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1 Introduction

By most accounts, the US health care sector is inefficient. Health policy commentators

have long advocated increased health information technology (IT) adoption as a means of

increasing health care quality while constraining costs. The Institute of Medicine for example,

has advocated increased health IT investments (Institute of Medicine, 1999, 2001, 2003;

Hillestad et al., 2005). Similarly, health policy analysts have noted that other OCED countries

utilize more health IT than the US and this is an important reason that health care costs

are lower in the OCED. The implication is that if the US deepened their use of health IT, it

will move the US towards the productive frontier for health care delivery.

In response to this call, the federal government has made increasing IT investments by

private health care providers a priority. In 2004, President Bush established the National

Coordinator (ONC) for Health Information Technology which is tasked with the development

and implementation of a strategic plan to guide the nationwide implementation of health IT.

In 2009, as part of the American Recovery and Reinvestment Act, President Obama signed

the Health Information Technology for Economic and Clinical Health (HITECH) act which

allocates an estimated $27 billion in incentive payments for hospitals and health professionals

to adopt and effectively use certified electronic health records (ARRA, 2009).1 Furthermore,

hospitals that fail to achieve the “meaningful use” of health IT by 2015 will face reductions

in Medicare payments.

The significant role the federal government plays in promoting the adoption and diffu-

sion of health IT suggests a divergence between the private incentives and social benefits

to adopting these technologies. Despite the widespread belief that health IT can address

many of the health care system ailments and innumerable studies in the medical and health

services research literature (virtually all with questionable identification strategies or gener-

alizability), there is little consensus regarding the impact of health IT on provider costs and

1The cause of increasing health IT spending has been advocated at the highest levels of the federal
government. On January 3, 2009 radio address, President Obama stated, “We will update and computerize
our health care system to cut red tape, prevent medical mistakes, and help reduce health care costs by billions
of dollars each year.”
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revenues or the quality of care patients receive.2 This literature also points to the difficult IT

investment decisions hospitals face because of the significant costs associated with large-scale

health IT implementation and a priori uncertainty over the returns hospitals can expect from

implementing health IT. We provide evidence on the impact of IT investments on hospital

productivity to assess the private benefits from hospitals’ adoption of health IT.

More recent econometric studies have found that hospital IT investments have either

modest or no impact on clinical outcomes. Tucker and Miller (2011) and McCullough et al.

(2010) find that the adoption of electronic medical records (EMRs) and complementary tech-

nological inputs provide positive but limited clinical benefit. McCullough et al. (2010) find a

heterogeneous and modest impact of health IT where only the most severely ill benefit from

health IT. However, Agha (2011) finds that hospital IT adoption does not improve mortality.

In other contexts, however, IT adoption has been shown to improve health outcomes (Athey

and Stern, 2002). Even if we assume that hospital IT does increase the quality of care, unless

hospitals can translate these quality gains into higher profits either through higher prices

or creating higher patient volumes, they will not capture these social gains. Hospitals face

several challenges in transforming these quality of care improvements into profits. Evidence

from the introduction of hospital report cards suggest that patient preferences are weakly

related to measurable quality and therefore hospital volumes are not likely to be affected

by health IT utilization (Culter et al., 2004). Typically, 50% of hospital revenues are from

publicly insured patients where hospitals are reimbursed according to a fee schedule. These

fee schedules limit hospitals’ ability to charge higher prices for improved quality care; al-

though, quality improvements may reduce length of stay which, in turn, could reduce costs.

Hospitals’ inability to profit from IT-driven quality improvements may lead to inefficiently

low IT investments.3

2Recent surveys of the literature (Buntin et al., 2011; Lapointe et al., 2011; Black et al., 2011) provide
mixed evidence regarding the effect of health IT on quality and limited evidence regarding the effect of
health IT on productivity. The typical paper in this literature focuses on single-site studies of IT adoption
by academic medical centers.

3Prior to 2002, Medicare reimbursements partially covered hospital capital (but not labor) expenditures
(Acemoglu and Finkelstein, 2008). The presence of this subsidy could spur hospitals to make significant in-
vestments in health IT, however, this capital investment subsidy ended prior to the period when sophisticated
EMR and CPOE systems began diffusing widely.
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Hospitals’ IT investments may affect productivity through a variety of mechanisms. Hos-

pitals may benefit from the same information systems employed in other service industries.

Applications such as supply chain management, accounting, and billing would, for example,

lead to reduced transaction costs and more efficient resources allocation. Most, if not all, of

the returns from these applications should be internalized by hospitals.4 The consequences

of clinical systems, such as EMRs, are more complicated. While these systems may improve

resource allocation and revenue management, they are also designed to increase clinical qual-

ity. Although quality improvement may lead to increased revenues, regulated prices and

imperfect quality information may cause the social returns to exceed the private returns

from health IT investments. This divergence between social and private benefits may lead

to an underinvestment in quality.

In order to understand the impact of health IT on hospital productivity, we estimate the

parameters of a value-added hospital production function where we decompose the key hos-

pital productive inputs into conventional and IT categories. In our analysis, the productive

inputs are labor, capital, health IT labor, and health IT capital. A well-known challenge

to estimating production function parameters is that inputs are endogenous to unobserved

(by the econometrician) productivity shocks (Marschak and Andrews, 1944; Ackerberg et al.,

2006a,b). Over the last decade and a half, several different approaches have been proposed

to correct for the endogeneity of input choice including Olley and Pakes (1996), Blundell and

Bond (1998), Levinsohn and Petrin (2003) and Ackerberg et al. (2006b). These approaches

are differentiated regarding assumptions on the evolution of multi-factor productivity (MFP)

and in the timing of input choices. We employ each of these strategies but emphasize pa-

rameter estimates generated using the dynamic panel data (DPD) approach (Arellano and

Bond, 1991; Arellano and Bover, 1995; Blundell and Bond, 1998, 2000) for ease of exposition.

By using a variety of approaches we assess the robustness of our estimates. Ultimately, our

primary conclusions are not sensitive to our focus on the DPD approach.

4Motivated by the approach of Brynjolfsson and Hitt (1996), recent work estimates the productivity
impact of health IT using discrete measures of health IT component adoption (e.g. EMR). Parente and Horn
(2007), Borzekowski (2009) and Hitt (2010) estimate production and cost functions in a simple, fixed effect
framework. In each paper, IT was found to create modest efficiency gains.
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We employ data from California’s Office of Statewide Health and Policy and Development

(OSHPD) for the 11-year period from 1997-2007. The OSHPD data are well-suited (perhaps

uniquely so) to examine the productivity impact of health IT as it includes detailed, hospital-

specific, information on health IT expenditures and depreciation which we use to construct

measures of the dollar value of health IT capital. We know of no other data set that has

this detailed financial and health IT expenditure information. This period saw a rapid

diffusion of health IT, and, over the span of our data, hospitals dramatically increased their

IT investments. The average hospital expanded their IT capital stock by approximately 220%

over the 11-year span of our data. We supplement these data with information on the specific

health IT components adopted by the hospitals from the Health Information Management

Systems Society (HIMSS).

