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ABSTRACT

Laboratory experiments have established the existence of cognitive biases, but their explanatory power
in real-world economic settings has been difficult to measure. We estimate the extent of a cognitive
bias, confirmatory bias, among experts in a real-world environment. In the Associated Press Top 25
College Football Poll expert pollsters are tasked with assessing team quality, and their beliefs are treated
week-to-week with game results that serve as signals about an individual team's quality. We exploit the
variation provided by actual game results relative to market expectations to develop a novel regression-
discontinuity approach to identify confirmatory bias in this real-world setting. We construct a unique
personally-assembled dataset that matches more than twenty years of individual game characteristics
to poll results and betting market information, and show that teams that slightly exceed and barely
miss market expectations are exchangeable. The likelihood of winning the game, the average number
of points scored by teams and their opponents, and even the average week of the season are no different
between teams that slightly exceed and barely miss market expectations. Pollsters, however, significantly
upgrade their beliefs about a team's quality when a team slightly exceeds market expectations. The
effects are sizeable-- nearly half of the voters in the poll rank a team one slot higher when they slightly
exceed market expectations; one-fifth of the standard deviation in poll points in a given week can be
attributed to confirmatory bias.  This type of updating suggests that even when informed agents make
repeated decisions they may act in a manner which is consistent with confirmatory bias.
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1 Introduction

Despite the increasing evidence that there are behavioral and cognitive biases in decision making,

the general relevance of such effects to real-world economic phenomena has been questioned. Deci-

sion making in the market is inherently different from the controlled environment of the laboratory.

Many biases found in laboratory settings may be attributable to relatively uninformed individuals

making unfamiliar or irregular decisions. While individuals may have idiosyncratic biases, market

aggregation and experience may limit the scope of such effects. In general, it has been difficult to

establish that experienced decision-makers consistently exhibit cognitive or behavioral biases, or

that the market effects are large (Levitt and List, 2008). As such, laboratory estimates of bias may

have little explanatory power in real-world settings (Al-Ubaydli and List, 2012).

In this paper we estimate the effects of a cognitive bias among experts in a real-world setting.

Specifically, we examine the extent to which confirmatory bias affects announced expert opinions.

Confirmatory bias is defined as “the use of weak evidence to bolster an existing hypothesis” (Rabin

and Schrag, 1999). While examples abound of instances where individuals over-infer from weak

evidence when it is consistent with their existing hypotheses, it could be the case that confirmatory

bias is cancelled out by other biases so that the net impact on belief updating is small. Although

confirmatory bias has been documented in laboratory settings, there is little field evidence that

connects this cognitive bias to economic outcomes or measures the degree to which it influences

outcomes.

We exploit a novel real-world setting to identify the magnitude of confirmatory bias in an-

nounced expert opinions: the Associated Press Top 25 College Football Poll, a weekly poll that

elicits expert opinions about the quality of college football teams. The Associated Press College

Football Poll presents an ideal environment to identify confirmatory bias outside of the laboratory.

The poll consists of a panel of experts who have incentives to rank teams truthfully according to

their preferences. Voters are neither compensated nor rewarded for favoring certain teams over

others. The AP poll differs substantially from the Coaches’ Poll, where there may be explicit

conflicts of interest in voting (Kotchen and Potoski, 2011). Because of this, we have few of the

concerns that frequently plague empirical studies of behavioral biases, such as the potential of

1



subjects misunderstanding the task, individuals seeking to pursue other tasks rather than those

designated, or individuals responding to concerns over their reputation in a manner which would

elicit less-than-truthful rankings (Sinkey, 2011). In addition, the stakes in the poll are reasonably

high. NCAA football plays a large role in the national landscape. Since more than a quarter of

the U.S. population closely follows college football (Kotchen and Potoski, 2011), the opinions of

these experts are watched very closely. An additional strength is that the poll allows us to focus

on beliefs and belief formation outside of the laboratory, helping us build stronger links between

the laboratory and the field (Al-Ubaydli and List, 2012).

As there are distinct advantages to explicitly modeling the setting in field experiments (Card

et al., 2011), we employ a theoretically-motivated estimation strategy to provide the first field evi-

dence for confirmatory bias. We model confirmatory bias as a previous hypothesis-driven response

to noisy information. Individuals construct beliefs about the value of a parameter—in this case, the

quality of a collegiate football team—from information in their environment using Bayes’ rule and

then announce those beliefs. In our model, individuals explicitly replace ambiguous information

with confirmatory information. For example, when they believe that the value of the parameter is

positive they replace weak evidence for a positive value with information that is stronger evidence

for a positive value. We model the magnitude of this replacement as confirmatory bias.

Our identification strategy builds on the central insight from models of confirmatory bias: since

individuals with confirmatory bias over-infer from weak signals, the point at which information

changes from being weakly negative to weakly positive serves as the trigger point for confirmatory

bias. Standard models of Bayesian updating predict that individuals would upgrade or downgrade

their beliefs with tempered and smooth updating when confronted with small differences from

expectations. In contrast, models of confirmatory bias predict that biased individuals would use

these same small differences to markedly and discontinuously change their beliefs and thus confirm

their prior hypotheses. By making use of quasi-experimental techniques, we are able to isolate the

effect of confirmatory bias from the effects of other cognitive biases, such as the primacy effect.

When confirmatory bias is present the replacement of information in either direction changes dis-

continuously at the point where weakly negative information becomes weakly positive information.
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While agents can correctly distinguish between positive and negative signals, they over-infer from

weakly positive or weakly negative signals that conform to their prior beliefs. Put another way,

individuals can tell good from bad, but those with confirmatory bias replace “weak” good with

“strong” good. This intuitive theoretical insight motivates our use of a regression-discontinuity

(RD) approach to estimating confirmatory bias.

We use betting lines as a proxy for market expectations, which are particularly attractive

because they serve as summaries of the information available prior to games.1 The poll ranks the

teams thought to be the 25 best teams in the country during a given week. Beliefs of poll voters

are treated weekly with signals about the quality of college football teams, and we match more

than twenty years of poll data to market expectations of game results, betting lines, and a rich set

of game data which serve as public signals available to voters.2

We use the difference between expected and actual margin of victory as the information that

discontinuously changes from being weakly negative to weakly positive. We hypothesize that small

differences between the expected and realized margin of victory are ambiguous signals about a

team’s quality. When a given team performs very close to market expectations, very little new

information about the team’s quality is revealed. Indeed, by definition, the team has done about

as well as expected to when the predicted and actual margin of victory are close. Furthermore,

the scoring in football makes it difficult for teams to manipulate margins of victory by very small

amounts. Most important for our research design, poll voters are unable to manipulate the betting

line, final score or margin of victory in a given contest.

Our unique data allow us to demonstrate that a number of important characteristics—whether

or not the team won the game, the number of points that a team scores, the number of points the

team’s opponent scores, the quality of the opponent, the location of the game, and even the week of

the season—do not change discontinuously when the difference between the actual margin of victory

and the final betting line is small. These determinants are neither substantively nor statistically

1Following Card and Dahl (2011) we assume that betting lines are sufficient to capture the expected outcome of
the game. Logan and Sinkey (2011) and Sinkey (2011) show that betting lines are extremely accurate predictions of
actual margins of victory in college football.

2There is ample qualitative evidence to support the claim that sportswriters look at betting lines as salient sources
of information about team qualities. For example, sportscasters who are voters in the AP poll frequently mention
the betting lines during television broadcasts.
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different between teams that either just exceed or just miss exceeding the expected margin of

victory. This finding corroborates the assumption that little, if any, substantive information is

revealed when the difference between the actual margin of victory and the final betting line is

small, allowing us to treat teams who barely exceed or barely miss exceeding the expected margin

of victory as exchangeable.

We concentrate on a small window where our signal of interest is changing but where other

signals do not which permits us to isolating the response to this signal. Since the other observable

characteristics are indistinguishable on either side of the discontinuity, we avoid the problem of

having to specify the full updating function to produce the counterfactual. One empirical hurdle

in the literature is that agents may respond with different types of bias to different signals, making

it difficult to draw inference about the magnitude of any particular bias. Because all the public

information that experts use is transparent or known and all other observable signals are the same

on either side of the discontinuity, there is no other plausible updating in beliefs in response to a

signal other than the one we seek to identify.

We use the point where the betting line is exactly equal to the actual margin of victory as

the discontinuity and focus on a very small window around that point. We interpret the presence

of sharp discontinuities in belief updating as evidence of confirmatory bias. We find that these

expert pollsters react significantly to weakly positive signals even though there are no substantive

differences on either side of the discontinuity. In our main specification, we find that roughly half

of the poll voters increase a team’s ranking by one slot due to confirmatory bias. Our estimates

suggest that around one-fifth of the overall standard deviation in poll points can be attributed to

this effect. These results are in sharp contrast to standard models of Bayesian updating, which

would have both smooth and symmetric updating through the discontinuity. Furthermore, we

show that the amount of confirmatory bias we estimate does not dissipate over time. Experts react

similarly to the weak signals no matter when they are received. Experience within a season does

not alter the bias, as individuals do not “learn away” the bias by receiving more information about

a team’s quality. Our results imply that confirmatory bias is prevalent in the Associated Press Top

25 College Football Poll, and the magnitude is economically significant.
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2 Identifying Confirmatory Bias

2.1 Confirmatory Bias and Bounded Rationality

Confirmatory bias has been well-documented in the psychology literature—examples include Ma-

honey (1977); Lord, Ross, and Lepper (1979); Darley and Gross (1983); Nickerson (1998). It is

now well-known that individuals have tendencies to seek out information that confirms their prior

hypotheses (Jones and Sudgen (2001); Meissner and Kassin (2002)). Theoretically, modeling con-

firmatory bias requires a dynamic environment, since individuals first form hypotheses and then

use their hypotheses as guides for interpreting new information. Confirmatory bias also requires

a degree of signal variation. Agents must respond differently to different sorts of signals, such as

over-inferring from weak signals.

