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1.  Introduction 
 

Fuel economy standards create an incentive for manufacturers to alter the 

composition of the vehicle fleet toward smaller and lighter vehicles, potentially changing 

overall accident safety.  The direction and magnitude of the effect depends on the set of 

interactions between all vehicles in the fleet: larger vehicles tend to offer their own 

occupants greater safety, but do so at considerable expected cost to the drivers of smaller 

cars.  I show how the effects of vehicle safety can dramatically change the cost-benefit 

calculus for new fuel economy rules phasing in through 2016.1  The need to understand the 

size and direction of the relation between fuel economy and safety is further underscored by 

the announcement of even stronger policy through 2025, nearly doubling the current fuel 

economy requirement.2 

There is a long related literature on vehicle engineering and safety, much of it 

focusing on specific physical characteristics of vehicles like weight or the inclusion of new 

safety technologies.  Kahane (2003) and the National Research Council (2002) provide 

summaries.  Evans (2001) and Anderson and Auffhammer (2011) parameterize the effect of 

weight in particular and make a careful effort to control for driver selection.  In general this 

literature finds that heavier vehicles offer additional protection in accidents, but in cases 

where two vehicles are involved the extra weight imposes risk on the other driver.  The 

National Research Council (2002) applies one such simple relationship between overall 

vehicle safety and weight and suggests that 2,000 additional deaths annually could be 

associated with existing fuel economy standards.3 

There is also a recent literature that investigates the danger that light trucks 

specifically (a category including pickups, minivans, and SUV's) pose when they are 

involved in an accident with a sedan.  White (2004) shows that the protective effect of light 

trucks for their own drivers combines with severe external risks to create an arm's race in 

                                                
1 Environmental Protection Agency and Department of Transportation (2010).  There were 37,261 
U.S. traffic fatalities in 2008. 
2 The White House Office of the Press Secretary (2011). 
3 See Portney et al (2003) and Crandall and Graham (1989) for further discussion. 
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vehicle choice.  Gayer (2004) examines the safety of light trucks using snowfall as an 

instrument to predict their frequency in the fleet.  He shows that there is a significantly 

higher overall fatality risk in areas with a greater number of light trucks, suggesting that fuel 

economy incentives – if they acted to discourage pickups and SUV's – might in fact have the 

opposite effect, improving safety outcomes. 

The first main contribution of this paper is an econometric model that flexibly nests 

both strands of the literature.  My model provides what I believe is the first approach to 

consider safety in counterfactual fleets where characteristics like weight can change 

simultaneously with composition across vehicle classes.  A key challenge is to model driver 

selection into vehicle types, observing that drivers will re-optimize over their choice of 

vehicle as fuel economy policy changes the composition of the fleet.  My estimation 

technique introduces a semi-parametric method to measure this effect of unobserved driver 

behavior: in policy counterfactuals I show that the ability to capture driver behavior is 

pivotal to the policy results, changing the sign of the estimated welfare impacts. 

My estimation approach begins with a system of equations describing single-vehicle 

and two-vehicle accident fatality rates, all expressed per mile driven.  In order to abstract 

from weight or the light truck definition in isolation I bin vehicles into classes (ten in the 

dataset I employ) spanning the wide variety of sizes, weights, and shapes in the fleet.  The 

model allows estimates of the internal and external safety costs when vehicles in each bin 

interact with every other.4  Restrictions across the equations allow me to empirically 

separate unobserved driver risk behavior from underlying vehicle safety.  

The second contribution here, before moving to the policy question on fuel economy 

standards, lies in the empirical estimates themselves.  I use U.S. accident data to estimate a 

matrix of risks across 110 specific accident types, all estimated without parameterizing 

vehicle characteristics.5  When cutting this matrix along the dimension of weight I am able 

                                                
4 The estimates are semi-parametric in this sense since no restrictions are placed on the combination 
of physical characteristics in a bin.  Among other dimensions classes differ by weight, wheelbase, 
engine size, fuel economy, and passenger capacity. 
5 There are 100 types of two-car accidents, corresponding to all interactions of vehicles across bins, 
and 10 types of single car accidents. 
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to show that my empirical results are consistent with the earlier literature examining weight 

in isolation.  If I instead divide my estimates according to class, light truck or sedan, I 

further find the results are consistent with the literature looking at the dangers imposed by 

light trucks.  Finally, and in contrast to either of these earlier approaches, the matrix of 

estimates also captures safety interactions along all other physical dimensions where vehicle 

bins differ. 

My empirical results also contain a novel measure of the residual riskiness of drivers 

who select into different types of vehicles, expressed up to a constant.  Since I can allow all 

components of driver risk to remain unobserved these estimates capture, for example, a 

tendency to drive drunk,6 the safety of roads in the driver's geographical area, and Peltzman-

type effects where the protective nature of a vehicle itself may affect driving behavior.  

Finally, a third key contribution of this work returns to the motivating question, 

applying my empirical model of the vehicle fleet to consider the safety impacts of fuel 

economy policy.  I consider three policy variants, all based on current or proposed fuel 

economy rules.  The estimated safety impacts of the first policy, based on the historical 

Corporate Average Fuel Economy (CAFE) rules, depend pivotally on my ability to model 

driver behavior: 149 additional annual fatalities are predicted per mile-per-gallon increment.  

I next consider a "unified" standard that encourages smaller vehicles overall, now reducing 

both weight and the number of light trucks.  Unlike earlier studies, I can estimate the degree 

to which these factors offset.  The increase in fatalities under the unified rule is only 8 per 

year, with a zero change included in the confidence band.  Finally, I consider a “footprint” 

type rule similar to the provisions in fuel economy standards set through 2016.  It too has a 

near zero impact on safety.  I explore robustness of these results to a variety of factors 

including Peltzman-type selection effects, weather, age of vehicles, driver versus passenger 

fatalities, and the potential frailty of older drivers in accidents. 

I limit the policy analysis to the example of fuel economy rules, but since the model 

presented here allows consideration of arbitrary counterfactual fleets it could also be applied 
                                                
6 Levitt and Porter (2001) provide an innovative method to estimate drunk driving rates using 
innocent vehicles in accidents as control, but in most cases (including the present study) such 
personal characteristics are difficult to observe. 
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to a number of other questions.  For example, the U.S. "cash-for-clunkers" program as 

described in Knittel (2009) or the incentives to switch among new and used vehicles in 

Busse, Knittel, and Zettelmeyer (2011) may produce changes in safety that importantly alter 

the economic efficiency of policy.  The definition of vehicle bins is flexible such that 

expansions or redefinitions of the vehicle set would allow future investigation of the variety 

of policies aiming at influencing composition of the vehicle fleet. 

The rest of the paper is organized as follows:  Section 2 describes U.S. fuel economy 

policy and the role of safety.  Section 3 presents the model.  Sections 4 and 5 respectively 

describe the data and empirical results.  Section 6 presents the policy experiments, 

combining my empirical results with a model of fuel economy regulation.  Section 7 

considers three alternative specifications and addresses robustness. 

 
  
 

2.  Safety and Fuel Economy Regulation 
 

The importance of automobile safety is evident simply from the scale of injuries and 

fatalities each year.  In 2008 there were 37,261 fatalities in car accidents on U.S. roads and 

more than 2.3 million people injured.7  The National Highway Traffic Safety Administration 

(NHTSA) is tasked with monitoring and mitigating these risks and oversees numerous 

federal regulations that include both automobiles and the design of roads and signals. 

To motivate the concern about fuel economy standards with respect to safety 

consider the very rough estimate provided in NRC (2002): approximately 2,000 of the traffic 

fatalities each year are attributed to changes in the composition of the vehicle fleet due to the 

CAFE standards.  If we further assume that the standards are binding by about 2 miles per 

gallon, this translates to a savings of 7.5 billion gallons of gasoline per year.  Valuing the 

accident risks according to the Department of Transportation’s methodology this implies a 

cost of $1.55 per gallon saved through increased fatalities alone.8  This does not consider 

                                                
7 NHTSA (2009). 
8 The Department of Transportation currently incorporates a value of statistical life of $5.8 million in 
their estimates.  This is conservative relative to the $6.9 million used by EPA. 
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injuries, or any of the other distortions associated with fuel economy rules, yet by itself 

exceeds many estimates of the externalities arising from the consumption of gasoline.9 

Conversely, a finding that accident risks improve with stricter fuel economy 

regulation would present an equally strong argument in favor of stringent fuel economy 

rules.  The magnitude of the implicit costs involved in vehicle safety motivate the 

importance of a careful economic analysis, and mean that even small changes in the 

anticipated number of fatalities will carry great weight in determining the optimal level of 

fuel economy policy.   
 
 
Current regulation  
 

U.S. fuel economy regulation is in transition, with the rule through 2016 now 

complete (Environmental Protection Agency and Department of Transportation [2010]), 

while regulatory provisions beyond 2016 remain to be determined.  I consider three possible 

regulatory regimes, each of which produces a unique effect on the composition of the fleet.  

The resulting impacts on the frequency of fatal accidents are similarly diverse: 

 

1)  The current Corporate Average Fuel Economy (CAFE) rules:  Light trucks and cars are 

separated into two fleets, which must individually meet average fuel economy targets.  No 

direct incentive exists for manufacturers to produce more vehicles in one fleet than the other.  

Rather, the incentives to change composition occur inside each fleet:  selling more small 

trucks and fewer large trucks improves the fuel economy and compliance of the truck fleet.  

The same is true inside the car fleet.  This produces a distinctive pattern of shifts to smaller 

vehicles within each fleet, but without substitution between cars and trucks overall. 
 