In addition to its health policy relevance, hospitals are an attractive setting to study

the impact of IT investments on organizational productivity. Hospitals are the one of the

largest industry in the US economy accounting for 5.3% of GDP and hospitals services are

an industry in which technological change has a large impact on costs and consumer wel-

fare (Cutler, 2004). Hospitals are extremely complex, hierarchical, compartmentalized, and

labor-intensive organizations where information creation and dissemination is central to its

operation. Inpatient care requires the coordination of activities across many workers with

diverse skill levels in which errors are potentially costly to both the hospital and the pa-

tient. Hospitals have well-documented challenges managing their information.5 Because of

this complexity, hospitals are an environment in which IT has the potential to significantly

improve work flow, communication and coordination.

The large literature studying the productivity impact of IT adoption principally analyzes

data generated prior to 2000 – a period when the PC revolution was of central interest to

this literature (Tambe and Hitt, 2010).6 Our analysis focuses on a recent period of time

when new information technologies were rapidly and broadly diffusing providing an excellent

environment to study the impact of recently developed IT.7 Furthermore, most of the previous

5Institute of Medicine (1999).
6A classic paper in this literature is Brynjolfsson and Hitt (1996).
7Tambe and Hitt (2010), Bloom et al. (2012) and Bartel et al. (2007) are three notable exceptions to the
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work on IT productivity uses data from spanning broad classes of industries and types of

organizations with a focus on very large firms. Because we study a single type of organization,

acute-care hospitals, we eliminate an important source of unobserved heterogeneity that

might affect cross-industry studies. While hospitals are broadly homogeneous over the types

of services they provide, they are heterogeneous with respect to size and ownership structure

so we can examine how these organizational differences affect the impact of health IT.

We find that both health IT capital and labor have a high, private marginal product –

increases in health IT significantly increase hospital value-added. At the median, the net

marginal product of IT capital is approximately $1.04 and the net marginal product of IT

labor is about $0.73. These estimates imply that marginal increases in health IT can generate

substantial increases in output. However, the absolute contribution of IT investments are

small and diminishing. From 1997 to 2007, the average hospital value-added increased 156%,

about 6% is attributable to investments in health IT capital and labor. Unless there is

a dramatic change in the state of health IT technology (which is certainly possible), our

estimates imply that the large expected increase in hospitals’ IT capital stock will have a

modest impact on value-added output.

A classic reason for the divergence between public and private benefits from technology

adoption the presence of network externalities (Katz and Shapiro, 1986). Network external-

ities have been found to affect technology adoption directly, through interoperable technolo-

gies, and indirectly through learning spillovers. We directly test for the presence of network

externalities in productivity using a similar identification strategy to Gowrisankaran and

Stavins (2004). We find no evidence of meaningful network externalities in health IT.8

Our data also allow us to examine three important ancillary questions: 1) Is there dif-

ferential behavior between for-profit (FP) and not-for-profit (NFP) hospitals in their IT

investments? 2) Are vintage or learning effects in health IT important? 3) What is the role

of the change in multi-factor productivity in the increase in hospital value-added?

We also find that FP hospitals invest less in overall health IT and are less likely to

literature’s focus on firm-level data prior to 2000.
8A recent survey of hospital health IT adoption asked about the factor inhibiting adoption and the

responses did not point to network externalities (Jha et al., 2008).
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adopt CPOE technologies. However, production function estimates indicate little difference

between FP and NFP hospitals’ abilities to translate health IT investments into productive

output. As for our second, ancillary question, the parameter estimates hint that later health

IT investments are more productive than investments made at the beginning of our sample

while the employment of health IT labor is significantly more productive in the last half of

our time frame than in the first half. Finally, we find that increased hospital productivity

from 1997-2007 is entirely driven by increased inputs.

Our results have important policy implications. Health IT appears to be very produc-

tive at the margin. Hospitals appear to under-invest in health IT despite relatively high

private returns. Nevertheless, given the current state of the technology and our estimates

of diminishing returns, broad expansions in health IT would have a small impact on hospi-

tal productivity. This implies that while government funding for increased EMR adoption

may be welfare enhancing, they will not transform health care delivery. This result is also

consistent with the findings that a broad increase in EMR adoption will only have a modest

impact on mortality (Agha, 2011; McCullough et al., 2011; Tucker and Miller, 2011). The

gains from implementing these technologies appear to be well captured by hospitals and our

findings do not suggest the presence of network externalities. Finally, NFP and FP hospitals’

differ in their health IT utilization.

The rest of the paper has the following structure. The next section provides some insti-

tutional background on hospital IT. Section 3 describes our empirical model and describes

our empirical model and Section 4 discusses our data sources. Section 5 discusses the basic

patterns in the data and trends in health IT adoption. Section 6 presents and discusses the

production function estimates. Section 7 concludes.

2 Background - Hospital Information Technology

Hospitals began investing in health IT during the 1960s. Information technology was first

used to support billing and financial services. Subsequently, the role of IT grew to manage

pharmacy, laboratory, and radiology service lines (Collen, 1995). Although their primary
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purpose was to support billing and capture revenues (commonly referred to as charge capture)

these applications began to monitor and support basic clinical activities. These systems

frequently provided services such as drug interaction controls, laboratory quality controls,

and documentation of patient’s radiology histories. These systems were nearly ubiquitous by

2000 (McCullough, 2008).

The development of electronic medical record (EMR) systems has greatly expanded the

automation of clinical services. These systems replace a hospital’s medical record and inte-

grate clinical information from ancillary services such as pharmacy, radiology, and laboratory.

More sophisticated systems allow physicians to directly access the electronic medical record

and enter orders electronically. Computerized providers order entry (CPOE) is intended to

reduce communication errors and serve as a platform for treatment guideline automation.

While leading academic medical centers have been developing these technologies for many

years, it is only during the past decade that this technology has begun to diffuse widely.

Information technology can affect hospital productivity through a variety of mechanisms.

While hospitals may gain the same benefits from IT as any other service firm (e.g., improved

supply chain management or enhanced labor productivity), three mechanisms are particu-

larly important for hospitals: billing management, provider monitoring, and clinical decision

support.

Improved billing may be the most widespread effect of hospital IT investments. Hospitals

provide a wide range of services and the prices of these services depend upon patients’ clinical

characteristics as well as contracts negotiated between payers and providers. For example,

the reimbursement rate for cardiac surgery often depends upon whether a patient is a diabetic

or has hypertension as these comorbidities affect hospital costs. Price schedules and clinical

documentation requirements depend on contracts with private insurers as well as government

regulations. While hospitals have long used conventional IT for billing support, EMRs are

increasingly used to document care and facilitate charge capture.

Clinical complexity also creates a difficult monitoring problem. Although physicians con-

trol most hospital resources their actions are difficult to document and evaluate. Furthermore,

most physicians are employed by physician-owned practices rather than hospitals. Hospitals
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use IT to monitor physician behavior. Relatively simple clinical information systems may

be used to generate periodic reports on physician behavior and resource utilization. These

reports may be used to support quality improvement initiatives or to identify the overuse

of laboratory and radiology resources. Comprehensive EMR systems allow for much more

sophisticated provider monitoring and may lead to improved resource allocation within hos-

pitals.

