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INTRODUCTION 

Much of the literature on treatments effects has focused on estimating effect 

parameters that inform population level or policy-level decisions. Even when 

distributional impacts of treatments and policies are studied, the impacts are viewed 

as informing a social decision maker to help choose across alternative options 

(Heckman 2001).  However, in the presence of heterogeneous treatment effects, it is 

natural to expect that individual choices of treatments may vary from the socially 

optimal treatment that is identified based on some average social welfare criterion.  

More importantly, treatment effect information that can help change future individual-

level behavior on treatment choices would automatically influence social choice of 

treatments through positive self-selection. Hence, estimating treatment effects that 

can inform individual-level decision making can be of great social value. 

This conundrum manifests in its most acute form in the health care setting. In 

traditional clinical outcomes research, the focus has always been on finding average 

effects either through large clinical trials or observational datasets. Estimating 

treatment effect heterogeneity has mostly been relegated to post-hoc analysis, rather 

than becoming the central goal of the analysis.1 Yet, the clinical setting is an obvious 

place where individual-level decision making is most relevant as a physician-patient 

dyad tries to decide on the best line of treatment for that patient. There is a growing 

recognition based on fundamental theoretical principles that more nuanced and 

possibly individualized estimates of treatment effects between alternative medical 

interventions can lead to increased welfare through more efficient use of medical 

technologies (Basu 2009, 2011). In contrast, failing to generate such individualized 

estimates and also producing results on population average effects without recognizing 

the underlying heterogeneity could lead to welfare losses including faster growth in 

health care expenditures (Basu et al., 2011; Basu 2011).2 

                                                            
1 In randomized settings, heterogeneity analyses are often accomplished using post-hoc 
subgroup analyses (ref provenge). In some of our recent work, we have shown that such 
approaches are likely to be futile since these subgroups are often defined based on broad 
characteristics (e,g, gender) that only explains a very small fraction of the individual-level 
variance in treatment effects (Basu et al, 2012).  
 
2 In fact such insights and assertions line up well with the political economy of outcomes 
research funding in the United States, which witnessed the creation of the Patient-Centered 
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In the evaluation literature, such nuanced treatment effects are most popularly 

characterized by conditional average treatment effects (CATE) where an average 

treatment effect is estimated conditional on certain values of observed covariates over 

which treatment effects vary. For example, if age is the only observed risk factor, one 

can establish a conditional effect of surgery versus active surveillance on mortality for 

patients of age 60 years diagnosed with clinically localized prostate cancer. This is an 

average effect for all 60 year olds in this condition. However, does this estimate apply 

to all men with clinically localized prostate cancer at age 60 years? Certainly not, as 

there may be many other factors that determine heterogeneity in treatment effects in 

this population. For example, clinical stage and grade of cancer not only determines 

overall survival but may also determine differential effects from alternative treatments. 

To the extent that all potential moderators of treatments effects are observed to the 

analyst of the data, a nuanced CATE can be established conditioning on values of all 

of these factors.   

In most applied work however, not all moderators of treatment effects are observed. 

One reason is that many of these moderators are yet to be discovered and hence 

remain unknown to scientific knowledge. They are typically represented by the pure 

stochastic error term in statistical analysis of data. However, there are some 

moderators that fall within the purview of scientific knowledge but remain 

unmeasured in the data at hand.  This is usually the case for most randomized 

studies that rely on randomization to equate the distribution of all these factors across 

the randomization arms and forgo measurement of several factors in the interest of 

time and expenses.  

In observational studies, these unmeasured moderators of treatment effects play a 

vital role in generating essential heterogeneity as often they are observed by 

individuals and acted upon by some while making treatment selection (Heckman 

1997; Heckman and Vytlacil, 1999).3 An entire genre of methods, including methods 

based on local instrumental variable (LIV) approaches, have been developed to 
                                                                                                                                                                                                
Outcomes Research Institute (PCORI) through the 2010 Patient Protection and Affordable Care 
Act. 
3 In fact Basu (2011) made the argument that the traditional “selection on gains” rationale used 
in the education and labor literature is not the only mechanism to assert essential 
heterogeneity. Even if gains are unpredictable and selection is based on baseline factors, as 
long as those factors are not completely independent of the gains, essential heterogeneity is 
induced.  
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estimate policy-relevant and structurally stable mean treatment effect parameters in 

the presence of essential heterogeneity (Heckman and Vytlacil 1999, 2001, 2005). 

Basu et al. (2007, 2011) introduced these methods to the health economics literature 

where essential heterogeneity is widespread and instrumental variable methods are 

gaining meteoric popularity. Carneiro and Lee (2009) extended the LIV methods to 

estimate the marginal distributions of expected potential outcomes that are geared 

towards studying distributional impacts of population level policies.   

LIV methods can seamlessly explore treatment effect heterogeneity across both 

observable characteristics and unobserved confounders and also be used to establish 

CATE based on observed factors. In this paper, we develop and present a new 

individualized treatment effect concept called Person-Centered Treatment (PeT) effects, 

which can also be estimated using LIV methods. This new treatment effect concept is 

more personalized than CATE as it takes into account individual treatment choices 

and the circumstances under which people are making those choices in an 

observational data setting in order to predict their individualized treatment effects. In 

our prostate cancer example suppose that we not only have data on age of the prostate 

cancer patients but also the treatment they choose and the distances of their 

residence from the hospitals that offer surgical procedures. Assume that these 

distances impart a cost for accessing surgery and therefore influence treatment 

selection but do not affect the potential outcomes for these patients under either 

treatment, i.e. they are instrumental variables. Under such circumstance, 60-year old 

patients, who live far from hospital and still choose surgery is likely to have a different 

distribution of unobserved confounders than 60-year old patients who live close to the 

hospital and choose surgery. Therefore, by taking into account treatment choices and 

the observed circumstances under which those choices were made, we can enrich 

CATE to form a Person-centered Treatment (PeT) effect that provides a conditional 

treatment effect that is averaged over a personalized conditional distribution of 

unobserved confounders and not their marginal distribution as in CATE.  

There are several intuitive aspects about the PeT effects: 

1. They help to comprehend individual-level treatment effect heterogeneity better 

than CATEs.  

2. They are better indicators for the degree of self-selection than CATE. 

Specifically, they are better predictors of true treatment effects at the individual 
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level both in terms of the positive predictive value and the negative predictive 

value.  

3. They can explain a larger fraction of the individual-level variability in treatment 

effects than the CATEs. That the marginal distribution of PeT effects is a better 

proxy for the true marginal distribution of individual effects that that of CATEs.  

4. All mean treatment effect parameters can be easily computed from PeT effects 

without any further weighting. So, they also form integral components for 

population–level decision making. 

All of these features of PeT effects will be studied here. We begin in Section 2 with the 

definition, identification and estimation of PeT effects. Section 3 presents a simulation 

study showing the how PeT effects inform individual-level and the mean treatment 

effect parameters across a variety of outcomes and sample sizes. In Section 4, we 

illustrate the use of estimated PeT effects of surgery versus active surveillance on 7-

year survival and costs among patients diagnosed with clinical localized prostate 

cancer. Discussions follows in Section 5.  