2)  A unified standard:  This type of standard was introduced in California as part of 

Assembly Bill 1493, and is under consideration federally.10  It regulates all vehicles together 

                                                
9 See Parry and Small (2005). 
10 Strictly speaking the California bill preserves the fleet definition, but allows manufacturers to 
“trade” compliance obligations between fleets in order to achieve a single average target.  The 
trading between fleets aligns incentives for all vehicles, making the rule act like a single standard. 
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based only on fuel economy.  This includes the effects above while simultaneously 

encouraging more small vehicles, broadly shifting the fleet away from trucks and SUV’s and 

into cars.  
 

3)  A “footprint” standard:  This type of rule is in place federally for the years 2012 - 2016 

and is also presently being debated for the years 2017 through 2020.  It assigns target fuel 

economies to each size of vehicle (as determined by width and wheelbase), severely limiting 

the incentives for any change in fleet composition.  As such it increases the technology costs 

of meeting a given target, but was required in the hopes of mitigating the costly safety 

consequences discussed above.11 
 
 
 
 
3.  A Model of Accident Counts 
 

I model the count of fatal accidents between each combination of vehicle classes as a 

Poisson random variable.  Vehicle classes in the data represent various sizes and types of 

cars, trucks, SUV’s and minivans; covering all passenger vehicles in the U.S. 

Define Zij as the count of fatal accidents where vehicles of class i and j have collided 

and a fatality occurs in the vehicle of class i.  The data will be asymmetric, that is Zij ≠ Z ji , 

to the degree that some vehicle classes impose a greater external risk on others.  In the 

relatively unusual cases where a fatality occurs in both vehicles in an accident then both Zij 

and Zji are incremented.   

We can write the total count of fatalities in vehicles of class i as: 

 
(fatalities in class i) = Zij

j∈J
∑  (3.1) 

 

                                                
11 NHTSA (2008b) discusses the rationale for the footprint rule.  Technology costs are higher 
because all improvement must be achieved through technology; the other rules allow some of the 
improvement to come from technology and some to come via fleet composition. 
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where J represents the set of all vehicle classes.  By changing the order of subscripts we can 

similarly write the count of fatalities that are imposed on other vehicles by vehicles of class 

i: 
 

(fatalities imposed on others by class i) = Z ji
j∈J
∑  (3.2) 

 

Counts of accidents of each type reflect a combination of factors influencing risk and 

exposure.  I categorize these factors into three multiplicative components, the first two of 

which can be separately identified in estimation:  1) The risk coming from the behavior of 

drivers in each vehicle class, 2) risk coming from physical vehicle characteristic alone – I 

will term this the “engineering” risk, and 3) the number of vehicles in each class present on 

the road at any given time and place.  The combination of these three elements determines 

the number of fatal accidents in each combination of classes:  Intuitively the greater the 

driver recklessness, engineering risk, or number of vehicles, the more fatal accidents we 

should expect. 
 

Define the three components using: 
 
α i  The riskiness and safety behavior of the drivers of each vehicle class i (i.e. a separate 

fixed effect on driver behavior for each class) 
 
βij  The risk of a fatality in vehicle i when vehicles from class i and class j collide (i.e. 

fixed effects for every possible combination of vehicles) 
 
nis  The number of vehicles of class i that are present at time and place s 

 

I define the measure of driver riskiness such that it multiplies the overall fatality risk.  

For example, a value of α i = 2  will correspond to a doubling of risk relative to an average 

driver.  High values of α i  come from a tendency of class i owners to disobey traffic signals, 

drive when distracted or drunk, drive recklessly, or take any other action (observable or 

unobservable) that increases the risk of a fatal accident.  
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Combining the definition of dangerous driving behavior with the engineering fatality 

risk results in: 
 

Probability of a fatal accident in vehicle i |  i, j  present =α iα jβij  (3.3) 
 

The probability of a fatal accident, conditioned on vehicles i and j being present at a 

particular time and place, is modeled as the product of the underlying engineering risk in a 

collision of that type, βij , and the parameters representing bad driving, α i  and α j . 

The multiplicative form contains an important implicit restriction: behaviors that 

increase risk are assumed to have the same influence in the presence of different classes and 

driver types.  I argue that this is a reasonable approximation given that most fatal accidents 

result from inattention, drunk driving, and signal violations;12 such accidents give drivers 

little time to alter behavior based on attributes of the other vehicle or driver. 

Finally I add in the effect of the number of vehicles of each class present in time and 

place s.  If pickup trucks are less common on urban roads, or minivans tend to be parked at 

night, there should be differences in the number of accidents involving these vehicles across 

time and space.  In the estimation below I bin the data according to time-of-day, average 

local income, and urban density – factors that appear to significantly influence both the 

composition of the fleet and the probability of fatal accidents.  In my notation s will 

correspond to bins. 

The effect of the quantity of vehicles present in bin s on the number fatalities 

expected again takes a natural multiplicative form: If there are twice as many cars of a 

certain class on the road then we expect twice as many cars of that class to be involved in an 

accident: 
 
E(Zijs ) = nisnjsα iα jβij  (3.4) 
 

For this final step we add a bin s subscript to the counts Zijs , keeping track of fatal accidents 

both by vehicle type and by bin. 

                                                
12 NHTSA (2008a). 
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Given that the α i  terms include unobservable driving behaviors it is impossible to 

estimate equation (3.4) alone; it can’t be separately determined if a vehicle class is 

dangerous in a causal engineering sense or if the drivers who select it just happen to drive 

particularly badly.   

The method I propose here separates driver behavior from the underlying safety risk 

via a second equation describing single-car accidents.  I define the count of fatal single-car 

accidents in vehicle class i in location s as Yis  where: 
 

E(Yis ) = nisα iλsxi  (3.5) 

 
The four parameters are: 
 
nis  (As above) The number of vehicles of class i present in bin s 

α i  (As above) The riskiness of drivers owning vehicles of class i  

λs  A bin-specific fixed effect allowing the overall frequency of fatal single-car 

accidents to vary freely across time and space. 

xi  The relative fatality risk to occupants of class i in a standardized collision (to be 

measured using government crash tests). 

 

The key restriction across equations (3.4) and (3.5) is that the dangerous behaviors 

contained in α i  multiply both the risk of single-car accidents and the risk of accidents with 

other vehicles.  This may be a better assumption for some behaviors (drunk driving, 

recklessness) than others (falling asleep) but I will show below that it appears to fit the data 

well.  Note that the assumption is not that the absolute risk of single and two-car accidents 

are always proportional (clearly single car accidents are more frequent at night, for example) 

but rather it restricts the way that driver behavior multiplies those risks. 
 

 

Comparison with other models in the literature 
 

Much of the previous work focusing on the influence of weight of vehicles (see 

Kahane [2003]) has taken a parametric approach and attempts to isolate the effect of weight 
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alone.  By assigning a complete set of fixed effects for all possible interactions, βij , I can 

still recover information about vehicle weight, but add considerable flexibility in form and 

am able to account for other attributes that vary by class.  The cost to my approach comes in 

terms of demands on the data and the degree of aggregation (I will aggregate to 10 distinct 

classes, or 100 βij  fixed effects). 

Wenzel and Ross (2005) describe overall risks using a similarly flexible approach for 

vehicle interactions but importantly do not model driving safety behavior, and so are unable 

to separate it from underlying engineering risk.  For purpose of comparison I provide 

estimates of a restricted version of my model where I set all the α i ’s to be equal.  The 

parameter estimates turn out to be quite different, so much so in fact that the primary policy 

implication is reversed in sign. 
 
 
4.  Data 
 

I assemble data on each of the three variables needed to identify the parameters of 

(3.4) and (3.5): 
 

• Comprehensive count of fatal accidents, Zijs and Yis  

• The number of vehicle miles driven in each class, ni 

• Crash test data to describe risks in single-car accidents, xi 

 
 

Fatal accident counts 
 

The count data on fatal accidents represent the core information needed to estimate 

my model.  I rely on the comprehensive Fatal Accident Reporting System (FARS), which 

records each fatal automobile accident in the United States.  The dataset is complete and of 

high quality, due in part to the importance of accurate reporting of fatal accidents for use in 

legal proceedings.  If such complete data were available for accidents involving injuries or 

damage to vehicles it could be used in a similar framework to the one I propose, but 

reporting bias and a lack of redundancy checking in police reports for minor accidents make 

those data less reliable. 
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The FARS data include not only the vehicle class and information about where and 

when the accident took place (which I use to define bin s in the model), but a host of other 

factors like weather, and distance to the hospital.  While the additional data isn’t needed in 

my main specification (which captures both observed and unobserved driver choices in fixed 

effects) I will make use of a number of these other values to investigate the robustness of my 

estimates. 

I bin the data using three times of day (day, evening, night), two levels of urban 

density, and three levels of income in the area of the accident.  For the latter two items I use 

census data on the zip codes where the accidents take place.  This creates 18 bins s in my 

central specification.  I experiment with adding more bins using other demographics and 

geography and find that additional detail neither influences the estimates nor adds precision.  

The robustness of my results to alternative bin structures is included in the sensitivity 

analysis. 

For my main specification I pool data for the three years 2006-2008.  I experiment 

with month fixed effects and a non-overlapping sample of data from 1999-2001 and find no 

important differences in results.  The persistence in the vehicle fleet due to the relatively 

long life-spans of cars is likely an important factor in the stability of accident rates over 

time. 
 