Clinical decision support is the most ambitious objective of hospital IT. Sophisticated

EMR systems with CPOE may be used as a platform to implement treatment guidelines,

identify dangerous drug interactions, or coordinate care across provider team members. These

real-time decision support functions should standardize care and reduce errors, thus enhanc-

ing both clinical quality and productivity.

Decision support systems are more effective when they possess detailed information re-

garding patients’ clinical characteristics and treatment histories. Thus, EMRs may exhibit

network externalities as their value could increase if neighboring providers adopted inter-

operable EMRs. Although EMRs with real-time clinical decision support among the most-

discussed forms health IT, Jha et al. (2009) find that information sharing across providers is

quite rare.

Most of these productivity-enhancing mechanisms should be captured by conventional

measures of value added. Quality changes may, however, be omitted from value added if

they do not lead to increases in prices or quantities. This may be important for hospitals as

quality is difficult to measure and the prices for many patients (i.e., Medicare beneficiaries)

are fixed by law. A number of recent economic studies provide evidence that although EMRs

may improve quality, the average effect is quite small (McCullough et al., 2010; Agha, 2011;

McCullough et al., 2011; Tucker and Miller, 2011).

3 Empirical Strategy

We model value-added output for hospital i in period t (Yit) as determined by a Cobb-Douglas

production function whose inputs are conventional labor (Lit), conventional capital (Kit), IT
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labor (Lc
it), IT capital (Kc

it), and an unobserved (to the econometrician) input εit.
9,10 We use

lower-case variables to denote logarithms and denote the logarithm of the entire set of inputs

used by the hospital by the vector xit. The starting point for our analysis is the following

value-added production function,11

yit = βllit + βkkit + δll
c
it + δkk

c
it + εit. (1)

Where βl, βk δl, and δk are output elasticities of their respective inputs. We are primarily

interested in the δ’s which measure health IT’s contribution to output. The multi-factor

productivity term, εit, is unobserved to us, but may be observables to hospitals when selecting

inputs. We decompose this unobserved term into four components:

εit = αi + γt + ωit + ηit. (2)

The first term, αi, is a time-invariant hospital fixed effect while γt is a common, time varying

productivity shock. Both αi and γt may be correlated with the inputs. The evolving, unob-

served (to us) productivity term, ωit, may also be correlated with the inputs. Finally, ηit is

a productivity shock that may be correlated with inputs choices and may evolve according

to a moving average process.

Correlation between the inputs and εit implies that standard approaches to parameter

estimation will be biased. The appropriate econometric approach to remove the bias depends

upon assumptions regarding the variation in αi, the evolution of ωit, and the timing of input

9This section draws heavily upon the work of Ackerberg et al. (2006b).
10We measure output using value-added, a common measure of output in productivity studies (e.g. Levin-

sohn and Petrin (2003)). That is, yit is operating revenues net of all intermediate inputs. We use this output
measure for two reasons. First, hospitals produce multiple products and these must be aggregated into a
single output measure. In effect, value-added aggregates across many different services weighted by the rev-
enue associated with that service. Second, production is heterogeneous across hospitals. The value-added
production function accounts for aspects of quality reflected in market prices and quantities.

11The IT productivity literature primarily employs the Cobb-Douglas production function in their analyses
(Brynjolfsson and Hitt, 1996, 2003; Stiroh, 2002) and it is the specification of choice in dynamic panel
environments (Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond, 1998, 2000). We
follow this literature and assume Cobb-Douglas production relationship. However, it is well known that the
Cobb-Douglas function imposes strong parametric relationships on marginal products, a relationship that we
are particularly interested in quantifying in this paper. We have explored using a less restrictive trans-log
production function and the estimates did not reject the Cobb-Douglas specification.
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selection (Ackerberg et al., 2006b). Consequently, we estimate the parameters of (1) under

several different assumptions over αi and ωit and compare these estimates to assess the

robustness of our conclusions to different functional form and identification assumptions.

Our baseline empirical strategy is the dynamic panel data (DPD) approach of Arellano

and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998, 2000). Returning

to equations (1) and (2), we assume that ωit evolves according to an autoregressive process.

Let ξit be an iid random shock, then ωit follows the first-order autoregressive process, ωit =

ρωit−1 + ξit. The key assumption is that the innovation in unobserved productivity, ξit, is

uncorrelated with xis ∀s ≤ t while εit, which contains a hospital fixed-effect as well as an

evolving productivity component, but may be correlated with xit. This dynamic panel data

model is attractive in our setting as it allows a time-invariant fixed-effect in the evolution

of unobserved productivity. Many hospital characteristics such as its location and religious

affiliation are time-invariant, while other aspects of hospital productivity (e.g. physician

affiliation and reputation) evolve over time. The DPD framework allows for these institutional

features. Solving for ωt−1 and substituting into (1) yields the dynamic factor (common factor)

representation:

yit = ρyit−1 + βllit − ρβllit−1 + βkkit − ρβkkit−1 + δll
c
it − ρδllcit + δkk

c
it − ρδkkcit−1

+ γt − ργt−1 + αi − αiρ+ ξit + ηit. (3)

or

yit = π1yit−1 + π2lit + π3lit−1 + π4kit + π5kit−1 + π6l
c
it + π7l

c
it + π8k

c
it − π9kcit−1

+ γ∗t + α∗
i + ξit + ηit. (4)

Where π3 = −π1π2, π5 = −π1π4, and π7 = −π1π6. Furthermore, α∗
i = αi(1 − ρ) and

ξ∗it = ξit + ηit.

We start by estimating the parameters using equation (4) via OLS and fixed-effects im-

posing (and testing) the common factor restrictions. OLS will, of course, only be consistent

under the restrictive assumption that E(α∗
ixit) = 0, E(ξitxit) = 0 and E(ηitxit) = 0 while the
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fixed effects estimator will generate consistent estimates if E(ξitxit) = 0 and E(ηitxit) = 0.

For the base specification, we employ a system GMM estimator. This approach simul-

taneously estimates the equation of interest using both levels and differences specifications.

Appropriate lags of the levels and differenced variables can be used as instruments. Lagged

levels are used as instruments for the differences equation while lagged differences are used

as instruments for the differences equation. This simultaneous estimation strategy results in

lower finite sample bias and increased precision. Specifically, this approach uses the following

moment conditions:

E[∆xit−s(α
∗
i + ξ∗it)] = 0 and E[∆yit−s(α

∗
i + ξ∗it)] = 0, for s ≥ 1 and t ≥ 3, (5)

E[xit−s∆ξ
∗
it] = 0 and E[yit−s∆ξ

∗
it] = 0, for s ≥ 2 and t ≥ 3, (6)

More generally, the values of t and s are determined by the assumption on the auto-

correlation structure in ηit. This assumption can be validated by testing whether the first

differenced residuals’ exhibit second-order serial correlation. The specification tests indicated

that s = 3 removes the serial correlation and is used in the estimation. Since the model is

over-identified we employ the Hansen test for instrument validity.

