Bcq̄)

q̄ − 1

(mq̄ − q̄ + 1)
2 −

(

1

c

m

(mq̄ − q̄ + 1)
2 (r (1−m) +Bc)

)

dq̄

dm
(D.8)

We suspect, but have not been able to analytically show, that Assumptions 1, 2, and 3 imply this restriction

always holds. Numerically, for all parameter values within Assumptions 1,2, and 3 we have tried, this

requirement has not been violated.

Appendix E Simplification of Quadratic for q̄

We spell out in detail the simplification for equation 51:

0 =
c

m
(1− q̄)

2
−

r

B
(1− q̄)−

(σB − r)

B
(1 + q̄(m− 1))

0 = (1− q̄)
2
−

m

c

r

B
(1− q̄)−

m

c

(

σB − r

B

)

(1 + q̄(m− 1))

0 = 1− 2q̄ + (q̄)
2
−

m

c

r

B
+

m

c

r

B
q̄ −

m

c

(

σ −
r

B

)

−
m

c

(

σ −
r

B

)

(m− 1)q̄

0 = q̄2 −
(

2−
m

c

r

B
+

m

c

(

σ −
r

B

)

(m− 1)
)

q̄ + 1−
m

c

r

B
+

m

c

r

B
−

m

c
σ

0 = q̄2 −

(

2 +
m2

c

(

σ −
r

B

)

−
m

c
σ

)

q̄ +
(

1−
m

c
σ
)
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