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1 Introduction

The most significant economic examples of free rider problems (pollution, public goods and com-

mon pools, for example) are characterized by two key features. First, they concern a large number

of agents who act independently and anonymously. Second, they have an important dynamic

component since what matters to the agents is the stock of the individual contributions accumu-

lated over time. These two features are particularly evident in environmental problems where

individual contributions (the levels of pollution) are infinitesimal and mostly anonymous; and

where the state of nature slowly evolves like a capital good.

There is a large literature studying Nash equilibria in static environments that has explored the

first of these two features. This literature has formed most of the current understanding of free

rider problems in economics and other social sciences. There is, however, a much more limited

understanding of dynamic free rider problems. A number of important questions, therefore, still

need to be fully answered. What determines the steady states of these problems and their welfare

properties? Is the free rider problem better or worse as the number of agents increases? How do

we converge to the steady state? Can we have endogenous cycles in the investments?

In this paper, we present a simple model of free riding to address the questions presented

above. In the model,  infinitely lived agents allocate their income between private consumption

and contributions to a public good  in every period. The public good is durable, so in period

 we have  = (1− )−1 +
P

 , where 

 is the contribution at time  of agent , and  is the

rate of depreciation. We consider two scenarios. First, we study economies with reversibility,

in which in every period individual investments can either be positive or negative. Second, we

study an economy where the investment is irreversible, so individual investments are non-negative

and the public good can only be reduced by depreciation:  ≥ (1 − )−1. Economies with

reversibility seem well suited to describe free-rider problems like pollution or common pools where

(as in the case of pollution, for example) it is natural to assume that an agent can either provide a

positive contribution (by adopting a more expensive green technology), or a negative contribution

(by adopting a cheaper “dirty” technology). Economies with irreversibility seem better suited to

describe the accumulation of physical public goods. For both these environments we characterize

the set of symmetric Markov equilibria in which strategies are continuous and depend only the

payoff-relevant state variable . This class of equilibria is widely adopted in applied work and

natural in the type of dynamic games like the one described above, with a large number of

symmetric and anonymous players.

To understand the results, it is useful to start from the static version of our free rider game.

The game has a unique symmetric equilibrium in which  is independent of the number of the
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agents, and in which all agents contribute equally to its cost. The aggregate level of , indeed, is

equal to the level that each agent would choose alone in autarky. The agents’ actions, moreover,

are perfect strategic substitutes: the reaction function of each agent is decreasing in the others’

contributions, so if we force an agent to invest more, all the other agents reduce their contribution

by the same amount in the aggregate.

In the dynamic game, the results and the strategic interaction are very different. Consider

first the economies with reversibility. We show that there is a continuum of equilibria, each

characterized by a different stable steady state ∗. The set of equilibrium steady states are

given by a closed interval [∗(  ) 
∗∗
 (  )], where  is the discount factor,  the rate of

depreciation of , and  is the size of the population. This set has three notable features. First

it always includes in its interior the level of  that would be reached in equilibrium by an agent

alone in autarky: it follows that in equilibrium the steady state in a community with  agents can

be either larger or smaller than when an agent is alone. Second, the upper- and lower-bounds are,

respectively, increasing and decreasing in . This implies that as the number of agents increases,

the set of equilibrium steady states expands, and the free rider problem can either improve or

worsen with the rise of population. Finally, as  → 1 the upper bound ∗∗ (  ) converges to

the efficient level for any  and . When agents are sufficiently patient, therefore, the efficient

steady state can be achieved with simple Markovian strategies. This is perhaps remarkable since

we have a non-cooperative dynamic free riding game, with arbitrarily large numbers of players,

and the Markov assumption rules out reward or punishment strategies that are contingent on

individual actions or complicated histories, as required in folk-theorem constructions supporting

cooperation in repeated games.

In an economy with irreversibility the set of equilibrium steady states is smaller, and contained

in the set of equilibrium steady states with reversibility. We show that as the rate of depreciation

converges to zero, this set converges to a unique steady state, the upper bound of the equilibrium

steady states with reversibility. An immediate implication is that, as  → 1, all equilibrium

steady states with irreversibility are approximately efficient if  is small.

The fact that reversibility affects so much the equilibrium set may appear surprising. In a

planner’s solution the irreversibility constraint is irrelevant: it affects neither the steady state

(that is unique), nor the convergence path.1 Most equilibrium steady states, moreover, are

supported by equilibria with investment functions that are monotonically increasing in . On the

convergent path, therefore, the stock of public good is never reduced: it keeps increasing until the

steady state is reached, and then it stops; the irreversibility constraint is, thus, never binding on

1 This of course is true if the initial state 0 is smaller than the steady state, an assumption that we will maintain

throughout this paper for simplicity of exposition.
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the equilibrium path.

The reason why irreversibility is so important in a dynamic free rider game is precisely the

fact that investments are inefficiently low. The intuition is as follows. In the equilibria with

reversibility, an agent hold down his/her investment for fear that it will crowd out the investment

by other players, or even that it will be appropriated by other agents in the following periods. At

some point the equilibrium investment function falls so low that the irreversibility constraint is

binding. Even if this happens out of equilibrium, this affects the entire equilibrium investment

function. In states just below the point in which the constraint is binding, the agents know that

the constraint will not allow the other agents to reduce  when  passes the threshold. These

incentives induce higher investments and a higher value function, with a ripple effect on the entire

investment function on the equilibrium path. When depreciation is sufficiently small, this effect

“forces” the agents to cooperate and induces a unique stable steady state as depreciation converges

to zero. Despite the practical importance of the case with irreversibility, to our knowledge

this paper presents the first clear characterization of stationary equilibrium behavior in dynamic

economies with a free riding problem and irreversibility.2

For all the steady states and equilibria described above, we derive the associated convergence

path and characterize a simple sufficient conditions that guarantee its uniqueness. Equilibria can

be monotonic (i.e. with an investment function that is non decreasing in ) or non-monotonic.

When the equilibrium is monotonic, convergence is “standard:” the state gradually increases until

the steady state is reached. When the equilibrium is non-monotonic, convergence dynamics may

be surprisingly complex. We show that there always are non-monotonic equilibria in which the

state converges to the steady state with damped oscillations. We also show a sufficient condition

that guarantees the existence of equilibria where the investment path converges to a persistent

cycle. We construct an equilibrium in which the investment function can be solved in closed form

in which the cycle has a 2-period orbit.

The reminder of the paper is organized as follows. The following subsection discusses the

related literature. Section 2 describes the model, and describes the benchmark case in which the

public investment is chosen by a benevolent planner. Section 3 studies the equilibria in economies

with reversibility. Section 4 studies the equilibria in economies with irreversibility. In Section 5

we discuss non-monotonic equilibria and cycles in . Section 6 concludes.

2 See Section 1.1 for a discussion of the related literature.
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1.1 Related literature

There is a long tradition of research on static free rider problems started by Samuelson [1954]

and Olson [1965], and further developed in a large literature.3 Levhari and Mirman [1980]

and Fershtman and Nitzan [1991] are early works studying Markov equilibria in dynamic free

rider problems. Levhari and Mirman [1980] present a closed form characterization of a Markov

equilibrium in a common pool problem in a discrete time setting. Fershtman and Nitzan [1991]

characterize a Markov equilibrium in a voluntary public good contribution game similar to the

game in our paper. They, however, focus on equilibria in linear strategies in a differential game

with quadratic preferences. These two papers are among the first to show the implications of free

riding on the steady state of the economy (in terms of overexploitation of the pool in the first

case, and of a lower public good accumulation in the second case). In addition, Fershtman and

Nitzan [1991] is, to our knowledge, the first work to construct an equilibrium in which the steady

state  is lower in a community with  agents than the level that would be chosen by an agent

alone in autarky. None of these two seminal papers, however, present a full analysis of the set of

Markov equilibria. Extending Fershtman and Nitzan’s analysis, Wirl [1996] observes that multiple

equilibria may exist, and that the linear equilibrium selected in Fershtman and Nitzan [1996] is

indeed the worst possible in terms of welfare. Wirl [1996], however, who also restricts his analysis

to a differential linear quadratic case, does not explicitly solve for equilibrium strategies, making

it impossible to draw clear conclusion on the properties of the equilibria and the steady states. A

number of papers following this literature have continued using the linear quadratic differential

environment.4 Little work has been done to extend the analysis beyond the differential case to

environments with discrete time, and to characterize Markov equilibria with more general utility

functions.5 Our paper contributes to this literature by studying the dynamic free-rider problem

in a discrete time setting with general utilities, and by presenting a sharp characterization of the

equilibria. By doing this, we are able to clarify the conditions under which the dynamic strategic

substitutability effect identified by Fershtman and Nitzan [1991] occurs, showing it is a general

phenomenon that does not occur only in a linear equilibrium of a linear quadratic model. We

are also able to identify conditions under which a novel dynamic strategic complementarity effect

arises, and provide a clean characterization of the extent to which it can alleviate the free rider

problem.

3 See, among others, Palfrey and Rosenthal [1984] and [1991], Bergstrom, Blume and Varian [1985].

4 See, for example, Itaya and Shimomura [2001], Yanase [2006], Fujiwara and Matsueda [2009].

5 Work has been done to study non-Markov equilibria. See, for example, Dutta and Sundaram [1993], and

Gaitsgory and Nitzan [1994]. Gaitsgory an Nitzan [1994] present a folk theorem under the overtaking criterion

that can be applied to the setting of Fershtman and Nitzan [1991].
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None of the papers mentioned above have studied economies with irreversible investments. A

form of irreversibility has been studied in the literature on monotone games in which it is assumed

that players’ individual actions can only increase over time. The papers that are most related to

our work are Lockwood and Thomas [2002] and Matthews [2011] who explicitly consider contribu-

tion games related to ours6 . The environment in these papers differs from ours in two important

ways. First, the class of games studied in these papers does not include our (standard) free-rider

game. These papers restrict attention to stage games with a “prisoner dilemma structure:” both

papers assume that keeping the action constant (i.e., the most uncooperative action) is a dominant

strategy for all players, independently from the level of the action or the level of other players’

actions. In our free-rider environment agents may find it optimal (and indeed do find it optimal)

to make a contribution even if the other players choose their minimal contributions.7 Second, in

our model the stock of  can either increase or decrease over time. This is obviously true when

the investment is reversible, but it is also true with irreversibility because of depreciation. In

the literature on monotone games, instead, players’ individual contributions (and therefore the

aggregate contributions as well) can only increase over time: our model is not a monotone game.8

Because of this, our environment requires a new theoretical approach that is not related to the

approaches used in the literature.9 Our approach, moreover, applies to both games with and

without reversibility, allowing us to compare the Markov equilibria in both environments. The

literature on monotonic games focuses on subgame perfect equilibria only under the monotonicity

assumptions describe above.

In recent work, Dutta and Radner [2004] and Harstad [2011] present dynamic models of pol-

lution in which agents can invest in a pollution reducing technology. With respect to our work,

these papers focus on environments and equilibria with simple dynamics, in which the agents’

actions are constant after the first period. Harstad [2011] uses his model to study alternative

contractual arrangements among the agents with different degrees of commitment. Battaglini and

6 A number of significant papers in the monotone games literature are less directly related. These papers require

additional assumptions that make their environments hard to compare to ours. Gale [2001] provides the general

framework of monotone games with no discounting, and applies it to a contribution game in which agents care

only about the limit contributions as →∞. Admati and Perry [1991], Compte and Jehiel [2004] and Matthews

and Marx [2000] consider environments in which the benefit of the contribution occurs at the end of the game if a

threshold is reached and in which players receive either partial or no benefit from interim contributions. The first

two of these papers, moreover, assume that players contribute sequentially, one at a time.

7 As standard in public good games, we assume the individual benefit for a marginal contribution converges to

infinity as the stock of  converges to zero.