 

2. PERSON-CENTERED TREATMENT (PeT) EFFECTS 

Structural Models for Outcomes and Choices 

We start by formally developing structural models of outcomes and treatment choice 

following Heckman and Vytlacil (1999, 2001, 2004). For the sake of simplicity we will 

restrict our discussion to two treatment states – the treated state denoted by j = 1 and 

the untreated state denoted by j = 0, The corresponding potential individual outcomes 

in these two states are denoted by Y1 and Y0. We assume,   

 
   1 1( , , )O UY X X   and  0 0( , , )O UY X X    ( 1 ) 

Where X0 is a vector of observed random variables, XU is a vector of unobserved 

random variables which are also believed to influence treatment selection (they are the 

unobserved confounders) and is an unobserved random variable that capture all 

remaining unobserved random variables.  
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Assumption 1.  ( , )O UX X  and O UX X  where   denotes statistical independence. 

We assume individual choose to be in state 1 or 0 (prior to the realization of the 

outcome of interest) according to the following equation: 

D = 1 if    0( , ) 0D DX Z U        ( 2 ) 

Where Z is a (non-degenerate) vector of observed random variables (instruments) 
influencing the decision equation but not the potential outcome equations, D is an 

unknown functions of X0 and Z, and UD is a random variable that captures XU and all 
remaining unobserved random variables influencing choice. By definition, DU  , 

which also defines the distinction between XU and in (1).  Equation (1) and (2) 

represent the nonparametric models that conform to the Imbens and Angrist’s (1994) 

independence and monotonicity assumptions needed to interpret instrumental 

variable estimates in a model of heterogeneous returns (Vytlacil, 2002). As in 

Heckman and Vytlacil (1999, 2001, 2005), we can rewrite (2) as 

 D = 1 if  0( , )P x Z V         ( 3 ) 

Where V =  | , | ,
D OU X Z D OF U X Z , P(x0,Z) =  | , ( , )| ,

D OU X Z D O OF x Z X Z . Therefore, for any 

arbitrary distribution of UD conditional on XO and Z, by definition, V ~ Unif[0, 1] 

conditional on XO and Z.  

Assumption 2. Assume that a)  0( , )D x Z  is a nondegenrate random variable 

conditional on XO=xO; b) (XU,  , UD) are independent of Z conditional on XO=xO; c) The 
distribution of UD conditional on (XO, Z) and that of  0( , )D x Z  conditional on XO=xO are 

absolutely continuous with respect to Lebesgue measure; d) Y1 and Y0 have finite 

moments and e) Pr(D =1) > 0. 

An individual–level treatment effect is given as  

 TE = (Y1 – Y0)         ( 4 ) 

Obviously, we never observe both the potential outcomes for each individual. Our 

observed outcome Y is given as  
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Y = Y1   if D = 1 and Y = Y0   if D = 0      ( 5 ) 

Therefore, the goal of the analysis is to obtain estimates of Y1 for subjects with D = 0 

and of Y0 for subjects with D = 1.  These outcomes are known as counterfactual 

outcomes as they represent the potential outcomes had the subjects chose a different 

treatment than they have in practice. Differences in the counterfactual outcomes 

across individual subjects will depend of XO, XU, and . Several individual level 

treatment effect parameters can be defined that reflect these variations. 

Treatment Effect Definitions 

Individualized Expected Treatment Effect (IETE): Since  is typically not only 

unmeasured but also unknown (as otherwise would have been used for treatment 

selection), the most precise individualized expected treatment effect (IETE) that one 

can hope for in terms of predictions is given by: 

IETE =( , )O Ux x | , 1 0 0 1 0 0( | , ) ( | , )
O UX X U UE Y Y x x E Y Y x x        ( 6 ) 

Throughout this paper, we will denote IETE as ( , )O Ux x and it will serve as a reference 

to which our proposed individual treatment effect parameter and other parameters will 

be compared. The typical population-level mean treatment effect parameters, the 

Average Treatment Effect (ATE), the Effect on the Treated (TT) and the Effect on the 

UnTreated (TUT), can be derived by appropriate aggregation of ( , )O Ux x over the 

relevant subgroups.  

 ATE =   | |( , )| ,
U OO X X OO U O UX E xx x x xE  =   |( , )| ,

UO X OO U O UX E xx x x xE   

TT =    | , 1| 1 | , 1( , )| , , 1
U OO X X D OO U O UX D E x Dx x x x DE    

TUT =   | , 1| 0 | , 0( , )| , , 0
U OO X X D OO U O UX D E x Dx x x x DE      ( 7 ) 

Note that the second equality for ATE follows from Assumption 1.  

Conditional Average Treatment Effect (CATE): Since XO are the only observed 

variables from the outcomes equation, a conditional average treatment effect (CATE) 
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(Heckman 1997) can be formed which is the average treatment effect conditioned on 

levels of XO only.  

 CATE =    | ( , )| , ( , )| ,
U O UX X XO U O U O U O UE Ex x x x x x x x     ( 8 ) 

where the second equality follows from Assumption 1. We will denote CATE as( )Ox . 

This is the treatment effect parameter that an ideal experiment can give where only XO 

are observed. Note that the outer expectation in CATE averages over the marginal 

distribution of XU. Although the ATE can be obtained by trivial aggregation of CATEs 

over all individuals (as in (7)), aggregation of CATE over the treated or the untreated 

individuals do not produce the TT or the TUT parameters respectively. 

Marginal Treatment Effect (MTE): The marginal treatment effect is perhaps the most 

nuanced estimable effect (Heckman 1997; Vytlacil 1999, 2001). It identifies an effect 

for an individual who is at the margin of choice such that one’s levels of XO and Z are 
just balanced by one’s level of V (which includes XU), i.e. 0( , )P x Z V .  MTE can be 

expressed as  

MTE(xO, z) =  | , ( ) ( , )| , ( )
U OX X P Z V O U OE x x x p z      ( 9 ) 

Note that, unlike CATE, the expectation in MTE averages over the conditional 

distribution of XU conditioned on meeting the definition for marginal patients. 

Heckman and Vytlacil (1999, 2001) have provided the weights needed to aggregate 

MTEs to form the mean treatment effect parameters. These weights need to be 

calculated from the data at hand.  

Person-centered Treatment (PeT) Effect: Despite the granularity of MTEs, it may be 

hard to use MTEs directly as representation of individual treatment effects as they 

themselves lack individual identity. This is because it is hard (if not impossible) to 

pinpoint an individual to whom an MTE estimate can be applied to.  Instead another 

treatment effect, which we call the Person-centered Treatment (PeT) effect (denoted as 

 ), can be written as: 

 | , ( ), ( , )| , ( ),
U OX X P Z D O U OE x x x p z D d         ( 10 ) 
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where the expectation of unobserved confounders is made conditional on person-

specific estimates of XO, P(Z) and D. Naturally, PeT effects are more nuanced than 

CATEs. Note that this parameter was originally defined by Heckman and Vytlacil 

(1999). However, they use this parameter as a stepping stone for defining structurally 

stable mean effects on treated parameter whose definition do not depend on data (Y, 

X, Z). The PeT effect in (10) would take on different values corresponding to two values 

of Z =(z, z′), z ≠ z′, with (Y, X,D) being constant. However, this is exactly the variation 

we are after when we are envisioning PeT effects. The fact that two otherwise 

observably similar persons choose the same treatment under two values of Z informs 

us that their personalized treatment effects may be different.      

Conceptually, a PeT effect is also a weighted version of MTEs. For any given individual, 

the PeT effects identifies the specific margins where that individual may belong given 

its individual values of XO, P(Z) and D. It then averages the MTEs over those margins, 

but not all as in ATE.  As we prove below, a PeT effect is basically the X-Z-conditional 

Effect on the Treated (x-z-CTT) for persons undergoing treatment and is the X-Z-

conditional Effect on the Untreated (x-z-CTUT) for persons not undergoing treatment. 