The most well-known model of confirmatory bias in economics comes from Rabin and Schrag

(1999), who model confirmatory bias in a simplified environment with two signals that correspond to

two possible states of the world. In their model, individuals are prone to stark misinterpretations of

signals as they may incorrectly interpret binary signals as being consistent with previous hypotheses

of the outcomes. These misinterpretations then strengthen the hypothesis, generating persistence of

the bias over time. Wilson (2003) frames confirmatory bias as an optimal decision under bounded

memory, where decision makers have a limited amount of ‘states’ that they can remember and

optimally choose to remember states in a way that mirrors confirmatory bias. Yariv (2005) models

confirmatory bias as an extension of belief utility, where individuals receive utility out of directional

confidence, or having beliefs that support similar actions as previous beliefs. Gottlieb (2010) frames

confirmatory bias as a result of selective awareness: once an individual becomes convinced of a

certain state of the world it becomes prohibitively costly to consider contrary evidence. Other

theoretical models concentrate on establishing how confirmatory bias and other biases could arise

from bounded rationality (Gennaloli and Shleifer (2010), among others).3

While these models provide motivation for why rational individuals might conduct biased in-

ference, they are silent on whether these biases are sizeable or how pervasive they are. We are

3Conditional on the existence of confirmatory bias, the models say little about the magnitude of confirmation bias.
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agnostic about the specific source of confirmatory bias. Instead, we concentrate on the empirical

predictions shared by these models. We take from these models the central insight that confirma-

tory bias affects the ways that new information is interpreted, and that confirmatory bias can be

defined as an over-reaction to weak evidence which corroborates prior hypotheses. We use this as

our definition of confirmatory bias in this paper, but note that these models classify other types of

inference and signal response as confirmatory bias which we do not attempt to estimate.4

2.2 Distinguishing Confirmatory Bias From Other Cognitive Biases

Confirmatory bias and other psychological or cognitive biases may be observationally equivalent. If

the change in beliefs that we find is due to either another cognitive bias or some mixture of another

bias and confirmatory bias, then our estimates of confirmatory bias are biased. Our approach

allows us to distinguish confirmatory bias from other observationally equivalent cognitive biases:

availability heuristics, primacy effects, and Bayesian over/underreaction. Below, we describe how

our approach identifies confirmatory bias as opposed to these other possibilities.

Biases based on the availability heuristic occur when individuals conduct inference based on

whatever information can be brought to mind, which may be correlated with confirmatory bias if

the only information a person can remember is their previous hypothesis. Empirically, our data

and estimation strategy allow us to distinguish confirmatory bias from the availability heuristic. In

each week of the poll, only one game for each team is available for voters to consider, and thus, we

are able to reduce and accurately measure the new information that voters have to consider when

updating their beliefs. In our environment, the amount of information available and the amount

of information that voters consider are proper subsets of each other. As such, our results are not

driven by individuals discarding information.5

Similarly, the over-weighing of information in confirmatory bias may also be mechanically sim-

ilar to the primacy effect, where individuals only remember initial information. Confirmatory bias

differs from primacy effects in that primacy supposes that individuals are selective about which

4For example, confirmatory bias could arise when agents over-infer from ambiguous information, which would be
positive or negative.

5We do not assume that individuals weigh all information equally.
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information is considered based on when it arrived, but unselective in how information is inter-

preted, while confirmatory bias is unselective about which information is considered based on when

it arrived, but selective in how it is interpreted. We would not expect individuals to react to

new information at all with the primacy effect, and our estimation strategy explicitly estimates

responses to new information. By design, we limit the possibility that the primacy effect is driving

our results.

Bayesian underreaction occurs when individuals do not sufficiently revise their priors based on

new information. Our approach identifies belief updating that would not be driven by Bayesian

underreaction. Underreaction to all information is inherently different from overreactions to a

particular type of information. If underreaction was present, then it would still be the case that

agents would react similarly to all types of signals. The agents’ responses would be dampened

by Bayesian underreaction in all cases. Since we estimate different reactions to different types

of information, our results would not be due to underreaction. The same applies to Bayesian

overreaction.

Although not a cognitive bias, herd behavior is a potential explanation for our results. Since

we use poll evidence, it could be the case that voter responses are due to herd behavior among

poll voters. Our strategy also allows us to distinguish confirmatory bias from herd behavior. In

models of herd behavior, agents look at the previous decisions of peers when forming their own

opinions as in Banerjee (1992). If the previous decisions of other voters in the poll align with a

given voter’s hypothesis, then herd behavior would be observationally equivalent to confirmatory

bias. We are able to distinguish confirmatory bias from herd behavior by looking at changes in the

poll in response to a new, ambiguous signal. Herding requires a voter to know how voters respond

because they believe that the opinions of others have information. We look at voting in response to

a specific signal, and voters vote simultaneously without knowledge of how others have responded

to the same signal. Any herding observed would have to be a function of subsequent voting, not

the contemporaneous voting we exploit. Put another way, herding requires that voters know how

others have voted, and since the votes of others are not known at the time of voting herd behavior

cannot explain the changes in beliefs we observe.
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2.3 Advantages of the Regression Discontinuity Approach

We use a quasi-experimental technique to identify a cognitive bias in the field. Our novel approach

differs from the ways that others have attempted to identify cognitive biases in observational data.

For example, other studies have attempted to identify overall updating in the AP poll (Stone (2011),

Stone and Zafar (2010)). This strategy requires researchers to simulate how voters would respond

to all potential signals. Those simulations are then used as counterfactuals to estimate updating.

However, beliefs cannot be perfectly simulated because the information that individuals use to form

beliefs can never be perfectly simulated. Therefore, belief simulation offers limited insight toward

identifying cognitive biases. The inability to simulate beliefs with a high degree of certainty poses

a problem for identification of biases since one cannot distinguish cognitive biases in updating from

weaknesses of the simulation as the simulations impose strong assumptions about belief formation

that are difficult to corroborate.

Our approach circumvents this problem by first modeling how agents would respond to infor-

mation if they had confirmatory bias. In our model, confirmatory bias—and not other cognitive

biases—is triggered discontinuously by the receipt of different weak signals. We are only required to

plausibly model the structure for the responses of beliefs to this specific information. Unlike other

studies, we do not attempt to simulate beliefs and use those simulations as our counterfactuals for

rational updating. We can explicitly measure both signals and responses in our quasi-experimental

setting. As such, we isolate a local response to a specific signal and do not make claims to identify

overall updating given the complications involved in deriving a justifiable counterfactual.

We exploit expectations about game results by using the difference between the actual margin

of victory and the final betting lines to summarize the information about the quality of a given

team that can be gleaned from a given contest. This allows us to construct both weak and strong

signals of information, key for identifying confirmatory bias. Using the difference between the

predicted and actual margin of victory allows us to define outcomes that would and would not

provide plausibly new information about quality.

We concentrate on the set of contests where outcomes closely match expectations, a subset of

contests that provides weak signals of quality in both directions but where (we show later) other
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substantive measures of quality do not differ. As these other substantive indicators of quality do

not differ in this window, we avoid the problems of having to specify the full updating function

to provide a counterfactual. Since the only variation is with respect to the signal provided by

outcomes relative to expectations, our counterfactual is the intuitive notion that Bayesian updating

would respond smoothly and symmetrically to this signal, while confirmatory bias would change

discontinuously at the point where the signal changes from being weakly negative to being weakly

positive. We believe that this approach is a more defensible empirical strategy to identify cognitive

biases in observational data. Furthermore, using the RD approach focuses our attention on the set

of contests where confirmatory bias would be present but where other biases would not produce

similar irregularities.

3 Modeling Confirmatory Bias

Using previous models of confirmatory bias as a guide, we model confirmatory bias as a dynamic

response to signals in the context of a signal extraction problem. Like Rabin and Schrag (1999),

our model is a reduced-form model of confirmatory bias. Our model highlights the key empirical

prediction of confirmatory bias we test and makes clear why the regression discontinuity design is

an appropriate test of the existence and magnitude of confirmatory bias. We model individuals as

decision makers who update their beliefs about the distribution of a parameter that evolves over

time. Individuals form hypotheses before receiving information and interpret the information with

respect to the value of the parameter.

Specifically, there are n parameters of interest which correspond to quality assessments for each

team i, qi,t, i ∈ {1, 2, . . . , n} which we assume evolve according to random walks with unknown

drifts, i.e., qit = qi,t−1 +µi,t. In every period t, individuals receive a noisy signal about the value of

the drift term for each parameter, θi,t, such that θi,t = µi,t + εi,t, where εi,t ∼ N(0, σ2ε ), where the

shocks are both i.i.d. and uncorrelated both across time and between parameters, i.e., εi,t⊥ε−i,t and

εi,t⊥εi,t−i. We make the assumption that individuals have a common prior about the distribution

for µi,0: µi,0 ∼ N(0, σ2µi,0) and that agents have a common prior about the initial level of quality,
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qi,0.
6

Observers use Bayes’ rule and engage in Bayesian updating about both the value of the quality

parameter for each team and the moments of the distribution for the drift term. In our setting,

the drift term represents how much a team has either improved or regressed in each week, while

the distribution for the drift term represents the potential capacity to improve or decline. This

distribution for the drift term is fixed at the start of time; however, every period individuals view

a signal related to the week-specific draw from the distribution (which dictates how much a team

has improved or worsened in quality in that given week), and they use those signals to pin down

the parameters of the probability distribution.

We concentrate on one noisy signal θi,t. While quality is a function of several informative signals,

we model the responses of individuals to θi,t, as it is the only source of variation in our empirical

model. We assume that contests that are fairly close to the threshold are exchangeable; the RD

design allows us to present evidence that corroborates this assumption. Exchnageability implies

that the other signals do not vary meaningfully, and therefore, responses to the other signals are

unrelated to the response to the signal of interest.

As we exploit the exchangeability assumption of the RD design, the other signals do not vary

and therefore responses to them are unrelated to responses to the signal of interest.

For simplicity, we model agents as minimizing their mean-squared error using an additively

separable quadratic loss function for agent utility based on the veracity of predictions q̂i,t compared

to truthful predictions:7

UE =

n∑
i=1

−(q̂i,t − qi,t)2. (1)

Modeling agents in this fashion rules out an interpretation of confirmatory bias as selective use of

information, since selecting information to match a hypothesis would not be utility-maximizing.