8 The degree of depreciation can be substantial: in our characterization we impose no constraint on its size.

9 The papers in the monotone games literature study subgame perfect equilibria in which a deviation is punished

by a trigger strategy. The prisoner’s dilemma structure guarantees that there is always a continuation equilib-

rium in which there are no additional contributions (indeed, in dominant strategies), and the strict monotonicity

assumption guarantees that it is the worst continuation equilibrium. Together, these assumptions are key for the

characterization the best subgame perfect equilibrium in these games.
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Coate [2007] present a model in which a legislature chooses a public durable investment. As in

this paper, the public investment is a capital good that can be accumulated and that depreciates

slowly. Differently from this paper, the level of public investment is chosen through a process

of non-cooperative bargaining. Related models are developed by Besley and Persson [2010] and

Besley, Ilzetzki and Persson [2011] and applied to study the accumulation of what they call “Fiscal

Capacity,” i.e. economic institutions for tax compliance; and by Battaglini, Nunnari, and Palfrey

[2011a] and [2011b] who also present experimental evidence on equilibrium behavior.10 All of

these papers restrict their analysis to environments with reversibility.11 We are confident that in-

sights developed in our paper on irreversible economies can help understanding public investments

even in these alternative models of public decision making in future research.

None of the papers cited above studies non-monotonic equilibria. To our knowledge this is the

first paper to show the existence of non-monotonic equilibria in which convergence to the steady

state occurs with damped oscillations, and of equilibria with persistent cycles in a dynamic game

of free riding.

2 The model

Consider an economy with  agents. There are two goods: a private good  and a public good

. The level of consumption of the private good by agent  in period  is , the level of the

public good in period  is . An allocation is an infinite nonnegative sequence  = (∞ ∞)

where ∞ = (11  

1   

1
   


  ) and ∞ = (1   ). We refer to  = ( ) as

the allocation in period . The utility   of agent  is a function of  = (∞ ∞), where

∞ = (

1  


  ) We assume that 

 can be written as:

 () =

∞X
=1

−1
h


 + ()

i


where (·) is continuously twice differentiable, strictly increasing, and strictly concave on [0∞),
with lim→0+ 0() =∞ and lim→+∞ 0() = 0. The future is discounted at a rate .

There is a linear technology by which the private good can be used to produce public good,

with a marginal rate of transformation  = 1. The private consumption good is nondurable, the

public good is durable, and the stock of the public good depreciates at a rate  ∈ [0 1] between
periods. Thus, if the level of public good at time  − 1 is −1 and the total investment in the

10 Other related papers are Battaglini and Coate [2008], Azzimonti, Battaglini and Coate [2011] and Barseghyan,

Battaglini and Coate [2011], where the legislature can issue debt, and debt is the state variable.

11 An exception is Battaglini et al. [2011a] that presents an experimental study based on the theoretical model

of this paper.
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public good is , then the level of public good at time  will be

 = (1− )−1 + 

We consider two alternative economic environments. In a Reversible Investment Economy

(RIE) the public policy in period  is required to satisfy three feasibility conditions:



 ≥ 0 ∀ ∀
 ≥ 0 ∀

 +

X
=1



 ≤  ∀

where  is the aggregate per period level of resources in the economy. The first two conditions

guarantee that allocations are nonnegative. The third condition is simply the economy’s resource

constraint. In an Irreversible Investment Economy (IIE), the second condition is substituted

with:

 ≥ (1− )−1 ∀

The RIE corresponds to a situation in which the public investment can be scaled back in the

future at no cost. The assumption that the state variable  is non negative in a RIE is natural

when  is physical capital and it will maintained throughout the analysis. It should however be

noted that it is not relevant for the results and (as we discuss below in Example 2), there are cases

in which it is natural to assume that the state variable is unbounded. More detailed applications

of these two models are presented in the examples at the end of this section.

It is convenient to distinguish the state variable at , −1, from the policy choice  and to

reformulate the budget condition. If we denote  = (1 − )−1 +  as the new level of public

good after an investment  when the last period’s level of the public good is −1, then the public

policy in period  can be represented by a vector ( 
1
   


 ). Substituting , the budget

balance constraint  +

X
=1



 ≤ can be rewritten as:

X
=1



 + [ − (1− )−1] ≤

With this notation, we must have  ≥ 0  ≥ 0 in a RIE, and  ≥ 0  ≥ (1− )−1 in a IIE.

The initial stock of public good is 0 ≥ 0, exogenously given. Public policies are chosen as

in the classic free rider problem. In period , each agent  is endowed with 

 =  units of

private good. We assume that each agent has full property rights over a share of the endowment

() and in each period chooses on its own how to allocate its endowment between an individual
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investment in the public good (which is shared by all agents) and private consumption, taking

as given the strategies of the other agents. In a RIE, the level of individual investment can

be negative, with the constraint that 

 ∈ [−(1− )] ∀, where  =  − 


 is the

investment by agent .12 In a IIE, an agent’s investment must satisfy ∈ [0] ∀ The total
economy-wide investment in the public good in any period is then given by the sum of the agents’

investments.

In the following examples we discuss how the model can be applied to a variety of natural

environments.

Example 1 (Public capital). The state variable can have alternative interpretations. A natural

interpretation is that  is physical public capital. In this case it may seem natural to assume

that the environment is irreversible. Once a bridge is constructed, it can not be decomposed

and transformed back to consumption. Similarly, a painting donated to a public museum can

not typically be withdrawn. The choice of the model to adopt (reversible or irreversible) should

depend on the nature of the public good. If the public good is easily divisible and can be easily

appropriated (as, for example, wood and other valuable resources from a forest) an agent may

choose to appropriate part of the accumulated level. When withdrawals are possible (both because

allowed, or because they can not be prevented), then the model may be described as RIE. The

ability of the community to prevent agents from “privatizing” (or stealing) the stock of public

good is a technological variable that may vary case to case.

Example 2 (Pollution). Suppose the state  is the level of global warming with the convention

that the larger is , the worse is global warming. The utility of an agent now is ( ) = −(),
where (·) is increasing, convex and differentiable. It is natural to assume that an agent can

either increase or decrease global warming by choosing a “dirty” or a “clean” technology. This

environment can be modelled as before if we assume that an increase in the “greenness” of the

technology costs, at the margin, a dollar’s worth of current consumption. Given this, we have,

as before:  = (1 − )−1 −
X




 , where now 


 stands for the individual investment in green

technology (and it can be positive or negative). In this context it is, therefore, natural to assume

12 This constraint guarantees that the sum of reductions in  is never larger than the total stock of public good,

it must be satisfied in any simmetric equilibrium. The analysis would be similar if we allow each agent to withdraw

up to (1− ) since an agent never finds it optimal to reduce  to zero because the marginal utility of  at zero is

infinity. In this case, however, we would have to assume a rationing rule in case the individuals withdraw more than

(1− ). A simple rationing rule that generate identical results is the following. At the beginning of each period

agent  can claim any amount  ≤ (1− )−1 from the pool: if


 ≤ (1− )−1, then  receives his demand

; if


  (1− )−1, then the public good is rationed pro quota,  = (1− )





−1. The agent can then

consume  with 

 ≤+ and leave the rest of + invested in the public good. As it is easy to verify,

in any symmetric equilibrium we have  = (1 − )−1 with this rule, and so  ∈ [−(1− )] as in

the text above. Of course, the lowerbound is irrelevant if we assume  is unbounded, as in Example 2 presented

below.
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the economy is reversible. Still, depending on the technological assumptions we are willing to

make, we may have complete or partial irreversibility of actions. An interesting feature of this

case is that when  is interpreted as pollution there is no need to assume it is non negative, as

in the physical public good case: we can assume  ∈ (−∞+∞), with 0() → ∞ as  → ∞
and () → 0 as  → −∞ (for example, () =  where  is a non negative constant). The

construction of the equilibria presented below applies immediately to this environment with an

unbounded state variable.

Example 3 (“Social Capital” or “Fiscal Capacity”) A number of recent works have high-

lighted the importance of a variety of forms of intangible, or semi tangible community assets, like

social capital (Putnam [2000]) or fiscal capacity (Besley and Persson [2011]). For the case of

social capital, it may seem natural to assume that agents take actions that can be either positive

or negative for capital accumulation. Moreover, because social capital is an intangible asset, we

may assume it takes values in  ∈ (−∞+∞). It follows that the accumulation of social capital
can probably be modelled as a reversible investment economy as described in Example 1 (where it

is assumed that there is a minimum level of capital, zero) or as in Example 2 (where capital is in

the real line). The case of fiscal capacity is similar, and indeed Besley and Persson [2011] assume

it is reversible. There may be however cases in which even this type of social investment is not

reversible, or it is partially reversible. This is probably the case when fiscal capital is embodied

in institutions that can not be easily undone. In these cases, an irreversible investment economy

can be a more appropriate model.

To study the properties of the dynamic free rider problem described above, we focus on sym-

metric Markov-perfect equilibria, where all agents use the same strategy, and these strategies are

time-independent functions of the state, . A strategy is a pair ((·) (·)): where () is an

agent’s level of consumption and () is an agent’s level of investment in the public good in state

. Given these strategies, by symmetry, the public good in state  is () = (1 − ) + ().

Associated with any equilibrium is a value function, (), which specifies the expected discounted

future payoff to an agent when the state is . An equilibrium is continuous if () and () are

continuous in ; it is monotonic if () is non decreasing in . In the reminder we will focus on

this class of equilibria. We will therefore refer to them simply as “equilibria.” In Section 3 and

4 we first focus on monotonic equilibria; we then extend the analysis to non-monotonic equilibria

in Section 5.

The focus on Markov equilibria seems particularly appropriate for this class of dynamic games.

Free rider problems are often intended to represent situations in which a large number of agents

autonomously and independently contribute to a public good (Olson [1965, Chapter 1.B]). In

a large economy, it is natural to focus on an equilibrium that is anonymous and independent
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from the action of any single agent. The Markov perfect equilibrium respects this property,

by making strategies contingent only on the payoff relevant economic state. For these reasons,

this equilibrium is standard in the applied literature on dynamic public accumulation games (see

Levhari and Mirman [1980], Fershtman and Nitzan [1991], Battaglini and Coate [2007], Harstad

[2011], just to cite a few examples).

3 The planner’s problem

As a benchmark with which to compare the equilibrium allocations, we first analyze the sequence

of public policies that would be chosen by a benevolent planner who maximizes the sum of utilities

of the agents. This is the welfare optimum because the private good enters linearly in each agent’s

utility function. Consider first an economy with reversible investment. The planner’s problem

has a recursive representation in which  is the state variable, and  (), the planner’s value

function can be represented recursively as:

 () = max


⎧⎪⎪⎨⎪⎪⎩
P

=1 
 + () +  ()


P

=1 
 +  − (1− ) ≤  ≥ 0 ∀  ≥ 0

⎫⎪⎪⎬⎪⎪⎭ (1)

By standard methods (see Stokey and Lucas [1989]), we can show that a continuous, strictly

concave and differentiable  () that satisfies (1) exists and is unique. The optimal policies have

an intuitive characterization. When the accumulated level of public good is low, the marginal

benefit of investing in  is high, and the planner finds it optimal to invest as much as possible: in

this case  () =  + (1 − ) and
P

=1 
 = 0. When  is high, the planner will be able to

reach the level of public good ∗ (  ) that solves the planner’s unconstrained problem: i.e.

0(∗ (  )) + 0 (
∗
 (  )) = 1 (2)

Applying the envelope theorem, we can show that at the interior solution ∗ (  ) we have

0 (
∗
 (  )) = 1− . From (2), we therefore conclude that:

∗ (  ) = [
0]−1

µ
1− (1− )



¶
(3)

The investment function, therefore, has the following simple structure. For  
∗ ()−

1− ,

∗ (  ) is not feasible: the planner invests everything and  () = (1 − ) + . For  ≥
∗ ()−

1− , instead, investment stops at  () = ∗ (  ). In this case, without loss of
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Figure 1: The Planner’s Problem

generality, we can set () = ( + (1− ) − ())  ∀.13 Summarizing, we have:

 () = min { + (1− ) ∗ (  )}  (4)

This investment function implies that the planner’s economy converges to one of two possible

steady states (see Figure 1). If  ≤ ∗ (  ), then the rate of depreciation is so high that

the planner cannot reach ∗ (  ), (except temporarily if the initial state is sufficiently large).

In this case the steady state is  =, and the planner invests all resources in all states on the

equilibrium path (Figure 1, Case 1). If   ∗ (  ), 
∗
 (  ) is sustainable as a steady

state. In this case, in the steady state  = ∗ (  ), and the (per agent) level of private

consumption is positive: ∗ = ( + (1− ) − )   0 (Figure 1, Case 2).

An economy in which the planner’s optimum can be feasibly sustained as a steady state is the

most interesting case. With this in mind we define:

Definition 1. An economy is said to be regular if   ∗ (  )

In the rest of the analysis we focus on regular economies.14 This is done only for simplicity:

extending the results presented below for economies with  ≤ ∗ (  ) can be done using the

same techniques developed in this paper.