We also estimate the parameters in (1) using the econometric strategies of OP, LP and

ACF. At one level, these three models are similar as they all employ two-step estimators

that use proxy variables to control for the productivity shocks thereby removing the bias. At

another level, these three models make different assumptions on both the proxy variable and

the timing of input decisions which may have large implications for identification (Ackerberg

et al., 2006b). Specifically, OP uses investment as the proxy variable while LP uses material

inputs and ACF considers both investments and material inputs. We first focus on the ACF

approach and then discuss both LP and OP.

Returning to equation (2), ACF assume that εit = ωit + ηit – the hospital fixed effect is

dropped from this specifications. A first-order Markov process governs the transitions of ωit

between periods t and b. That is, p(ωit+1|Iit) = p(ωit+1|ωit) where p(·|·) denotes the density

function and Iit is the information set. Under ACF, labor and capital (both conventional
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and IT) are assumed to be chosen prior to period t. Given these assumptions, the hospital’s

materials input demand, mit, is given as: mit = f(ωit, lit, kit, l
c
it, k

c
it). Inverting this equation

and substituting back into (1) and (2) yields:

yit = βllit + βkkit + δll
c
it + δkk

c
it + f−1(mit, lit, kit, l

c
it, k

c
it) + ηit. (7)

The β’s and δ’s are not separately identified in equation (7). ACF’s strategy is to estimate

yit = Φ(mit, lit, kit, l
c
it, k

c
it) nonparametrically in a first stage. We estimate Φ using a second

order polynomial. In the second stage, estimates of ωit(βl, βk, δl, δk) = Φ̂−βllit−βkkit−δllcit−

δkk
c
it are constructed. ωit is then nonparametrically regressed on ωit−1 and ηit is calculated.

Production function parameters are then identified from the following moment condition:

E(ηit · zit) = 0, (8)

where zit = (lit−1, kit, l
c
it−1, k

c
it).

We also estimate the parameters using the LP and OP approaches. Both LP and OP

assume that lit is chosen knowing ωit. This implies a different moment condition in which

contemporaneous labor replaces lagged labor in (8). LP use materials as the proxy variable

while OP uses investment and those differences may or may not be important depending on

the distribution of investment and the underlying reasons for the lag in the timing of input

choices.12 Both approaches identify the labor coefficients in the first stage. The LP moment

condition used to identify the capital coefficient replaces mit−1 for lit−1 while the OP moment

condition is simply E(ηitkit) = 0. Although the LP and OP approaches have been widely

used, ACF notes that they face potential identification problems due to the collinearity in

input choices. ACF further argue that this concern does not apply to their approach.

There are distinct advantages and disadvantages of the DPD and the ACF/LP/OP ap-

proaches. As discussed above, an advantage of the DPD approach in our setting is that

it allows for a time-invariant hospital fixed effect. The DPD approach is also consistent

12LP point out that if there is a mass point in investment at zero (which is common for smaller firms), the
necessary inversion of the f function does not exist. In our case this is not important as hospitals always
make positive investments in our data.
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with more complex models of input demand frictions (e.g. adjustment costs or labor short-

ages) and can accommodate multivariate productivity shocks while ACF/LP/OP place more

restrictions on the underlying input demand model. ACF/LP/OP require a univariate un-

observable productivity shock and input demand must be monotonic in ωit for at least one

input. For example, in an adjustment cost framework input demand is a function of lagged

values of the productivity shock and this is not consistent with the ACF framework (Bond and

Soderbom, 2005). Conversely, the DPD approach imposes a linear autoregressive structure

on the evolution of ωit, while ACF/LP/OP allow ωit to follow an arbitrary first-order Markov

process. ACF/LP/OP estimate Φ nonparametrically. Finally, DPD is likely asymptotically

less efficient than ACF/LP/OP.

Each of the above approaches has clear advantages and disadvantages; furthermore, there

are no obvious specification tests for determining which model is most appropriate. ACF rec-

ommends examining the robustness of parameter estimates using several different approaches.

While we emphasize the DPD model for ease of exposition, all four estimation strategies are

employed in our analysis and each provides insight into the hospital production process.

3.1 Ownership differences, network externalities and vintage ef-
fects

In addition to estimating the impact of IT inputs on productivity we explore other dimensions

of the data to better understand the underlying relationship between IT and value-added.

There are four areas of interest: the impact of for-profit status, network effects, vintage

effects, and the impact of hospital size.

Not-for-profit and for-profit hospitals may have differing organizational objectives which

lead them to use IT differently. There is a long literature examining the differential behavior

of for-profit and not-for-profit hospitals.13 This body of work typically finds little difference

in behavior across these organizational forms. However, more recent research points to for-

profit hospitals investing in more profitable services and avoiding the least profitable services

13See Sloan (2000) for an excellent review of the literature on the role of ownership status and provider
behavior.
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relative to their not-for-profit counterparts (Horowitz and Nichols, 2009; David et al., 2011).

If hospitals cannot appropriate a significant portion of the returns to IT investments and

if NFPs have different long-run objectives than FPs, then IT investment strategies should

differ across ownership forms. Differential investment behavior across ownership forms may

have meaningful policy implications. Differential investment strategies may partially justify

the tax-exempt status of not-for-profit hospitals and may suggest the need to target health

IT subsidies (or penalties) based on ownership. To explore whether the productivity of

IT investments differs across ownership form, we split the sample and estimate production

function parameters separately for each hospital type.

A classic explanation for the divergence between public and private benefit of IT is net-

work externalities (Katz and Shapiro, 1986). Network externalities have been found to af-

fect technology adoption directly, through interoperable technologies, and indirectly through

learning spillovers. There is, however, little empirical evidence regarding network effects in

the productive value of health IT. As discussed in Section 2, cross-provider information shar-

ing is argued to be an important driver of health IT value. Furthermore, hospital adoption

of health IT could affect neighboring providers IT adoption and IT value either directly or

indirectly. We test for the presence of network externalities in health IT productivity using

a similar identification strategy to Gowrisankaran and Stavins (2004) in which fixed-effects

control for unobserved heterogeneity that affect the firms’ and neighbors’ adoption. We fur-

ther employ instrumental variables in a DPD framework to address time-varying sources of

endogeneity.

To implement the test for network externalities, we construct measures of neighboring

hospitals IT input use. For each hospital, local markets are defined as other hospital in-

stitutions in a 30-mile radius.14 Market-level IT input utilization measures are based on

neighboring hospitals’ average IT capital and IT labor inputs. These measures are weighted

by the number of staffed inpatient beds. These variables are then added to the the base

specification and treated as potentially productive inputs. Neighbors’ IT inputs are also

14We have also examined the robustness of our results using alternative radii. The results are robust to
these different measures. Market areas were constructed using batchgeo’s geocoding service and confirmed
via USC WebGIS Services (Goldberg and Wilson, 2010).
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considered potentially endogenous.

Health IT value may also change over time. Technological innovation could, for example,

increase the value of more recent IT investments. This may be particularly important as

innovation spurred the rapid diffusion of EMR and CPOE systems during our study period.