After the first period, the belief about the mean of the distribution of µ given the realization of θ

6Practically speaking, the initial prior belief about team quality corresponds to the preseason AP poll.
7Other utility functions, such as least absolute deviation, would also induce truthful reporting.
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is utility-maximizing when:

µ̂i,1 = E(µi,1|θi,1) =
f(µ)f(θ|µ)∫∞

−∞ f(µ)f(θ|µ)∂µ
=

σ2ε
σ2µ,0 + σ2ε

θi,1 (2)

with variance:

σ̂2µ,1 = V ar(µ|µ̂1) =
σ2εσ

2
µ,0

σ2µ,0 + σ2ε
. (3)

Observers make announcements about the quality parameter qi,t every period after they update

their beliefs about the drift of q. In general, without the presence of confirmatory bias, the estimate

for µi in any period t would be:

µ̂i,t = E(µi,t|θi,t) =

[
σ2µi

σ2ε + σ2µi
θi,t +

(t− 1)σ2µi + σ2ε
σ2ε + tσ2µi

ˆµi,t−1

]
(4)

with variance

V ar(µ̂i,t| ˆµi,t−1, θt) =
σ2εσ

4
µi

(tσ2µi + σ2ε )
[
(t− 1)σ2µi + σ2ε

] (5)

where, for notational simplicity, we let σ2µi be the hypothesized variance of the drift parameter from

the previous period, or σ̂2µi,t−1
. The basic intuition is that as more and more signals are received, new

signals are downweighed in (4) because they represent a smaller fraction of the overall information

available for inference.

In our model, individuals do not replace signals that contradict their hypotheses with signals

that confirm their hypotheses. This is important as we assume that individuals correctly distin-

guish between positive and negative signals. This assumption limits the extent to which individuals

“make mistakes.” Individuals do not erroneously infer contradictory evidence as being confirming.8

While individuals always have confirmatory bias, they replace evidence that weakly supports their

hypotheses with evidence that strongly supports their hypotheses. This allows for belief polariza-

tion. Individuals become more and more convinced of their original position as long as there is

not significant contradictory evidence, as is commonly found in the psychology literature and the

existing models of confirmatory bias. More formally, we define confirmatory bias as follows:

8As our data is a poll of experts, it is intuitive to assume that they correctly distinguish positive from negative
signals.
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Definition 1: An individual has confirmatory bias if, whenever ˆµi,t−1 > 0, an observer replaces

θi,t ∈ [0, κ) with θ
′
i,t = θi,t + κ and, whenever ˆµi,t−1 < 0, an observer replaces θi,t ∈ (−κ, 0] with

θ
′′
i,t = θi,t − κ.

Definition 1 operationalizes confirmatory bias by explicitly replacing one signal with a stronger sig-

nal. However, the magnitude of the replacement does not depend on the magnitude of the signal;

a priori, we have no reason to suspect that agents react to certain ambiguous signals more or less

strongly than other signals.9

Figure 1 shows the regions of confirmatory bias in our model. The figure shows the perceived

signal distribution from the perspective of the agent. Although signals are normally distributed

in this environment, individuals with confirmatory bias treat the signal distribution as if it were

missing a large mass near 0, where the signal indicates that the team is weakly improving or

declining in quality.10 For example, if the initial hypothesis is positive, then as depicted in Figure

1, µ̂ > 0, and when individuals receive a signal slightly greater than or equal to zero from the

interval [0, κ), they replace that signal with a signal from the interval [κ, 2κ), which strengthens

their hypothesis that the drift term is positive and that the team is improving in quality. The results

are similar for a negative hypothesis.11 In particular, in this environment, when an individual has

confirmatory bias and a positive hypothesis, their expected estimate of the drift term changes as

follows:

E(µi,t|θi,t) = (1−F (κ)+F (0))

[
σ2
µi

σ2
ε + σ2

µi

θi,t +
(t− 1)σ2

µi
+ σ2

ε

σ2
ε + tσ2

µi

ˆµi,t−1

]
+(F (κ)−F (0))

[
σ2
µi

σ2
ε + σ2

µi

θ
′
i,t +

(t− 1)σ2
µi

+ σ2
ε

σ2
ε + tσ2

µi

ˆµi,t−1

]
(6)

It is important to note that this is an expected value for the drift term. The actual estimate for

9For example, multiplying the signal by a constant would amplify different signals by different amounts such that
agents would be reacting more strongly to some ambiguous signals rather than others, and adding a constant that is
a function of the signal would cause the magnitude of the bias to be sensitive to a function with unknown properties.

10Signals are normally distributed because they are sums of two i.i.d. normal random variables, µ and ε.
11Since we use ranking data for the 25 best teams our empirical estimates relate to positive hypotheses.
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µi,t depends on the realization of θ:

µ̂i,t =


σ2
µi

σ2
ε+σ

2
µi

θ
′
i,t +

(t−1)σ2
µi

+σ2
ε

σ2
ε+tσ

2
µi

ˆµi,t−1 if θ ∈ [0, κ);

σ2
µi

σ2
ε+σ

2
µi

θi,t +
(t−1)σ2

µi
+σ2

ε

σ2
ε+tσ

2
µi

ˆµi,t−1 if θ /∈ [0, κ).
(7)

In particular, the limit as the signal approaches zero is:

lim
θ→0+

E(µi,t|θi,t) =
(t− 1)σ2µi + σ2ε
σ2ε + tσ2µi

ˆµi,t−1 + (F (κ)− F (0))

[
σ2ε

σ2ε + σ2µi
κ−

(t− 1)σ2µi + σ2ε
σ2ε + tσ2µi

ˆµi,t−1

]
(8)

As the signal approaches zero (indicating that the drift term is neither positive nor negative),

there is still bias as described by the first term in the square brackets, (F (κ) − F (0)) σ2
ε

σ2
ε+tσ

2
µi

κ.

This term represents the proportion of the estimate of the drift term that is altered in expectation

due to an individual’s confirmatory bias. It is increasing in κ, which we interpret as the severity

of confirmation bias for an individual. As κ gets large the severity of the bias increases. This

is intuitive because the individual makes larger mistakes when he augments the old signal with a

larger signal. Furthermore, the probability that the individual will continue to make mistakes going

forward increases as well, because the probability of receiving a relatively strong signal expands from

(F (2κ)−F (κ)) to (F (2κ)−F (0)). In future periods, the probability of mistakes increases because

beliefs become more polarized; a greater number of negative signals or more intense negative signals

are necessary in order to drive the hypothesis in the other direction.12

In our model, κ, the magnitude of how an individual over-infers from a weak signal, remains

constant over time, and thus the amount of confirmatory bias from any one signal is constant over

time. This is clearly seen in (7), where the only differences between announcements come from

the altered signal θ
′
i,t, which is a function of the original signal and κ. If an individual receives the

same weak signal in different periods, i.e. θi,t = θi,−t, then he responds to both θi,t and θi,−t by

adding the same amount, κ, to the signal both times. In this way, we only have one source of belief

polarization, the accumulation of signals over time. While individuals become more convinced of

their hypotheses over time because of the aggregation of altered signals, they do not react in a more

12Along the same lines, our model also implies that individuals make more mistakes as κ increases, since the range
of signals that they misinterpret is larger.
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confirmatory way to the same signal as time elapses. We contend that belief polarization occurs

gradually; people are more likely to reverse their hypothesis when they have altered signals only a

few times and less likely to change their hypotheses after altering signals many times.

Our dynamic model of updating with confirmatory bias yields equation (8), the limit of an

individual’s estimate of the mean of the drift term as the signal becomes weak, which motivates the

regression-discontinuity design that we exploit below. If an individual did not have confirmatory

bias, then (8) would reduce to:

lim
θ→0+

E(µi,t|θi,t) =
(t− 1)σ2µi + σ2ε
σ2ε + tσ2µi

ˆµi,t−1. (9)

Because the fraction multiplying ˆµi,t−1 is less than one, when more and more signals equal or

infinitely close to zero are received by the agent, the agent’s beliefs about the mean of the quality

distribution converge to 0 as t → ∞. Intuitively, if an agent receives a number of signals that a

team is neither improving or declining in quality, then the announcements for qi,t and qi.t+1 will

eventually converge to each other. However, with confirmatory bias this is not the case: under the

same scenario beliefs about µi can converge to at best κ. Practically, this means that an agent’s

hypothesis is that a team is always improving in quality even when receiving signals that would

indicate that quality remains the same.

For identification, we estimate how beliefs change as signals become less consistent with strongly

positive quality improvements, and test to see whether or not announcements contain confirmatory

bias, expressed as a discontinuity at the point where the signal becomes ambiguous. We argue

that the discontinuity between weakly negative and positive signals should trigger confirmatory

bias since it represents a focal point. The discontinuity is the point where individuals have the

“opportunity” to interpret weakly positive evidence as if it were strong evidence. In this way, our

model encapsulates the key insight from other models of confirmatory bias.
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4 Identifying Confirmatory Bias in the Field

The key advantage of our empirical approach is that we exploit a quasi-experimental setting to

measure both the magnitude and prevalence of confirmatory bias, allowing us to distinguish confir-

matory bias from both pure Bayesian updating and other psychological and cognitive biases. We

use historical data to test for confirmatory bias in a real-world setting, where experts announce

their beliefs about quality after observing a discrete number of signals between belief announce-

ments. The Associated Press Top 25 College Football Poll (AP Poll) is well-suited for this purpose.

As described in Sinkey (2011), it is unique in that it is relatively free from perverse incentives that

cause individuals to shade predictions. For example, this environment is different from stock or

commodity analysts, credit rating agencies, or housing price indices such as the Case/Shiller index,

in which individuals might actively look to manipulate prices. Individuals in this poll are not paid

for their opinions. At a minimum, they have few incentives to announce shaded beliefs for personal

or professional gain.

The poll is conducted weekly and only one game is played between polling, usually on Saturday.

This feature allows us to observe both prior and posterior beliefs about a team’s quality to construct

precise measures for updating. Voters observe how a team performs—whether a team wins or loses,

how a team performs relative to market expectations, etc.—and are asked by the Associated Press

to rank the 25 best teams for their ballots late Saturday evening. This ranking is aggregated using a

Borda count and the teams with the 25 highest aggregate point totals comprise the AP Poll, which

is released on Sunday.13 An important feature of the poll is that individual ballots are made public,

which acts as a further deterrent against less-than-truthful (or wildly inconsistent week-to-week)

announcements. As we noted earlier, the attention that the public gives to the poll also exerts an

influence to provide truthful announcements. Because voters have incentive to be truthful, we are

able to use the poll as a measure of internal consistency in information processing, which does not

require pollsters’ announcements to be accurate, only consistent.14

13Teams are given points from one to 25 from each individual ballot, with one representing the 25th-best team (the
team ranked 25 a pollster’s ballot) and 25 representing the best team (the team ranked one a pollster’s ballot).