13 Indeed, the planner is indifferent regarding the distribution of private consumption.

14 The limit case of  = 0 is also included as a regular economy.
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The planner’s optimum for the IIE case is not very much different. The planner finds it

optimal to invest all resources for  ≤ ∗ ()−
1− . For  ∈

³
∗ ()−

1− 
∗ ()
1−

´
, the planner

finds it optimal to stop investing at ∗ (  ), as before. For  ≥ ∗ ()
1− , ∗ (  ) is not

feasible, so it is optimal to invest 0, and to set  () = (1−) This difference in the investment

function for IIE, however, is essentially irrelevant for the optimal path and the steady state of

the economy. Starting from any 0 lower than the steady state 
∗
 , levels of  larger or equal

than
∗ ()
1− are impossible to reach, and the irreversibility constraint does not affect the optimal

investment path.

4 Reversible investment economies

We first study equilibrium behavior when the investment in the public good is reversible. Differ-

ently from the planner’s case, in equilibrium no agent can directly choose the level of aggregate

investment : an agent (say ) chooses only his own level of private consumption  and the level

of its own contribution to the public investment. The agent realizes that, given the other agents’

level of private consumption, his/her investment ultimately determines . It is therefore as if

agent  chooses  and , provided that he satisfies the feasibility constraints. The agent faces

three feasibility constraints. The first constraint is a resource constraint that specifies the level

of aggregate investment:

 = + (1− ) − [+ (− 1)()]

This constraint requires that aggregate investment  equals total resources,  + (1− ), minus

the sum of private consumptions,  + ( − 1)(). The function () is the equilibrium per

capita level; naturally, the agent takes the equilibrium level of the other players, ( − 1)(),
as given. The second constraint requires that private consumption  is non negative. The third

requires total consumption  to be not larger than total resources (1 − ) + . Agent ’s

problem can therefore be written as:

max


⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+ () + ()

 +  − (1− ) = − (− 1)()

 − (− 1)() + (1− ) −  ≥ 0

 ≤ (1− )+

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

where () is his equilibrium value function.

In a symmetric equilibrium, all agents consume the same fraction of resources, so agent  can

12



assume that in state  the other agents each consume:

() =
 + (1− ) − ()




where () is the equilibrium level of investment in state . Substituting the first constraint of

(5) in the objective function, recognizing that agent  takes the strategies of the other agents as

given, and ignoring irrelevant constants, the agent’s problem can be written as:

max


⎧⎪⎪⎨⎪⎪⎩
()−  + ()

 ≤ +(1−)


+ −1


()  ≥ −1


()

⎫⎪⎪⎬⎪⎪⎭ (6)

where it should be noted that agent  takes () as given.
15 The objective function shows that

an agent has a clear trade off: a dollar in investment produces a marginal benefit 0() + 0();

the marginal cost is −1, a dollar less in private consumption.16 The two constraints define the

maximal and minimal feasible investment given the other players’ investments.

A symmetric Markov equilibrium is therefore fully described in this environment by two func-

tions: an aggregate investment function (), and an associated value function (). Two

conditions must be satisfied. First, the level of investment must solve (6) given (). The

second condition for an equilibrium requires the value function () to be consistent with the

agents’ strategies. Each agent receives the same benefit for the expected investment in the public

good, and consumes the same share of the remaining resources, ( + (1− ) − ()) . This

implies:

() =
 + (1− ) − ()


+  (()) + (()) (7)

We can therefore define:

Definition 2. An equilibrium in a Reversible Investment Economy is a pair of functions, (·)
and (·), such that for all  ≥ 0, () solves (6) given the value function (·); and for all
 ≥ 0, () solves (7) given (·)

For a given value function, if an equilibrium exists, the problem faced by an agent looks similar

to the problem of the planner. There are two differences. First, in the objective function the

agent does not internalize the effect of the public good on the other agents. This is the classic

free rider problem, present in static models as well: it induces a suboptimal investment in . The

15 Since () is the equilibrium level of investment, in a symmetric equilibrium (− 1)() is the level of
investment that agent  expects from all the other agents, and that he/she takes as given in equilibrium.

16 For simplicity of exposition we assume here that  () is differentiable. We refer to the proofs in the appendix

for the details.
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second difference with respect to the planner’s problem is that the agent takes the contributions

of the other agents as given. The incentives to invest depend on the agent’s expectations about

the other agents’ behavior. This radically changes the nature of the equilibria. The more an

agent (say agent ) expects the other agents to invest, the more  finds it optimal to invest. The

relevant question is: Does this make the static free rider problem worse or better in a dynamic

environment?

To characterize the properties of equilibrium behavior, we first study a particular class of

equilibria, the class of weakly concave equilibria. An equilibrium is said to be weakly concave if

(; ) is weakly concave on  for any , where (; ) is the expected value of investing  in a

state :

( | ) =  + (1− ) − 


+ () + ()

We show that this class is not empty and its key properties can be easily characterized. We then

prove that there is no loss of generality in focusing on this particular class in order to study the

set of equilibrium steady states. We therefore use the class of weakly concave equilibria as a tool

to gain insight on the general equilibrium properties of the game.

In a weakly concave equilibrium, the agent’s problem (6) is a standard concave programming

problem similar to (1). Because the objective function may have a flat region, however, the

investment function typically takes a more general form than the planner’s solution (4). Figure

2 represents a typical equilibrium. The equilibrium investment function will generally take the

following form:

() =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min

©
 + (1− ) 

¡
2
¢ª

  2

 ()  ∈ £2 3¤

¡
3
¢

  3

(8)

where 2 3 are two critical levels of , and () is a non decreasing function with values in

[ + (1− )]. To see why () may take the form of (8), consider Figure 2. The top panel

of the figure illustrates a canonical equilibrium investment function. The steady state is labeled 

in the figure, the point at which the (bold) investment function intersects the (dotted) diagonal.

The bottom panel of the figure graphs the corresponding objective function, () −  + ().

For   2, the objective function of (6) is strictly increasing in : either resources are sufficient

to reach the level that maximizes the unconstrained objective function and so () ∈ £2 3¤
(in Figure 2, () = 

¡
2
¢
in 1 ≤  ≤ 2); or it is optimal to invest all resources (in Figure 2,

() =+(1−) in  ≤ 1).17 For   3, the objective function is decreasing: the investment

17 In Figure 2 it is assumed that we have  + (1− )  2 for for  ≥ 1, so the agent can afford to choose a
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Figure 2: The equilibrium in an economy with reversibility
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level is so high that the agents do not wish to increase  over (3). For intermediate levels of

 ∈ £2 3¤, an interior level of investment  ∈ ¡2 3¢ is chosen. This is possible because

the objective function is flat in this region: an agent is indifferent between any  ∈ £2 3¤.
The key observation here is that since the objective function has a flat region, the agents find

it optimal to choose an increasing investment function in
£
2 3

¤
: a weakly concave objective

function, therefore, gives us more freedom in choosing the equilibrium investment function and

even a higher level of investment.

The open question is whether the flat region in Figure 2 is a general equilibrium phenomenon

or just an intellectual curiosity, and what degrees of freedom we have in choosing investment

functions that are consistent with an equilibrium. For an investment curve as in Figure 2 to

be an equilibrium, agents must be indifferent between investing and consuming for all states in£
2 3

¤
. If this condition does not hold, the agents do not find it optimal to choose an interior

level (). The marginal utility of investments is zero if and only if:

0() + 0()− 1 = 0 ∀ ∈ £2 3¤ (9)

Since the expected value function is (7), we have:

0() =
1− − 0()


+ 0(())0() + 0(())0() (10)

Substituting this formula in (9), we see that the investment function () must solve the following

differential equation:

1− 0()


=
1− − 0()


+ 0(())0() + 0(())0() (11)

This condition is useful only if we eliminate the last (endogenous) term: 0(())0(). To see

why this is possible, note that () is in
£
2 3

¤
for any  ∈ ¡2 3¢ in the example of Figure 2.

In this case, (9) implies 0(()) = 1 − 0(()). Substituting this condition in (11) we obtain

the following necessary condition:

0() =
1− − (1−0())



1− 
(12)

Condition (12) shows that there is a unique way to specify the shape of the investment function that

is consistent with a “flat” objective function in equilibrium. This necessary condition, however,

leaves considerable freedom to construct multiple equilibria: (12) defines a simple differential

equation with a solution () unique up to a constant. To have a steady state at  we need

a second condition: () = . This equality provides the initial condition for (12), and so

uniquely defines (|) in
£
2 3

¤
(see the dashed curve in Figure 2).

level of  that maximizes the objective function (i.e.  ∈ 2 3) if and only if  ≥ 1.
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Proposition 1, presented below, shows that the degrees of freedom allowed by (12) are sufficient

to characterize all the stable steady state we can have in equilibrium, weakly-concave or not. A

steady state  is said to be stable if there is a neighborhood (

) of 


 such that for any

0(

) ⊆ (


),  ∈ 0(


) implies () ∈ 0(


). Intuitively, starting in a neighborhood

of a stable steady state,  remains in a neighborhood of a stable steady state for all following

periods.18 Define the two thresholds:

∗(  ) = [
0]−1 (1− (1− )) , and ∗∗ (  ) = [

0]−1 (1−  (1− )) (13)

We say that an equilibrium steady state  is supported by a concave equilibrium if there is a

concave equilibrium () () such that (

) = . The following Proposition characterizes

the set of equilibrium steady states of monotonic equilibria. The details about the equilibrium

strategies are in the appendix.

Proposition 1. An investment level  is a stable steady state of a monotonic equilibrium in a

RIE if and only if  ∈ [∗(  ) ∗∗ (  )]. Each  in this set is supported by a concave

equilibrium with investment function as illustrated in Figure 2.

We may obtain an intuitive explanation of why the steady state must be in [∗(  ) 
∗∗
 (  )]

by making three observations. First, an equilibrium steady state must be in the interior of the

feasibility region, that is  ∈ (0).19 Intuitively,   0, since at 0 the marginal utility

of the public good is infinite; and    since even in the planner’s solution we have this

property. Second, in a stable steady state we must have 0(

) ∈ (0 1).20 The highest and

the lowest steady states, moreover, correspond to the equilibria with the highest and, respectively,

the lowest 0(): so 
0
(
∗∗
 (  )) = 1 and, respectively , 

0(∗(  )) = 0. Third, since the

solution is interior and the agents can choose the investment they like in a neighborhood of ,

() can have positive slope at 

 only if the agents’s objective function is flat in the neigh-

borhood (otherwise the agents would choose the same optimum point irrespective of ). By the

argument presented above, this implies (12). Using (12) and 0(

) ≤ 1, we obtain the upper

bound, ∗∗ (  ); similarly, using (12) and 0(

) ≥ 0, we obtain the lower bound, ∗(  ).

18 An alternative stability concept that has been used in the litetature is achievability (Matthews [2011]). A

steady state is achievable if it is the limit of an equilibrium path. Our concept of stability is weaker: this allows us

to have a stronger characterization of the equilibrium set in our environment. It is easy to see that if an equilibrium

is not stable, then it is not reachable in a monotonic Markov equilibrium. On the other hand, all steady states

characterized in Proposition 1 are achievable (as in the equilibrium illustrated by Figure 2).

19 The feasibility set is given by  ≥ 0 and  ≤  + (1 − ), so a steady state must satisfy  ≥ 0 and

 ≤ + (1− ). The second inequality implies 

 ≤.

20 We are assuming that () is differentiable for the sake of the argument here, details are provided in the

appendix. Note that in a monotonic equilibrium 0() ≥ 0. Moreover, if 0(

)  1, we would have ()  

(respectively ()  ) for any  in a right (respectively, left) neighborhood of , so 

 would not be stable.
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Proposition 1 formalizes this argument, and it uses the construction described above to prove that

 ∈ [∗(  ) ∗∗ (  )] is sufficient as well as necessary for  to be a stable steady state.
In the following three subsections we discuss three issues related to the dynamic properties

of the equilibria. In Section 3.1 we discuss the efficiency of the steady states. In Section 3.2,

we reinterpret Proposition 1 in the light of the type of strategic interaction (substitutability vs.

complementarity) of the agents’ actions. In Section 3.3 we discuss how the equilibrium converges

to the steady state. We defer the discussion of non-monotonic equilibria to Section 5, after we

have presented the case of economies with irreversibility.