Conversely, learning may increase the value of older IT investments as hospitals train staff

or adjust work flows when implementing new information systems. We employ several ap-

proaches to explore these issues. First, we divide the data into pre- and post-2002 subsamples

and estimate parameters for each period separately. We also estimate models that allow for

higher-order autocorrelation in the IT inputs. In addition, larger hospitals may utilize health

IT more effectively as the benefits of managing large amounts of patient data plausibly in-

creases in the size of the hospital. In order to examine this possibility, we divide the sample

in half based on hospital bed size (median = 173 beds) and estimate the production function

parameters separately for each group of hospitals.

4 Data

Our primary source is the Office of Statewide Health Planning and Development (OSHPD)

data from 1997 to 2007. These data contain detailed annual financial and productivity infor-

mation for the vast majority of California hospitals. They also contain hospital characteristics

such as bed size and ownership. We supplement these data with the Health Information Sys-

tems Society (HIMSS) Analytic survey from 1998-2007. The HIMSS data contain detailed

information on the specific applications adopted by hospitals. The HIMSS data serve as a

window into the specific IT strategies that hospitals employ.

Our sample comprises 309 short-term, acute care, non-federal, California hospitals. The

Kaiser Permanente hospitals are excluded as they do not report detailed hospital-level finan-

cial data to OSHPD.15 The OSHPD data include detail balance sheet, income statement, and

other financial as well as non-financial information.16 Hospitals are required by California

15These sixteen Kaiser hospitals are part of a vertically integrated managed care organization that includes
a health plans, employed physicians, and other health care providers; consequently, they were exempted from
the reporting requirements faced by other hospitals.

16There were a modest number of missing values which were imputed via hot deck and stratified by bed
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law to report this information and OSHPD make these data publicly available.17 We oper-

ationalize our output measure, value-added, as operating revenues less intermediate inputs.

Conventional (non-IT) capital is defined as total assets, including: current assets, property,

plant and equipment, intangible assets, assets whose use is limited, and other assets. Natu-

rally, IT capital inputs were excluded from the measure of conventional capital. Conventional

(non-IT) labor is defined as the total conventional salaries, wages, employee benefits, and

professional fees.18

A unique aspect of the OSHPD data is that it tracks hospital IT expenditures by input

category. That is, we can formulate measures of both IT capital and labor.19 The OSHPD

data place all IT expenditures within financial statements’ data processing sections. For our

purposes, information technology labor is the summation of salaries and wages, employee

benefits, and professional fees associated with data processing. Information technology cap-

ital is a summation of four components: purchased services, leases and rentals, other direct

expenditure, and physical capital respectively. Lease and rentals represent IT capital such as

software licensing payments. Purchased services are payment for outsourced IT such as ap-

plication service provision.20 Physical capital is the quantity of IT capital stock at a specific

time whereas the previous three categories are flow measures. A complication of the con-

struction of health IT capital is that OSHPD does not directly report the stock of physical

IT capital but only reports flow expenditures on IT capital in each given year. We therefore

construct the stock of health IT physical capital using the reported IT investments. The

Modified Accelerated Cost Recovery System (MACRS) specifies that computers and infor-

mation systems are depreciated over a five-year period.21 We use a 5-year linear deprecation

size and ownership type.
17The data are available at http://www.oshpd.ca.gov/HID/DataFlow/HospFinancial.html.
18Our measure of labor inputs also include the labor intensive inputs of ancillary services, research, edu-

cation, general services, fiscal services, and administrative services.
19Many data sets used to study the firm-level impact of IT lack information on either IT labor expenditures

or, more importantly, IT capital.
20We recognize that purchased services likely include both capital and labor inputs. While the data do

not provide the detail necessary to disentangle the component inputs qualitative work suggests that this is
mostly a capital measure.

21Economic depreciation of IT assets would be better described as a capital loss due to technological
obsolescence and is likely more rapid (e.g., over four years).
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schedule in order to construct the annual physical IT capital stock for each hospital in our

data.22 Our IT input measures were confirmed with data from HIMSS, which occasionally

included analogous questions within their survey.

5 Trends and Summary Statistics in Health IT adop-

tion

Figure 1 displays the trends in IT capital stock and IT labor inputs per bed for our sample of

hospitals. Information technology capital and labor inputs increased steadily from 1997-2007.

Over this time frame IT capital stock grew almost three-fold to over $35,000 per staffed bed

in 2007. The employment of IT labor also grew but less rapidly than IT capital. Between

1997 and 2007, on average, hospitals’ IT labor inputs more than doubled.

Descriptive statistics are provided in Table 1. The mean values of Yit, Lit, Kit, L
c
it, and

Kc
it are provided in both levels and shares relative to value-added.23 Several patterns in the

summary statistics are worth highlighting. First, health IT capital inputs increased dramat-

ically over this period, both in absolute and relative terms. Average health IT capital grew

220% and as a percentage of value-added grew from 3.6% to 4.5%. Information technol-

ogy labor inputs grew 213% over this period and its share relative to value-added increased

marginally.

Not-for-profit hospitals constitute 55% of the sample while for-profit and government-

owned hospitals comprise 25% and 20%, respectively. On average, FP hospitals are signif-

icantly smaller than NFP and government hospitals. There are also meaningful differences

across ownership forms in the use of health IT. For-profit hospitals utilize less IT inputs but

more conventional capital per dollar of output than NFP hospitals. The relative growth rate

of health IT capital for FPs is also notably lower than NFP hospitals. This suggests that

either FPs have different production technologies than NFPs, that they face different input

costs or that they have different objectives in their health IT utilization.

The HIMSS data allow to us examine the patterns of health IT adoption across EMR and

22We use data from the years 1993 to 1996 to calculate the initial period IT capital stock.
23The variables are converted to 2007 dollars using the GDP deflater.
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CPOE – two important health IT components that were diffusing during our time period.

Figure 2 displays the time series of the percentage of hospitals that have adopted these

platforms for the entire sample and separately for NFP, FP, and government hospitals. The

figure shows that the increases in IT capital are associated with increased adoption of these

two technologies. That is, the expansion of health IT capital reflects (at least in part)

the adoption of these technologies. Over this time frame, EMR diffused much more widely

than CPOE. By 2007, almost 50% of hospitals had adopted EMR while approximately 33%

of hospitals had adopted CPOE. There are meaningfully different patterns of technology

adoption between NFP and FP hospitals. FP hospitals began the period with a much lower

EMR adoption rate but by the end of the sample they slightly higher EMR utilization levels.

FP hospitals, however, continued to lag other hospitals in the adoption of more sophisticated

systems with CPOE capabilities. These figures and the summary statistics suggest that,

in fact, FP and NFP hospital may have divergent strategic aims in their use of health IT.