Because conditioning is done based on identifiable individual-level characteristics, a 

PeT effect can be identified for each individual in the data.  

Uses of PeT effects 

All mean treatment effect parameters can be easily computed from the PeT effects 

without any further weighting. For example: 

, ( ),

, ( )| 1

, ( )| 0

ATE = ( )

TT = ( )

TUT = ( )

O

O

O

X P Z D

X P Z D

X P Z D

E

E

E









        

( 11 )
 

In fact, any policy parameter that shifts a certain subgroup of individuals, 

characterized by shifting the distribution of XO, to take up or give up treatment can be 

predicted. Therefore, these patient-centered treatment effects can form integral 

components for population–level decision making. 
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More importantly, distributions of treatment effects are useful for policy makers who 

care about distributional effects of policies (Heckman and Robb, 1985). For individual 

decision maker, such distributional effects are of central importance. Although 

difficult to establish, the most useful metrics to study distributional impacts of policies 

and treatments are the full marginal and joint distributions of potential outcomes. 

Previous work by Imbens and Rubin (1997) and Abadie (2002, 2003) have developed 

estimators for the marginal distributions of potential outcomes under the local average 

treatment effect (LATE) framework, where the instrument corresponds to the specific 

policy question that is being studied. Carniero and Lee (2009) extends the LIV 

framework of Heckman ad Vytlacil (1999, 2001, 2005) to identify distributions of 

potential outcomes and to develop a semiparametric estimator for the entire marginal 

distribution of potential outcomes. However, when it comes to understanding 

individualized decision making, estimating the marginal distribution of potential 

outcomes is not enough.  They carry no information to help identify the quantile of the 

marginal distribution of counterfactual outcomes where an individual may lie had he 

taken an alternative treatment (Carneiro et al 2001). One must have knowledge about 

the full joint distribution of potential outcomes, which can only be established under 

much more stronger assumptions (Heckman and Honoré 1990, Heckman and Smith 

1993, Heckman et al. 1997).4 

In the absence of identification of the joint distribution of potential outcomes, however, 

the marginal distribution of the PeT effect can be crucial for understanding individual 

level decision making. The PeT effects can be used to more accurately comprehend 

individual-level treatment effect heterogeneity that CATEs fail to convey. First, they 

may be better predictors of true treatment effects  at the individual level both in terms 

of the positive predictive value (Pr(( , )O Ux x ≥ 0| ≥ 0)) and the negative predictive value 

(Pr(( , )O Ux x < 0| < 0)) than the CATEs (we will study this using simulations). Second, 

PeT effects are more likely to explain a larger fraction of the individual-level variability 

in treatment effects than the CATEs. Both play a big role in not only identifying person 

characteristics to guide treatment allocations but also in guiding future research to 

focus on collection of relevant measures of XO and XU.  

                                                            
4 Heckman and Honoré (1990) uses parametric assumptions. Heckman and Smith (1993) and 
Heckman et al. (1997) assume that the persons at the qth  percentile in the density of Y0 are at 
the qth percentile of Y1. More recently, using additional measurements in micro data, factor 
structure models have been used to establish the joint distribution of potential outcomes 
(Aakvik et al. 1999, Carniero et al. 2003). 
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Naturally, in the absence of essential heterogeneity, the PeT effects converge to CATEs. 

Identification of PeT effects 

Theorem 1. Consider the nonparametric selection and outcome models in (1) and (2). 

Under Assumption 1 and 2,  

( )1
| , ( ), 1 0 0

( | , )
( | , ( ), 1) ( )

U O

P z O
X X P Z D O

p v

E Y x P p
E E Y Y x P z D P z dv

p







 
       

  

11
| , ( ), 1 0 ( )

( | , )
( | , ( ), 0) (1 ( ))

U O

O
X X P Z D O P z

p v

E Y x P p
E E Y Y x P z D P z dv

p







 
        

  

provided that ( | , )OE Y X P p  is continuously differentiable with respect to p for almost 

every xO. 

Proof. The identification for PeT effects follows identification of marginal treatment 

effects (MTEs). Assumption 1(a) and (c) ensure that P is nondegenrate, continuously 

distributed random variable conditional on XO. Assumption 2(d) is needed to ensure 

that the expectations considered are finite. First, following Heckman and Vytlacil 

(1999, 2001, 2005), the marginal treatment effect is identified as 

 0( | , )E Y X Z    1 0( (1 ) | , )OE DY D Y X Z  

     0 1 0( | ) ( ( )| , )O OE Y X E D Y Y X Z  

      0 1 0( | ) Pr( 1| , ) (( )| , )O O OE Y X D X Z E Y Y X V P  

    0 1 0( | ) (( )| , )p
O OoE Y X E Y Y X V v dv  

Where the second and third equalities follow from Assumptions 1(b) and the fourth 

equality comes from the fact that V is uniformly distributed on [0,1] conditional on XO  

and Z . Therefore, differentiating both sides with respect to p, we have 



Person‐centered Treatment (PeT) Effects    12 
PLEASE DO NOT CITE OR DISTRIBUTE WITHOUT PERMISSION     

 

0
1 0

( | , )
(( )| , ) ( , )O O

E Y x Z
E Y Y X V v MTE x v

p





   


    ( 12 )  

It then follows,  

| , ( ), 1 0 0( | , ( ), 1)
u OX X P Z DE E Y Y x P z D  

  

= 1 0 0( | , ( ))E Y Y x V P z   = ( )1
0( ) ( , )P z

OP z MTE x v dv       ( 13 )
 

 

Similarly, conditional effect on the untreated (CTUT) is obtained by integrating MTEs 

over values of V that are greater than p.  ■
 

The identification of PeT effects comes out directly from the identification results of 

Heckman and Vytlacil (1999, 2001, 2005). However, while Heckman and Vytlacil 

(1999, 2001, 2005) are mainly concerned with average treatment effects in the 

population, we use their results to identify individualized expected treatment effects 

and their marginal distribution in the population. 

The PeT effects can be trivially aggregated over observed distribution of (XO, P(Z), D) in 

order to estimate mean treatment effect parameters such as the Effect on the Treated 

(TT), Effect on the Untreated (TUT) and the Average Treatment Effect (ATE). These 

derivations are provided in Heckman and Vytlacil (1999).   

Semi-parametric estimation 

In order to avoid certain disadvantages of full nonparametric estimation of the models 

in (1) and (2), we propose a partially separable outcomes model as follows: 

 
    ( , , ; )O UY X X D       ( 14 ) 

where ( , , )O UX X D  is an unknown non-linear function of observable (XO) and 

unobservable (XU) characteristics and treatment indicator (D);  are purely random 

error term. Conditional on specific levels of XO and XU, idiosyncratic expected gains (or 
losses) from treatment over control is given by  ( , , 1; )O Ux x D  -  ( , , 0; )O Ux x D . 

These idiosyncratic gains or losses may vary either over observed characteristics XO or 

over unobserved characteristics XU or both, giving rise to treatment effect 
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heterogeneity. The terms, observable and unobservable, pertain to the analyst’s 

perspective and these covariates enter the structural model symmetrically in 

determining potential outcomes (Mullahy 1997). We will refer to this formulation of 

the symmetric structural non-linear model as the pure non-linear model. It 

encompasses the broad categories of all parametric and semiparametric generalized 

linear models (McCullagh and Nelder, 1989) that include models for limited dependent 

variables.  