4.1 Steady states and efficiency

Proposition 1 shows that, as in the static model, an equilibrium allocation is always inefficient, even

in the best equilibrium: ∗ (  )  ∗∗ (  ) for any   1 and   1. Let ( ) be the steady

state that would be achieved by an agent alone in autarky: ∗ (  1) = [
0]−1 (1− (1− )). We

can make three observation regarding the magnitude of the inefficiency.

Corollary 1. In a RIE we have:

• For any   1 we have ( ) ∈ (∗(  ) ∗∗ (  ));

• The highest equilibrium steady state increases in ; the smallest steady state decreases in .

As →∞, ∗(  )→ [0]−1 (1) and ∗∗ (  )→ [0]−1 (1− ) ;

• For any  and , |∗∗ (  )− ∗ (  )|→ 0 as  → 1

The first point in Corollary 1 shows that the accumulated level of  in a community with

 players may be either higher or lower than the level that an agent alone in autarky would

accumulate. This is in contrast to the static case (when  = 0), where the level of accumulation

is independent of . The second point shows that, in terms of the steady state level of , the

common pool problem may become better or worse as the size of the community increases. The

multiplicity of equilibria, moreover, is not an artifact of the assumption of a finite population.

Finally, the last point highlights the fact that the best equilibrium steady state converges to the

efficient level as  → 1. What is remarkable in this result is the fact that the efficient steady state

can be achieved with an extremely simple equilibrium (Markov) in which agents focus exclusively

on the state .

4.2 Substitutability and complementarity in the free rider problem

To interpret Proposition 1 it is useful to start from the special case in which  = 0 and so the

free rider problem is static. In this case, we have ∗(  ) = ∗∗ (  ): there is a unique
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equilibrium “steady state” in which the agents invest  = [0]−1 (1), independent of . In

addition, the agents’ actions are pure strategic substitutes. In a symmetric equilibrium, each

agent invests . If agent  is forced to invest 1+∆, then all the other agents find it optimal

to reduce their investment exactly by∆(− 1).
In a dynamic game the strategic interaction is richer. Let us say that an investment function

() displays strategic substitutability at a point of differentiability , if 0()  1 − . We have

substitutability when 0() is less than 1− because in this case a marginal increase in investment
at  by ∆ is followed by a marginal reduction in investment (otherwise the stock would increase by

at least (1− )∆). Similarly, an investment function displays strategic complementarity (respec-

tively, neutrality) at a point of differentiability  if 0()  1 −  (respectively, 0() = (1− )).

The following result shows that for any   0, in a dynamic free rider problem we may have strate-

gic substitutability, or strategic complementarity, or both, depending on whether the equilibrium

steady state is less than or greater than ( ), respectively.21

For a given initial state 0, an equilibrium investment function  ( | ) with steady state 
defines a convergent path  → , with  = 

¡
−1 |

¢
.

Proposition 2. The equilibrium investment strategy in a RIE may display both strategic substi-

tutability and strategic complementarity:

• If the steady state is  ∈ (∗(  ) ( )], then there is an equilibrium path  → 

with 0 = 0 along which the investment function never displays strategic complementar-

ity. In addition, there is a ∗ such that for   ∗ we have necessarily have strategic

substitutability.

• If the steady state is  ∈ (( ) ∗∗ (  )] and   0, then for any equilibrium path

 →  with 0  , there is a ∗ such that for   ∗ we necessarily have strategic

complementarity.

The first point of Proposition 2 shows that when   ( ) we can have equilibria exclusively

characterized by strategic substitutability. These equilibria lead to steady state levels of  that

are even below the level that would be reached by a single agent in perfect autarky, ( ).

Proposition 2, therefore confirms and extends the main result of Fershtman and Nitzan [1991].

They showed that in the linear equilibrium of a linear-quadratic differential game, an agent could

be worse in a dynamic setting than in a static setting because of the strategic substitutability.

Proposition 2 shows that this phenomenon is a feature not only of this particular equilibrium

21 In the boundary case of  = 0, there is no region of strategic complementarity because () = ∗∗

( ) =

[0]−1 (1− ).
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selection or this environment, but is typical of the free rider problem and it is associated to a

continuum of (non-linear) equilibria.

The second point of Proposition 2, however, shows that the equilibrium of the game is not

necessarily characterized by strategic substitutability. Indeed, not only it is true that strategic

complementarity is possible in equilibrium, but Proposition 2 shows that is a necessary feature

of equilibria with sufficiently large steady states. An agent is willing to keep investing until

  ( ) only if he expects the other agents to react to his investment by increasing their

own investments. This complementarity allows the agents to mitigate the free rider problem and

partially “internalize” the public good externality. In these equilibria, the agents accumulate

more than what would be reached by an agent in perfect autarky.

4.3 Convergent paths in monotone equilibria

Even if we fix a steady state , there could in principle be more than one equilibrium investment

path consistent with it.22 This opens up a number of questions. Can we have multiple

convergent paths to a given steady state? For a given steady state , moreover, how fast can

we converge to it starting from an initial state 0  ? We say that an equilibrium investment

path  →  is monotonically increasing if 
 ≥ −1 ∀. The following result shows that

when the equilibrium is concave, then the equilibrium convergence path from below is uniquely

defined:23

Proposition 3. In a monotonic and concave equilibrium, the convergent path  →  start-

ing from any 0   is uniquely defined and monotonically increasing. If   ∗(  )

convergence is achieved only in the limit.

The fact that, given a steady state, there is a unique monotonically increasing converging

investment path is a feature that concave equilibria have in common with the planner’s solution.

There are however three notable differences. First, the planner’s solution is unique and it admits

a unique steady state; in equilibrium, we may have a continuum of steady states. Second, in the

planner solution, convergence to the steady state is in finite time: the planner invests as much as

possible until he/she reaches the steady state. In the equilibrium, instead, Proposition 3 shows

that the state never actually reaches the steady state, convergence is only in the limit with the

22 In the equilibrium represented in Figure 2 the investment function stops being strictly increasing at 3. We

can however have equilibria in which the investment function stops being strictly increasing at a point 0 in

 

3

.

It can be proven that if an agent believes that the investment function stops increasing at this point, then it would

indeed be optimal to stop investing at this point.

23 The equilibrium investment function corresponding to a steady state 

 ∗


is not generally uniquely defined

for values of  above the steady state. For example, one could replace 

|


with  for all values of   ,

and still have an equilbrium investment function that supports  as a steady state.
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only exception being  = ∗(  ). Third, for any of these steady states there may be non

monotonic equilibria. These equilibria may be characterized by a cyclic investment path in which

the state  alternates overshooting and undershooting the steady state, gradually spiraling into

the steady state; or by persistent loops in which the steady state never converges. We will discuss

these possibilities in detail in Section 5.

5 Irreversible economies

We now turn to irreversible investment economies. When the agents cannot directly reduce the

stock of the public good, the optimization problem of an agent can be written like (5), but with

an additional constraint: the individual level of investment cannot be negative; the only way to

reduce the stock of , is to wait for the work of depreciation. Following similar steps as before,

we can write the maximization problem faced by an agent as:

max


⎧⎪⎪⎨⎪⎪⎩
()−  + ()

 ≤ +(1−)


+ −1


()  ≥ (1−)


+ −1


()

⎫⎪⎪⎬⎪⎪⎭ (14)

where the only difference with respect to (6) is the second constraint. To interpret it, note that

it can be written as  ≥ (1 − ) + −1

[()− (1− )]: the new level of public good cannot

be lower than (1−) plus the investments from all the other agents (in a symmetric equilibrium,
an individual investment is [()− (1− )] ).

As in the reversible case, a continuous symmetric Markov equilibrium is fully described in this

environment by two functions: an aggregate investment function (), and an associated value

function (). The aggregate investment function () must solve (14) given (). The

value function () must be consistent with the agents’ strategies. Similarly, as in the reversible

case, we must have:

() =
 + (1− ) − ()


+  (()) + (()) (15)

We can therefore define:

Definition 3. An equilibrium in a Irreversible Investment Economy is a pair of functions, (·)
and (·), such that for all  ≥ 0, () solves (14) given the value function (·), and for all
 ≥ 0, () solves (15) given ()

As pointed out in Section 3, when public investments are efficient, irreversibility is irrelevant

for the equilibrium allocation. The investment path chosen by the planner is unaffected because

the planner’s choice is time consistent: he never finds it optimal to increase  if he plans to reduce

21



 Ry g

 ( )Ry g
g

1g 3g2g oy

oy

 y g

Figure 3: The irreversibility constraint and the reversible equilibrium.

it later. In the monotone equilibria characterized in the previous section, the investment function

may be inefficient, but it is weakly increasing in the state. Agents invest until they reach a steady

state, and then they stop. It may seem intuitive, therefore, that irreversibility is irrelevant in this

case too. In this section we show that, to the contrary, irreversibility changes the equilibrium set:

it induces the agents to significantly increase their investment and it leads to significantly higher

steady states when depreciation is small.

To illustrate the impact of irreversibility on equilibrium behavior, suppose for simplicity that

 = 0 and consider Figure 3, where the red dashed line represents some arbitrary monotone

equilibrium with steady state  in the model with reversibility. Next, suppose we ignore the

irreversibility constraint where it is not binding, so we keep the same investment function for

 ≤  where () ≥  and then set the investment function equal to  when ()  .

This gives us the modified investment function e(), represented by the green solid line. This

investment function induces essentially the same allocation: the same steady state  and the same

convergent path for any initial 0 ≤ . Unfortunately, e() is no longer an equilibrium. On

the left of  the objective function, ()− + (), is flat. On the right of , the objective

function would remain flat if the investment were the red dashed line as with reversibility; with

irreversibility, however, the constraint  ≥  forces the investment to increase at a faster rate

than (). Because () is ex ante suboptimal, the “forced” increase in investment makes the
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Figure 4: The irreversible equilibrium as → 0.

objective function increase on the right of . But then choosing  would no longer be optimal

in state , so it cannot be a steady state.24

Does an equilibrium exist? What does it look like? Let b() be the unique solution of (12)
that is tangent to the line  = (1− ) (see Figure 4 for an example). As it can be easily verified

from (12), the point at which b() is tangent to  = (1 − ) is ( ).25 Define (  ) as

the fixed point of this function:26

b((  )) = (  ) (16)

The following Proposition states the existence result. In the appendix we provide a detailed

description of the equilibrium strategies.

Proposition 4. In any IIE there is a monotonic equilibrium with an investment function as

24 This problem does not arise with the planner’s solution because the planner’s solution is time consistent. After

the planner’s steady state ∗ is reached the planner would keep  at ∗ . If the planner’s is forced to increase  on
the right of ∗


, we would have a kink at ∗


, but it would be a “downward” kink. Such a kink makes the objective

function fall at a faster rate on the right of the steady state, so it preserves concavity and it does not disturb the

optimal solution. The kink is “upward” in the equilibrium with irreversibility because the steady state is not

optimal, so the irreversibility constraint,  ≥ , increases expected welfare. This creates a sort of “commitment

device” for the future; the agents know that  can not be reduced by the others (or their future selves).

25 Formally, () is the solution of (12) with the initial condition (( )) = (1− )( ).

26 Note that (  ) is a function of   and  since () depends on these variables.
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illustrated in Figure 4 and steady state (  ) as defined in (16). This equilibrium is weakly

concave.

Proposition 4 establishes that the dynamic free rider game with irreversibility admits an equi-

librium with standard concavity properties. Figure 4 shows the investment function associated

with the equilibrium. In equilibrium the investment function merges smoothly with the irre-

versibility constraint: at the point of the merger (i.e. ( ), where the constraint becomes

binding), the investment function has slope 1− . This feature is essential to avoid the problems

discussed above.

Proposition 4 does not establish that the there is a unique equilibrium steady state. The

following result establishes bounds for the set of stable steady states in a IIE and shows that when

depreciation is not too high all stable steady states must be close precisely to (  ):

Proposition 5. There is lower bound ∗(  ) ≥ ∗(  ) such that  is a stable steady

state of a monotonic equilibrium only if  ∈ [∗(  ) ∗∗ (  )]. Moreover, as  → 0

∗(  ), 
∗∗
 (  ) and (  ) all converge to [

0]−1 (1− ).