Our measure of EMR differs notable from Jha et al. (2009) as they focus on comprehensive

electronic health record systems and is more similar to the enterprise EMR studied by Tucker

and Miller (2011). While the HIMSS data demonstrate that clinically relevant information

systems are rapidly diffusing during our study period, it is not practical to employ the these

data directly in our analysis.24

Production function parameters are identified by dynamic variation in the input choices

(Ackerberg et al., 2006b; Bond and Soderbom, 2005). The variation we leverage to identify

the parameters is demonstrated by the means and standard deviations in the logarithm of

the hospital-specific, long difference (t=2007 minus t=1997). The mean of the difference in

the logarithms of the inputs is .88, .53, .80 and 1.15 and the standard deviations are .35,

.65, 1.20 and 1.20 for L, K, Lc, and Kc respectively. There is notable heterogeneity in input

utilization for all the inputs over this period.

24The discrete nature of the HIMSS application data cannot, for example, be incorporated into the OP,
LP, or ACF models as the function could not be inverted. While discrete data can, in theory, be employed in
the DPD models there is only meaningful variation during the year of actual technology adoption. Finally,
the detailed application-level data are not available for all years of our sample.
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6 Production Function Results

The production function estimates are presented in Table 2. The first two columns present

OLS and FE estimates. Parameter estimates from the DPD model are presented in column

(3). The OLS and FE model estimates are almost all lower than the estimates in our base

model. This is consistent with the large literature estimating production function parameters

and the notion that input choices are endogenous. The DPD estimates indicate that IT

capital and IT labor are very productive and the coefficients are significantly different from

zero. The common factor restrictions are not rejected for the DPD model (they are for

the OLS and FE estimates), and the Hanson test p-value is .54 indicating that the over

identification restrictions are not rejected. The parameter estimates also do not reject a

constant returns to scale technology. That is, the standard tests do not reject the DPD

specification.

The ACF, OP and LP estimates are reported in columns (4), (5), and (6) of Table 2

respectively.25 Parameter estimates from these models are, generally, lower than the estimates

from the DPD approach but still higher than the OLS and FE estimates; furthermore, the

standard error bands for the DPD, ACF, OP, and LP models generally overlap. Interestingly,

the ACF, OP and LP parameter estimates for the IT variables are all very similar, however

there are important differences across approaches in the parameters on the conventional

inputs. For example, the OP estimates imply increasing returns to scale while the ACF and

LP estimates are consistent with constant returns to scale. While broadly consistent with the

ACF/LP/OP estimates, the dynamic panel data model generates higher health IT elasticities

and may be seen as an upper bound of our parameter estimates.

6.1 Contributions of health IT to value-added

We examine the implications of our production function parameter estimates on the historical

contributions of hospitals’ IT inputs to value-added and the forecasted impact of the broad

health IT expansion contained in the HITECH act. To measure the historical contribution

25Standard errors for the ACF, OP and LP models are generated via bootstrap using 200 draws.

19



of health IT, we calculate the difference in each hospital’s implied value-added under 2007

and 1997 health IT input levels. Value-added grew an average of 156% over this period – an

approximately 7% compound growth rate. Health IT capital grew an average of 220% over

this period while IT labor grew by 213%. Combined, IT inputs accounted for a 6% increase

in value added output.

We use our parameter estimates to model the implied long-run net benefits of expanding

IT inputs. The IT capital marginal product calculations depend on hospitals’ opportunity

cost of capital and on the rate of IT capital depreciation. We assume a nine percent op-

portunity cost of capital and four-year straight-line depreciation for IT capital inputs.26 We

first recovered hospital-specific productivity shocks, εit. Counterfactual simulations were the

based on parameter estimates and actual input levels.

All estimation strategies yield high marginal products for IT capital inputs. These range

from $0.73 (95% CI: $0.33 to $1.42) for ACF to $1.29 (95% CI: $0.48 to $2.22) for DPD. The

net marginal product of IT labor ranges from $0.006 (95% CI: $-0.22 to $0.37) for ACF to

$1.45 (95% CI: $0.33-$2.65) for DPD. The implied IT labor marginal products for OP and

LP were negative but not statistically significant. These marginal products are similar to

estimates of IT value in other industries. For example, Brynjolfsson and Hitt (1996) estimate

a net marginal product of $1.62 for IT labor and a long-run net marginal product of $0.67

for IT capital.

While the marginal effects of IT inputs are high, their absolute contribution to value-

added is modest. Both IT inputs exhibit high marginal benefits that diminish slowly. These

results suggest that substantial increases in IT inputs would be beneficial. Doubling IT capital

inputs from 2007 levels would increase total value added by less than 2% while doubling IT

labor inputs would increase value added by less than 1% for the median hospital.

The high marginal products for health IT could reflect either an underinvestment in IT

or the cost of unmeasured complements. For example, Brynjolfsson and Hitt (2003) find

26Outsourced IT goods and services are treated as flow inputs. We reach similar conclusions when varying
the cost of capital or depreciating IT capital over a five-year period. We also explore alternative models that
estimate separate parameters for owned and outsourced IT. Our overall policy conclusions are consistent with
these alternative assumptions.
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that IT investments are correlated with MFP. This could be because software expenditures

(a large share of total IT costs) are not observed in their data or the cost of unobserved

organizational investments.

We perform several robustness tests for bias due to unobserved complementary inputs.

First, organizational complements, such as works-flow reorganization and changes in job

design would likely lag IT capital investments, leading to vintage effects. Second, comple-

mentary organizational investments may play a bigger role for large IT investments. Finally,

unobserved complements would likely lead to a correlation between IT investments and MFP.

We find no evidence of vintage effects (see below) and no evidence that IT value differed for

small or large investments.

We calculate the change in MFP over 1997-2007 using our parameter estimates. The

weighted (by 2007 value-added) average percent change in hospital MFP over this period is

2.0% and the standard deviation is 18.2%.27 There was virtually no change in the average

MFP across hospitals, and there is little difference in the change in MFP across NFP and

FP hospitals (approximately 4.5%). However, government hospitals saw a significant decline

in MFP of 5.6%. We find no correlation between IT inputs and MFP.

These results further imply that the vast majority of the increase in hospital value-

added over this period is directly tied to the expansion of hospitals’ capital and labor inputs.

These findings align with Cutler (2010) who contends that, unlike most other industries, the

necessary forces are not in place to drive changes in organizational productivity in health

care delivery.

6.2 Organizational differences, network externalities and vintage
effects

Table 3 presents production function estimates by hospital ownership form.28 Hospital own-

ership may play an important role in their organizational objectives and may influence in-

vestment behavior (Sloan, 2000; Horowitz and Nichols, 2009; David et al., 2011). While we

27Unweighted means and standard deviations yield similar conclusions.
28ACF parameter estimates for specifications discuss in this section are presented in the Appendix. These

estimates do not materially affect our conclusions.
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cannot directly incorporate these heterogeneous hospital preferences into our model, we can

estimate the model dividing the sample according to ownership status. These results are

reported in the first three columns of Table 5. Although the health IT parameter estimates

differ across ownership structures, the standard errors are large enough that we cannot reject

that the coefficients for NFP, FP and government hospitals are equal. That being said, be-

cause FP hospitals invest significantly less in health IT capital, the implied marginal product

is much higher than for other hospitals. These results combined with the evidence presented

above suggest that FP hospitals invest differently in health IT.