 
Quantity of vehicles present 
 

I use the total vehicle miles traveled (VMT) in each class as a measure of the 

quantity of vehicles of that class present on the road.  This data is available from the 

National Household Transportation Survey (NHTS), which is a detailed survey of more than 

20,000 U.S. households conducted in 2008.  While I do have some information about the 

location of the VMT (for example the home state of the driver) I can’t observe other 

important aspects like the time of day or type of road where the miles are driven. 

Fortunately, as shown in Section 5, it is possible to recover values for the parameters 

defining driver behavior using only the total VMT for each class: bin s level VMT is 

absorbed in fixed effects. 
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Crash test data 
 

NHTSA has performed safety tests of vehicles using crash-test dummies since the 

1970’s, with recent tests involving thousands of sensors and computer-aided models to 

determine the extent of life-threatening injuries likely to be received.  The head-injury 

criterion (HIC) is a summary index available from the crash tests and reflects the probability 

of a fatality in actual accidents very close to proportionally (Herman (2007)).  This is 

important for my application since equation (3.5) requires a measure that reflects 

proportional risk across vehicle types.   

I have assembled the average HIC by vehicle class for high-speed frontal crash tests 

conducted by NHTSA over the period 1992-2008.13  These tests are meant to simulate 

typical high-speed collisions with fixed objects (such as concrete barriers, posts, guardrails, 

and trees) that are common in many fatal single-car accidents.  The values for each class are 

included in Table 1.  Single-vehicle accidents in small pickup trucks, the most dangerous 

class, are nearly twice as likely to result in a fatality as those occurring in large sedans, the 

safest class, all else equal.  

The crash test data is more difficult to defend than my other sources since it relies on 

the ability of laboratory tests to reproduce typical crashes and measure injury risks.  I 

therefore offer an alternative specification in Section 7 that abstracts altogether from crash-

test data.  It produces quite similar results but offers less precision since it places more 

burden on cross-equation restrictions. 
 
 
Summary statistics 
 

I define 10 vehicle types (classes) spanning the range of the U.S. passenger fleet, 

including various sizes of cars, trucks, SUV’s, and minivans.  Table 1 provides a list and 

summary of fatal accident counts, reflecting fatalities both in the vehicle and those of other 

                                                
13 Specifically, I include all NHTSA frontal crash tests involving fixed barriers (rigid, pole, and 
deformable) and a test speed of at least 50 miles per hour.  This filter includes the results from 945 
tests. 
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drivers in accidents.  The quantity data is summarized in column 3, displaying the total 

annual miles traveled in each class.  Finally, I include the HIC data for each class, 

representing the relative risks of a fatality in single-car crashes.   

Table 2 describes the data on fatal accidents, broken down by bin s.  The first three 

columns indicate total fatal accidents in my sample, summarizing only one and two-car 

accidents.  Column 4 shows variance at the weekly level as used in estimation.  Columns 5 

and 6 respectively display the fraction of accidents that involve one car and where the 

fatality is in a light truck.  More than half of fatal accidents involve only one car.  Finally, 

the last two columns show the accident types with the highest relative frequency.  Pickups 

are involved in the most single-car accidents per mile everywhere except in the highest 

income cities.  Two-car accidents are more varied, with luxury vehicles involved in the 

evening and at night, and compacts much more likely to have a fatality (the vehicle with the 

fatality is listed first).  A summary of the accident rates in all 100 possible combinations of 

classes is provided in Table 3, and is discussed in detail in the following section. 

 
 
5.  Estimation and Results 
 

The equations from Section 3 representing single and multi-car accidents 

respectively are: 
 

E(Yis ) = nisα iλsxi  (5.1)
  

E(Zijs ) = nisnjsα iα jβij  (5.2) 
 

Since the parameters for driving behavior and quantity are only relevant up to a 

constant (they expresses relative riskiness and vehicle density, respectively) I combine them 

into a single term for estimation: δ is ≡ nisα i  and normalize the first δ is  to unity.  The average 
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risks by class α i  can be recovered after estimation using the aggregate data on miles 

traveled.14 

 
The transformed model for estimation is: 

 

 

Yis  Poisson(ω is )
E(Yis ) =ω is = δ isλsxi

 (5.3) 

 

 

Zijs  Poisson(µijs )
E(Zijs ) = µijs = δ isδ jsβij

 (5.4) 

 

where xi and the realizations of Yis  and Zijs  are data.  All remaining parameters are to be 

estimated and require simultaneous estimation of the two equations for identification.  For 

convenience in programming, the data is transformed by natural logs and fit using the 

maximum likelihood command in the Stata 11 package.  All coefficients and standard errors 

in the tables below are reported in exponentiated form, such that they can be interpreted 

directly as the multiplicative terms appearing in my model. 

Overdispersion in count data is often present, and can be captured by modeling the 

negative binomial generalization of the Poisson distribution.  The negative binomial 

distribution includes one additional parameter, similar to estimating the variance of an error 

term in a linear model, and reduces to the Poisson distribution as overdispersion falls to 

zero.  My point estimates remain virtually unchanged relative to the simple Poisson model, 

with a slight increase in standard errors.  In all results below I report estimates from the 

more general negative binomial version of the model. 
 

Identification 
 

The separate identification of α i  and βij  comes from the cross equation restrictions 

above, but it may be useful to provide some additional intuition: 

                                                
14 In particular, define ni as the aggregate quantity (miles) for class i such that ni = nis

s
∑ .  Then 

δ is
s
∑ ni = nisα i

s
∑ ni =α i . 
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Consider a simplified version of (5.3) abstracting from the λs  fixed effects:  We 

would have simply ω is = δ is xi .  The unknown parameters here are just the δ is ’s which can 

be exactly identified using the counts of single-vehicle accidents and crash test data. 

Effectively, I measure the quantity of dangerously driven vehicles of each class by seeing 

how many single-car fatalities occur and adjusting for the riskiness of the vehicle involved.  

Once the δ is ’s are known the remaining parameters in (5.4) are just the βij ’s, which are now 

straightforward to recover separately. 

In practice of course the fixed effects for single-car accidents are also very important 

(certain types of roads and times of day are much more conducive to single-car accidents).  

Intuitively, these can be identified using the additional observations in the second equation 

(since there are s pieces of data over-identifying each βij  parameter). 

 
 
Results from a restricted model 
 

For purpose of comparison I first estimate a restricted model where I combine 

driving behavior and underlying engineering safety into a single parameter.  The next 

subsection displays the full model, where the effects are separated.   

For the restricted model I retain the full set of fixed effects on bins s and vehicle 

interactions βij  but drop the terms for driver behavior: 
 

 

Zijs  Poisson( µijs )

E(Zijs ) = µijs = nis njs βij

 (5.5) 

 

where the parameters are defined as before, and the ~ modifier indicates the restricted 

model. 

Table 3 presents the restricted estimates of  
βij .  The parameters have a simple 

interpretation:  they are the total fatality rates in interactions between each pair of classes.  

The most dangerous interaction in the table occurs when a compact car collides with a large 

pickup truck, resulting in 38.1 fatalities in the compact car per billion miles that the two 

vehicles are driven.  The chance of a fatality in the compact in this case is about 3 times 
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greater than if it had collided with another compact, and twice as large as if it collided with a 

full-size sedan.  What is omitted from this table is the possibility that some classes contain 

more fatalities due to dangerous driving, rather than because of any inherent risk.   

Biases of this sort are particularly evident when examining minivans in Table 3.  

Minivans are much larger and heavier than the average car yet appear to impose very few 

fatalities on any other vehicle type, even compacts.  This is noted as a puzzle in the 

engineering literature (Kahane (2003)) since simple physics suggests minivans will cause 

considerable damage in collisions.  I find below that this is resolved by allowing flexibility 

in driving behavior; minivans tend to be driven much more safely. 
 

 
Results from the full model 
 

By estimating (5.3) and (5.4) simultaneously my full model is able to separate the 

accident rates shown in Table 3 into two pieces:  The portion attributable to driver behavior, 

and the portion that comes from the physical characteristics of the vehicles themselves.  The 

semi-parametric form allows me to be agnostic about which physical attributes of the 

vehicles cause the changes in underlying safety; the influence of any characteristic of 

interest (for example vehicle weight, or category definition as a light truck) can be easily 

calculated ex post from my full matrix of estimates. 

My central estimates appear in Table 4.  The first row displays estimates of α i , or 

the driving safety risks (from both observed and unobserved factors) among people who 

select vehicles in each of the ten groups.  Average safety is normalized to unity and standard 

errors appear in parentheses.  For easier comparison, I also display 95% confidence intervals 

graphically in Figure 1.  I find that minivan drivers are the safest among all classes, with 

accident risks that are approximately 1/3 of the average.  This is due both to driving 

behavior and the locations and times of day that minivan owners tend to be on the road.  

Small SUV drivers also have very low risk for fatal accidents, about half of the average.  

Small SUV’s tend to be driven in urban areas (which are much safer than rural areas in 

terms of fatal car accidents) and are among the more expensive vehicles.  Pickup trucks are 

driven significantly more dangerously than SUV’s of similar sizes, also intuitive given their 
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younger drivers and prevalence in rural areas.  Among passenger cars, large sedans are 

driven somewhat more dangerously than other car types.  Again the urban-rural divide may 

explain some of this (there are more compacts in cities) as well as the higher average age of 

large sedan drivers. 