There is an intuitive explanation for Proposition 5. Because of decreasing returns, the in-

vestment in  declines over time, so the constraint  ≥ (1 − ) must be binding when  is high

enough. When this happens the agents are forced to keep the investment higher than what they

would like. Since the equilibrium is inefficiently low (because the agents do not fully internalize

the social benefit of ), the constraint  ≥ (1−) increases expected welfare in these states. The
states where the constraint  ≥ (1− ) is binding are typically out of equilibrium (that is on the

right of the steady state): in the equilibrium illustrated in Figure 4, for example, the constraint is

binding for   (  ). The irreversibility constraint, however, has a ripple effect on the en-

tire investment function. In a left neighborhood of ( ), the constraint is not binding; still, the

agents expect that the other agents will preserve their investment, so the strategic substitutability

will not be too strong. Steady states lower than ( ) can occur with reversibility because

the agents expect high levels of “strategic substitutability.” Proposition 5 shows that when  is

sufficiently low, the irreversibility constraint makes these expectations impossible in equilibrium,

inducing an equilibrium steady state close to the maximal steady state of the reversible case,

∗∗ (  ). Thus, as  → 0, there is a unique equilibrium steady state in the irreversible case,

i.e.,  = ∗∗ (  ).

An immediate implication of Propositions 4 and 5 is the following result:

Corollary 2. As  → 1 the highest stable steady state in a IIE converges to the efficient level.

As  → 1 and → 0, every stable steady state in a IIE converges to the efficient level.

Results proving the efficiency of the best steady state in monotone games as  → 1 have
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been previously presented in the literature by Lockwood and Thomas [2002] and more recently

by Matthews [2011]. We have already explained in Section 1.1. that these results do not apply

to our environment because they rely on assumptions that are not verified in our environment.

We emphasize here three additional novel aspects of Corollary 2. First, the result shows that the

community can achieve efficiency using a very simple equilibrium (Markov) that requires minimal

coordination among the players (in previous results the efficient steady states are supported by

subgame perfect equilibria where behavior depends on the entire history of the game). Second,

we do not need  = 0 to have the result: when  is small, all equilibria must be approximately

efficient. Finally, here irreversibility is not necessary for efficiency, the same equilibrium exists in

a RIE: irreversibility only guarantees its uniqueness as → 0.

6 Non-monotonic equilibria and cycles

Following the previous literature on dynamic free rider problems, to this point we have focused

on monotonic equilibria in which () is non-decreasing. Can there be non-monotonic equilibria?

Non-monotonic equilibria are of particular interest: when () is decreasing, the dynamics of the

equilibrium can be much more complicated, and perhaps surprising; in principle, there could be

spiraling-in convergence to a steady state, or limit cycles. This raises a number of questions:

in particular, can the steady state be higher than ∗∗ (  )? or lower than ∗(  )? Can

we have equilibria where the investment path does not converge to a steady state, but instead

have persistent cycles? For simplicity, in the reminder of this section we will focus on the case of

non-monotonic Markov equilibria in economies with reversibility, the analysis for economies with

irreversibility is similar.

The first result we present establishes the existence of stable steady states supported by non-

monotonic equilibria, and it bounds the set of steady states that can be supported in these

equilibria. Define the lower bound threshold:

∗∗∗ (  ) = [0]−1
µ
1 +




(+ − 2)

¶
Note that ∗∗∗ (  )  ∗(  ). We have:

Proposition 6. There exists a ∆  0 such that any point in [∗(  ) − ∆ ∗(  )] is a
stable steady state of a non-monotonic equilibrium. In these equilibria:

• The investment path converges to the steady state with damped oscillations as in Figure 5.

• A stable steady state must be in [∗∗∗ (  ) ∗∗ (  )].
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Figure 5 represents a non-monotone equilibrium with a stable steady state. In this equilibrium

the investment function  () intersects the 450 line at a stable steady state  from above, with

[ ]
0
() ∈ (−1 0). The convergent path, therefore, is characterized by damped oscillations

(as represented by the green arrows in Figure 5). We can draw two lessons from this proposi-

tion. First, the result presented in Section 3 that the stable steady states are bounded above by

∗∗ (  ) still holds true in the larger class of equilibria that may be non-monotonic. Second,

however, the lowest steady state now can be strictly lower than ∗(  ). This result extends

and reinforces the finding that the steady state of a dynamic free rider game may be lower in a

community with  agents than when there is only one agent in autarky. Proposition 6, therefore,

confirms the main conclusions reached in the previous sections studying monotonic equilibria.

The intuition for the existence of non-monotonic equilibria and why steady states below

∗(  ) can be supported in these equilibria is relatively straightforward. As in the equi-

libria constructed in Section 3, an agent’s objective function ()+ ()− in these equilibria
is weakly concave, with a “flat” top in the interval (2 3), as illustrated in the lower panel in

Figure 5. The flat region allows the investment function to be in (2 3), since the agents are

indifferent in this region. As described in Section 3, however, in order to have this property in

the region (2 3), the investment function must satisfy the differential equation (12). When  is

sufficiently large, this equation implies that 0()  0. In these cases,  is such that the objective

function remains flat only if the agents expect the other agents to continue investing. When  is

very large (i.e.   ( )), then 0()  1− , so we have strategic complemetarity. When  is

small, however, the private value of investment 0() is very large: indeed 0() → ∞ as  → 0.

In these cases the agents are willing to choose an interior level of  only if they expect that the

other agents will reduce the stock of investment: this reduction compensates for the high level

of private value of the investment. This is the reason why for   ∗(  ), the equilibrium

investment function must be negatively sloped. If we are constructing a steady state larger than

∗(  ), it is not necessary to support it by a non-monotonic investment path; but a steady

state lower than ∗(  ) can be supported only by a non-monotonic investment path.

It is natural to ask whether the lower bound ∗∗∗ (  ) of Proposition 6 is tight. The answer

to this question depends on the exact shape of the utility function (). Define ∆ () to be the

solution to (12) with initial condition ∆ (
∗
(  )) = ∗(  ) −∆. The function ∆ () is

differentiable, with a minimum at ∗(  ), and it intersects the 45
 at two points: ∆ and ∆

with ∆  ∗(  )  ∆ .
27 The next assumption on the underlying fundamentals yields a

27 Since ∆ () is convex and continuous, with a minimum at ∗( ), and such that lim→0 ∆ ()  0 and

∗

( )  ∆


∗

( )


by construction, we have 

∆
∈ 0 ∗


( )


. Since, in addition, lim→∞ ∆ () =∞, we

have ∆  ∗( ).
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Figure 6: An example of an equilibrium converging to a cycle with a 2-state orbit.

sufficient condition for ∗∗∗ (  ) to be a tight lower bound:

Assumption 1. There is a∆ ∈ (0 ∗(  )) such that 0∆ (∆)  −1 and ∆ (∗∗ (  )−∆) 
∆ (


∆ ).

This condition can be easily verified in specific examples.

Example 4. Let the utility function be () = , parametrized by . In this case we

can solve for ∆ () in closed form (the explicit solution is presented in the appendix). If, for

instance, we assume  = 3,  = 75  = 02  = 01, then, as show in the appendix, Assumption

1 is verified at least for any ∆ ∈ (1 12).

We have the following result:

Proposition 7. Given Assumption 1, there is a  ∗ such that for any    ∗ the dy-

namic free rider game has an equilibrium in which  is a stable steady state for any  ∈
[∗∗∗ (  ) ∗∗ (  )].

Note that the level  ∗ that guarantees the result in Proposition 7 does not need to be very

large. For the class of equilibria that we construct we must have   (∗(  )−∆). In the
example presented above this implies  ≥ 16.
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The last question we would like to address is the possibility of cycles. In general we have a

cycle when there is a time path (∗ )
∞
=0 with ∗0 = 0 and ∗ = (∗−1) such that 

∗
 does not

converge to any point. We have:

Proposition 8. If Assumption 1 holds there is a  ∗∗ such that for any    ∗∗ the dynamic

free rider game has an equilibrium with a cycle.

A cycle may be periodic in the sense that it generates an orbit of a given finite length. Let

1() = () and define the -iterate recursively as 
() = (−1()),  = 1 2 . We say that

we have a p-cycle if there is a point  such that  = (). When we have a p-cycle the state

rotates in an orbit of  points defined by the set {(1  )| = () for  = 1  }. Under
the specific parametric assumptions of Example 4, the orbit of a 2-cycle can be explicitly solved

for. Letting ∆ = 11, the equilibrium investment function can be solved in closed form:

∗() = min
¡
min

¡
 + (1− ) 16 − 20001 + 18633¢  115¢

Figure 6 represents ∗() for this example and its 2-iteration [∗]2 () = ∗(∗()). As it can

be seen [∗]2 () (the red line) has two stable fix points 1 = 059535 and 2 = 16478 such that

1 = ∗(2), and 2 = ∗(1), so {1 2} constitute a 2-period orbit. In the example of Figure 6,
therefore, the state oscillates between 1 and 2. This cycle, moreover, is stable: if we start from

any initial state 0 there is a limit 2-cycle, in the sense that the investment path converges to this

two-period orbit.

7 Conclusions

In this paper we have studied a simple model of free riding in which  infinitely lived agents choose

between private consumption and contributions to a durable public good . We have considered

two possible cases: economies with reversible investments, in which in every period individual

investments can either be positive or negative; and economies with irreversible investments, in

which the public good can only be reduced by depreciation. For both cases we have characterized

the set of steady states that can be supported by symmetric Markov equilibria in continuous

strategies.

We have highlighted four main results. First, we have shown that economies with reversible

investments have typically a continuum of equilibria. In the best equilibrium the steady state

is higher in a community with  agents than in autarky, and it is increasing in ; in the worst

equilibrium, the steady state is lower in autarky, and it decreases in . We have argued that, while

in a static free rider’s problem the players’ contributions are strategic substitutes, in a dynamic
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model they may be strategic complements. Second, we have shown that in economies with irre-

versible investments, the set of equilibrium steady states is much smaller: indeed, as depreciation

converges to zero, the set of equilibrium steady states converges to the best equilibrium that can

be reached in economies with reversible investments. Irreversibility, therefore, helps the agents

removing the coordination problem that plagues most of the equilibria in the reversible case, and

so it necessarily induces higher investment. Third, as agents become increasingly patient, the best

steady state in both economies with reversibility and irreversibility converges to the efficient level.

As patience increases and depreciation decreases, all equilibrium steady states in an irreversible

economy converge to the efficient level. Fourth, we have shown that there are non-monotonic

equilibria with complex and (perhaps) surprising dynamic properties, in which the state converges

to the steady state with damped oscillations, and in which there are persistently cycles. Indeed,

we have constructed a closed form example in which the state perpetually rotates in a 2-period

orbit.

Although in this paper we have focused on a free rider problem in which agents act indepen-

dently and there is no institution to coordinate their actions, the ideas we have developed have a

wider applicability and can be used to study dynamic games in other environments as well. In

future work, it would be interesting to investigate economies with irreversible investments or the

existence of endogenous cycles when public decisions are taken by legislative bargaining or other

types of centralized political processes.
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Appendix

7.1 Proof of Proposition 1

Let ∗(  ) and ∗∗ (  ) be defined by (13). Since we are in a regular economy, we have

  ∗∗ (  ). We first prove here that for any 
 ∈ [∗(  ) ∗∗ (  )], there is Markov

equilibrium with steady state equal to . Each  is supported by a concave equilibrium with

investment function ( | ) described by (8), where

2 = max

½
min
≥0

{ | ( | ) ≤ + (1− ) }  ∗(  )
¾
 (17)

3 is defined by 
¡
3 | ¢ = ∗∗ ( ), and () =  ( | ) is the the unique solution of (12) with

initial condition  ( | ) = . This proves the “sufficiency” part of the statement. Then we

prove that the steady state must be in [∗(  ) 
∗∗
 (  )]. This proves the “necessity” part

of the statement.

7.1.1 Sufficiency

To construct the equilibrium we proceed in 3 steps.

Step 1. We first construct the strategies for a generic  and prove their key properties.

Let  ( | ) be the solution of the differential equation when we require the initial condition:
 ( | ) = , for  ∈ [∗(  ) ∗∗ (  )]. Let 2() be defined by (17). This, essentially,
is the largest point between the point at which  ( | ) crosses from below  + (1 − ), and

∗(  ). Let 
3() be defined by 

¡
3() | ¢ = ∗∗ (  ).