Table 3 also presents our estimates of the impact of network effects on health IT pro-

ductivity in column (4). Parameter estimates for lc−i,t and kc−i,t, which measure the effect

of neighbors’ health IT inputs, are close to zero, statistically insignificant, and precisely es-

timated. That is, we find no evidence of network externalities. This is not surprising. As

discussed in Section 2, these technologies are not usually inter-operable across hospitals and,

in general, hospitals do not exchange information with each other. The policy implication is

that network externalities do not cause sub-optimal levels of IT adoption.

We also examined whether there is meaningful heterogeneity in the impact of health IT

on value-added. To do this, we split the sample in half based on the number of staffed beds

and estimate the parameters for each sample. Table 4, columns (1) and (2) presents the

results from this exercise. Parameter estimates indicate that there is virtually no significant

difference in health IT parameters across samples; however, there are differences in the other

parameters. While the coefficients are all significantly different from zero, the standard errors

are large enough that the estimates may not distinguish modest differences in parameters

across hospital categories.

Our data cover a significant span of time during which improvements in productivity of

health IT likely occurred.29 Rapid innovation would lead us to underestimate the impact of

future health IT investments. Therefore, we tested for vintage effects by examining whether

the output elasticity of health IT increased over our study period. We divided the data

29Discussions with industry experts point to meaningful improvements in the functionality of health IT
over this period.
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into two samples based on the year of the observation. The samples periods are 1997-2001

and 2002-2007. Table 4 also presents the production function parameter estimates for these

two samples. The estimates suggest that, in fact, health IT became more productive over

time. The health IT labor parameter, in particular, is larger in the 2002-2007 period and

significantly different from the 1997-2001 period parameter (which is close to zero). The IT

capital parameter is also larger in later period but the differences are not significant. While

the parameters are larger in the later period the economic implications of these differences

is modest and does not materially affect our conclusions regarding the impact of health IT

expansions on value-added. Alternative specifications allowed the effects of IT inputs to

change after their adoption. Changes could capture either learning or innovation effects.

These effects were small in magnitude and not significantly different from 0.

6.3 Alternative Specifications

The Cobb-Douglas specification imposes strong functional assumptions on output elasticities

and marginal productivity. We thus estimated a series of more flexible specification. These

models incorporated interactions between IT inputs and other inputs as well as higher or-

der terms of IT inputs. These terms were incorporated into the models individually. These

additional parameters were never statistically significant and the overall model results were

similar to those reported above. We also incorporated these changes simultaneously using

a translog specification. Translog models fit the data poorly and parameter estimates were

neither significant nor coherent. The poor fit is unsurprising given our relatively small sam-

ple size. Furthermore, other studies of IT and productivity have had similar difficulties in

employing more flexible specifications (Brynjolfsson and Hitt, 1996, 2003; Tambe and Hitt,

2010). Thus, we find little convincing evidence indicating that our results are driven by

the Cobb-Douglas assumption or that health IT has a more complex (and perhaps more

interesting) impact on value-added than implied by the Cobb-Douglas production function.
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7 Conclusion

We study the effect of IT capital and labor on productivity. We employ a variety of iden-

tification strategies as hospitals’ IT investments are both persistent and endogenous. Naive

identification strategies underestimate the effect of IT on productivity, suggesting that IT

investments are correlated with negative productivity shocks. These shocks may include

unobserved quality or patient severity.

Hospitals’ IT investments are highly productive at the margin. The median long-run net

marginal products of IT inputs are $1.04 for IT capital and $0.73 for IT labor. We find that

the value of increased IT inputs diminishes slowly and that inputs are complementary (con-

sistent with the Cobb-Douglas constant elasticity of substitution assumption). Health IT’s

high marginal product suggests that widespread adoption may generate large productivity

gains. While the marginal benefits are high, IT represents a small share of total inputs and

the absolute benefits are modest. Doubling IT capital inputs would increase total value-

added by less than 2%. These findings suggest that federal initiatives aimed at increasing IT

investments may lead to efficiencies, but they are unlikely to transform health care delivery.

These high marginal products raise interesting questions about the efficiency of IT adop-

tion. In equilibrium, hospitals should employ inputs until their long-run net marginal prod-

ucts are $0. An important limitation of our study is that we do not observe complementary

organizational inputs such as training or work-flow reorganization. Complementary input

costs could lead us to overestimate the marginal products of IT inputs. While unobserved

complements certainly matter, we perform a series of robustness tests that suggest the mag-

nitude of such bias is small.

Our findings suggest that IT inputs are, at the margin, under-utilized. Several mecha-

nisms could lead to underinvestment in health IT. With a rapidly changing technology, there

may be imperfect information or uncertainty regarding the costs and benefits of investment.

This uncertainty may be important as Song et al. (2011) find that even sophisticated health

care systems have made no attempt to calculate the return on IT investments and the empir-

ical literature provides few insights into this question. Furthermore, hospitals (particularly
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not-for-profit institutions) often lack access to capital markets. The high marginal products

could also reflect shortages in skilled IT labor in the California market, either for hospitals or

health IT vendors. Under these conditions, adoption subsidies would be welfare enhancing.

We also consider the possibility that health IT’s value depends on network externalities.

For example, neighboring providers’ use of interoperable medical records systems could in-

crease the value of health IT investments. Alternatively, provider and staff learning could

lead to indirect network effects. We test this issue directly and find no evidence of network

externalities. However, we recognize that comprehensive electronic health records systems

are rare (Jha et al., 2009) and direct network effects may be realized in the future as more

sophisticated IT systems are widely adopted.

Health IT utilization differs substantially by hospital ownership. For-profit hospitals

utilize 83% less IT capital than not-for-profit hospitals. For-profit institutions also utilize

more IT labor per dollar of IT capital. We find that the marginal products of IT inputs are

higher in for-profit institutions. Application level-data indicate that for-profit institutions

lag their non-profit peers in the adoption of potentially quality-enhancing systems. These

findings suggests that ownership structures affect hospitals health IT adoption strategies.

One important limitation of our study is that we do not directly observe quality. While

this should not bias our estimates of IT and value-added, we may underestimate the total

welfare gains from health IT investments. Although this is an important issue, recent studies

suggest that this problem is quite small for the average hospital (e.g., (McCullough et al.,

2010; Agha, 2011; McCullough et al., 2011; Tucker and Miller, 2011)). Furthermore, IT

forms a small share of hospitals’ total inputs while exhibiting lower marginal products than

observed in other service industries (Tambe and Hitt, 2010).
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Figure 1: Trends in IT capital and IT labor per bed
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Figure 2: Trends in EMR and CPOE adoption
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Table 1: Means and (std. dev.) in $1,000 and shares of input as a % of value-added

Entire Sample
Variable Total Share FP Share NFP Share Gov. Share

Value added (Y ) 133,895 100.0% 74,892 100.0% 164,548 100.0% 124,326 100.0%
(181,806) (71,881) (208,531) (180,735)

Labor (L) 117,851 88.0% 67,161 89.7% 145,031 88.0% 107,389 86.4%
(151,530) (60,158) (173,742) (149,212)