The next ten rows of Table 4 are my estimates of the underlying safety across all 

vehicle interactions.  The fatality rates shown are per billion miles, and now represent a 

situation where driving behavior is fixed at the average in both vehicles: i.e. a standardized 

collision with only the physical attributes of the two vehicles allowed to vary.  Fatalities 

occur in the vehicle indicated in the row and the externality imposed by the larger classes on 

the smaller ones is evident.  The largest risk occurs in a compact car when it is struck by a 

large pickup. 

A number of key differences in βij  appear relative to the summary of accident rates 

shown in Table 3: without including differences in driving behavior large pickup trucks 

appear much more dangerous to other drivers than large SUV’s (compare columns 7 and 9 

of Table 3).  After correcting for driving safety, the two classes of vehicles now appear very 

similar (columns 7 and 9 of Table 4).  This is an intuitive result in terms of physical 

attributes:  Large SUV’s and large pickups have similar weight and size, often being built on 

an identical light truck platform.  Minivans now also look like the light trucks that they are 

based on (in fact becoming statistically indistinguishable from them in most accident 

combinations).  This validates engineering predictions based on weight and size, resolving 

the puzzle of why they appear in so few fatal accidents. 

 
 

 and the effects of vehicle weight 
 

While I wish to focus on the policy implications of driver behavior combined with 

engineering safety, a closer examination of the engineering coefficients in isolation is useful 

to test the plausibility of my results and relate them to the literature:  Much of the related 

work in engineering and economics has focused on the physical effect of vehicle weight on 

accident fatalities, controlling away driver behavior.  In particular, there has been interest in 

βij
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both the protection that vehicle weight offers as well as the externality that it imposes on 

others. Both of these quantities can be calculated from my estimates of β, but will 

necessarily be rough measures due to aggregation. 

Quantity weighted averages of the columns in Table 4 provide a measure of the 

external effect; that is, the average number of fatalities that each class imposes on the other 

vehicle involved in an accident after driver behavior has been removed.  I fit the following 

line, relating weight in each class to the natural log of external fatality risk: 
 

 ln
niβij
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∑

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= a + b ⋅weighti  (5.6) 

 

where weighti is an average measured in thousands of pounds for each class i.  The least 

squares estimate of b is 0.46, suggesting that 1000 pounds of weight increases the number of 

fatalities in other vehicles by 46%.  The protective effect of weight can be similarly 

calculated (averaging the rows of Table 4), and the slope coefficient suggests each 1000 

pounds of vehicle weight reduces own risk by 54%. 

 Evans (2001) estimates both the external and internal effects of vehicle weight using 

differences in the number of occupants in the striking and struck car.  This strategy helps 

avoid a host of selection issues, since it allows weight to vary holding all other attributes of 

the vehicle fixed.  He finds that 1000 pounds increases external risk by 42% and decreases 

own risk by 40%.15  Kahane (2003) focuses on own safety risk: for passenger cars the 

central estimate of the protective effect is 44% per 1000 pounds of weight.16  Kahane’s 

estimates for light trucks, in contrast, are not robust and vary between -30% and +70% 

depending on accident type and vehicle size.  Kahane speculates in his report that the 

difficulty in getting consistent estimates for light trucks may be due to selection by driver 

                                                
15 In particular, they estimate that each adult occupant adds 190 pounds on average and that striking 
vehicles with an extra adult occupant increase the fatality risk in the other car by 8.1%.   
16 The report includes a very large number of estimation strategies; the central statistic I quote for 
cars is taken from the conclusion to Chapter 3 and the results for trucks from Chapter 4. 
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type.  I now have evidence to support this: the selection effects I find among different types 

of light trucks are much stronger than those among passenger cars. 

Anderson and Auffhammer (2011) also wish to isolate the effects of weight, and 

carefully control for accident and driver characteristics.  They argue that conditioning on 

accident occurrence (either fatal or not) controls for most of the driver selection, such that 

the remaining fatality risk can be attributed to the physical characteristics of the vehicle.  

They find that 1000 pounds of weight increases external risk by 47%.  The rough estimate of 

the weight externality contained in my βij  parameters is very similar.  At least along the 

dimension of vehicle weight, this suggests that the multiplicative structure I impose in 

equations (3.4) and (3.5) has not restricted the underlying pattern in the data.  
   
 
 
6.  Policy Simulations 
 

An economic analysis of safety, fuel economy, and fleet composition turns on three 

factors:  The underlying engineering causes of fatal accidents, the driving risk of the 

individuals who choose different vehicle types, and the re-optimization of vehicle choices 

that occurs due to the regulation.  I recover the first two of these as empirical estimates in 

my framework above.  The third, modeling which individuals change their car choice as a 

result of the standard, is described here. 

The first stage of the simulation involves applying the shadow costs of policy to 

vehicle choices: Implicitly, existing policy increases the purchases of small cars and 

decreases the purchases of large cars in order to meet an average target.  Policy also creates 

an incentive for technological change that I am assuming does not alter safety in itself; I 

instead focus on the changes in fleet composition.  All of my empirical measures are per-

mile driven, and that continues to hold in simulation.  The vehicle choice model assumes 

constant own and cross- price elasticities of demand taken from the literature, and that 

consumers re-optimize based on the shadow costs present under different types of fuel 

economy standard.   
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The behavior of drivers, a key focus of this paper, also enters the simulation.  I first 

assume that drivers carry their residual term with them as they switch vehicles.  For example 

if a minivan or SUV driver switches to a large sedan, that will lower (all else equal) the 

fatality rate per mile in sedans.  On the other hand, if a pickup truck driver switches to the 

same sedan that would increase the fatality rate per mile in sedans.  Simulating a movement 

of the residual with the driver assumes that exogenous characteristics of drivers make up 

most of the safety residual (age, gender, safety of roads in local area, income, alcohol use, 

children in the vehicle, etc.). 

However, Peltzman (1975) points out that larger, safer vehicles should induce more 

risk-taking behavior.  Gayer (2004) also makes the case that light trucks and SUV’s are 

more difficult to drive, working in the same direction as the Peltzman effect.17  In my 

context the Peltzman effect means that a portion of the safety residual should stay with the 

vehicle class even as drivers re-optimize.  I compute an upper bound on these effects and 

allow them to enter a second set of simulations.  Intuitively, I find that Peltzman-type effects 

make all fuel economy standards look better on safety since we are now arguing that smaller 

vehicles themselves cause better driving behavior.  Importantly my main policy conclusions, 

including the adverse effect of the current standard and the improvement offered by a 

unified standard, remain fully robust. 

Finally, the farther out of sample I wish to look in simulation (i.e. very extreme 

changes to the fleet) the more strain is placed on the empirical estimates.  Fortunately, there 

is a substantial amount of variation in the fleet already included in the data:  For example the 

fraction of the fleet that are large pickup trucks varies by more than factor of two across bins 

s.18  The changes as the result of fuel economy rules span only a small piece of this 

variation. 
 

 

 

                                                
17 The recent widespread adoption of unibody SUV designs and electronic traction and stability 
control may reduce this effect. 
18 It ranges from 10% (high-income, urban, daytime) to 22% (low-income, rural, night). 
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Simulation Model 
 

I begin with a set of estimates for own and cross-price elasticities of demand among 

the 10 vehicle classes.  The central-case elasticities I use are shown in Table 5 and come 

from Bento et al (2009).  I also investigate the robustness of my results to alternative 

elasticities.  To determine the change in vehicle choices I combine the matrix of elasticities 

with the shadow tax implicit in fuel economy regulation.19  The shadow taxes are displayed 

in Table 6 for each of the three policies I consider: 

 
1)  Extension of the current CAFE rule 

The shadow tax in this case is proportional to fuel economy within the light truck 

fleet and within the car fleet.  This means that large pickups receive a shadow tax while 

small pickups receive a shadow subsidy.  Similarly large cars receive a shadow tax while 

compacts receive a shadow subsidy.  There is no incentive to switch from trucks and SUV’s 

into cars with this policy, since they are regulated by separate average requirements. 

 
2)  Single standard 

Here the shadow tax is very simple:  The least efficient vehicles receive the highest 

tax and the most efficient ones the highest subsidy.  All are in proportion to fuel economy.  

In general trucks receive a shadow tax (the worse their fuel economy the more so) and cars 

receive a shadow subsidy. 
 

3)  Footprint-based CAFE standard 

This more complicated policy targets fuel economy for vehicles based on their 

wheelbase and width.  Large footprint vehicles are given a more lenient target, leaving little 

or no incentive for manufacturers to change the composition of vehicle types they produce.  

The only residual effect on fleet composition will be for classes that are either particularly 

efficient relative to their footprint (non-luxury cars) or particularly inefficient relative to 

                                                
19 Average fuel economy regulation places a shadow tax on vehicles that fall below the average 
requirement and a shadow subsidy on vehicles that are more efficient than the requirement. 
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their footprint (SUV’s).  This implies relatively little switching across vehicle types and 

therefore only small changes in safety. 

Since the cross-price elasticities describe the full pattern of substitution I can 

calculate both the new composition of the fleet and also track the types of drivers as they 

switch across vehicles. Depending on which types of drivers are switching into the smaller 

vehicles their accident rates per mile can either rise or fall.  For example:  If the policy 

causes a lot of large-pickup drivers to now buy small SUV’s instead, I would predict that the 

average driving safety behavior in small SUV’s worsens: The small SUV class will now 

contain the relatively safe, urban drivers it originally included, and now also add some 

drivers from the more dangerous category that formerly owned large pickups.  