Lemma A.1. 0 ( | ) ∈ (0 1) in £2() ∗∗ (  )¤ and 00 ( | ) ≥ 0.
Proof. From (12), 0 ( | ) ≥ 0 for  ≥ ∗(  ), and 

0 ( | ) ≤ 1 for  ≤ ∗∗ (  ). Since

00 ( | ) = 
1−

h
00()


i
, 00()  0. ¥

Lemma A.2. For any  ∈ [∗(  ) ∗∗ (  )], 3() ≥ ∗∗ (  ).

Proof. Note that  (∗∗ (  ) | ) is increasing in . Moreover  (∗∗ (  ) |∗∗ (  )) =
∗∗ (  ). So  (∗∗ (  ) | )  ∗∗ (  ) for 

  ∗∗ (  ). It follows that 3() ≥
∗∗ (  ) for any 

 ≤ ∗∗ (  ). ¥

We have:

Lemma A.3.  ( | ) ∈ (0 + (1− )) in
¡
2() 3()

¢
.

Proof. First note that 
¡
2()|¢ ≤ +(1−)2(). Since 0 ( | )  1 for   ∗∗ (  )

we must have  ( | )   + (1− ) for  ∈ ¡2() ∗∗ (  )¢. For   ∗∗ (  ), we have

 + (1− )   + (1− )∗∗ (  ). Since  ( | )  ∗∗ (  ) in
¡
2() 3()

¢
, We have
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 ( | )  ∗∗ (  )   + (1 − )∗∗ (  )   + (1 − ) in
£
∗∗ (  ) 

3()
¢
as well.

Similarly, since 0 ( | ) ≥ 0 for   2() and 
¡
2()|¢ ≥ 0, we must have  ( | )  0

for   2(). Note that 
¡
2() | ¢ ≥ 0 since 0 ( | ) ∈ (0 1− ) in [∗(  ) 

] implies

that  ( | )   for all  ∈ [∗(  ) ]  ¥

For any  ∈ [∗(  ) ∗∗ (  )], we now define the investment function:

( | ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min

©
 + (1− ) 

¡
2() | ¢ª  ≤ 2()

 ( | ) 2()   ≤ 3()

∗∗ (  )  ≥ 3()

For future reference, define 1() = max
©
0
¡

¡
2() | ¢−

¢
 (1− )

ª
. This is the point at

which  + (1− )2() = 
¡
2() | ¢, if positive. Clearly, we have 1() ∈ £0 2()¤. We

have:

Lemma A.4. For any  ∈ [∗(  ) ∗∗ (  )],  ( | ) ∈
£
2() 3()

¤
for  ∈ £2() 3()¤.

Proof. Since  ( | ) it is monotonic non-decreasing in  ∈ £2() 3()¤,
 ( | ) ∈ £ ¡2() | ¢   ¡3() | ¢¤ ∀ ∈ £2() 3()¤ 

Since  ( | ) has slope lower than one in £2() 3()¤ and  ( | ) =  for  ≥ 2(),

we must have 
¡
2() | ¢ ≥ 2(), so  ( | ) ≥ 2() for  ∈ £2() 3()¤. Similarly,


¡
3() | ¢ ≤ 3(), so  ( | ) ≤ 3() for  ∈ £2() 3()¤. ¥

Step 2. We now construct the value functions corresponding to each steady state  ∈ [∗(  ) ∗∗ (  )].
For  ∈ £2() 3()¤ define the value function recursively as

(|) =  + (1− ) −  ( | )


+ ( ( | )) + ( ( | )) (18)

By Theorem 3.3 in Stokey and Lucas (1989), the right han side of (18) is a contraction: it defines a

unique, continuous and differentiable value function 0( | ) for this interval of . (differentiability
follows from the differentiability of  ( | )). We have

Lemma A.5. For any  ∈ [∗(  ) 
∗∗
 (  )] and any  ∈ £

2() 3()
¤
, 0() +

00(; 
) = 1.

Proof. Note that by Lemma A.4, for  ∈ £2() 3()¤, we have  ( | ) ∈ £2() 3()¤.
From (12) we can write (for simplicity we write 0( | ) = 0()):

1− 0()


=
1− 0()


+ 0(())0() + [1− 0(())] 0()
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for any  ∈ £2() 3()¤. But then using (12) again allows to substitute 1−0(()) to obtain:
1− 0()


=

1− 0()


+ 0(())0()

+

∙
1− 0(())


+ 0(2())0((()) +

£
1− 0(2())

¤
0(())

¸
0()

where 0() = , 1() = (), () = (−1()), and [0]0 () = 1, [0]1 () = 0(), and

[0] () = 0([0]−1 ()). Iterating we have:

1− 0()


= lim
→∞

X

=0

∙
1− 0(( | ) | )


+ 0(+1())0(( | ) | )

¸Y

=0
[0] (−1())

= 0( | )

This implies 0() + 00(; 
) = 1. ¥

In the rest of the state space we define the value function recursively. In
£
1() 2()

¤
, if

1()  2(), the value function is defined as:

0( | ) =
 + (1− ) − 

¡
2() | ¢


+ (

¡
2() | ¢) + 0(

¡
2() | ¢)

(19)

for 
¡
2() | ¢ ∈ £2() 3()¤ 

Lemma A.6. For any  ∈ £1() 3()¤, () + ( | ) is concave and has slope larger or
equal than 1.

Proof. If 1() = 2(), the result follows from the previous lemma. Assume therefore,

1()  2(). In this case 2() = ∗(  ). For any  ∈ £1() 2()¤, (; ) =
 (∗(  ) | ). So we have 00( | ) = (1− ) implying: 0() + 00( | ) = 0() + (1−
)  1 since  ≤ 2() = ∗(  ). The statement then follows from this fact and Lemma

A.5. ¥

Consider   1(). In
£
−1 1()

¤
the value function is defined as:

−1( | ) = ( + (1− )) + 0( + (1− ) | )

where −1 = max
n
0

1()−
1−

o
. Assume that we have defined the value function in  ∈£

− −(−1)
¤
as −, for all  such that −(−1)  0. Then we can define −(+1) as:

−(+1)( | ) = ( + (1− )) + −( + (1− ) | )

in
£
−(+1) −

¤
with −(+1) =

−−
1− .
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Lemma A.7. For any  ∈ [0 3()], () + ( | ) is concave and it has slope greater than
or equal than 1.

Proof. We prove this by induction on . Consider now the interval
h
1()−

1−  1()
i
. In this

range we have

0−1( | ) = [0( + (1− )) + 00( + (1− ) | )] (1− ) ≥ 1− 

since  + (1− ) ∈ £1() 3()¤. It follows that for  ∈ h 1()−
1−  1()

i
:

0() + 0−1( | ) ≥ 0() + (1− )  1 (20)

Where the last inequality follows from the fact that  ≤ 2()  ∗∗ (  ). Note, moreover,

that the right and left derivative of ( | ) at 1() are the same. To see this note that by the
argument above, the left derivative is (1 − ); by Lemma A.5, however, the right derivative is

(1− 0(∗(  )))  = (1−) as well. We conclude that 0()+0−1( | ) is concave, it has
derivative larger than 1. Assume that we have shown that for  ∈ £− 3()¤, ()+−( | )
is concave and 0() + 0−( | )  1. Consider in  ∈ £−(+1) −¤. We have:

0−(+1)( | ) =
£
0( + (1− )) + 0−( + (1− ) | )¤ (1− ) ≥ 1− 

since  + (1 − ) ≥ £
− 3()

¤
. So 0() + 0−(+1)( | ) ≥ 0() + (1 − ) ≥ 1. By

the same argument as above, moreover,  is concave at −. We conclude that for any  ≤ 1,

() + ( | ) is concave and it has slope larger than 1. ¥

We can define the value function for  ≥ 3() as:

1( | ) =  + (1− ) − ∗∗ (  )


+ (∗∗ (  )) + 0(
∗∗
 (  ) | )

since, by Lemma A.2, 3() ≥ ∗∗ (  ).

Lemma A.8. For any  ≥ 0, ()+ ( | ) is concave and it has slope less than or equal than
1.

Proof. For   3(), 0( | ) = (1− ) . Since, by Lemma A.2,  ≥ ∗∗ (  ) ≥
∗(  ), we have 

0()+ 0( | )  1. Previous lemmas imply ()+ (|) is concave and
has slope greater than or equal than 1 for  ≤ 3(). This establishes the result. ¥

Step 3. Define

( | ) =  + (1− ) − ( | )


, and ( | ) = ( | )− (1− )



as the levels of per capita private consumption and investment, respectively. Note that by

construction, ( | ) ∈ [0]. We now establish that ( | ), ( | ) and the associated
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value function  ( | ) defined in the previous steps constitute an equilibrium. We first show that
given ( | ),  ( | ) describes the expected continuation value to an agent, starting at state
. Since ( | ) ∈ £2() 3()¤ for  ∈ £2() 3()¤,  ( | ) must be described by (18)
for  ∈ £2() 3()¤. By construction, moreover, ( | ) is the expected continuation value
to an agent in all states  ≥ 3(), and  ≤ 2(). We now show that ( | ) is an optimal
reaction function given ( | ). An agent solves the problem (6), where () = ( | ). Note
that ( | ) satisfies the constraints of this problem if ( | ) ≤ +(1−)


+ −1


( | ), so

if ( | ) ≤  + (1 − ); and if ( | ) ≥ −1


( | ), so if ( | ) ≥ 0. Both conditions

are automatically satisfied by construction. If   1(), we have 0() + 0() ≥ 1 for all

 ∈ [0 + (1− )], so ( | ) =  + (1 − ) is optimal. If  ≥ 1(), then ( | ) is an
unconstrained optimum, so again it is an optimal reaction function.

7.1.2 Necessity

We now prove that any stable steady state of an equilibrium must be in [∗(  ) 
∗∗
 (  )].

We proceed in two steps.

Step 1. We first prove that  ≤ ∗∗ (  ). Suppose to the contrary that there is stable steady

state at   ∗∗ (  ). We must have  ∈ (∗∗ (  )], since it is not feasible for a

steady state to be larger than . Consider a left neighborhood of , (

) = (


 −  ).

The value function can be written in  ∈ (

) as:

() =
 + (1− ) − ()


+ (()) + (())

= (()) + (())− () +
 + (1− )


+ (1− 1) ()

In (

) the constraint  ≥ −1


() cannot be binding, else we would have () = (1 −

1)(), so () = 0: but this is not possible in a neighborhood of 

  0. We consider two

cases.

Case 1. Suppose first that   . We must therefore have that ()   + (1− )

in (

), so the constraint  ≤ +(1−)


+ −1


 is not binding. The solution is in the interior

of the constraint set of (6), and the objective function (()) + (())− () is constant

for  ∈ (

).

Lemma A.9. There is a neighborhood (

) in which () is strictly increasing.

Proof. Suppose to the contrary that, for any (

), there is an interval in (


) in which

() is constant. Using the expression for () presented above, we must have 
0
() = (1−)

for any  in this interval. Since (

) is arbitrary, then we must have a sequence 

 →  such
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that 0(
) = (1− ) ∀. We can therefore write:

−(

) = lim

∆→0
(


)− (


 −∆)

∆
= lim
∆→0

lim
→∞

(
)− (

 −∆)
∆

= lim
→∞

lim
∆→0

(
)− (

 −∆)
∆

=
1− 



where −(

) is the left derivative of () at 


, and the second equality follows from the

continuity of (). Consider now a marginal reduction of  at 

. The change in utility is (as

∆→ 0):

∆ () = ( −∆)− () +  [(

 −∆)− (


)] +∆

=

∙
1−

µ
0() + 

1− 



¶¸
∆

In order to have ∆ () ≤ 0, we must have 0() + (1 − ) ≥ 1. This implies  ≤
∗(  )  ∗∗ (  ), a contradiction. Therefore, if there is stable steady state at  

∗∗ (  ), then () is strictly increasing in a neighborhood (

). ¥

Lemma A.9 implies that there is a neighbrohood (

) in which ()+()− is constant.

Since  is a stable steady state and () is strictly increasing. Moreover, for any open left

neighborhood 0(

) = (


 − 0 ) ⊂ (


),  ∈ 0(


) implies () ∈ 0(


)). These

observations imply:

Lemma A.10. There is a neighborhood (

) in which

0() =


− 1
µ
1− 0()


− 1− 



¶
(21)

Proof. There is a (

) and a constant  such that  () =  +  − () for  ∈ (


)).