In addition to the assumption of , ,O UX X  O UX X and that of Assumption 1, we 

make the following additional assumptions: 

Assumption 3:     ( ( , , ; )| , ) ( , ( ); )O U OE X X D P p Z X K P , is continuously 

differentiable with respect to p, where K(P) a non-linear kernel for P. 

Estimation of PeT effects proceeds in four steps: 

1. An estimate P is constructed using a semiparametric regression of D on XO and Z  

(Das et al, 2003). 
2.  is estimated using local polynomial approximation of  ( , ( ); )OX K P  over P 

(Robinson, 1988; Fan and Gijbels, 1996). Here, K(P) is represented by the 

polynomial approximation. Such approximation can be estimated using GMM 

estimators using the well-known quasi score equations (Wedderburn, 1974).  For N 

individuals,  

 1

1 1
( ) ( ) 0,

N N
i

i i i i
i i

G G Y V    

 
            ( 15 ) 

where i denotes individuals.  is estimated by solving 0G  , yielding estimator ˆN . 

Under mild regularity conditions,  ˆ p
N  as  N and  ˆ( )N is 

asymptotically normal with mean 0 and covariance matrix AN given by: 

AN =           


     


1

1
( ) ( ) ( ) .

( 1)

N Ti iT

i

N
E G E G G E G

N
   ( 16 ) 

Replacing bŷN and  ( )i iTE G G with  
i iTG G  in (9) yields a sandwich estimator of the 

variance-covariance of ̂N (Huber, 1972; Liang and Zeger, 1986).   
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3. Obtain estimates for MTE following Assumption (2):  
 0

ˆ ( , )MTE X V v =  


 ˆ( , ( ); )/O p v
X K P p

     
( 17 ) 

4. Construct PeT effects for each individual 

as:    * *0 0| 1 | 0
ˆ ˆˆ( , , ) ( 1) ( , ) ( 0) ( , )O V D V D

x p D I D E MTE x V I D E MTE x V
 

       , where 

       * *( , ) ( ) (1 ) 0D D p v p v 5
      ( 18 ) 

The proof follows directly realizing that V~Unif[0,1]. 

Variance estimates for PeT effects at the individual level can be readily obtained by 

bootstrap, which is in line with obtaining variance estimates of CATEs. For each 

replicate of the bootstrap with-replacement sample, the average effect for each person 

is saved. In any given replicate, only those persons who are sampled would have an 

estimate. However, multiple bootstrap replicates should be able to cover all 

individuals. The total number of bootstrap replicates needed can be monitored by 

monitoring the minimum number of times each individual is sampled across replicate 

datasets.   

 

Simulations 

Set up 

We study the effects of a binary treatment variable on three different types of 

outcomes. First is a typical normally distributed outcome. Second is a binary outcome 

and the third is a count data outcome. For each outcome, we specify a data generating 

process that incorporates essential heterogeneity.6 We then estimate the PeT effects 

across individuals using LIV approaches assuming that we observe (Y, D, XO, Z) only. 

We compare these PeT effects to the true values of CATEs. Also we compare the PeT-

based estimates of mean treatment effect parameters to their true values. We also 

compute the traditional IV effects for comparison. 

                                                            
5 We thank James Heckman and Philipp Eisenhauer for suggesting this approach to numerical computation. 
6 Note that essential heterogeneity is not being generated by direct selection of gains but rather through factor XU 
that is shared between treatment choice and potential outcomes models.  
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Treatment choice model: 

 D = I(Λ >0) Λ = 1 + 1.0*XO  - 1.0*XU + 1.0*Z  + εΛ, where εΛ  ~Normal (0, 1) 

Potential Outcomes Data Generating Mechanism (DGPs): 

Normal Outcome:   

Y1 = µ1 + εY1,  µ1 = -0.5 + 0.5*XO  - 0.5*XU   

Y0 = µ0  + εY0, µ0 = -1.0 - 0.5*XO  + 0.5*XU   

where εΓ1, εΓ0 ~Normal (0,1) and εΓ1 εΓ0,  denoting statistical independence. 

Here μ1(xO) = 0.5 + 1.5*XO  and μ0(xO) = 1.0 + 1.0*XO.   

Binary Outcome:  

Y1 = (Γ1 > 0),    Γ1 = -0.5 + 0.5*XO  - 0.5*XU  + εΓ1,  

Y0 = (Γ0 > 0),    Γ0 = -1.0 - 0.5*XO + 0.5*XU  + εΓ0,  

where εΓ1, εΓ0  ~Normal (0, 1) and εΓ1   εΓ0. Here E(Y1|XO, XU) = µ1 = (-0.5 + 

0.5*XO  - 0.5*XU ) and E(Y0|XO, XU) = µ0 = (-1.0 - 0.5*XO  + 0.5*XU ). Also,  μ1(xO) 

= ((-0.5 + 0.5*XO)/√1.25) and μ0(xO) = ((-1.0 - 0.5*XO)/√1.25). 

Skewed Non-negative Outcomes: 

Y1 ~Gamma (a1, b1),    b1 = exp(-ln(a1) -0.5 + 0.5*XO  - 0.5*XU  ) 

Y0 ~Gamma(a0, b0),    b0 = exp(-ln(a0) -1.0 - 0.5*XO + 0.5*XU ),  

where E(Yj| X0, XU) = μj = aj*bj.  a1, a0 are the inverse-dispersion parameters 

such that Var(Yj | X0, Xu) =   aj-1·μj2 , j = 0,1. We assume aj = 2, j=0,1.  Y1   Y0 | 

X0, Xu. 
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Also, μ1(xO) = a12*exp(0.5 + 1.5*XO)*exp(0.125) and μ0(xO) = a02*exp(1.0 + 

1.0*XO)*exp(0.125) 

XO, XU and Z are generated as independent Normal (0,1) variates. 1000 replicate 

samples each of sample sizes 5000, and 20000 were drawn from each DGP. 7 Results, 

as described below were averaged over replicates. Furthermore, for each replicate of 

data, 500 bootstrapped samples were drawn to assess the empirical variance of the 

estimators we study.  

Treatment Effects 

For each DGP, we estimate PeT effects as 1 0
ˆ ˆ ˆ    using the LIV approach. We will 

also construct true values for CATE, where conditioning is done on XO: ξ(xO) = μ1i(xO) – 

μ0i(xO).8  We compute ATE, TT and TUT using estimated and compare them to their 

respective true values. We also estimate the IV effect using traditional IV methods 

and compare them to the true values of the mean treatment effect parameters. 

Additionally, we report the Monte Carlo standard deviations for each parameter 

estimate and their 95% coverage probabilities. 

In order to show that CATE(XO) are consistently recoverable from the PeT effects, we 
estimate CATE(XO) by averaging ˆ

i over deciles of XO and comparing then to true 

values.  

Finally, in order to evaluate the accuracy in predicting individual level effects, we will 
compare the distribution of i and ξ(xO) to the true distribution of expected 

individual-level treatment effects ξ(xO, xU)= μ1 – μ0  using the following metrics: 

1. Corr( ̂ ,ξ(xO, xU)) versus Corr(ξ(xO), ξ(xO, xU)),  

2. R2 of ξ(xO, xU) on ̂  versus R2 of ξ(xO, xU) on ξ(xO), 

                                                            
7 These sample sizes are most typical of health economic analyses. For example, a Medline search of all IV 
applications in the past three years revealed that 70% of then had sample size greater than 5000. In fact, in field of 
CER, with the emergence of more integrated data, these sample sizes are only likely to increase. 
 