More formally, I compute the updated driver behavior, α̂ i , by taking a quantity-

weighted average of the safety characteristics of drivers from all the classes who have 

switched into class i as a result of policy. This is combined with those who choose class i 

both before and after the regulation.  The predicted number of fatalities under the new policy 

scenarios is given by: 

 

Ẑijs = n̂isn̂ jsα̂ iα̂ jβij  (6.1) 

Ŷis = n̂isα̂ iλsxi  (6.2) 
 

where α̂ i  is the new driver safety residual and n̂i  reflects the new fleet composition induced 

by the policy. 
 
 
Simplifying assumptions 
 

In order to keep the analysis tractable I abstract from issues of scale and accidents 

outside the passenger fleet as follows: 
 

i)  Commercial vehicles:  I assume that the fleet of commercial vehicles (mainly 

heavy trucks for which a commercial driver’s license is required) remains fixed.  I leave the 

number of fatalities occurring in commercial vehicles unchanged, and adjust the fatalities in 
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passenger vehicles that collide with commercial vehicles using the same risk factors I 

estimate for single-car accidents.20 
 

ii)  The scale of the fleet and miles driven:  It may be that fuel economy rules will 

change the total number of cars sold (likely decreasing it) or the number of miles driven 

(likely increasing that in a "rebound" effect).21  I focus here on fatalities per mile driven in 

order to keep the simulation transparent: to the extent that either the increase in overall miles 

or decrease in fleet size is important it will scale total fatalities up or down.  The comparison 

in policy provisions that I focus on is unaffected by changes in overall scale.22   
 

iii)  Pedestrians and bicyclists:  About 14% of fatalities involving passenger vehicles 

are pedestrians and bicyclists.  These fatality rates are nearly identical among cars and light 

trucks, consistent with the observation that the mass of the passenger vehicle is many times 

larger regardless of its class.23  I therefore assume a constant rate of fatal accidents involving 

pedestrians.  To the extent that smaller vehicles could reduce pedestrian fatalities – for 

example because of better visibility when reversing – both the uncorrected and corrected 

results in my model would change by the same amount. 
 
 
Results of policy simulations 
 

The results of the three main policy simulations are contained in Tables 7 through 9.  

I compute standard errors for the total change in fatalities in each case by using the delta 

                                                
20 This is a reasonable approximation since the much larger mass of commercial trucks means 
collisions with them resemble collisions with fixed objects (albeit at very high speed if the collision 
occurs head-on). 
21 A decrease in quantity might come from cost increases as fuel-saving technologies are introduced.  
An increase in miles is known as the rebound-effect; better fuel economy means driving becomes 
cheaper at the margin. 
22 Differential changes in driving across vehicle types will have more complicated effects and an 
extension to the paper could involve a richer simulation model to account for this.  These effects 
would not change the estimation strategy or empirical results.  
23 Pedestrian and cyclist fatalities in my data are 2.82 per billion miles for cars and 2.81 per billion 
miles for light trucks.  Within trucks, fatality rates are somewhat higher for larger vehicles.  
Surprisingly, the opposite effect holds within cars: larger vehicles have lower pedestrian fatality 
rates. 
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method.  The standard errors reflect the estimates of the safety parameters made in this 

paper; the hypothetical changes in fleet composition are treated as deterministic. 
 
 

1)  Increment of 1.0 MPG to the current CAFE rules: 
 

The left panel of Table 7 displays the change in total traffic deaths that are predicted 

using the restricted model, where driving behavior is not estimated.  This restricted model 

suggests that CAFE offers an improvement in safety: 135 lives would be saved.   

A very different picture emerges when I use the full model, including the selection 

on driving behavior at the class level.  The central estimate is that the increment to CAFE 

will result in 149 additional traffic-related fatalities per year. 

It is straightforward to see the intuition behind the reversal in sign: large SUV’s and 

pickups (and large sedans) cause and experience a lot of fatal accidents in the data.  The 

naive restricted model assumes that when you take away these large (and seemingly 

dangerous) vehicles an improvement in safety results.  Unfortunately I must argue that the 

picture is not so favorable: much of the danger in the larger vehicle classes appears to be due 

to their drivers, not the cars themselves.  When we move those people into smaller vehicles 

it does not diminish the risk, and in some cases can even magnify it since smaller vehicles 

do more poorly in most single-car accidents. 

It is important to point out that the driver effects here are not all habits that we would 

fault the drivers themselves for (like running through traffic signals).  A significant portion 

is simply the urban-rural divide: drivers who currently choose large vehicles tend to live in 

rural areas, where accident fatality rates are very high.  As rural drivers change to smaller 

vehicles the dangers of accidents on rural highways remain.  These are very often single-car 

accidents, as reflected in the composition of additional fatalities I predict. 
 
 
2)  Unified standard achieving a 1.0 MPG improvement 
 

Table 8 presents results under a unified standard, which has a strikingly different 

effect from an increment to current CAFE rules.  My full model shows an increase of only 8 

fatalities per year under a unified standard.  A zero change lies within the confidence 
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bounds.  This represents a highly statistically significant improvement over an increment to 

current CAFE and comes as the result of two effects canceling each other out in the fleet: 

The first effect reiterates the undesirable outcome in the first experiment, that is, 

changes within the car fleet and within the truck fleet lead to smaller and lighter vehicles 

and increase the number of fatalities. 

Recall though that the unified standard adds a second incentive:  It encourages 

switching away from light trucks and SUV’s and into cars.  This second effect improves 

overall safety substantially.  There appears to be something about light trucks (likely the 

height of their center of mass) that makes them more dangerous vehicles than cars, even 

after controlling for their drivers.  Exchanging an average truck for an average car confers a 

large safety benefit to the fleet.  It turns out that this improvement almost exactly offsets the 

deterioration of safety within the car and truck fleets due to the down-sizing of vehicles. 
 
 
3)  Footprint-based standard 
 

Table 9 presents results under the footprint-based standard that is in effect until 

2016.  The footprint-based standard discourages most types of composition changes by 

shutting down switching both within and across the car and truck fleets.  The most 

significant changes that remain are movement away from SUV’s and into pickup trucks and 

cars; this is due to the relatively small footprint of SUV’s relative to their fuel consumption.  

My full model shows a very small deterioration in safety from the footprint standard, with 

an increase of only 6 fatalities per year. 

It is important to point out that these small safety effects come paired with large 

efficiency costs:  Fuel savings under the footprint standard must be accomplished almost 

exclusively through engine technology, when movement to a smaller and lighter fleet is 

likely to be a much cheaper way to save gasoline. 

My results on the unified standard are encouraging in this regard:  I show that 

savings in gasoline from movement to a smaller fleet can come with the same minimal effect 

on safety that appears under the footprint standard.  As the U.S. presses toward even more 
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fuel efficiency after 2016, changes in fleet composition will prove valuable and can be made 

with safety consequences fully in mind. 
 
 
 
7.  Alternative Models 
 
 
Driver-vehicle specific safety effects correlated with size 
 

 Peltzman (1975) argued that safer vehicles (in particular those with seatbelts 

installed) will be driven more aggressively as a result of the driver's tradeoff in utility.24  

Gayer (2004) presents evidence of a similar effect, where drivers in light trucks appear to 

take more risks or have less control when driving.  Correlation of this type between vehicle 

size and unobserved driving behavior can be expected to improve the safety outcomes 

associated with all fuel economy standards, since it assumes that putting people in smaller 

vehicles causes safer driving.   

 I am able to investigate this in the context of my model by further decomposing the 

safety residual into two pieces.  I define the first piece as being all of the residual driving 

safety that is correlated with the own-safety of the vehicle.  In that sense it is an upper limit 

on the size of the Peltzman effect.25  The second portion is whatever idiosyncratic variation 

remains in my estimated driving safety residuals.  In the alternative simulations below I 

assume that the first portion stays together with the vehicle type (i.e. is adopted by drivers 

once they switch to that vehicle).  The idiosyncratic part continues to move with the driver.  

Table 10 presents the results of these policy experiments.  The third column is my upper 

bound on the Peltzman effect over all driving safety residuals.  The fourth column controls 

first for census region (there are more light trucks and dangerous roads in the west) and then 

applies the same method to divide the residual into two pieces. 

                                                
24 Subsequent empirical research has shown this effect may be small, see Cohen and Einav (2003). 
25 Unobserved countervailing selection in initial vehicle choice could potentially make the Peltzman 
effect even larger; these more extreme cases could still be modeled in simulation, possibly using 
estimates from other studies. 
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 As expected, the outcomes in Table 10 show that all fuel economy standards are 

improved if drivers become safer when moved to a smaller vehicle.  However, even at the 

limit defined above I show that the existing fuel economy standard continues to have 

adverse effects on safety.  Controlling for census region seems reasonable (as driver 

residence is unlikely to change with fuel economy standards), and the result becomes closer 

to my central case. 

 More important, the improvement that can be offered by unifying the standard 

appears robust to both of the cases where I allow vehicle size to itself influence driving 

behavior.  This is shown in the final row of the table.  Indeed, because the difference in 

policies is maintained and overall safety is improved we see that the unified standard begins 

to offer substantial improvements in overall safety in the final column of the table.  Across 

the range of possibilities we see the existing standard causes robust declines in safety, while 

a unified standard is at worst neutral with regard to safety, and at best can offer substantial 

gains. 
 
 
Estimating driver behavior without using crash test data 
  

It is possible to identify my empirical model (including the measurement of driver 

behavior by class) without the use of crash test data, relying instead on the physical 

properties of accidents.  Accidents between two vehicles of similar mass and speed closely 

resemble accidents with fixed objects since both crashes result in rapid deceleration to a 

stationary position.26  When vehicles of different mass collide, the heavier vehicle will 

decelerate more slowly (pushing the smaller vehicle back) which creates asymmetry in the 

degree of injuries. 