Hence  () is differentiable in (

). Moreover, () ∈ (


) for all  ∈ (


). Hence

(()) +  (()) − () is constant in  ∈ (

) as well. These observations and the

definition of () imply that 
0
() =

1−

+
¡
1− 1



¢
0() in (


) (where () must be

differentiable otherwise () would not be differentiable). Given that 0() + 0() = 1 in

 ∈ (

), we must have:

0() + 0() = 0() + 

∙
1− 


+

µ
1− 1



¶
0()

¸
= 1

which implies (21) for any  ∈ (

). ¥

Let  be a sequence in (

) such that 

 → . We must have

−(

) = lim

∆→0
(


)− (


 −∆)

∆
= lim
∆→0

lim
→∞

(
)− (

 −∆)
∆

= lim
→∞

lim
∆→0

(
)− (

 −∆)
∆

=


− 1
µ
1− 0()


− 1− 



¶
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where −(

) is the left derivative of (


), and the second equality follows from continuity.

Consider a state ( −∆). For  to be stable we need that for any small ∆:

(

 −∆) ≥  −∆ = (


) + (


 −∆)− 

where the equality follows from the fact that (

) = . As ∆ → 0, this implies −(


) ≤ 1

in (

). By (22), we must therefore have:



− 1
µ
1− 0()


− 1− 



¶
≤ 1

This implies:  ≤ ∗∗ (  ), a contradiction.

Case 2. Assume now that  = and it is a strict local maximum of the objective function

() + () − . In this case in a left neighborhood (

), we have that the upperbound

 ≤ +(1−)


+ −1


() is binding: implying () =+(1−) in(

). We must therefore

have a sequence of points  →  such that 
 = (

−1) and (
) = + (1− ) ∀.

Given this, we can write:

(
) = (+1) + (

+1) = (+1) + 
£
(+2) + (

+2)
¤

=
X∞

=0
( + (1− )+)

note that since +1 =  + (1 − ) the derivative of +1 with respect to  is
£
+1

¤0
=

(1 − ). By an inductive argument, it is easy to see that
£
+

¤0
= (1 − ) . So (

) is

differentiable and:

0(
) =

X∞
=0

[(1− )]
+1

0( + (1− )+)

Since 0() + 0(
) ≥ 1, we have:

0() +
X∞

=0
[(1− )]

+1
0( + (1− )+) ≥ 1

for all . Consider the limit as →∞. Since 0() is continuous and  → , we have:

1 ≤ lim
→∞

h
0() +

X∞
=0

[(1− )]
+1

0( + (1− )+)
i

= 0() +
X∞

=0
[(1− )]

+1
0() =

0()
1− (1− )

This implies  ≤ [0]−1 (1− (1− ))  ∗∗ (  ), a contradiction.

Case 3. Assume now that  =, but it is not a strict maximum of ()+ ()−  in

any left neighborhood. It must be that () + ()−  is constant in some left neighborhood

(

). If this were not the case, then in any left neighborhood we would have an interval in
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which () is constant, but this is impossible by Lemma A.9. But then if () + ()−  is

constant in some (

), the same argument as in Case 1 of Step 1 implies a contradiction.

Step 2. We now prove that  ≥ ∗(  ). Assume there is stable steady state at  

∗(  ). Since lim→0 0() = ∞,   0. There is therefore a neighborhood (

) =

( 

 + ) in which () satisfies all the constraints of (6) and it maximizes () + ()− 

We conclude that the objective function (()) + (()) − () is constant in (

).

By the same argument as in Lemma A.9 it follows that there is a neighborhood (

) in which

() is strictly increasing. Since  is a stable steady state and () is strictly increasing

in (

), there is a neighborhood (


) of 


 such that for any open right neighborhood

0(

) = (


 


 + 0) ⊂ (


),  ∈ 0(


)) implies () ∈ 0(


). By the same argument

as in Lemma A.10, it follows that there is a 0(

) in which 0() is given by (21). Equation

(21), however, implies that 0() ≥ 0 only for states  ≥ ∗(  ). This implies that () is

non-monotonic, a contradiction. ¥

7.2 Proof of Proposition 2

We start from the first point of Proposition 2. Consider the equilibrium described in Proposition

1 with steady state . If  ∈ £2() 3()¤, then () =  ( | ). From (12) we can see

that 0 ( | ) ≤ 1−  if and only if  ≤ ( ). If  ≤ ( ), then 0() ≤ 1−  at any point

of differentiability less or equal than  (i.e. almost everywhere, since () in this equilibrium is

almost everywhere differentiable). In addition, since () is strictly increasing in
£
2() ( )

¤
,

there is a ∗ such that for   ∗, +1 = ( | ), and hence 0( | )  1− .

We now show that if the steady state  ∈ (( ) ∗∗ (  )], then starting from  ≤ ,

for any equilibrium path  → , there is a ∗ such that for   ∗ we have strategic

complementarity. First note that   0 implies ( )  ∗∗ (  ), so 

 ∈ (( ) ∗∗ (  )]

exists. Since  ≤ ∗∗ (  ), it must be that 

 ∈ (( ) + (1− )). By continuity,

therefore, there is a neighborhood (

) of 


 in which () is interior of the constraint set

of problem (6), and so (()) + (())− () is constant. Using the same argument as

in Step 1 in Section 7.1.2, we can establish that () is equal to ( | ) in (

), i.e. the

function that solves (21) with the initial condition  = ( | ) in a left neighborhood of . It
follows that starting from   , for any equilibrium path  → , there is a 

∗ such that for

  ∗, +1 = ( | ), and 0( | ), is given by (21). Since by assumption   ( ),

for  large enough we must have   ( ), and so 0( | )  (1− ). ¥

7.3 Proof of Proposition 3

Let  ∈ [∗(  ) ∗∗ (  )] be the steady state of (). Define:
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2 () = max

½
min
≥0

{ | ( | ) ≤ + (1− ) }  ∗(  )
¾

We now show that, as in (8), () is equal to ( | ) (i.e., a function that solves the differential
equation (12) with the initial condition ( | ) = ) for all  ∈ [2() ].
Consider first the states  ∈ [∗(  ) ]. Assume that there is an interval (1 2) ⊂

[∗(  ) 

] in which () is constant. For any point in (1 2) we would have 0() =

(1− ). Since 1 ≥ ∗(  ), we have () + 0() = () + (1− )  1 for  ∈ (1 2).
Since ()+ () is concave, we must have that the left derivative of ()+ () at 


 exists

and it strictly smaller than 1. But this is in contradiction with the optimality of  at 

. We

conclude that () is strictly increasing in (
∗
(  ) 


].

Because  ≤ ∗∗ (  )  , we must have    +(1−). There is a neighborhood
(


) of 


 in which () ∈ (0 + (1− )). As it can be immediately be verified, this

implies that there is a neighborhood (

) of 


 in which () is interior of the constraint

set of problem (6). Using the same argument used in Step 1 of Section 7.1, we conclude that

that () must be equal is equal to ( | ) in (

). Since ( | ) is strictly increasing in

[∗(  ) 

], we must have that () = ( | ) until ( | ) becomes flat, or it intersects

from below the curve  + (1 − ): that is for  ≥ 2(

). We conclude that a monotonic

investment function below steady state , can differ from 
¡
2() |

¢
only for   2(


).

To prove the rest of the proposition, we now have two cases:

Case 1. Assume first 2(

)  ∗(  ). In this case we know that the right derivative of

() + () at 2(

) is 1. The left derivative of () + () at 2(


) can be equal to one

only if () is equal to ( | ). For  ∈ [∗(  ) 2()], 0( | )  (1 − ). Since we

have (2(

) | ) =  + (1 − )(2(


) | ), we would have ( | )   + (1− )( | ),

which is unfeasible. So the left derivative of ()+ () at 2(

) must be strictly greater than

one. This implies () = + (1− ), as in (8). We conclude that if 2(

)  ∗(  ), any

investment function with steady state  must be equal to ( | ) for  ≤  (i.e., in this case,

 + (1 − )). This implies that the convergent path to the steady state from any 0 ≤  is

unique.

Case 2. Assume now 2(

) = ∗(  ). In this case we know that the right deriva-

tive of () + () at 2(

) is 1. The left derivative of () + () at 2(


) can be

equal to one only if () is equal to ( | ). For  ≤ ∗(  ), 
0( | )  0, so the in-

vestment function would not be monotonic. So the left derivative of () + () for any

  2(

) must be strictly larger than one. Define 1(


) as in the proof of Proposition 1,

1() = max
©
0
¡

¡
2() | ¢−

¢
 (1− )

ª
: this is the point at which  + (1− ) is equal
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to 
¡
2() | ¢, if positive. For  ≤ 1(), since the objective function is strictly increasing,

 + (1− )  2(), so () =  + (1− ). By monotonicity, in
£
1() 2()

¤
, we must

have () = 
¡
2() | ¢. This, again, implies that the convergent path to the steady state from

any 0 ≤  is unique.

The result that the convergent path is monotonically increasing follows from the fact that

() is increasing and ()   for   . The result that convergence is only in the limit if

  ∗(  ), follows from the fact that () is strictly increasing in (
∗
(  ) 


). ¥

7.4 Proof of Proposition 4

Since we are in a regular economy, we have   ∗∗ (  ). We construct here a concave and

monotonic equilibrium with steady state is ( ) as defined in (16). We proceed in two steps.

Step 1. We first construct the strategies. Remember that ( ) ≡ ∗ (  1) = [
0]−1 (1− (1− )).

This is the point at which the solution of the differential equation (12) has slope (1− ). Define

2 as:

2 = max

½
min
≥0

{ |b() ≤ + (1− ) }  ∗(  )
¾
 (22)

The investment function is defined as:

() =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min

©
 + (1− ) b ¡2¢ª  ≤ 2

b () 2   ≤ ( )

(1− )  ≥ ( )

Using the same argument as in the proof of Proposition 1, we can prove that () is continuous

and almost everywhere differentiable with right and left derivative at any point, and () ∈
[(1− ) + (1− )] for any . Finally, it is easy to see that () has a unique fixed-point

 such that (

) =  ∈

£
2 ( )

¤


Step 2. We now construct the value function () associated to (), and prove that

() () is an equilibrium. For  ≤ ( ), we define the value function exactly as in

Step 2 of Section 7.1.1. For  ≥ ( ), note that ()  , so we can define the value function

recursively as:

() =



+ ((1− )) + ((1− )) (23)

The value function defined above is continuous in . Using the same argument as in Step 2 of

Section 7.1.1 we can show that () + (; ) −  is weakly concave in  for  ≤ ( ); it is
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strictly increasing in
£
0 2

¤
, and flat in

£
2 ( )

¤
. Consider now states   ( ). Let

4 =
()

1− . In
£
( ) 4

¤
, we must have (1−) ∈ £2 ( )¤. Note that 0()+ 0() = 1

for  ∈ £2 ( )¤, so by (23) we have
0() = (1− ) [0((1− )) + 0((1− ))] = 1− 

for  ∈ £( ) 4¤. This fact implies that 0() + 0() = 0() +  (1− ) for any  ∈£
( ) 4

¤
, and hence it is concave in this interval. It follows that () is concave in  ≤ 4

because 0() + 0() ≤ 1 for any  ∈ £( ) 4¤. Using a similar approach we can prove

that () is concave for all , and we have 
0() + 0() ≤ 1 for  ≥ ( ). To prove that

() () is an equilibrium, we proceed exactly as in Step 3 of Section 7.1.1 to establish that

() is optimal given (), and that () satisfied (15) given ().¥

7.5 Proof of Proposition 5

We proceed in 2 steps.

Step 1. The same argument used in Step 1 of Section 7.1.2 shows that no equilibrium stable

steady state can be greater than ∗∗ (  ) = [0]−1 (1−  (1− )). The same argument

used in Step 2 in Section 7.1.2 we can show that no equilibrium can be less than ∗(  ), so

∗(  ) ≥ ∗(  ).

Step 2. Consider a sequence  → 0. For each  there is at least an associated equilibrium

(), () with steady state 

. If follows trivially that lim→∞ ∗∗ (

 ) = [0]−1 (1− ) =

(0).