8 Note that we do not estimate CATEs but rather construct them based on true values in order to make the 
comparisons with estimated PeT effects conservative. 
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3. Positive Predictive Values (PPV): Pr(ξ(xO, xU) ≥0| ˆ 0  ) vs Pr(ξ(xO, xU) ≥0| ξ(xO) 

≥0) 

4. Negative Predictive Values (NPV): Pr(ξ(xO, xU) <0| ˆ 0  ) vs Pr(ξ(xO, xU) <0| 

ξ(xO) <0) 

Results 

Table 1 compares the performance of traditional IV estimates and constructed 

CATE(xO) values to PeT estimates of mean treatment effect parameters. As expected, in 

the presence of essential heterogeneity, the traditional IV estimates do not correspond 

to any of the mean treatment effect parameters. In case of binary and non-negative 

outcomes, the IV estimates have signs opposite to the true value of Average Treatment 

Effect (ATT) and Effect on the Treated (TT). Increase in sample size has no influence on 

these results. 

CATE(xO) values when aggregated over all individuals provides an unbiased and 

consistent estimators for the ATE. But when aggregated over subjects choosing or not 

choosing treatment, it provides a biased estimator for TT or TUT respectively. Although 

this is expected since TT and TUT are influenced by levels of XU that are not accounted 

for in CATE(xO) values, this limitation of CATE(xO) has strong implications for 

heterogeneity estimated from randomized studies. If these studies fail to measure 

certain factors, which would then by acted on by subjects in the population, then 

heterogeneous treatment effects estimated from randomized setting cannot be used to 

forecast population impacts of access to these treatments.  

Finally, the PeT effects were found to be consistent estimators of all of the mean 

treatment effect parameters and maintained appropriate coverage probabilities at 95% 

even at larger sample sizes.  

Table 2 presents the performance of CATE(xO) values versus PeT effects as compared 

to true individualized effects ξ(xO, xU). Across the board, we find that the PeT effects are 

better correlated with ξ(xO, xU), explain a large amount of variance of ξ(xO, xU) and have 

higher PPV and NPV compared to CATE(xO) values. All differences were statistically 

significant even in datasets with sample size of 5000. 
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Figure 1 illustrates how PeT effects can be trivially aggregated across deciles of a 

covariate to form CATEs for that decile. The figures show that, for all types of 

outcomes, the PeT based aggregation provides unbiased estimates for the true CATEs, 

maintaining appropriate coverage probabilities. Results arising out of sample size of 

20,000 are not shown as they convey the same message.  

The simulations presents strong evidence that the PeT estimates can provide 

consistent and nuanced individual-level treatment effects in observational data. 

 

3. DISTRIBUTIONAL IMPACTS OF PROSTATE CANCER TREATMENTS ON 7 YEAR 

COSTS AND SURVIVAL.9 

Background 

We study the distributional effects of alternative treatment modalities on health and 

economic outcomes in prostate cancer patients using PeT Effects. Note that although 

this empirical example is set to look at an evaluation in health care, the methods 

employed have broad applicability to a wide variety of evaluations across many 

different fields.  

Prostate Cancer Treatment Evaluations. 

Prostate cancer (PCa) is the most commonly detected non-cutaneous malignancy 

among American men (Landis et al. 1999) with more than 186,000 cases diagnosed in 

2008 and more than 28,000 men dying from the disease (Jemal et al. 2008). As the 

cohort of “baby boomers” age, the incidence and prevalence of PCa will likely continue 

to increase as long as contemporary screening patterns continue. Here we compare 

two treatment strategies: Surgery versus active surveillance (AS), in terms of 7-year 

costs and survival for elderly men diagnosed with early-stage (clinically-localized) 

prostate cancer. The broad rationale for looking at these patients and these treatment 

modalities can be found elsewhere (Hadley et al. 2010). Most importantly, many have 

                                                            
9 Previous results presented were found to be driven by a programming error. Results are corrected and updated 
as of June 15, 2012.   
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argued that the rapid growth in costs of prostate cancer treatments does not fit in line 

with the clinical benefits that the sole randomized study in this area have shown 

(Holmberg et al, 2002). Result of that randomized study showed that among elderly 

patients, surgery and AS produces 8-year survival probabilities of 77.4% and 78.6%, 

respectively (p= 0.78) (Bill-Axelon et al. 2008).10 

However, many factors render this RCT evidence to be obsolete. Besides the fact that 

the above RCT was not powered to look at differences among the elderly group of 

patients, life expectancies for elderly individuals have dramatically improved over the 

last two decades. Between 1975 and 2005, 15-year survival probabilities for 65-year 

old men have increased by 17 percentage points in the US (Muenning and Glied 2010). 

This indicates that the survival gains from eliminating cancer are likely to be more 

than those twenty-years ago, even when the underlying disease progression from 

diagnosis had remained the same. Moreover, with more aggressive screening regimen 

implemented during the late 1980s and early 1990’s, and especially with the advent of 

prostate-specific antigen (PSA) screening, distribution of PCa diagnosed among elderly 

men in the late 1990s were less advanced than those diagnosed during the pre-PSA 

era. Last, but not the least, the quality of surgery has arisen over the past two decades 

as evident from the declining morbidity from such procedures. Therefore, exploring the 

casual effect of surgery versus AS among elderly patients with PCa using recent data 

becomes important.      

  

Data 

Our data comes from the 1995 – 2009 SEER-Medicare linked dataset. SEER is an 

epidemiologic surveillance system consisting of population-based tumor registries 

designed to track cancer incidence and survival in the United States.  The SEER-

Medicare data links claims for health services collected by Medicare for its 

beneficiaries to the SEER registry (Cooper et al. 2002; Viring et al. 2002). We extracted 

data for patients of age 66 years or older and who were diagnosed with prostate cancer 

between 1995 and 2002. The data contains zip codes for patient residences which 

were used to link to Hospital Referral Regions (HRR) identifiers and HRR- year-specific 

                                                            
10 Certainly, benefits in other dimensions, such as quality of life, are not captured in these studies and also in our 
analyses. We delegate this to future work. 
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characteristics based on the Dartmouth Atlas Data11. We used the linked claims data 

from these patients for up to December 2009 or their death if that happen before 

December 2009.   We have 7 years follow-up data for everyone in our sample.  The key 

variables in our sample are categorized as   (a) Outcomes Variables (Y); Treatment (D); 

Independent Risk Factors (XO); Instrumental Variable (Z). These categories are 

common to any type of evaluation analysis. 

(a) Outcomes Variables: We look at two outcomes. On the benefits side we use a 

binary indicator for 7-year overall survival. On the costs side, we use the total 

undiscounted 7-year expenditures on health care expressed in 2009 dollars. 

Expenditures accumulate over all types of medical costs reimbursed by 

Medicare or a third party payer and patients’ out-of-pocket costs.  

(b) Treatment (D): Comparison is made between the use of surgery (without any 

form of radiation of hormone therapy) in the first six months of diagnosis versus 

active surveillance that is defined as no use of surgery, hormone therapy or 

radiation in the first six months of diagnosis  along with at least two PSA tests 

within first year of diagnosis. Treatment indicator takes a value of one for 

surgery. 

An indicator of surgery is likely to be endogenous for three reasons: True 

severity of cancer is unobserved as we only have data on the cross-sectional 

characteristics of the tumor at diagnosis, but not how the tumor is growing or 

prostate-specific antigen (PSA) levels (used to detect prostate cancer) is rising. 