 My alternative identification strategy makes use of this property, setting risk in 

single car accidents proportional to the risk in accidents between cars of the same class, βii .  

The model described in Section 5 becomes: 
 

                                                
26 See Greene (2009).  Each vehicle’s change in velocity raised to the 4th power closely predicts 
injury severity.   
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E(Yis ) = nisα iλsβii  (7.1)
  

E(Zijs ) = nisnjsα iα jβij  (7.2) 
 

The restriction on the diagonal elements of β  is sufficient for identification. 

 The first two columns of Table 11 provide a summary of results from my preferred 

specification in Section 5.  The third column shows the results from estimating (7.1) and 

(7.2) above, providing a confirmation of the central findings even under very different 

identifying assumptions.  The standard errors are much larger in this specification, reflecting 

the reduction in data available to the model. 
 
 
Alternative demand elasticities  
 

 The general pattern in the simulation, that fewer large vehicles and more small ones 

will be sold, is fundamental to a reduction in fuel economy.  However, my simulation also 

embeds more subtle changes in substitution across classes.  For example: Is a driver giving 

up a large SUV more likely to buy a small SUV or switch to a small pickup truck? 

 I investigate the robustness of my simulation results by introducing an entirely 

separate set of substitution elasticities, shown in Table 12.  These are reported in Kleit 

(2004) and are also employed by Austin and Dinan in their 2007 study.  The elasticities 

derive mainly from survey data on second-choices of new car owners, providing a different 

view than the cross-sectional variation used to generate the elasticities in my main 

simulation. 

 The fourth column of Table 11 summarizes the results under the alternative 

elasticities.  My main findings remain intact, though the effectiveness of a single fuel 

economy standard at mitigating safety consequences is somewhat muted relative to my 

preferred model. 

 
Additional robustness checks 
 

 I also investigate the robustness of my findings in a number of subsamples of the 

data.  Columns 3 through 5 of Table 13 summarize my main results in various subsamples, 
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with total fatalities scaled by the number of observations used so that the columns are 

comparable. 
 
1998 and newer model years 
 

 1998 was the first model year where both passenger and driver airbags were required 

in all new vehicles.  Airbags dramatically alter safety risks, and if their presence also 

influences driving behavior or changes relative risks across classes we might expect a 

different set of results to emerge.  My estimates, however, appear robust in this dimension. 
 

Drivers under 55 
 

 There is evidence that elderly drivers may more often be the subjects of fatal traffic 

accidents due to their relative frailty.27  This introduces a potential asymmetry in my model: 

Older drivers may place themselves at greater risk but don’t necessarily impose this risk on 

those around them.  I restrict my sample to driver fatalities among those less than 55 years 

old and find similar results, suggesting that the frailty effect is not large relative to the 

variation in driver behavior overall. 
 
Clear weather 
 

 My simulations assume that the locational or behavioral factors influencing driver 

safety remain with the driver after the change in composition.  A potentially important 

caveat has to do with weather: If a driver switches away from an SUV, for example, they 

may be less likely to drive in the rain or snow.  I therefore experiment with a sample limited 

to fatalities that occur in clear weather (any weather condition, even fog or mist, is 

excluded).  Notably, this only removes 10% of observations; 90% of fatal accidents occur in 

clear conditions.  My results are again unchanged, suggesting that even if there is substantial 

behavioral response to weather conditions it would not be relevant to most accident 

fatalities.  
 
 
 

                                                
27 Loughran and Seabury (2007) investigate this issue in detail. 
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8.  Conclusions 
 

 I introduce a new empirical model of vehicle accidents that provides estimates of 

both the behavior of drivers and the underlying risk associated with engineering 

characteristics in a single framework.  To my knowledge this is the first study to capture 

unobserved driver behavior (as fixed effects) and the impact of physical vehicle 

characteristics both within and across vehicle categories.  The framework has application to 

fuel economy policy (the simulations performed here) and also to a much broader set of 

policy initiatives.  I show that in the case of fuel economy, correctly accounting for driver 

behavior significantly alters conclusions about fleet composition and safety. 

 Two main effects appear in the empirical estimates.  First, there is considerable 

diversity in driving behavior across vehicle classes: the most dangerous drivers (pickup 

truck owners) are nearly four times as likely to be involved in fatal accidents as the safest 

drivers (minivan owners) after controlling for the physical safety attributes of their vehicles.  

Second, controlling for driver safety produces estimates of the physical safety of interactions 

between vehicles that closely mirrors theoretical engineering results.  Large and heavy 

vehicles are the safest to be inside during an accident but also cause the most external 

damage to others.  When reduced to the single dimension of vehicle weight, my estimates of 

the own and external effects of heavier vehicles match those in the literature closely. 

 I use these results to address the motivating question relating safety and fuel 

economy regulation.  I find that the provision in existing CAFE regulation to separate light 

trucks and SUVs from passenger cars is harmful to safety: incrementing the standards by 1.0 

mile per gallon causes an additional 149 fatalities per year in expectation.  The increase in 

statistical risk would be valued at 33 cents per gallon of gasoline saved, with any additional 

injuries or property damage (assuming they are correlated with fatalities) further increasing 

the cost of this type of regulation.28  Intuitively, my estimates measure the degree to which 

greater diversity in the vehicle fleet leads to more fatal accidents.  Current CAFE standards, 

                                                
28 The gasoline savings here reflect only fleet composition changes, holding miles driven fixed.  To 
the extent that a “rebound effect” increases miles driven, the safety cost per gallon saved would be 
even larger. 
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by encouraging light trucks while at the same time making passenger cars smaller and 

lighter, increase the diversity of the fleet. 

 In contrast, I find that a unified fuel economy standard has almost no harmful effect 

on safety.  Two effects are operating in opposing directions: weight reductions increase risk 

while substitution away from light trucks makes the fleet more homogeneous.  My model 

implicitly compares the relative importance of these two effects, finding that they offset 

almost exactly under the shadow costs implied by a uniform fuel economy standard. 

 Further analysis using the model developed here could uncover additional effects of 

interest.  For example, a more detailed disaggregation of car classes by manufacturer, fuel 

economy, or other attribute could reveal additional ways to adjust fuel economy rules to 

protect or even improve safety.  The policy simulations might similarly be made richer, with 

attention given to inter-firm dynamics or the credit-trading provisions in upcoming federal 

regulation. 
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Table 1:  Summary Statistics by Class 
 
 

Count of Accident Fatalities1

Class Own Vehicle Other Vehicle

Compact 2812 1068 247.7 528.7
Midsize 2155 1280 249.7 491.4
Fullsize 733 507 83.2 353.9
Small Luxury 317 236 54.5 424.3
Large Luxury 364 307 50.8 469.3

Small SUV 719 1129 216.0 626.3
Large SUV 477 1379 148.9 531.2
Small Pickup 594 624 87.1 666.2
Large Pickup 716 2293 159.5 585.9
Minivan 469 532 126.7 577.9

Total Miles 

Driven2

Crash Test 

HIC3

 
 

1 One and two car accidents, annual average 2006-2008. 
2 In billions of miles per year (2008 National Household Transportation Survey). 
3 Results from NHTSA testing 1992-2008.  The head-injury criterion (HIC) score has 

been shown to be closely and linearly related to fatality rates (when controlling for 
driver behavior, a doubling in the score should correspond to a doubling of fatality 
rates).  

 
 
 
 



Table 2:  Summary Statistics by Bin s 
 

 

 Fatalities (1 and 2 Car Accidents) Greatest Relative Frequency2

Density1 Income1 Time of Day 2006 2007 2008
1-Car 

Accidents 2-Car Accidents

Night 705 673 582 3.92 0.882 0.557 Lg Pickup Fullsize/Fullsize
Evening 374 373 320 2.77 0.718 0.485 Lg Pickup Fullsize/Fullsize

Day 1574 1475 1310 6.66 0.643 0.519 Lg Pickup Sm Pickup/Lg Pickup
Night 501 518 414 3.47 0.883 0.537 Lg Pickup Compact/Lg Lux

Evening 254 257 210 2.16 0.756 0.535 Sm Pickup Fullsize/Fullsize
Day 1022 1003 897 4.97 0.585 0.498 Sm Pickup Sm Pickup/Lg Pickup

Night 341 308 266 2.71 0.897 0.460 Lg Pickup Sm Lux/Sm Pickup
Evening 150 133 144 1.65 0.728 0.478 Sm Pickup Lg Lux/Lg Lux

Day 639 645 540 4.02 0.550 0.459 Lg Pickup Compact/Lg Pickup
Night 587 570 532 3.53 0.827 0.528 Lg Pickup Compact/Lg Pickup

Evening 283 265 222 2.37 0.655 0.491 Lg Pickup Sm Lux/Sm Lux
Day 1133 1062 953 4.91 0.609 0.528 Lg Pickup Sm Pickup/Lg Pickup

Night 1038 995 946 4.83 0.822 0.491 Lg Pickup Lg Lux/Lg Lux
Evening 478 437 368 2.95 0.652 0.471 Lg Pickup Lg Lux/Lg Pickup

Day 1850 1671 1569 6.72 0.571 0.473 Lg Pickup Compact/Lg Pickup
Night 4234 4085 3565 11.96 0.766 0.380 Sm Lux Compact/Sm Lux

Evening 1490 1404 1229 5.96 0.599 0.385 Sm Lux Compact/Lg Pickup
Day 5786 5525 4801 14.16 0.511 0.386 Compact Compact/Lg Pickup

All 22439 21399 18868 41.85 0.650 0.441 Lg Pickup Compact/Lg Pickup

Variance 
(Weekly)

Fraction         
1-Car

Fraction     
Light Trucks

Rural

Urban

Low

Medium

High

Low

Medium

High

 
 

1 Based on zip-code level classifications from the U.S. Census.  
2 Relative frequencies are calculated as accident counts within group divided by total miles traveled.  A combination of vehicle popularity 

and driver behavior within group determines the accident with greatest relative frequency.