What remains to be shown is that lim→∞ ∗(
 ) = [0]−1 (1− ) = (0). Let Γ be

the set of equilibrium steady states when the rate of depreciation is . We now show by

contradiction that for any   0, there is a e such that for   e, inf Γ ≥ (0) − . Since

inf Γ ≤ ∗∗ (  ), this will immediatly imply that ∗(  ) → (0). Suppose to the

contrary there is a sequence of steady states 0, with associated equilibrium investment and value

functions (), (), and an   0 such that 0  (0)−  for any arbitrarily large . Define

0() = (), and 

() = (

−1
 ()) and consider a marginal deviation from the steady state

from 0 to 0 + ∆. By the irreversibility constraint we have () ≥ (1− ) . Using this

property and the fact that 0 is a steady state, so (
0
) = 0, we have:

(
0
 +∆)− (

0
) ≥ (1− )

¡
0 +∆

¢− 0 = (1− )∆− 0

This implies that, as →∞, for any given ∆:
(

0
 +∆)− 0
∆

≥ 1 + 1 (
)
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where 1 (
)→ 0 as → 0. We now show with an inductive argument that a similar property

holds for all iterations (
0
). Assume we have shown that:

−1 (0 +∆)− 0
∆

≥ 1 + −1 ()

where −1 ()→ 0 as → 0. We must have:

(
−1
 (0 +∆))− (

0
) ≥ (1− ) −1 (0 +∆)− 0

We therefore have:

(
−1
 (0 +∆))− 0 ≥ −1 (0 +∆)− 0 − −1 (0 +∆)

so we have:

(
−1
 (0 +∆))− 0

∆
≥ −1 (0 +∆)− 0

∆
− −1 (0 +∆)

∆

≥ 1 +  (
) (24)

where  (
) = −1 ()− −1 (0+∆)

∆
, so  (

)→ 0 as → 0

We can write the value function after the deviation to 0 +∆ as:

 (0 +∆) =
X∞

=0
−1

∙
 + (1− ) −1 (0 +∆)− (

0
 +∆)


+ ((

0
 +∆))

¸
For any given function (), define ∆() = (+∆)− (). We can write:

∆ (0)∆ =
X∞

=0
−1

⎡⎢⎢⎣ (1−)∆−1 (0)∆−∆(0)∆


+
£
0(0) +  (∆)

¤
∆(

0
)∆

⎤⎥⎥⎦

≥
X∞

=0
−1

⎡⎢⎢⎣ (1−)(1+−1())−(1+())


+
£
0(0) +  (∆)

¤
(1 +  (

))

⎤⎥⎥⎦ (25)

where  (∆)→ 0 as ∆→ 0. In the first equality we use the fact that if we choose ∆ small, since

() is continuous, ∆

(

0
) is small as well. This implies that¡

((
0
 +∆))− ((

0
))

¢

£
(

0
 +∆)− (

0
)
¤

converges to 0((
0
)) as ∆→ 0. The inequality in 25 follows from (24). Given ∆, as →∞,

we therefore have lim→∞∆ (0)∆ ≥ 0(0)+(∆)
1− . We conclude that for any   0, there must

be a ∆ such that for any ∆ ∈ (0∆) there is a ∆ guaranteeing that ∆ (
0
)∆ ≥ 0(0)

1− − 

for   ∆. After a marginal deviation to 0 +∆, therefore, the change in agent’s objective

function is:

0(0) + ∆ (0)∆− 1 ≥
0(0)
1− 

− − 1
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for  sufficiently large. A necessary condition for the un-profitability of a deviation from 0 to

0 +∆ is therefore:

0 ≥ [0]−1 (1−  +  (1− ))  (26)

Since  can be taken to be arbitrarily small, for an arbitrarily large, (26) implies 0 ≥ (0)−2,
which contradicts 0  (0)− . We conclude that ∗(  )→ (0) as → 0. ¥

7.6 Proof of Proposition 6

Since we are in a regular economy, we have   ∗∗ (  ). To construct the equilibrium we

proceed in two steps.

Step 1. We first construct the strategies. Let ∆() be the solution of (12) with the initial

condition ∆(
∗
(  )) = ∗(  )−∆. Let 2 (∆) be:

2 (∆) = max

½
min
≥0

{ |∆() ≤ + (1− ) }  ∗(  )−∆
¾

(27)

Let 3(∆) be defined by ∆
¡
3(∆)

¢
= ∗∗ (  ). The investment function is defined as:

 () =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min

©
 + (1− ) ∆

¡
2 (∆)

¢ª
 ≤ 2 (∆)

∆() 2 (∆)   ≤ 3 (∆)

∆(
3 (∆))  ≥ 3 (∆)

(28)

It follows immediately from the proof of Proposition 1 that ∆() is continuous and almost every-

where differentiable with right and left derivative at any point. Since lim→∞ ∆()  0 as  → 0,

there is a fixed-point ∆ ∈
¡
2 (∆)  ∗(  )

¢
such that ∆(


∆) = ∆. We have:

Lemma A.11. There is a ∆∗ such that for ∆ ≤ ∆∗: ∆() ∈
£
2 (∆)  3 (∆)

¤
for any  ∈£

2 (∆)  3 (∆)
¤
.

Proof. First note that 2 (∆) is continuous and decreasing in ∆. We first show that there is

a ∆
0
such that for ∆ ≤ ∆0

∆() ≤  + (1 − ) for any  ∈ £2 (∆)  3 (∆)¤. Assume not.

Then there must be a sequences ∆ → 0 and () with  ∈ £2 (∆)  3 (∆)
¤
, such that

∆(
)   + (1 − ) for any  and  → ∗(  ) (since 

2 (∆) → ∗(  )). This

implies: lim→∞ ∆(
) ≥ + (1− ) lim→∞ . Note that

 + (1− ) lim
→∞

 =  + (1− )∗(  )

≤ lim
→∞

∆(
) = ∗(  )
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implying  ≤ ∗∗ (  ). However, in a regular economy   ∗∗ (  ), a contradiction.

Since by construction ∆() ≥ ∗(  )−∆, we conclude that ∆() ≥ 2 (∆) for ∆ ≤ ∆0
. We

now prove that there is a ∆
00
such that, for ∆ ≤ ∆00

, ∆() ≤ 3 (∆). Note that for  ≥ ∆, we

have ∆() ≤ 3 (∆) by construction (since ∆() ≤ ). For   ∆, we have  ≤ ∆
¡
2 (∆)

¢
. If

the statement were not true, then we would have sequences∆ → 0 and  → ∗(  ) such that

∆(
)  ∗∗ (  ), but this is impossible since ∆(

)→ ∗(  )  ∗∗ (  ). ¥

Step 2. Using Lemma A.11, we can now construct the concave value function  () associated

with the investment function in (28) exactly as in Proposition 1. The proof that  (),  () is

an equilibrium is identical to the corresponding proof in Proposition 1 and omitted. To prove that

the steady state ∆ is stable and that convergence to it is characterized by damped oscillations,

we need to prove that [ ]
0
(∆) ∈ (−1 0). Note that since ∆  ∗(  ), [


 ]

0
(∆)  0;

and since ∆ is arbitrarily close to 
∗
(  ) for ∆ small, then [


 ]

0
(∆) ∈ (−1 0).

Step 3. The fact that a steady state is bounded above by ∗∗ (  ) is already proven as in

Proposition 1. To show that a steady state is bounded below by ∗∗∗ (  ) we proceed by

contradiction. Suppose to the contrary that there is a steady state   ∗∗∗ (  ). Since it

must be   0, in a right neighborhood of  we must have that the investment function ()

is interior in (0 + (1− )). Following an argument similar to the argument of Proposition 1

we can show that in this range the investment function cannot be constant (otherwise the agents

would want to invest more), and that () must satisfy (21). Since  is a stable equilibrium we

must have |0()|  1. This implies  ≥ ∗∗∗ (  ). ¥

7.7 Example 4

Assuming () = , we can solve for ∆ () in closed form:

∆ () =  (   ∆) +


 (1− )
 − (−  (1− ))

 (1− )
 (29)

where:

 (   ∆) =

µ


− (1− )

¶ 1
1−

"
1−

µ


− (1− )

¶ 2−1
1−

#


 (1− )
+
 (− (1− ))

 (1− )
−∆

Assuming  = 3,  = 75  = 02  = 01, we have: ∆ () = 19733 −∆ − 20001 + 16 and
∗( ) = 12814. When ∆ ≥ 1, ∆ () admits a fixed-point ∆ lower than 063581 and such
that 0∆ (


∆) ≤ −14063, so the first part of Assumption 1 is verified. When ∆ ≤ 12, moreover,

it admits a fixed-point ∆ such that ∆ (
∗∗
 ( )−∆)  ∆ (


∆ ). In this example, therefore,

Assumption 1 is verified for any ∆ ∈ (1 12). Note, moreover, that since (29) is continuous in all
parameters, Assumption 1 is satisfied in an open set of all fundamental parameters.
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7.8 Proof of Proposition 7

Let ∆() be the solution of (12) with the initial condition ∆(
∗
(  )) = ∗(  )−∆. Let

2 (∆) be:

2 (∆) = max

½
min
≥0

{ |∆() ≤ + (1− ) }  ∗(  )−∆
¾

(30)

and define 3(∆) = ∆ , where 

∆ is the fixed point of ∆() to the right of 

∗
(  ). The

investment function is defined as:

 () =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min

©
 + (1− ) ∆

¡
2 (∆)

¢ª
 ≤ 2 (∆)

∆() 2 (∆)   ≤ 3 (∆)

∆(
3 (∆))  ≥ 3 (∆)

(31)

It follows immediately that ∆() is continuous and almost everywhere differentiable with right

and left derivative at any point. Let ∆ is the fixpoint of ∆() on the left of 
∗
(  ). Note

that ∆ is decreasing in ∆ and continuous in ∆. Since by Assumption 1 there is a ∆0 such that

0∆0()  −1, for any  ∈ [∗∗∗ (  ) ∗(  )] we must have a ∆ such that ∆ (
) = . We

only need to prove that, in correspondence to this ∆, ∆ () is an equilibrium investment function

for  sufficiently large. We have:

Lemma A.12. Given Assumption 1, for any  ∈ [∗∗∗ (  ) ∗(  )], there is a ∆ and a

∆ such that for   ∆, ∆ (
) =  and ∆() ∈

£
2 (∆)  3 (∆)

¤
in  ∈ £2 (∆)  3 (∆)¤.

Proof. The fact that there is a a ∆ such that ∆ (
) =  (for any ) follows from the previous

argument. We now show that when  is large enough we also have ∆() ∈
£
2 (∆)  3 (∆)

¤
for

 ∈ £2 (∆)  3 (∆)¤. It is immemdiate to see that for  large enough, ∆() ≤  + (1 − )

for  ∈ £
2 (∆)  3 (∆)

¤
. Given this, ∆() ≥ 2 (∆) follows directly. We next prove that

∆() ≤ 3 (∆). For  ≥ ∆ we have ∆() ≤ 3 (∆) by construction. Assume now  ≤ ∆. We

have ∆() ≤ ∆(
∗
(  )−∆) ≤ ∆ (


∆ ), where the second inequality follows from Assumption

1. Since by definition ∆ (

∆ ) = ∆ = 3 (∆), we conclude that ∆() ∈

£
2 (∆)  3 (∆)

¤
for

 ∈ £2 (∆)  3 (∆)¤  ¥

Using Lemma A.12, one can construct a concave value function  () associated to  ()

in the same way as in Proposition 1. ¥

7.9 Proof of Proposition 8

We can construct an equilibrium with investment function ∆ () exactly as in Proposition 7.

Let ∆  ∗(  ) be the fixed point of ∆ (), and let 
2 (∆) and 3 (∆) be defined as in
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Proposition 7. By Assumption 1 we can choose ∆ so that ∆  ∗∗∗ (  ), and so in a open right

neighborhood (

∆) of 


∆ we have 

0
∆()  −1. Consider an initial state 0 ∈

¡
2 (∆)  3 (∆)

¢
with 0 6= ∆. It is immediate to see that no path {∗} with ∗0 = 0 and ∗ = ∆(

∗
−1) can

converge. The path can converge only to ∆, since this is the unique fixed point of ∆ () in¡
2 (∆)  3 (∆)

¢
. But since 0∆()  −1 in (


∆) there is no {∗} converging to ∆ starting

from 0 6= ∆ as well. We conclude that this equilibrium has a cycle. ¥
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