14Note that, because a team’s true quality can never be perfectly observed, it is impossible to verify whether voter
announcements are indeed “accurate.”
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Unlike other settings that may also have unbiased experts, this setting only has one “set” of key

signals between the belief announcements, since teams only play one game a week. Additionally,

this feature differentiates the poll from other possibly useful opinion polls, such as the Survey of

Professional Forecasters, where voters observe many different macroeconomic variables, and the

AP College Basketball Poll, which is similar to the football poll, but different in that teams may

play multiple games in a week. In these alternative settings, the presence of multiple relevant

signals between observations poses an identification problem in that one may erroneously attribute

a change in beliefs to a bias rather than a reaction to the information provided by a different set

of signals.

4.1 Data

We constructed a unique dataset that contains detailed game and betting market results for 31 of

the most prominent teams in college football for the years 1985-2008.15 The teams are listed in

Table 1. We note that choosing teams at random would give us relatively few observations as a

team must be ranked in the poll. Also, in order to establish exchangeability, we need measures of

other observable characteristics not accounted for in the AP poll itself, such as opponent strength

and the points scored in individual contests. The teams included in our data are the teams most-

consistently ranked (week to week) during this time period. While sample selection is always

a concern, an excluded team would have to be one that was consistently ranked and played an

extraordinarily large number of contests where the margin of victory was close to the betting line

for their exclusion to bias the results. We view this possibility as highly unlikely as our data consists

of the teams most likely to be ranked over the time period considered.16 Most important, our data

includes a rich set of game characteristics: game location, both the team’s and the opponent’s

contemporaneous and season winning percentages, poll rankings of teams and their opponents, and

poll points in the AP Poll. The game characteristics were hand-collected from the ESPN College

Football Encyclopedia (McCambridge (2005)) and were then matched to the detailed historical AP

poll data. We include betting lines taken from sports handicapper Jim Feist’s workbook, which

15See Logan (2011) and Sinkey (2011) for more on sample design.
16The majority of teams in the data go several years between polls in which they are not ranked.
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provides betting lines for each game over this period.17 Each observation in our sample consists of

a team’s performance in a given week of a given season.

The summary statistics for the total sample are listed in Table 2. Teams in our overall sample

are more likely to win, as they are stronger teams, and are favored to win by slightly more than

eight points, on average. This is consistent with this set of teams being among the most prominent

and having long-standing winning traditions. They exceed market expectations roughly half of the

time, however, as shown in both the beat spread variable and the difference between the betting

line and the margin of victory. In general, their opponents have usually won one more game than

they have lost at the time they play the teams in our sample.

Other covariates in the data include the change in the number of AP points after the game, the

score of the team, the score of the opponent, the week of the season, the AP rank before the game,

the AP rank after the games, indicators for whether the team won or loss the game, and the wins

and losses of the opponent. The sample necessarily focuses on ranked teams as these are the only

teams for which we have a reliable measure of perceived quality. We note that, as ranked teams, it

is likely that voters have positive priors about these teams relative to unranked teams.

The dependent variable is the week-to-week difference between the points a team has in the

Associated Press Poll before and after the reference game is played. Since the AP Poll is a Borda

count of individual pollster ballots, it is a measure of the change in the perceived quality of a team

from individuals who are “experts” on college football and designed to achieve a consensus ranking

of teams from a large number of experts. Since the poll points generate the ranking they are a

sufficient statistic for the ranking. Another advantage of poll points is their ease of interpretation.

Since the number of voters is known, the change in points can be interpreted as the number of

pollsters who change their ranking. For example, a positive difference of one point is equivalent to

one pollster ranking a team one slot higher than in the previous week.

Our running variable is the difference between the actual margin of victory for a contest and

17Betting lines are released at the start of the business week, primarily Monday or Tuesday, and are updated up
until the start time of the game. The last betting line is known as the “final line.” In our estimates, we only use final
lines, as this represents the full set of information available right up to the start of the game. Betting lines have been
shown to be extremely accurate predictors of actual margins of victory. For example, (Logan and Sinkey, 2011) use
all Division 1-A football outcomes from 1985 to 2005 and regress the actual margin of victory on the betting line and
find the constant to be -0.00866 (0.11 s.e.) and coefficient on the betting line of 1.003 (0.01 s.e.).
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the point spread (the predicted margin of victory) in the betting markets for the same contest. We

conjecture that the quantity of new information contained in the signal varies with respect to the

magnitude of the difference. Large differences between the actual margin of victory and the point

spread likely signal “new” information, as a large divergence between the realized performance

and expected performance indicates that the expected performance was particularly inaccurate. In

these cases, we would expect observers to update their beliefs significantly: large departures from

expectations imply that previous beliefs were inaccurate. We note that large differences could be

due to inaccurate priors about quality or random error, but they are observationally equivalent and

could be used by experts as the basis of a revised prior.

Small differences between realizations and market expectations, however, provide scant “new”

information, as a small difference indicates that the team performed as well as expected. If agents

update their expectations using Bayes’ rule, then a small difference between the actual margin of

victory and the predicted margin of victory will result in small changes in the perceived quality

of a given team. More importantly, these small updates would be symmetric around the point

where the actual and predicted margin of victory were equal, small departures in either direction

would be weighed equally. If agents drastically alter their perception of a team’s quality when

confronted with small departures from expectations, however, then we interpret this as evidence of

confirmation bias.

5 Methodology

In the majority of studies that employ the regression discontinuity (RD) design, the focus is on

estimating the effects of treatment on the outcome of interest where treatment is determined by

the value of the running variable. Typical application of the regression discontinuity design fo-

cuses on a narrow window around the cutoff because the validity of the causal inference depends

on the following assumption: agents who barely fail to qualify for the treatment and those who

narrowly qualify are exchangeable. If this assumption holds, then researchers can recover an un-

biased estimate of the treatment effect for the subset of the population “close” to the threshold.

The RD design appeals to researchers because it offers a means to provide evidence that supports
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the assumptions necessary for valid causal inference. In particular, it exploits the insight that the

outcome of interest may well be affected by the running variable, but the relationship between the

running variable and the outcome variable is smooth, not discontinuous. As long as individuals

are unable to precisely control their treatment, the RD approach allows for discontinuities at the

cutoff to plausibly be interpreted as causal effects of treatments (Lee, 2008).

We employ the RD design in a somewhat novel, but still appropriate, context that is supported

by the underlying behavioral model. Many papers on Bayesian updating need to estimate a belief

structure and compare actual responses to this belief structure, which would rely on imposing

structural conditions on the exact form of individual belief functions. We are able to avoid this

potential drawback by exploiting the fact that voters have no ability to manipulate the running

variable, because they neither participate in games nor set betting lines. Additionally, if the

assumption of exchangeability holds voters would not update their beliefs in response to other

information as it is indistinguishable on either side of the discontinuity. Nevertheless, we allow

for the functional form for voter beliefs about quality to differ on each side of the discontinuity,

following the recommendation in Lee and Lemieux (2010) and implementing the RD design by

estimating:

∆qi = α + τD + ΣK
k=1βkθ

k
i + ΣK

k=1δk(D × θki ) + εi (10)

D is an indicator that assumes a value of one if the difference between the actual margin of

victory and the point spread exceeds zero. The running variable, θ, is the difference between the

actual margin of victory and the expected margin of victory. Like Matsudaira (2008) and Dell

(2010), we also estimate specifications with low order polynomials that are fully interacted with D.

This allows the expectation of ∆qi to exhibit different behavior on both sides of the discontinuity.

We cluster the standard errors on different values of θ due to uncertainty in the choice of functional

form for RD designs with discrete support (see Lee and Card, 2008, among others).

Using the difference between the actual margin of victory and the point spread as our running

variable eliminates the problems associated with “heaping,” as described in Barreca, Lindo, and

Waddell (2011) and manipulation of the running variable as described in McCrary (2008). Heaping
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in the running variable may cause RD designs to have biased estimates as measurement error in

the running variable can lead to misassignment on either side of the discontinuity. We do not have

measurement error in either the betting line or the actual margin of victory. Our data are neither

rounded nor self-reported, which are two common causes for heaping. More importantly, we have

good reason to think that our data would not heap at any particular difference between the point

spread and margin of victory, since if this were known to bettors, they would strategically alter their

betting behavior to try and make profit, and, knowing this, betting houses would adjust their lines.

Logan and Sinkey (2011) provide evidence that betting houses are good at doing this. McCrary

(2008) devises a test to detect manipulation of the running variable; however, as stated earlier, given

that voters are able to manipulate neither the betting line, final score, nor the margin of victory

in a given contest and that the observations are comparably distributed across the threshold, we

assert that there is a clear lack of manipulation.

The departure from Bayesian updating, τ , is the parameter of interest. In the model, it is

given by σ2

σ2
ε+σ

2κ, which is the amount of confirmatory bias added onto the original estimate of µ̂t,i

in any period. If the AP pollsters update in a Bayesian fashion, then the function that relates

perceived quality to the quantity of underlying new information will trend smoothly through the

point where teams just miss or just exceed expectations. When the difference between the actual

margin of victory and the spread approaches zero, little new information is revealed; by definition,

the team performed nearly as well as expected in a given contest. Therefore, our model predicts

that at points where there is minimal information, there should be no discontinuous adjustments

to perceived quality. If τ is indistinguishable from zero, then AP pollsters announce their estimates

of perceived quality in a manner consistent with Bayesian updating without confirmatory bias. If τ

assumes a positive value that is statistically distinguishable from zero, then our model characterizes

this as evidence that AP pollsters do not update using Bayes’ rule and instead exhibit confirmatory

bias. Our estimate of τ is the local average treatment effect of exposing voter beliefs to an ambiguous

signal, and we interpret positive values as strong evidence of confirmatory bias.
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6 Empirical Results

6.1 Establishing Exchangeability

If the baseline characteristics of the team trend smoothly through the discontinuity, then this is

evidence that the teams within the window are exchangeable. Such evidence supports the assump-

tion that any observed change in the allocation of poll points is due to over-reaction to the weak

signal of barely exceeding the spread and not the provision of new information or other features of

the updating process. Because there are no differences in observables between the observations on

either side of the discontinuity, the belief changes we observe are caused by the treatment of beliefs

with ambiguous signals, which allows us to plausibly interpret our estimate of confirmatory bias

as a local average treatment effect. Theoretically, we do not need to model the structure of the

updating function; because other signals are equivalent on both sides of the discontinuity, there is

no plausible updating due to these signals. Substantively, other signals contain information related

to quality, but these signals are equivalent on both sides of the discontinuity. The only variation

we have is in barely missing or barely exceeding the spread, which contains very little information

about quality since margins of victory in football are incredibly difficult to manipulate in small

amounts by design.