Higher severity may be positively correlated with surgery receipt and also 

negatively correlated with survival, but positively correlated with costs.12 These 

correlations render the naïve effects on surgery to be biased downward and that 

on costs to be biased upward. Second, general frailties of the patients are 

unobserved, which again would follow the same correlations as tumor 

severity.13 Third, psychological anxiety of being diagnosed with cancer would be 

positively correlated with both surgery receipt and costs and utilizations. Its 

correlation with survival remains to be ambiguous.  

                                                            
11 http://www.dartmouthatlas.org/ 
12 Decreased survival within a fixed window of time is usually associated with higher costs due to expenditure 
spikes at the end of life (Brown, 2002).  
13 Although one may expect that higher frailty would be negatively correlated with surgery, our first stage 
regression shows that patients with more number of hospitalization and more comorbidities are more likely to get 
surgery. 
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(c) Independent Risk Factors (XO): These include clinical stage and grade of cancer 

for patients at diagnosis using standard definitions (Meltzer et al. 2001), 

demographics, indicator for metropolitan area, Elixhauser comorbidity indices 

based on hospitalization in year preceding diagnosis, year and state fixed 

effects, zip-code level area characteristics on racial makeup, density and 

education levels. We also adjust for HRR-level characteristics using logged 

versions of population size, and per 100,000 patients’ supply of hospital beds, 

physician, specialists and urologists.   

(d) Instrumental Variable (Z): We use HRR-specific rates of active surveillance in 

prostate cancer patients in the year prior to the diagnosis of a patient. Such an 

instrument has been used in the past in the context of prostate cancer (Hadley 

et al. 2010); however, concerns exist about the contamination in area-level 

variations that would violate the exclusion restriction for two reasons: first, 

such variations may be correlated with variations in case-mix of patients; 

second, contamination may exist due to productivity spillovers that make areas 

with more efficient deliveries of treatments correlated with higher rates of  

treatment (Chandra and Staiger, 2007) .  We try to address both of these 

concerns and mitigate the effect of such contaminations on the IV. In order to 

address the first concern, we control for many concurrent area-level fixed 

effects and variations as mentioned above. Contamination due to productivity 

spillovers (Chandra and Staiger, 2007)  are directly controlled by adjusting for 

the number of urologist per capita as the urologist are the main specialists 

delivering surgery for prostate cancer patients. We study the properties of our 

IV after controlling for these factors and believe that it meets the requirements 

for a valid and strong instrumental variable.  

 

Methods  

We study the strength of the IV in a logistic model for surgery along with all other 

independent risk factors. To explore plausible contamination in the IV due patient 

level characteristics, we run a separate logistic model for treatment with only the IV as 

a regressor. We then compare the imbalance in the patient-level independent risk 

factors across treatment categories with the imbalance in the same across the median 
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of the IV-only predicted propensity to choose surgery. A valid IV would necessarily 

appear to reduce such imbalances. We explore these comparisons mainly for 

individual level demographic and illness severity factors after converting them to their 

respective z-scores. 

Next, MTE’s and PeT effects are estimated using standard LIV methods described in 

our estimation and simulation sections. For the binary survival outcome we use a 

logistic regression. For the expenditure outcome, we use a semiparametric generalized 

linear model with log link and Gamma variance. Various goodness-of-fit tests were 

employed to ensure good model fit to these data. We study both the mean treatment 

effect parameters and also the joint distribution of PeT effects across survival and 

costs and the implications of such distributions for treatment choices. 

Results & Discussions 

Our final analytic sample consists of 13,495 patients, of whom 9,913 (73.5%) received 

surgery. As evident from the first-stage regression results in Table 1, likelihood of 

receiving surgery increases with ages younger and older than 74 years, T1 stage, 

advancing grade, and increased number of hospitalization in previous year. The 

instrumental variable was found to be strongly predictive of surgery receipt conditional 

on other factors (F-stat: 10.9, p<0.0001).  

Figure 2 illustrates that the IV may be particularly suitable in reducing residual 

confounding in this application since it is able to reduce imbalance in observed factors 

considerably.14 The identified support of the IV-based predicted propensity score (PS) 

ranges from 0.07 to 0.995. 

Polynomials of propensity scores were not found to be significant in either of the LIV 

models. The final models for either outcomes contained covariates, interaction of 

covariates with PS and PS.15 This indicates that essential heterogeneity is small for 

these outcomes.16  This is presumably because we capture a very rich array of 

                                                            
14 An LPM version of the IV model rejects under‐identification of the IV (p<0.0001) and passes the weak 
identification test based on its F‐stat. 
15 The models passed all goodness‐of‐fit tests. No systematic biases were detected from residual analyses. 
16 Note that since we use non‐linear models, absence of polynomial of PS does not mean absence of essential 
heterogeneity in the additive scale, which is our scale of interest.  
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observed factors and estimate significant treatment effect heterogeneity across those 

factors. In essence, in this application PeT effects become similar to CATEs, where 

conditioning is done on the entire vector of observed factors. The mean treatment 

effect estimates are given in Table 4. The average treatment effect was estimated to be 

-$30,056 and 7.4%pts for costs and survival respectively, which were not significant. 

The average survival effects, although not significant, indicates the potential for 

substantial benefits of surgery over AS in this population, which are in stark contrast 

to the results from the largest and only randomized trial comparing these two 

treatments that was conducted on patients diagnosed with PCa about a quarter 

century ago (Holmberg et al 2002).  

Figure 3 illustrates the joint distribution of PeT effects for 7-year survival and costs in 

an incremental cost-effectiveness plane where the X-axis represents PeT effects on 

survival and the Y-axis the PeT effects on costs. Each dot on the plane represents a 

patient. The size of the treatment effect marker for each patient is driven by the z-

score of their respective treatment effect. Patients with more significant effects have 

larger markers.  The correlation between estimated PeT effects on costs and survival 

was small: 0.03 (95% CI: -0.20, 0.25). Only 21% of patients were found to have 

negative incremental survival from surgery. Surgery was found to be a dominant 

treatment in 61% of patients (South-East quadrant of graph) as it incurs lower costs 

and increased survival.  

There is little evidence of positive self-selection in practice. This is not surprising given 

that a majority of patients appear to benefit from surgery.  Surgery rates were 74% 

among patients for whom surgery produces negative effects versus 73% among those 

who would benefit from surgery.   This is reflected in the estimates for the effect on the 

treated (TT) and the untreated (TUT) (Table 4). Both TT and TUT are identical to ATE 

and neither reach statistical significant for costs or survival. The heterogeneity of 

treatment effects illustrated in Figure 3, however, indicates that there may be much 

room for improvement. In a hypothetical world of perfect selection (Meltzer et al. 2003), 

where patients who would get hurt by surgery are removed from being eligible for 

comparing these two modalities of treatment, the ATE and TT of surgery would climb 

to 12.6%pt (95% CI: 2.5, 37.0) and 12.7%pt (95% CI: 1.5, 40.5) respectively for 7-year 

survival (Table 4). These estimates can also be used to establish the value of more 

targeted approach to treatment allocation.  However, compared to the ATE and TT 

estimates without selection, the ATE and TT estimates with perfect selection indicate 
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only modest cost savings and better survival (Table 4), which do not reach statistical 

significance.  