 
 

Table 3:  Estimates of  
βij  in Restricted Model (No class-level driver safety effects)1 

 
 

 
 

1 Standard errors are shown in parentheses, estimates are from negative binomial estimation of the 
multi-car accident equation alone, with all class-level safety effects restricted to unity.  These 
coefficients provide a summary of fatal accident rates without controlling for driver behavior. 
 
 

Compact Midsize Fullsize
Small 
Luxury

Large 
Luxury

Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Compact 12.4        
(0.4)

14.9        
(0.5)

17.7        
(0.9)

12.6        
(1.0)

17.2        
(1.2)

16.2        
(0.5)

26.4        
(0.8)

20.2        
(1.0)

38.1        
(1.0)

12.1        
(0.6)

Midsize 8.8        
(0.4)

11.8        
(0.4)

12.9        
(0.8)

9.2        
(0.8)

12.8        
(1.0)

11.2        
(0.5)

20.4        
(0.7)

16.5        
(0.9)

30.5        
(0.9)

8.9        
(0.5)

Fullsize 8.7        
(0.6)

11.9        
(0.8)

16.0        
(1.5)

8.8        
(1.4)

14.9        
(1.9)

11.6        
(0.8)

19.0        
(1.2)

17.4        
(1.5)

30.6        
(1.5)

9.8        
(1.0)

Small Luxury 8.5        
(0.8)

6.5        
(0.7)

11.2        
(1.6)

11.8        
(2.0)

10.8        
(2.0)

9.6        
(0.9)

12.1        
(1.2)

6.9        
(1.2)

16.6        
(1.4)

5.1        
(0.9)

Large Luxury 6.6        
(0.7)

8.7        
(0.8)

11.6        
(1.7)

6.1        
(1.5)

11.2        
(2.1)

10.3        
(1.0)

20.4        
(1.6)

13.3        
(1.7)

22.9        
(1.7)

8.2        
(1.1)

Small SUV 3.6        
(0.3)

4.2        
(0.3)

4.6        
(0.5)

4.2        
(0.6)

6.8        
(0.8)

4.3        
(0.3)

7.9        
(0.5)

4.9        
(0.5)

12.2        
(0.6)

3.4        
(0.4)

Large SUV 4.2        
(0.3)

4.2        
(0.3)

3.8        
(0.6)

3.7        
(0.7)

5.2        
(0.8)

3.5        
(0.3)

7.9        
(0.6)

5.4        
(0.6)

11.1        
(0.7)

3.7        
(0.4)

Small Pickup 8.2        
(0.6)

8.4        
(0.6)

10.1        
(1.2)

4.6        
(1.0)

6.6        
(1.2)

7.4        
(0.6)

14.0        
(1.0)

13.0        
(1.3)

29.1        
(1.4)

7.7        
(0.8)

Large Pickup 4.8        
(0.3)

5.2        
(0.4)

5.9        
(0.7)

4.5        
(0.7)

6.3        
(0.9)

4.4        
(0.4)

10.1        
(0.7)

7.4        
(0.7)

21.5        
(0.9)

3.6        
(0.4)

Minivan 3.5        
(0.3)

3.8        
(0.3)

6.1        
(0.8)

3.5        
(0.7)

3.9        
(0.8)

5.0        
(0.4)

8.9        
(0.7)

7.7        
(0.8)

14.4        
(0.8)

4.7        
(0.5)



 Table 4:  Central Estimation Results1 

 

 

Compact Midsize Fullsize
Small 

Luxury
Large 

Luxury
Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

αi: Driver Safety 
Behavior

1.14        
(0.06)

0.98        
(0.06)

1.25        
(0.08)

1.19        
(0.08)

1.05        
(0.07)

0.65        
(0.04)

1.06        
(0.06)

1.09        
(0.07)

1.45        
(0.08)

0.39        
(0.02)

βij:  Fatality rate 
in vehicle i

Compact 5.8        
(0.7)

8.1        
(1.0)

7.7        
(1.0)

5.1        
(0.7)

8.3        
(1.1)

13.3        
(1.6)

13.3        
(1.6)

10.9        
(1.4)

16.3        
(1.9)

16.7        
(2.1)

Midsize 4.8        
(0.6)

7.4        
(0.9)

6.5        
(0.9)

4.4        
(0.7)

7.2        
(1.0)

10.6        
(1.3)

11.8        
(1.4)

10.1        
(1.3)

14.9        
(1.8)

14.1        
(1.9)

Fullsize 3.8        
(0.5)

5.9        
(0.8)

6.3        
(1.0)

3.5        
(0.7)

6.7        
(1.2)

8.7        
(1.2)

8.7        
(1.2)

8.4        
(1.2)

11.7        
(1.5)

12.2        
(1.9)

Small Luxury 3.4        
(0.5)

3.1        
(0.5)

4.4        
(0.8)

3.8        
(0.8)

4.5        
(1.0)

7.1        
(1.1)

5.5        
(0.9)

3.5        
(0.7)

6.8        
(1.0)

6.4        
(1.3)

Large Luxury 3.2        
(0.5)

4.9        
(0.7)

5.2        
(1.0)

2.5        
(0.7)

5.6        
(1.3)

8.7        
(1.3)

10.7        
(1.5)

7.5        
(1.3)

10.4        
(1.4)

11.7        
(2.2)

Small SUV 2.9        
(0.4)

4.0        
(0.5)

3.4        
(0.6)

3.1        
(0.6)

5.8        
(1.0)

6.1        
(0.8)

6.8        
(0.9)

4.5        
(0.7)

8.9        
(1.1)

7.9        
(1.3)

Large SUV 2.1        
(0.3)

2.4        
(0.3)

1.7        
(0.3)

1.7        
(0.4)

2.7        
(0.5)

3.1        
(0.5)

4.2        
(0.6)

3.0        
(0.5)

4.9        
(0.6)

5.3        
(0.9)

Small Pickup 4.4        
(0.6)

5.2        
(0.7)

4.8        
(0.8)

2.4        
(0.6)

3.7        
(0.8)

6.8        
(1.0)

7.8        
(1.1)

7.4        
(1.2)

13.0        
(1.6)

11.6        
(1.9)

Large Pickup 2.1        
(0.3)

2.6        
(0.3)

2.2        
(0.4)

1.8        
(0.4)

2.8        
(0.5)

3.2        
(0.5)

4.4        
(0.6)

3.3        
(0.5)

7.4        
(0.9)

4.3        
(0.7)

Minivan 4.9        
(0.7)

6.0        
(0.9)

7.6        
(1.3)

4.4        
(1.0)

5.5        
(1.3)

11.8        
(1.7)

12.7        
(1.8)

11.6        
(1.9)

17.3        
(2.3)

18.2        
(3.1)

Negative binomial regression
Number of obs: 308880
Log likelihood: -89321
Wald chi2(297): 233212

 
 
 

 

1 Estimates of α i  reflect driver safety risks by class.  These are identified up to a constant and are 
normalized here such that a value of unity represents the average driver overall.  βij  are estimated 
rates of fatalities in car i (row) when colliding with car j (column) after removing differences in 
driver behavior.  Standard errors are in parentheses; all coefficients are different from 0 at the 5% 
level. 



 
 
 
 

Table 5:  Matrix of Own and Cross-Price Demand Elasticities by Class1 

 
 
 
 
 
 
 
 
 
 
 
 
 

1 These elasticities are derived from Bento et al (2009) and are used in the central case of the policy 
simulations.  I investigate the robustness of the results to alternative elasticities (see Table 12). 

 
 
 
 
 

Compact Midsize Fullsize
Small 
Luxury

Large 
Luxury

Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Compact -3.51 0.97 0.42 0.32 0.21 0.67 0.49 0.41 0.51 0.52
Midsize 0.80 -3.01 0.31 0.16 0.15 0.41 0.31 0.32 0.32 0.29
Fullsize 0.79 0.73 -4.94 0.14 0.21 0.31 0.44 0.30 0.45 0.30
Small Luxury 0.59 0.35 0.14 -5.15 0.15 0.46 0.16 0.13 0.24 0.16
Large Luxury 0.42 0.36 0.22 0.16 -4.18 0.24 0.22 0.10 0.21 0.12
Small SUV 0.76 0.54 0.19 0.28 0.14 -2.39 0.25 0.19 0.30 0.29
Large SUV 0.62 0.48 0.31 0.11 0.15 0.27 -2.95 0.19 0.37 0.21
Small Pickup 0.68 0.66 0.26 0.12 0.08 0.29 0.24 -3.96 0.23 0.18
Large Pickup 0.92 0.68 0.44 0.24 0.19 0.48 0.51 0.25 -2.81 0.43
Minivan 0.69 0.47 0.23 0.12 0.08 0.34 0.23 0.15 0.32 -3.31



 
 
 
 

Table 6:  Average Fuel Economies and Shadow Taxes by Class 
 
 

Shadow Tax of Policy Increment1

Class
Fuel Economy 

(MPG)
Increase 

current CAFE
Unified 

standard
Footprint 

CAFE

Compact 31.0 0.28 0.22 0.06
Midsize 27.7 -0.09 0.12 0.05
Fullsize 25.5 -0.31 0.06 0.06
Small Luxury 25.9 -0.22 0.08 -0.02
Large Luxury 23.8 -0.56 -0.01 0.00

Small SUV 24.9 0.37 0.01 -0.11
Large SUV 19.5 -0.44 -0.28 -0.14
Small Pickup 22.6 0.16 -0.07 0.02
Large Pickup 18.6 -0.41 -0.27 0.01
Minivan 23.5 0.29 -0.02 0.06

 
 

   1 The shadow taxes and shadow subsidies are placed by the fuel economy policy and differ 
according to the type of standard in place.  They are proportional to the distance of each vehicle 
(in gallons-per-mile) from the applicable fuel economy target. 