To test for this smooth trend through the discontinuity, we estimate a system of Seemingly

Unrelated Regressions (SUR) to determine if the baseline characteristics are locally balanced (see,

for example, Zellner, 1962). Specifically, we estimate:

C1 = η1 + Dβ1 + ε1 (11)

...
...

...

CJ = ηJ + DβJ + εJ

The Cj are a series of baseline characteristics that may affect updating, including whether a

team wins, the opponent’s record, and the scores of the team and opponent. D is a dummy variable
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that assumes the value one if the difference between the actual margin of victory and the point

spread is larger than zero. Differences across the threshold in the baseline characteristic will be

captured by βj . The SUR approach allows for correct inference even if the εj are correlated across

equations. In particular, it accounts for the possibility that, due to the large number of covariates,

some discontinuities may occur by random chance. We test to see if each βj is statistically different

from zero.

We choose a window where the difference between expected and actual outcomes is less than

or equal to three and one-half points (in absolute value). We choose this window because 3 points

is the modal minimum scored in football contest and to account for the fact that betting lines are

sometimes set at half-point intervals.18 Since we concentrate on a very small window where the

betting line accurately predicts the margin of victory, our sample consists of 417 contests with a

difference of less than three and one-half points between the actual margin of victory.19 Table 3

shows the balance of the covariates in our sample both above and below the discontinuity. Columns

1-3 of Table 3 indicate that the distributions of the covariates appear to be balanced both above

and below the threshold.20 The third column contains the results of a two-sided t-test comparing

the difference in means for the populations above and below the threshold. We find no evidence

that the plausibly important factors—for example, the number of points the opponent scores and

whether the team won the game—are statistically different for teams that are just above and just

below the threshold. The results from column 4 show that all of the estimates in the SUR system are

statistically indistinguishable from zero. Taken together, columns 3 and 4 provide strong evidence

for balance on both sides of the discontinuity. These results corroborate the assumption that teams

just above and just below the threshold are exchangeable, that just exceeding market expectations

is uncorrelated with other features of the game in question.

18Teams can only score one point after scoring a touchdown, which is worth six points. Two points can only
be scored either after a touchdown or as a result of a safety (which requires an offense to be tackled in their own
endzone), which is rare in football.

19Note that our identification strategy uses roughly 5% of the total sample.
20Since teams on both sides of the discontinuity win their games more than 80 percent of the time our results are

not due to double-counting the same contest between two ranked teams.
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6.2 Graphical Evidence

The motivation for our RD design is visually evident. In Figure 2 we plot the week-to-week changes

in poll points (y-axis) and the difference between the actual and expected margins of victory (x-axis)

for the entire sample. The figure shows that teams which perform extremely poorly, with differences

substantially less than zero, are thought to be of much lower quality than expected, as they have

large negative poll point changes, on average. Teams which perform extremely well relative to

expectations are thought to be of much higher quality than expected, as they have large positive

poll point changes. At zero, however, there is a visible discontinuity in belief changes. Teams whose

performance is just to the right of zero (who slightly exceed expectations) are assessed as being of

significantly higher quality than teams whose performance is just to the left of zero. Indeed, the

slopes of the linear updating function differ on either side of the discontinuity.

This discontinuity persists despite the fact that, in many instances, betting lines are set in half-

point increments, and thus a team’s performance is automatically forced to one side or the other

of the discontinuity. In these games, it is impossible for poll voters to set their expectations that

a team will win or lose by a half-point increment because teams are unable to score half-points.

In these types of scenarios, which happen frequently in the betting market, it would be especially

strange to value close differences between the margin of victory and the betting line since those

differences have to occur by default. Indeed, half of our support in the running variable, irrespective

of the window size, consists of such games. (As a robustness check, we also show results for other

“windows”—two and one-half points, three points, four points, and four and one-half points—in

the next section.)

6.3 Regression Discontinuity Estimates of Confirmatory Bias

Table 4 contains the results from the RD design for all specifications for our window of three and

one-half points. The standard errors are clustered on the running variable, θ, which allows us

to account for potential misspecification of the conditional mean function. Column 1 of Table 4

contains the results of a basic linear regression in equation (10) of the difference in AP Poll points

from before and after the contest on an indicator variable that assumes a value of one if the team
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beats the spread in a given contest. The basic regression indicates that barely exceeding the point

spread results in a 29.74 point gain in AP Poll points. Put another way, the results are equivalent

to nearly half of the AP pollsters rank a team one slot higher for barely beating the spread, as

there are 60 voters in the AP poll. This estimate is statistically different from zero. Its magnitude

is considerable, as this gain is nearly 19 percent of the standard deviation of the change in AP

Poll points for the sample.21 Furthermore, we find that this result is robust to the selection of

different windows. When we change our windows to two and one-half, three, four, and four and

one-half point windows (shown later), we find that beating the spread on voter beliefs continues to

be significant for all our basic specifications.

Columns 2-4 in Table 4 contains the estimate of the discontinuity with a specification that in-

cludes fully interacted quadratic, cubic, and quartic polynomials in θ, respectively. These estimates

allow the conditional expectations function to differ on both sides of the threshold with increasing

flexibility, and are designed to account for potential misspecification of the belief function on either

side of the threshold. Even with this additional flexibility in the conditional expectation function,

we find significant evidence that voters take into account beating the spread when updating their

beliefs. In the quadratic specification, voters add 81.23 points to their belief function and that this

result is significant at the ten percent level. In our cubic and quartic specifications we find the

estimated effect is quite large, at 210.03 points, which is 133 percent of the standard deviation, and

308.53 points for the quartic, which is a staggering 196 percent of the standard deviation.

The point estimates in Columns 2-4 are quite large. These estimates likely exacerbate the true

response, as estimating higher-order models in small bandwidths overfit the data (see Lee and

Lemieux (2010)). When we condition our estimates of τ on the expected values of θ for the flexible

functional forms employed, however, they equal the results in Column 1. As such, these results

lend credence to our assertion that voters use imprecise information as confirmatory when they

already have positive hypotheses of team quality.

Figure 3 provides graphical evidence of our results. In this figure, each point represents the

21The standard deviation of the change in AP Poll points for the estimating sample is 157.26 points. Similarly,
Sinkey (2011) finds that total updating for beating the spread is anywhere from 50 to 70 points depending on the
specification.
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average of the change in AP Poll points for each half-point interval, and each curve represents a

separate regression of the means of the differences in AP Poll points on quadratic, cubic, and quartic

polynomials in θ, our running variable. Each curve provides clear visual evidence of a discontinuity

in beliefs at zero. In addition, the polynomials in this figure show how our belief estimates from

the conditional mean function evolve as additional flexibility is added to the functional form. This

provides strong graphical evidence of a large jump in beliefs at the threshold.

We interpret these findings as evidence of confirmatory bias. Votes in the poll necessarily

represent positive hypotheses about quality of teams, because these teams are selected as being

among the 25 best teams in the country.22 In our model, when voters with positive hypotheses are

confronted with weakly positive signals about team qualities, they replace these signals with more

positive signals, generating persistence in confirmatory beliefs over time. The results are consistent

with the model.

7 Extensions and Robustness

7.1 Extensions: Constant Bias Over Time

In our model, it becomes increasingly difficult to convince an individual to change his or her

hypothesis if they continue to receive weak signals. This leads to an unwillingness to change one’s

hypothesis in response to new data, which may lead to sub-optimal decision making. Our model

allows us to examine the source of belief polarization. In particular, we concentrate on equation

(7), which indicates that the magnitude of confirmatory bias in response to any one signal should

not increase as signals accumulate. In (7), individuals replace weak signals in the region θi,t ∈ [0, κ]

with new signals θ
′
i,t = κ + θi,t. An important distinction of our model is that the parameter κ

remains fixed for any period t; it is time-invariant. Belief polarization occurs because individuals

have accumulated many augmented signals over time. While the cumulative effects may be large,

the bias at any point is the same. This is intuitive within the framework of confirmatory bias—

individuals do not know that they have confirmatory bias, and as such their over-inference is a

22Teams in the poll are thought to be among the top twenty-five percent of teams in Division 1-A.
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constant (time invariant) cognitive bias.

If the amount that individuals erroneously infer remains constant over time, then we should not

expect to find significantly different responses to weak signals at different parts of the season since

we are looking at differences from week to week and are thus conditioning on prior estimates of

quality. As the season progresses (the week of the season increases), individuals receive more signals

about a team’s quality, and beliefs may become more polarized. However, our model stipulates

that belief polarization does not imply that individuals are reacting more or less to weak signals,

but rather their cumulative effects.

It is also important to note that the pollsters in our setting are experts. It is natural to assume

that beliefs early in the season would be based on scant evidence, as the season progresses one

would expect experts to exhibit less bias over time. In particular, the within season experience

of the pollsters implies that biases such as over- or under-reactions would diminish over time.

Intuitively, we would expect experts to learn quickly over the course of a season. As such, we view

this extension as a powerful test of the cognitive nature of confirmatory bias.

We test to see whether there are any differences in updating that depend on the week of the

season by estimating (10) with the inclusion of a variable that captures the week of season interacted

with beating the spread. Formally, we estimate:

∆qi = α′ + τ ′D + γD ∗WOS + ΣK
k=1β

′
kθ
′k
i + ΣK

k=1δ
′
k(D × θ∗ki ) + ε′i (12)

where WOS represents the week of the season and γ represents the magnitude of how individuals

respond to beating the spread in a particular week of the season. If individuals respond to weak

signals more significantly later in the season, then we would expect γ to be positive and significant.