Capital (K) 173,090 129.3% 81,171 108.4% 219,832 133.6% 150,844 121.3%
(267,923) (120,701) (2314,255) (234,095)

IT Labor (Lc) 1,576 1.2% 539 0.7% 2,025 1.2% 1,616 1.4%
(3,146) (903) (3,793) (2,678)

IT Capital (Kc) 5,537 4.1% 1,306 1.7% 7,823 4.8% 4,609 3.7%
(11,206) (1,757) (13,866) (7,723)

Number of Hospitals 309 78 169 62
1997

Value added (Y ) 83,889 100.0% 35,110 100.0% 101,514 100.0% 81,528 100.0%
(109,648) (29,756) (110,840) (134,698)

Labor (L) 72,889 90.5% 34,221 97.5% 88,836 87.5% 66,237 81.2%
(86,476) (30,292) (89,668) (99,023)

Capital (K) 115,968 131.3% 38,218 108.9% 150,970 148.7% 95,479 117.1%
(1452,400) (41,421) (172,165) (132,141)

IT Labor (Lc) 867 1.0% 247 0.7% 1,108 1.1% 793 1.0%
(943) (268) (2,027) (1,228)

IT Capital (Kc) 3,013 3.6% 715 2.0% 4,156 4.1% 2,145 2.6%
(5,239) (1,123) (6,371) (3,058)

Number of Hospitals 293 57 167 69
2007

Value added (Y ) 214,317 100.0% 115,876 100.0% 281,136 100.0% 159,184 100.0%
(262,092) (92,247) (316,109 ) (186,868)

Labor (L) 193,456 90.3% 109,684 94.7% 241,869 86.0% 168,901 106.1%
(223,600) (81,550) (257,135) (215,093)

Capital (K) 291,573 136.0% 126,601 109.3% 390,184 138.8% 233,344 146.6%
(438,564) (176,743) (431,344) (351,288)

IT Labor (Lc) 2,712 1.3% 914 0.8% 3,507 1.2% 2,794 2.1%
(5,140) (1,516) (56,159) (4,519)

IT Capital (Kc) 9,630 4.5% 2,333 2.0% 14,191 5.0% 6,543 4.1%
(18,131) (2,550) (22,709) (10,439)

Number of Hospitals 298 74 161 63

N ote: NFP is not-for-profit; FP is for-profit; and GOV is government.
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Table 2: Production Function Parameter Estimates
OLS FE DPD ACF OP LP

Variable (1) (2) (3) (4) (5) (6)
Labor, lt .790** .588** .781** .775** .901** .847**

(.028) ( .070) (.046) (.028) (.019) (.024)
Capital, kt .096** .0862** .140** .182** .179** .125**

(.014) (.014) (.029) (.025) (.051) (.036)
IT Labor, lct .012** .011** .028** .009** .004 .003

(.003) (.002) (.007) (.003) (.004) (.004)
IT Capital, kct .028** .026** .045** .033** .038** .033**

(.003) (.004) (.009) (.005) (.005) (.005)
ρ .799** .555** .664** – – –

(.028) (.034) (.046)
ComFac .000 .000 .218 – – –
No of Obs. 2,904 2,904 2,904 3,392 3,392 3,392
No of Hosp. 264 264 264 309 309 309

Note: FE is fixed-effects; DPD is dynamic panel data (Blundell/Bond); ACF is
Ackerberg/Caves/Frazier; OP is Olley/Pakes and LP is Levinsohn/Petrin.
Standard errors are in parentheses.
∗ : p < 0.05, ∗∗ : p < 0.01
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Table 3: DPD estimates by ownership type and tests of the presence of network effects

Variable FP NFP Government Network
effects

(1) (2) (3) (4)
Labor, lt .896** .597** .441** .830**

(.042) (.067) (.084) (.037)
Capital, kt .068** .081* .099** .100**

(.025) (.037) (.036) (.021)
IT Labor, lct .026** .010* .043** .026**

(.009) (.004) (.012) (.006)
IT Capital, kct .027** .035** .038** .041**

(.009) (.008) (.009) (.008)
Neighbor’s IT Labor, lc−i,t – – – -.002

(.011)
Neighbor’s IT Capital, kc−i,t – – – -.012

(.001)
ρ .641** .858** .882** .679**

(.046) (.038) (.026) (.043)
ComFac .149 .010 .000 .334
No of Obs. 697 1,616 591 2,556
No of Hosp. 63 147 54 232

Note: NFP is not-for-profit and FP is for-profit. Standard errors are in parentheses.
∗ : p < 0.05, ∗∗ : p < 0.01
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Table 4: DPD estimates by bed size and time frame

≤ 173 beds >173 beds 1997-2001 2002-2007
Variable (1) (2) (3) (4)
Labor, lt .718** .870** .441* .783**

(.073) (.049) (.217) (.046)
Capital, kt .140** .084** .256** .142**

(.034) (.028) (.085) (.029)
IT Labor, lct .023** .013** .005 .030**

(.008) (.06) (.025) (.008)
IT Capital, kct .029** .034** .047 .046**

(.009) (.011) (.044) (.009)
ρ .773** .711** .824** .641**

(.053) (.047) (.042) (.046)
ComFac .131 .042 .635 .145
No of Obs. 1,452 1,452 1,159 1,745
No of Hosp. 132 132 105 159

Note: Standard errors are in parentheses.
∗ : p < 0.05, ∗∗ : p < 0.01
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8 Appendix

Table 5: ACF estimates by ownership type and tests of the presence of network effects

Variable FP NFP Government Network
effects

(1) (2) (3) (4)
Labor, lt 0.809** 0.780** 0.610** 0.796**

(0.051) (0.031) (0.081) (0.031)
Capital, kt 0.139** 0.185** 0.201** 0.172**

(0.033) (0.037) (0.042) (0.022)
IT Labor, lct 0.007 0.006 0.025* 0.005

(0.010) (0.003) (0.011) (0.003)
IT Capital, kct 0.032* 0.038** 0.034** 0.036

(0.013) (0.005) (0.010) (0.006)
Neighbor’s IT Labor, lc−i,t -0.013**

(0.005)
Neighbor’s IT Capital, kc−i,t -0.002

(0.007)
No of Obs. 856 1,859 677 3,097
No of Hosp. 78 169 62 281

Note: NFP is not-for-profit and FP is for-profit. Standard errors are in parentheses.
∗ : p < 0.05, ∗∗ : p < 0.01

Table 6: ACF estimates by bed size and time frame

≤ 173 beds > 173 beds 1997-2001 2002-2007
Variable ( 1) ( 2) (3) (4)
Labor, lt .768** .792** .717** .792**

(.054) (.030) (.073) (.048)
Capital, kt .172** .175** .244** .140**

(.022) (.029) (.039) (.037)
IT Labor, lct .011* .010* -.0008 .012**

(.005) (.005) (.006) (.004)
IT Capital, kct .035** .025** .028** .036**

(.007) (.006) (.006) (.004)
No of Obs. 1,707 1,685 1,572 1,820
No of Hosp. 155 153 143 165

Note: Standard errors are in parentheses.
∗ : p < 0.05, ∗∗ : p < 0.01
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