Finally, PeT effects can be used to explore the dimensions (factors) along which 

treatment selections are efficient (i.e. they conform to gains) and where they are 

inefficient (i.e. they conform to losses). Compared to patients for whom survival effects 

are significantly positive (at 10% level), patients with significant negative survival 

effects with surgery had significantly higher rates of well grade cancer, higher number 

of pre-period hospitalization and higher rates of every comorbidities listed in Table 3 

except for peripheral vascular disease. Future work can use the estimated PeT effects 

and its uncertainties to develop prediction algorithms for treatment effects. 

 

4. CONCLUSIONS 

This paper interprets a treatment effect parameter, originally defined by Heckman and 

Vytlacil (1999), to represent Person-centered Treatment (PeT) effects. Heckman and 

Vytlacil (1999) use this parameter to establish relationship between the mean 

treatment effect parameters such as LATE, ATE, TT and TUT with the Marginal 

Treatment Effect (MTE) parameter but do not use it further. A PeT effect is derived as 

an alternate weighting of MTEs and is shown to represent individualized treatment 

effects that not only conditions on the individual’s observed characteristics but also 

averages over a conditional distribution of unobserved characteristics (in contrast to 

their marginal distributions as in CATEs) that conditions on treatment choice made by 

an individual and the circumstances under which that choice were made. The paper 

presents the theory behind PeT and proposes semiparametric estimators to estimate 

PeT effects using instrumental variables. 

Finite sample simulations show that, in the present of essential heterogeneity 

(Heckman 1997), the PeT effects may explain a significantly larger fraction of 

individual-level treatment effect heterogeneity compared to CATEs. Therefore, in the 

absence of data that can help identify the full joint distribution of potential outcomes, 

PeT effects can serve as a valuable addition to the evaluation literature looking at the 

distributional impacts of treatment access and policies. Moreover, they truly mimic 

individual level treatment effects as they can be trivially aggregated across all patients, 
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or across patients who did or did not choose treatment in order to construct estimates 

of ATE, TT or TUT respectively. 

The introduction of PeT effects and its role in identifying treatment effect heterogeneity 

lines up well with the political economy of health care evaluations. Despite the age-old 

practice of evaluating health care technologies using randomized trial and more 

recently with observational data that were used to estimate average treatment effects 

(and often local average effects), the Affordable Care Act of 2010 specifically ask for 

producing estimates at a more nuanced and individualized level. It created a Patient 

Centered Outcomes Research Institute (PCORI) as an independent, non-profit research 

organization to conduct research to provide information about the best available 

evidence to help patients and their health care providers make more informed 

decisions. Its mission is to help people make informed health care decisions – and 

improves health care delivery and outcomes – by producing and promoting high 

integrity, evidence-based information – that comes from research guided by patients, 

caregivers and the broader health care community (PCORI Mission Statement, 2011). 

PCORI is positioned to be one of the largest funders of outcomes research in the 

United States in the coming years and has so far asserted that one of the primary 

focus in patient-centered outcomes research (PCOR) should be answering the question 

for patients:  “Given my personal characteristics, conditions and preferences, what 

should I expect will happen to me?”. 

While CATEs can provide answers to these questions, estimating CATEs directly based 

on multiple observed covariates can be tricky. In contrast, PeT effects can serve as 

outcomes that can be used to develop predictive algorithms for CATEs based on 

combinations of patient and other observed characteristics in the data. Such an 

approach would be most valuable for allocating Category II and III treatments, as 

defined by Chandra and Skinner (2011), since uncertainties in their comparative 

effectiveness either precludes them from access in some settings or facilitates rapid 

adoption that leads to welfare loss. Furthermore, since PeT effects allow for estimating 

more nuanced individual treatment effects, understanding the difference in variance 

between PeT effects and CATEs can help establish the value of future research that 

can identify factors relevant for treatment effect heterogeneity that are not collected in 

the current databases (Basu and Meltzer 2007). 



Person‐centered Treatment (PeT) Effects    26 
PLEASE DO NOT CITE OR DISTRIBUTE WITHOUT PERMISSION     

 

In summary, PeT effects can serve as a useful treatment concept for a variety of 

evaluations both at the policy and at the individual level. 
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Table 1: Simulation results on average effects. 

OUTCOMES True 
Values 

N=5,000 
Mean (sd*) [avg. se**] {Coverage Pr***} 

N=20,000 
Mean (sd*) [avg. se**] {Coverage Pr***} 

NORMAL   IV CATE(xO)-Based PET IV CATE(xO)-Based PET 

ATE .50 .06 (.10) [.10] {.01}  .52 (.02) [.03] {.91}  .47 (.12) [.13] {.96}  .03 (.05) [.05] {0}  .51 (.01) [.01] {.87}  .48 (.06) [.06] {.94} 

TT 1.01 .06 (.10) [.10] {0}  .75 (.03) [.03] {0}  .91 (.19) [.21] {.95}  .03 (.05) [.05] {0}  .76 (.01) [.01] {0}  .95 (.10) [.10] {.90} 

TUT -.64 .06 (.10) [.10] {0}  ‐.01 (.03) [.03] {0}  ‐.53 (.14) [.15] {.90}  .03 (.05) [.05] {0}  ‐.05 (.01) [.01] {0}  ‐.60 (.07) [.07] {.93} 

BINARY   IV CATE(xO)-Based PET IV CATE(xO)-Based PET 

ATE 0.13 ‐.05 (.04) [.04] {.01}  .14 (.01) [.01] {.73}  .13 (.04) [.04] {.97}  ‐.06 (.02) [.02] {0}  .14 (.002) [.002] {.17}  .13 (.02) [.02] {.97} 

TT 0.27 ‐.05 (.04) [.04] {0}  .2 (.01) [.01] {0}  .26 (.05) [.05] {.93}  ‐.06 (.02) [.02] {0}  .2 (.002) [.002] {0}  .26 (.02) [.03] {.94} 

TUT -0.18 ‐.05 (.04) [.04] {.09}  0 (.01) [.01] {0}  ‐.15 (.05) [.05] {.94}  ‐.06 (.02) [.02] {0}  ‐.01 (.003) [.004] {0}  ‐.16 (.02) [.02] {.92} 

NON-NEG   IV CATE(xO)-Based PET IV CATE(xO)-Based PET 

ATE 0.31 ‐.25 (.09) [.09] {0}  .32 (.02) [.02] {.92}  .31 (.05) [.12] {.98}  ‐.29 (.05) [.05] {0}  .31 (0) [.01] {.89}  .31 (.02) [.05] {.99} 

TT 0.61 ‐.25 (.09) [.09] {0}  .46 (.02) [.02] {0}  .58 (.08) [.10] {.97}  ‐.29 (.05) [.05] {0}  .46 (.01) [.01] {0}  .59 (.04) [.04] {.97} 

TUT -0.36 ‐.25 (.09) [.09] {.74}  ‐.01 (.02) [.01] {0}  ‐.31 (.08) [.18] {.98}  ‐.29 (.05) [.05] {.60}  ‐.03 (.01) [.01] {0}  ‐.33 (.04) [.08] {.99} 

CATE(xO) are constructed based on true values. 
* Standard deviation across 1000 Monte Carlo replicates. 
** Based on variance estimate from 500 bootstrap samples for each Monte Carlo replicate data and averaged over all Monte 
Carlo replicates. 
*** Coverage indicator of true values based on 95% CI estimate from 500 bootstrap samples for each Monte Carlo replicate 
data and the indicator averaged over all Monte Carlo replicates. 
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Table 2: Simulation results on distributional effects. 