However, if individuals do not respond to weak signals more significantly later in the season, then

we should not expect this interaction term to be statistically different from zero.

Table 5 shows the results. Column 1 reports our results of a basic linear regression of the

difference in AP Poll points from before and after the contest on an indicator variable for beating

the spread and the interaction variable designed to capture whether individuals respond more to

weak signals as the season progresses. While our estimate for beating the spread remains similar to
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our estimates in Table 4, we do not find any evidence that individuals react more to weak signals

later in the season. Columns 2-4 corroborate the results from our basic specification. As we allow

the conditional expectations function to vary, we again find the voters react to weak signals, but

do not react more strongly later in the season compared to earlier in the season. The results of

Table 5 are consistent with the model.23

These results provide evidence for the mechanics of belief polarization, and also serve as a

check against alternative explanations. If individuals more strongly augmented their beliefs over

time based on when they received information, then this augmentation should be captured in our

estimates, since these estimates represent the marginal upgrade to individual beliefs based on when

information is received. Because we control for when weak information is received, we are able to

disentangle different explanations for why individual beliefs become more polarized over time.

As an example, our results are inconsistent with the idea that voters may learn to de-bias

their opinions over time. A common criticism of laboratory studies of cognitive biases is that,

given sufficient experience, individual biases would be reduced or eliminated. In our setting, if this

criticism were true, subsequent observations would temper confirmatory bias. However, individuals

do not “improve” their signal processing with time, as beating the spread remains significant

throughout the season. Similarly, our results are inconsistent with the idea that belief polarization

occurs because people more strongly react to information at later dates. It is more likely that

polarization occurs because of many separate overreactions to weak signals, which, in our model,

occurs due to confirmatory bias.

7.2 Robustness Checks: Sensitivity to Bandwidth Selection

As a sensitivity check, we test to see whether our estimates for the magnitude of confirmatory bias

are sensitive to bandwidth selection. While we use three and one-half points as our base estimation

window, we also provide estimates from both larger and smaller windows. Windows of two and

one-half, three, four, and four and one-half points are arguably identical in information content

23We estimated models with squared and cubic terms for week of the season for greater flexibility in the week of
season effect and those results were not statistically significant. We also estimated versions of equation (12) with
dichotomous indicators for thirds of the season and the results were not statistically significant in those specifications,
either.
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to voters. Since these windows also provide scant new information about a team’s quality, we

should expect that voters with confirmatory bias will react similarly to beating the spread in these

windows as well. We note, however, that as the window expands our model predicts that some of

the resulting updating may be completely rational since the signal is becoming more informative

the larger the departures are from expectations.24 (We provide statistical evidence for balance in

these windows and graphical evidence for the discontinuity the appendix.)

Table 6 contains the results of our RD design for the two and one-half, three, four, and four and

one-half point windows, respectively. Column 1 provides estimates from a basic linear regression of

the change in AP Poll points on an indicator variable that assumes a value of one if a team beats

the spread in a given contest. In the three, four, and four and one-half point windows, beating

the spread is a significant determinant of realized belief changes.25 This evidence is quantitatively

similar to our results from our main bandwidth. We find that beating the spread adds 29.11 points

to a team’s ranking in the three point window, 33.96 points to a team’s ranking in the four point

window, and 42.53 points in the four and one-half point window. Practically, this is equivalent to

between half to three-quarters of voters moving a team up one slot in the poll, depending on the

window. Consistent with our earlier argument, the size of the change in belief increases with the

size of the window by a small amount. Columns 2-4 of Table 6 provide evidence that our result is

robust to inclusion of higher order terms in the running variable.

Beating the spread is a highly significant determinant of voter beliefs. We find compelling

evidence that beating the spread is significant for a wide range of specifications and is robust to

potential misspecification of the belief function.26 These estimates provide robust evidence for

confirmatory bias in our sample. Pollsters seem to over-infer from weak information across both

bandwidths and specifications.27

24We note that the graphical evidence in Figure 2 shows that the changes in poll points increases slowly as the
departure from expectations increases.

25Beating the spread is also marginally significant in the two and one-half point window, just outside the ten
percent level.

26As we add fully-interacted polynomials in θ, we again find that our point estimates are quite large and may
exacerbate the true response, as described in (Imbens and Lemieux (2008) and Lee and Lemieux (2010))

27In the appendix we estimate a fully interacted specification which includes additional controls that have been
shown to be related to voter updating (beating the spread in the previous week, winning the game, etc.). The results
from these specifications are qualitatively similar to the results reported here.
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8 Conclusion

Cognitive biases may have significant impacts on realized economic decisions, but evidence of the

extent to which these biases affect decisions is sparse for many reasons. The very nature of the

market may mitigate the effects of individual bias in decision-making. Similarly, more experienced

agents are less likely to exhibit cognitive biases. Empirically, it is difficult to both match reliable

estimates of individual beliefs to the information used to construct those beliefs and to track beliefs

and information over time. Because of these limitations, learning about either the magnitude or

persistence of a bias in a real-world setting is difficult.

We are able to track hypotheses over time and are able to estimate how individuals respond to

new information. We utilize a regression discontinuity design to test for the magnitude of confir-

matory bias in the field, allowing us to focus on the response to a specific signal. We focus on the

unique variation afforded by examining how beliefs change when confronted with small differences

between realized and expected results. We find that individuals react to small positive differences

differently from small negative differences. These reactions are inconsistent with Bayesian updat-

ing. Our estimates of how individuals respond above and below the threshold are economically

large and provide direct empirical evidence of confirmatory bias in a real world setting.

We find that our results are robust to a large number of potential confounds. For example, we

find robust evidence to our basic estimates in our quadratic, cubic, and quartic specifications which

add increasing flexibility to the conditional expectation function. In each of these specifications,

voters substantially value exceeding expectations by small amounts. Similarly, we find that our

results are not sensitive to our choice of estimation window. In each of the windows we choose,

we find that voters significantly react to small, positive deviations from expectations. We also find

that the amount of confirmatory bias that we estimate is constant over time.

Even in an environment where the information available between announcements is very tractable,

we find evidence from announced beliefs that individuals may over-infer from weak signals when

they are consistent with previous hypotheses. It is reasonable to think that individuals may be

subject to similar types of biases in environments where there are many pieces of information to

consider and where hypotheses have stronger consequences. These estimates indicate that even
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experts exhibit the tendency to drastically alter their perceptions of quality when confronted with

weak signals that are largely bereft of new information.
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Table 1: Teams Used in Sample

Alabama Georgia Penn State
Arkansas Iowa Southern California (USC)
Auburn Louisiana State (LSU) Stanford
Boston College Miami, Florida Tennessee
Brigham Young (BYU) Michigan Texas
California Nebraska Texas A & M
California, Los Angeles (UCLA) Notre Dame Virginia Tech
Clemson Ohio State Washington
Colorado Oklahoma West Virginia
Florida Oregon Wisconsin
Florida State

Table 2: Summary Statistics for Entire Sample

Variable N Mean Standard Deviation Min Max
Margin of Victory 8169 8.339 20.933 -77 81
Betting Line 8169 7.462 13.925 -45 57
Beat Spread 8169 .517 .491 0 1
Win 8169 .660 .473 0 1
Opp. Wins-Losses 8169 1.069 3.254 -11 12
Betting Line - Margin of Victory 8169 .876 16.066 -80 94
AP Poll Points Change 4297 -3.387 221.388 -1007 910
AP Rank Change 4363 -.100 3.561 -17 12

Opponent W-L is defined as the number of wins minus the number of losses that a team’s
opponent has at the time of the game.
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Table 3: Balance of Covariates: Within Three and One-Half Points

Variable Below Zero Above Zero Difference SUR Estimate

(1) (2) (3) (4)

Week of Season 8.240 8.249 .009 -.781

(3.115) (3.138) [-.004] (2.592)

Score of Team 28.804 30.873 2.069 -3.892

(10.769) (12.126) [1.488] (9.591)

Score of Opponent 17.049 16.911 -.138 1.514

(9.435) (9.154) [-.144] (7.723)

AP Rank Before Game 10.147 10.939 .792 4.548

(6.292) (6.765) [.959] (5.462)

AP Rank After Game 10.196 10.610 .414 3.475

(6.4 87) (6.734) [.799] (5.524)

Wins of Opponent (By Game) 3.647 3.530 -.117 -1.245

(2.416) (2.492) [-.0495] (2.041)

Losses of Opponent (By Game) 2.412 2.559 .147 .557

(1.914) (2.022) [1.007] (1.644)

Win .843 .883 .04 .221

(.364) (.323) [1.570] (.287)

Home .603 .521 -.082∗ -.587

(.490) (.501) [-1.69] (.414)

N 204 213 417 417

The first and second columns contain means with standard deviations below. The third column contains
t-statistics from a Welch’s t-test of a difference in means in the covariates, since the two samples have
unequal variances. The fourth column contains the coefficient estimates from a system of seemingly unrelated
regressions, where each equation in the system consists of a regression of the variable in the first column on
an indicator that assumes a value of one if the team beat the spread and the interaction terms in the running
variable. In this column, we test to see if the coefficient on the indicator is zero, and report standard errors
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Regression Discontinuity Estimates of Confirmatory Bias

(1) (2) (3) (4)

Beating the Spread 29.736∗∗ 81.230∗ 210.033∗∗∗ 308.533∗∗∗

[11.347] [41.801] [50.553] [75.889]

N 417 417 417 417

R-squared .009 .016 .020 .021

Quadratic in θ? X X X

Cubic in θ? X X

Quartic in θ? X

The dependent variable is the change in AP Poll Points from the start to the end
of week. θ is the running variable, which is the difference between the margin
of victory and the betting line. Specifications (2)-(4) include a fully interacted
polynomial in θ in order to allow the conditional mean function to vary on both
sides of the discontinuity. We cluster our standard errors on θ to account for
potential misspecification of the conditional mean function. Standard errors are
in brackets, with significance levels: ∗∗∗p < .01,∗∗ p < .05,∗ p < .1.