 



 
 
 
 

Table 7:  Effect of an Increase in Current CAFE Rules on Total Traffic Deaths 
 

 

No driver effects1 Full model2

One car Two car Total One car Two car Total

Compact 226.3 142.4 368.6 236.1 177.6 413.6
Midsize -60.1 -75.4 -135.5 -51.3 -50.6 -101.9
Fullsize -55.0 -57.0 -112.0 -55.1 -51.0 -106.1
Small Luxury -30.8 -16.1 -46.8 -30.9 -13.4 -44.2
Large Luxury -34.6 -25.6 -60.2 -34.6 -22.3 -57.0

Small SUV 78.4 16.4 94.8 142.4 45.3 187.7
Large SUV -85.9 -27.1 -113.0 -85.8 -23.2 -109.0
Small Pickup 47.8 11.9 59.7 50.9 18.4 69.3
Large Pickup -168.7 -54.6 -223.2 -171.4 -50.8 -222.3
Minivan 22.4 10.2 32.6 69.1 50.2 119.3

Total -60.0 -75.0 -135.0 69.3 80.2 149.5
Standard error (6.1) (9.4)

 
 

1 This case reflects the restricted model, where driving safety behavior is assumed 
constant across all classes.  Only the quantity of cars of each class changes. 

2 Here the full model is used to predict changes in safety, including the parameters that 
account for differences in driving safety behavior across classes. 

 
 
 
 

 



 
 
 

Table 8:  Effect of a Unified Fuel Economy Standard on Total Traffic Deaths1 

 

 

No driver effects Full model

One car Two car Total One car Two car Total

Compact 167.8 105.7 273.5 153.3 97.7 251.0
Midsize 39.4 7.5 47.0 44.7 13.9 58.6
Fullsize 6.7 -1.5 5.2 5.6 -1.6 4.0
Small Luxury 5.7 0.8 6.5 4.9 0.7 5.6
Large Luxury -2.6 -5.6 -8.1 -2.1 -4.8 -6.9

Small SUV -12.5 -11.8 -24.3 -0.3 -6.7 -7.0
Large SUV -62.1 -19.6 -81.7 -62.1 -19.1 -81.2
Small Pickup -32.6 -20.4 -53.0 -32.3 -19.7 -52.0
Large Pickup -122.4 -39.2 -161.6 -122.9 -38.9 -161.8
Minivan -5.6 -10.0 -15.6 2.0 -3.8 -1.8

Total -18.0 5.9 -12.1 -9.3 17.8 8.5
Standard error (3.8) (4.3)

 
 
 

1 The unified standard induces two kinds of changes in the fleet, both of which are 
captured together in these results.  i) Small cars replace large ones and small trucks and 
SUV’s replace large trucks and SUV’s.  ii) Light trucks overall (the second set of five 
classes) replace cars overall (the first set of five classes).   

 



 
 
 

Table 9:  Effect of a Footprint Fuel Economy Standard on Total Traffic Deaths1 

 
 

No driver effects Full model

One car Two car Total One car Two car Total

Compact 45.6 31.4 77.0 38.0 24.4 62.4
Midsize 15.9 8.5 24.4 15.0 6.9 21.9
Fullsize 8.9 6.7 15.6 7.3 5.0 12.3
Small Luxury -3.4 -1.9 -5.3 -3.9 -2.3 -6.2
Large Luxury -0.5 -1.2 -1.7 -0.8 -1.5 -2.2

Small SUV -31.6 -12.5 -44.1 -31.3 -12.7 -44.0
Large SUV -32.6 -8.7 -41.3 -32.6 -8.9 -41.5
Small Pickup 1.8 0.3 2.1 0.9 -0.4 0.5
Large Pickup -4.1 -2.0 -6.2 -10.0 -4.0 -14.0
Minivan 4.1 2.2 6.4 10.3 6.8 17.1

Total 4.2 22.7 26.9 -7.1 13.4 6.3
Standard error (1.3) (1.5)

 
 
 

1 A footprint standard (by design) involves much smaller changes in the composition of 
the fleet than either of the first two policies simulated.  The changes in accident 
fatalities are similarly small.   

 
 
 
 



 
 

Table 10: Peltzman Effects and the Influence of a Driver-Vehicle Specific Residual1 

 
 

No driver 
effects

Full model 
(central)

Peltzman 
effect     

(upper limit)

Peltzman within 
census divisions 

(upper limit)

Current CAFE 
within fleet

-135.02             
(6.15)

149.47             
(9.36)

69.80             
(9.36)

101.72             
(9.36)

Unified standard -12.14             
(3.81)

8.50             
(4.35)

-57.00             
(4.35)

-64.43             
(4.35)

Footprint-based 
standard

26.88             
(1.28)

6.27             
(1.52)

-18.94             
(1.52)

-4.49             
(1.52)

Improvement 
offered by 
unified standard 

-122.9 141.0 126.8 166.1

 
 

 
1 The values in the right two columns allow driving behavior to improve as drivers 

switch to smaller vehicle classes.  They are upper limits in the sense that all of the 
correlation between estimated driver behavior and size is attributed to the vehicle (e.g. 
large vehicles are driven more aggressively or are more difficult to control).  As 
expected, all safety outcomes from CAFE improve in these columns.  The sign of the 
effect on the current CAFE standard is preserved and the improvement offered by a 
unified standard is robust. 

 



 
 
 

Table 11:  Alternative Identification Strategy and Simulation Elasticities1 

 
 

 

No driver 
effects

Full model 
(central)

Alternative 
identification

Alternative 
elasticities

Current CAFE 
within fleet

-135.02             
(6.15)

149.47             
(9.36)

222.00             
(53.97)

156.15             
(10.38)

Unified standard -12.14             
(3.81)

8.50             
(4.35)

7.31             
(21.11)

32.97             
(2.85)

Footprint-based 
standard

26.88             
(1.28)

6.27             
(1.52)

-47.55             
(5.72)

8.18             
(1.27)

 
 

 
1 My alternative identification strategy avoids the use of crash test data entirely.  The 

standard errors are much higher given the additional cross-equation restriction needed, 
but the overall effects are preserved.  Results are similarly robust to the alternative 
substitution elasticities used in the choice model. 

 
 



 
 
 
 
 

Table 12:  Alternative Demand Elasticities by Class1 

 
 

Compact Midsize Fullsize
Small 

Luxury
Large 

Luxury
Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Compact -3.12 0.94 0.06 0.10 0.00 0.10 0.01 0.12 0.03 0.03
Midsize 1.64 -3.92 1.10 0.15 0.06 0.39 0.07 0.06 0.02 0.19
Fullsize 0.65 4.28 -5.00 0.15 0.75 0.20 0.09 0.03 0.07 0.19
Small Luxury 1.32 0.94 0.32 -2.50 0.03 0.49 0.12 0.31 0.25 0.06
Large Luxury 0.11 0.90 1.06 0.05 -1.93 0.49 0.23 0.00 0.03 0.25
Small SUV 0.52 0.62 0.10 0.15 0.03 -4.05 0.96 0.31 0.44 0.38
Large SUV 0.24 0.45 0.14 0.09 0.05 3.73 -2.29 0.16 0.40 0.93
Small Pickup 0.39 0.22 0.00 0.05 0.00 0.49 0.08 -3.32 0.88 0.03
Large Pickup 0.15 0.16 0.02 0.05 0.00 0.30 0.16 0.81 -1.72 0.06
Minivan 0.19 0.38 0.06 0.00 0.03 0.30 0.46 0.03 0.06 -2.54

 
 

1Elasticities from Kleit (2004) aggregated to match the ten class definitions in my model.  In 
order to isolate the effects of fleet composition I also proportionally adjust the cross-price 
elasticities such that fleet size is exactly maintained. 

 
 
 
 
 
 



 
 
 
 

Table 13:  Additional Robustness Checks 
 

 

No driver 
effects

Full model 
(central)

1998 and 
newer

Drivers 
under 55

Clear 
weather

Current CAFE 
within fleet

-135.02 149.47 142.15 132.82 148.52

Unified standard -12.14 8.50 6.27 -2.47 8.26

Footprint-based 
standard

26.88 6.27 0.56 3.36 6.99

Fraction of accidents 1.00 0.52 0.77 0.90
 

 
 

1 Changes in overall safety through time (perhaps most importantly the airbag 
requirement in 1998) do not affect the relative safety performance of classes enough to 
alter my conclusions on fuel economy rules.  The potential frailty of older drivers and 
selection of vehicle type by weather conditions similarly have very small impacts on 
the results.



 
Figure 1:  Estimates of α i  in Full Model1 
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1 Values are taken from the first row of Table 4 and bars indicate 95% confidence 
intervals.  The average driving safety behavior is normalized to 1. 

 