OUTCOMES N=5,000 
Mean (sd*)  

N=20,000 
Mean (sd*)  

NORMAL  
Corr. with 
ξ(xOi, xUi) 

R2 on 
ξ(xOi, xUi) 

PPV NPV 
Corr. with 
ξ(xOi, xUi) 

R2 on 
ξ(xOi, xUi) 

PPV NPV 

CATE(xO)-Based .70 (.01) .49 (.01) .79 (.01) .70 (.01) .7 (.003) .5 (.005) .79 (.004) .71 (.005) 

PET estimates ( ̂i ) .77 (.01) .59 (.02) .83 (.01) .76 (.03) .77 (.004) .6 (.005) .83 (.007) .77 (.014) 

Difference [p-val] .07 (.01) 
[<.001] 

.1 (.015) 
[<.001] 

.04 (.015) 
[.009] 

.06 (.031) 
[.071] 

.07 (.003) 
[<.001] 

.1 (.005) 
[<.001] 

.04 (.007) 
[<.001] 

.06 (.015) 
[<.001] 

BINARY 
Corr. with 
ξ(xOi, xUi) 

R2 on 
ξ(xOi, xUi) 

PPV NPV 
Corr. with 
ξ(xOi, xUi) 

R2 on 
ξ(xOi, xUi) 

PPV NPV 

CATE(xO)-Based .7 (.008) .48 (.011) .79 (.008) .7 (.012) .7 (.003) .49 (.005) .79 (.004) .71 (.005) 

PET estimates ( ̂i ) .76 (.016) .58 (.024) .83 (.018) .76 (.037) .78 (.004) .6 (.006) .83 (.009) .77 (.017) 

Difference [p-val] 
.07 (.016) 
[<.001] 

.10 (.024) 
[<.001] 

.04 (.018) 
[.035] 

.05 (.038) 
[.156] 

.07 (.004) 
[<.001] 

.11 (.006) 
[<.001] 

.04 (.009) 
[<.001] 

.06 (.017) 
[<.001] 

NON-NEGATIVE 
Corr. with 
ξ(xOi, xUi) 

R2 on 
ξ(xOi, xUi) 

PPV NPV 
Corr. with 
ξ(xOi, xUi) 

R2 on 
ξ(xOi, xUi) 

PPV NPV 

CATE(xO)-Based .69 (.009) .47 (.012) .79 (.008) .70 (.012) .69 (.004) .48 (.006) .79 (.004) .71 (.005) 

PET estimates ( ̂i ) .72 (.012) .52 (.017) .83 (.014) .76 (.025) .73 (.005) .53 (.008) .83 (.007) .77 (.012) 

Difference [p-val] 
.04 (.011) 
[<0.001] 

.05 (.015) 
[<0.001] 

.04 (.013) 
[.002] 

.06 (.025) 
[.027] 

.04 (.004) 
[<.001] 

.05 (.006) 
[<.001] 

.04 (.006) 
[<.001] 

.06 (.013) 
[<.001] 

CATE(xO) are constructed based on true values. PPV: Positive Predictive Value; NPV: Negative Predictive Value. 
* Standard deviation across 1000 Monte Carlo replicates.
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Table 3: First-stage results from logistic regression on Surgery indicator. 
Covariates Logit coefficients (std. err.) [z-stat] 
IV 
   ivrate_activesurv -1.496 (0.5) [-3.02]++ 
DEMOGRAPHICS 
   Age (centered at 74) -0.176 (0.01) [-30.95]++ 
   Age^2 0.0124 (0) [17.89]++ 
   T1-stage (Ref: T2) 1.05 (0.05) [22.11]++ 
   Grade – Well (Ref: Undetermined) 1.402 (0.14) [9.67]++ 
   Grade – Moderate 1.424 (0.13) [11.04]++ 
   Grade – Poor 2.261 (0.14) [16.14]++ 
   White (Ref: Other) -0.425 (0.15) [-2.76]++ 
   Black -0.347 (0.19) [-1.82]+ 
   Hispanic -0.089 (0.23) [-0.39] 
   Metropolitan area of residence -0.052 (0.09) [-0.58] 
ILLNESS SEVERITY 
   1 hospitalization last year (Ref: No hosp) 0.283 (0.09) [3.02]++ 
   2 hospitalizations last year 0.288 (0.15) [1.87]+ 
   >2 hospitalizations last year 0.545 (0.21) [2.6]++ 
   Congestive heart failure 0.338 (0.21) [1.59] 
   Valvular disease  -0.113 (0.23) [-0.48] 
   Peripheral vascular disease 0.02 (0.21) [0.1] 
   Paralysis 0.638 (0.34) [1.89]+ 
   Other neurological disorders -0.22 (0.23) [-0.97] 
   Chronic Lung Disease 0.13 (0.14) [0.9] 
   Diabetes 0.05 (0.16) [0.32] 
   Diabetes with chronic complications 0.226 (0.36) [0.63] 
   Hypothyroidism 0.232 (0.26) [0.88] 
   Obesity -0.03 (0.36) [-0.08] 
   Fluid and electrolyte disorders 0.136 (0.15) [0.88] 
   Deficiency Amemias 0.258 (0.2) [1.28] 
   Alcohol abuse 0.116 (0.35) [0.34] 
   Depression 0.167 (0.31) [0.54] 
   Hypertension with complications -0.053 (0.11) [-0.48] 
ZIPCODE-LEVEL 2000 CENSUS XTICS YES 
YEAR FIXED EFFECTS YES 
STATE FIXED EFFECTS YES 
HRR-SPECIFIC XTICS YES 
  
+ p-val< 0.10; ++ p-val < 0.05. 
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Table 4: Mean treatment effects based on estimated PeT effects (Surgery versus Active 
surveillance) 
 
Effects 7 –year Costs, 2009 $ 

Mean (95% CI*) 
7-year Surv. Pr., %Pt 

Mean (95% CI*) 
Average Treatment Effect (ATE) -30,056  

(-115,807, 19,355) 
7.4  

(-17.7, 40.2) 
Effect on the Treated (TT) -28,191  

(-115,877, 20,451) 
7.4  

(-17.1, 43.2) 
Effect on the UnTreated (TUT) -35,255  

(-109,419, 16,543) 
7.4 

(-19.3, 30.8) 
TT - TUT     7064  

(-8,969, 15,340) 
  0.01 

(-5.8, 13.3) 
With Perfect Selection on Survival PeTs 
   Average Treatment Effect 

 
  -30,641 

(-119,640, 22,116) 

 
  12.6 

(2.5, 37.0) 
   Effect on the Treated -28,332 

(-119,927, 22,859) 
 12.7 

(1.5, 40.5) 
   Effect on the UnTreated -28,332  

(-117,645, 17,882) 
12.4 

(5.1, 26.7) 
Gains with Perfect Selection 
   ATE(Sel) – ATE 

 
-585 

(-14,394, 4,885) 

 
  5.2 

(-3.4, 23.3) 
   TT(Sel) - TT -141 

(-14,035, 5,475) 
 5.3 

(-3.0, 21.9) 
 
* 95% CI based on bias-corrected estimates from 1000 bootstrap replicate. 
Bold face indicates exclusion of zero from 95% CI. 
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Figure 1: PeT-based conditional treatment effects for N=5000. 
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Figure 2: Covariate imbalance across treatments versus across instrumental variable. 
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Figure 3: Distribution of PeT effects on survival and costs, differentially illustrated by significance. 
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