Table 5: Testing for Constant Confirmatory Bias over Time

(1) (2) (3) (4)

Beating the Spread 35.413∗ 84.639∗ 213.956 ∗∗∗ 310.085 ∗∗∗

[16.478] [41.160] [50.802] [75.865]

Beating the Spread*Week of Season -.688 -.472 -.522 -.448

[1.551] [1.723] [1.735] [1.763]

N 417 417 417 417

R-squared .009 .016 .020 .021

Quadratic in θ? X X X

Cubic in θ? X X

Quartic in θ? X

The dependent variable is the change in AP Poll Points from the start to the end of week. θ is
the running variable, which is the difference between the margin of victory and the betting line.
Specifications (2)-(4) include a fully interacted polynomial in θ in order to allow the conditional mean
function to vary on both sides of the discontinuity. We cluster our standard errors on θ to account
for potential misspecification of the conditional mean function. Standard errors are in brackets, with
significance levels: ∗∗∗p < .01,∗∗ p < .05,∗ p < .1.
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Table 6: Regression Discontinuity Estimates of Confirmatory Bias:
Sensitivity Check

(1) (2) (3) (4)

Panel 1: RD Implementation, Two and One-Half Point Window

Beating the Spread 24.532 145.170∗∗∗ 277.468∗∗∗ 1044.259∗∗∗

[13.787] [44.530] [74.022] [0.001]

N 284 284 284 284

R-squared .006 .013 .020 .023

Panel 2: RD Implementation, Three Point Window

Beating the Spread 29.093∗∗ 108.259∗∗ 236.024 ∗∗∗ 445.646 ∗∗∗

[12.274] [38.782] [68.367] [125.400]

N 381 381 381 381

R-squared .008 .017 .019 .020

Panel 3: RD Implementation, Four Point Window

Beating the Spread 33.949∗∗∗ 61.717 160.937∗∗∗ 308.573∗∗∗

[10.218] [42.861] [45.433] [66.927]

N 508 508 508 508

R-squared .012 .016 .022 .023

Panel 4: RD Implementation, Four and One-Half Point Window

Beating the Spread 42.534∗∗∗ 80.480∗∗ 92.509∗ 312.992∗∗∗

[11.586] [53.382] [65.896] [66.927]

N 549 549 549 549

R-squared .019 .030 .031 .037

Quadratic in θ? X X X

Cubic in θ? X X

Quartic in θ? X

The dependent variable is the change in AP Poll Points from the start to the end
of week. θ is the running variable, which is the difference between the margin
of victory and the betting line. Specifications (2)-(4) include a fully interacted
polynomial in θ in order to allow the conditional mean function to vary on both
sides of the discontinuity. We cluster our standard errors on θ to account for
potential misspecification of the conditional mean function. Standard errors are
in brackets, with significance levels: ∗∗∗p < .01,∗∗ p < .05,∗ p < .1.

37



-�
−κ 0 µ̂ κ 2κ θ

Figure 1: Regions of Confirmatory Bias: Perceived Signal Distribution

38



Figure 2: Belief Updating Relative to Expectations, Full Sample
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Figure 3: Belief Dynamics at the Discontinuity, Higher Order Polynomial Fits, 3.5 Point Window
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Appendix

A Evidence of Balance For Different Bandwidths

We show evidence of balance on both sides of the discontinuity for the two and one-half point, three
point, four point, and four and one-half point windows, respectively. Appendix Table 1 provides
our estimates of balance for the two and one half point window. In this table, we find evidence
of balance for a majority of our variables. From our Welch’s t-test, shown in Column 3, we find
evidence of balance for all covariates except for the number of points scored by a team, which
might be expected since beating the spread necessarily requires a higher score. However, we find
no evidence from our SUR estimates that the points of the team is not balanced on both sides of the
discontinuity. Only one estimate, the coefficient on opponent losses at time of game, is significant,
and only at the ten percent level. Moreover, there is no statistical difference above and below
the discontinuity for this variable from out t-test. All of the other coefficients are insignificant.
Appendix Table 2 shows evidence of balance for all covariates in the three point window from both
a Welch’s t-test, shown in Column 3, and our SUR estimates, contained in Column 4. Again only
one measure—the wins of the opponent—is significant and only at the ten percent level. We do
not find any statistically significant difference in the means of the covariates for any of the other
measures which indicates that there is balance within this window.

Appendix Tables 3 and 4 provide our estimates of balance for the four point window and four
and one-half point windows, respectively. According to the t-test in Column 3 of both tables, only
the means of three of our covariates, the location of the game, the score of the team and winning,
are statistically different from each other above and below the threshold. We might expect these
differences because beating the spread necessarily requires a higher score, and teams with higher
scores are more likely to win. We do not find evidence that the score of the team and winning are
different from our SUR estimates in Column 4, and we only find evidence at the ten percent level
that there is a difference in location in the four and one-half point window. Overall, Appendix
Tables 1-4 provide strong evidence for balance on both sides of the discontinuity.

Appendix Figures 1-8 replicate Figure 3 and 4 for all of the other bandwidths. Visually, there
is large evidence of a discontinuity at zero for each window from both the difference in means and
higher order polynomial fits. This graphical evidence lends credence to our claim that beating the
spread is a causal treatment to voter beliefs. Since there is strong evidence for balance on both
sides of the discontinuity from our balance tables and SUR approach, it is plausible to think that
the discontinuity graphed in these figures is the result of a change in the running variable, and
not a change in another covariate. Furthermore, these figures provide evidence of a “trigger” for
confirmatory bias, which is consistent with our model.

B Robustness Checks: Inclusion of Controls

Inclusion of control variables should not significantly affect our estimates of confirmatory bias, as
treatment assignment should be unrelated to the values of the controls. Indeed, with balanced
established the inclusion of additional covariates is likely an over-control which would bias the
estimates of confirmatory bias. Although Table 3 and Appendix Tables 1 and 2 provide significant
evidence for local balance, we test to see whether our results are robust by including controls that
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have been found to affect voter beliefs: winning and losing and beating the spread in previous weeks
(see Coleman et al. (2010)). In Appendix Table 5, we estimate our RD design with the inclusion
of these controls for all five windows.

We find evidence that, even after including controls for other determinants of voter beliefs,
there is still evidence of confirmatory bias. Column 1 of Appendix Table 5 provides our estimates
for a basic linear regression of voter beliefs on beating the spread and the controls. In the three,
four, and four and one-half point windows, beating the spread is significant at the 90 percent
level, with estimates of 15.48 points, 17.25 points, and 20.80 points, respectively. These results
are equivalent to between 18 to 20 voters moving a team up one slot in the poll. Columns 2 and
3 include the controls and a fully interacted cubic and quartic polynomial, respectively. Again,
we find that beating the spread is a statistically significant determinant of voter beliefs in all five
windows, for eight out of ten specifications, and that these results are all significant at least at the
95 percent level. Thus our basic estimates are robust to both inclusion of controls and higher-order
specifications designed to account for potential misspecification of the belief function, even though
their inclusion is an over-control which is likely to bias estimates of confirmatory bias.

C Robustness Checks: Constant Bias Across Windows

We also test to see whether or not there is constant bias in our two and one-half, three, four,
and four and one-half point windows. To test for constant bias over time, we reproduce our basic
estimates in (12) for these windows. Our results are contained in Appendix Table 6. In this table,
we find robust evidence across windows and specifications indicating that the amount of bias over
time is not changing. We do not find that the interaction term, γ, is distinguishable from zero in
any of our windows or specifications. Beating the spread, however, remains significant in nearly
every specification. Based on these results, we do not find any evidence that voters react more
significantly to an ambiguous signal if it is received later. We find evidence that belief polarization,
as described in our model, comes from the aggregation of many altered signals over time, rather
than responding more strongly to weak signals at later times.
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Appendix Table 1: Balance of Covariates: Within Two and one-half Points

Variable Below Zero Above Zero Difference SUR Estimate

(1) (2) (3) (4)

Week of Season 8.622 8.204 -.418 .603

(2.995) (3.119) [-1.148] (3.938)

Score of Team 27.661 30.783 3.122∗∗ 9.124

(11.105) (12.341) [1.236] (15.295)

Score of Opponent 16.205 17.032 .827 -13.775

(9.294) (9.326) [.744] (11.973)

AP Rank Before Game 10.307 10.955 .648 .257

(6.031) (6.696) [.857] (8.262)

AP Rank After Game 10.551 10.841 .290 .051

(6.499) (6.781) [.367] (8.595)

Wins of Opponent (By Game) 3.756 3.350 -.406 -4.844

(2.305) (2.312) [-1.474] (2.969)

Losses of Opponent (By Game) 2.512 2.650 .138 4.739∗

(1.959) (2.072) [.575] (2.603)

Win .827 .879 .052 .157

(.380) (.327) [1.220] (.454)

Home .551 .522 -.029 -.218

(.499) (.501) [-.486] (.649)

N 127 157 284 284

The first and second columns contain means with standard deviations below. The third column contains
t-statistics from a Welch’s t-test of a difference in means in the covariates, since the two samples have
unequal variances. The fourth column contains the coefficient estimates from a system of seemingly unrelated
regressions, where each equation in the system consists of a regression of the variable in the first column on
an indicator that assumes a value of one if the team beat the spread and the interaction terms in the running
variable. In this column, we test to see if the coefficient on the indicator is zero, and report standard errors
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix Table 2: Balance of Covariates: Within Three Points

Variable Below Zero Above Zero Difference SUR Estimate

(1) (2) (3) (4)

Week of Season 8.238 8.332 .094 .241

(3.162) (3.141) [.291] (5.249)

Score of Team 28.854 30.898 2.144∗ 1.996

(11.061) (12.096) [1.723] (12.066)

Score of Opponent 16.914 17.133 .219 -7.524

(9.397) (9.301) [.228] (9.686)

AP Rank Before Game 10.265 10.867 .602 7.460

(6.176) (6.783) [.906] (6.775)

AP Rank After Game 10.341 10.577 .236 6.231

(6.481) (6.776) [.347] (6.909)

Wins of Opponent (By Game) 3.616 3.577 -.039 -4.310∗

(2.418) (2.445) [-.016] (2.501)

Losses of Opponent (By Game) 2.422 2.582 .16 1.136

(1.955) (2.053) [.779] (2.094)

Win .837 .883 .046 .128

(.370) (.323) [1.290] (.362)

Home .605 .526 -.079 -.291

(.499) (.501) [-1.578] (.515)

N 185 196 381 381

The above table contains descriptive statistics and estimates of the difference in the variables for teams that
have a difference of less than three and a half points between the actual margin of victory and the point
spread. The first and second columns contain means with standard deviations below. The third column
contains t-statistics from a Welch’s t-test of a difference in means in the covariates, since the two samples
have unequal variances. The fourth column contains the coefficient estimates from a system of seemingly
unrelated regressions, where each equation in the system consists of a regression of the variable in the first
column on an indicator that assumes a value of one if the team beat the spread and the interaction terms
in the running variable. In this column, we test to see if the coefficient on the indicator is zero, and report
standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix Table 3: Balance of Covariates: Within Four Points

Variable Below Zero Above Zero Difference SUR Estimate

(1) (2) (3) (4)

Week of Season 8.276 8.405 .129 -2.414

(3.170) (3.195) [.074] (2.210)

Score of Team 28.480 31.103 2.623∗∗ -3.610

(10.944) (11.889) [2.084] (7.993)

Score of Opponent 17.146 16.679 -.467 2.734

(9.254) (9.422) [.168] (6.505)

AP Rank Before Game 10.179 10.633 .454 6.423

(6.315) (6.651) [.610] (4.533)

AP Rank After Game 10.256 10.206 -.05 5.852

(6.471) (6.595) [-.106] (4.554)

Wins of Opponent (By Game) 3.699 3.641 -.058 -2.252

(2.497) (2.578) [-.268] (1.767)

Losses of Opponent (By Game) 2.398 2.546 .148 .218

(1.861) (1.993) [1.146] (1.350)

Win .833 .889 .046∗∗∗ .139

(.373) (.314) [2.354] (.241)

Home .618 .527 -.091∗∗ -.522

(.486) (.500) [-2.079] (.345)

N 246 262 508 508

The first and second columns contain means with standard deviations below. The third column contains
t-statistics from a Welch’s t-test of a difference in means in the covariates, since the two samples have
unequal variances. The fourth column contains the coefficient estimates from a system of seemingly unrelated
regressions, where each equation in the system consists of a regression of the variable in the first column on
an indicator that assumes a value of one if the team beat the spread and the interaction terms in the running
variable. In this column, we test to see if the coefficient on the indicator is zero, and report standard errors
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix Table 4: Balance of Covariates: Within Four and a Half Points

Variable Below Zero Above Zero Difference SUR Estimate

(1) (2) (3) (4)

Week of Season 8.327 8.457 .130 -2.564

(3.205) (3.152) [.479] (1.965)

Score of Team 28.543 31.35 2.807∗∗∗ .519

(11.167) (12.023) [2.836] (7.226)

Score of Opponent 17.502 16.632 -.87 6.054

(9.507) (9.363) [-1.080] (5.845)

AP Rank Before Game 10.126 10.714 .588 3.001

(6.274) (6.638) [.364] (4.034)

AP Rank After Game 10.271 10.236 -.035 2.862

(6.415) (6.561) [-.063] (4.041)

Wins of Opponent (By Game) 3.717 3.643 -.074 -2.353

(2.512) (2.554) [-.342] (1.572)

Losses of Opponent (By Game) 2.431 2.571 .14 .262

(1.959) (2.024) [.824] (1.239)

Win .818 .893 .075∗∗ .113

(.387) (.31) [2.500] (.217)

Home .613 .536 -.077∗ -.550∗

(.488) (.499) [-1.828] (.307)

N 269 280 549 549

The first and second columns contain means with standard deviations below. The third column contains
t-statistics from a Welch’s t-test of a difference in means in the covariates, since the two samples have
unequal variances. The fourth column contains the coefficient estimates from a system of seemingly unrelated
regressions, where each equation in the system consists of a regression of the variable in the first column on
an indicator that assumes a value of one if the team beat the spread and the interaction terms in the running
variable. In this column, we test to see if the coefficient on the indicator is zero, and report standard errors
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

46



Appendix Table 5: Regression Discontinuity Estimates of
Confirmatory Bias: Controls Included

(1) (2) (3)

Panel 1: RD Implementation, Two and One-Half Point Window

Beating the Spread 9.396 210.925∗∗∗ -184.798

[11.444] [33.956] [142.859]

N 284 284 284

R-squared .474 .479 .480

Panel 2: RD Implementation, Three Point Window

Beating the Spread 15.476 199.376∗∗∗ 165.193∗∗

[10.149] [45.952] [59.761]

N 381 381 381

R-squared .422 .430 .433

Panel 3: RD Implementation, Three and One-Half Point Window

Beating the Spread 18.277∗ 140.760∗∗∗ 247.699∗∗∗

[9.496] [38.028] [44.644]

N 417 417 417

R-squared .397 .405 .407

Controls? X X X

Quadratic in θ? X X

Cubic in θ? X X

Quartic in θ? X

The dependent variable is the change in AP Poll Points from the start
to the end of week. θ is the running variable, which is the difference
between the margin of victory and the betting line. We include con-
trols for whether a team wins or loses and whether or not a team
beat the spread in previous weeks. Specifications (2) and (3) include
a fully interacted polynomial in θ in order to allow the conditional
mean function to vary on both sides of the discontinuity. We cluster
our standard errors on θ to account for potential misspecification of
the conditional mean function. Standard errors are in brackets, with
significance levels: ∗∗∗p < .01,∗∗ p < .05,∗ p < .1.
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Appendix Table 5: Regression Discontinuity Estimates
of Confirmatory Bias: Controls Included (continued)

(1) (2) (3)

Panel 4: RD Implementation, Four Point Window

Beating the Spread 17.247∗∗ 118.938∗∗∗ 219.004∗∗∗

[7.988] [41.600] [45.032]

N 508 508 508

R-squared .409 .415 .417

Panel 5: RD Implementation, Four and One-Half Point Window

Beating the Spread 20.801∗∗ 54.026 246.398∗∗∗

[7.988] [44.678] [55.184]

N 549 549 549

R-squared .420 .423 .427

Controls? X X X

Quadratic in θ? X X

Cubic in θ? X X

Quartic in θ? X

The dependent variable is the change in AP Poll Points from the
start to the end of week. θ is the running variable, which is the
difference between the margin of victory and the betting line. We
include controls for whether a team wins or loses and whether or not
a team beat the spread in previous weeks. Specifications (2) and (3)
include a fully interacted polynomial in θ in order to allow the con-
ditional mean function to vary on both sides of the discontinuity.
We cluster our standard errors on θ to account for potential mis-
specification of the conditional mean function. Standard errors are
in brackets, with significance levels: ∗∗∗p < .01,∗∗ p < .05,∗ p < .1.
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Appendix Table 6: Testing for Constant Bias over Time

(1) (2) (3) (4)

Panel 1: Two and One-Half Point Window

Beating the Spread 32.086 148.579∗∗∗ 280.073 ∗∗∗ 1046.65 ∗∗∗

[20.281] [42.495] [67.891] [12.009]

Beating the Spread*Week of Season -.921 -.508 -.437 -.438

[2.062] [2.184] [2.191] [2.199]

N 284 284 284 284

R-squared .006 .013 .015 .023

Panel 2: Three Point Window

Beating the Spread 37.972∗ 118.237∗∗∗ 241.646 ∗∗∗ 445.646 ∗∗∗

[18.583] [37.882] [67.891] [126.533]

Beating the Spread*Week of Season -1.066 -1.288 -1.049 -1.076

[1.662] [1.819] [1.869] [1.883]

N 381 381 381 381

R-squared .005 .017 .019 .020

Panel 3: Four Point Window

Beating the Spread 34.361∗∗ 63.819 160.181 ∗∗∗ 307.817 ∗∗∗

[14.753] [40.649] [45.617] [67.042]

Beating the Spread*Week of Season -.049 -.263 .116 .115

[1.293] [1.327] [1.457] [1.440]

N 508 508 508 508

R-squared .012 .016 .022 .023

Quadratic in θ? X X X

Cubic in θ? X X

Quartic in θ? X

The dependent variable is the change in AP Poll Points from the start to the end of week.
θ is the running variable, which is the difference between the margin of victory and the
betting line. Specifications (2)-(4) include a fully interacted polynomial in θ in order to allow
the conditional mean function to vary on both sides of the discontinuity. We cluster our
standard errors on θ to account for potential misspecification of the conditional mean function.
Standard errors are in brackets, with significance levels: ∗∗∗p < .01,∗∗ p < .05,∗ p < .1.
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Appendix Table 6: Testing for Constant Bias over Time (continued)

(1) (2) (3) (4)

Panel 4: Four and One-Half Point Window

Beating the Spread 41.867∗∗ 83.341∗∗ 94.062 ∗ 313.402 ∗∗∗

[15.476] [35.859] [52.472] [66.926]

Beating the Spread*Week of Season .079 -.355 -.223 -.068

[1.238] [1.293] [1.337] [1.354]

N 549 549 549 549

R-squared .019 .030 .031 .037

Quadratic in θ? X X X

Cubic in θ? X X

Quartic in θ? X

The dependent variable is the change in AP Poll Points from the start to the end of
week. θ is the running variable, which is the difference between the margin of victory
and the betting line. Specifications (2)-(4) include a fully interacted polynomial in θ in
order to allow the conditional mean function to vary on both sides of the discontinuity.
We cluster our standard errors on θ to account for potential misspecification of the
conditional mean function. Standard errors are in brackets, with significance levels:
∗∗∗p < .01,∗∗ p < .05,∗ p < .1.
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Appendix Figure 1: Belief Dynamics at the Discontinuity, Higher Order Polynomial Fits, 2.5
Point Window
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Appendix Figure 2: Belief Dynamics at the Discontinuity, Higher Order Polynomial Fits, Three
Point Window
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Appendix Figure 3: Belief Dynamics at the Discontinuity, Higher Order Polynomial Fits, Four
Point Window
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Appendix Figure 4: Belief Dynamics at the Discontinuity, Higher Order Polynomial Fits, 4.5
Point Window
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