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1 Introduction

How do microeconomic frictions and microeconomic heterogeneity affect macroeconomic dy-
namics? As a specific example take Thomas (2002), Khan and Thomas (2003) and Khan
and Thomas (2008) who argue in a series of papers that nonconvexities in the capital ad-
justment technology at the micro level have little impact on aggregate dynamics, as general
equilibrium price movements tend to offset the effects of these frictions. Models with non-
convex capital adjustment costs deliver lumpy investment patterns at the micro level, but
also feature aggregate business cycle statistics that are quantitatively similar to standard
RBC models, once real wages and real interest rates adjust to clear markets.

Intuitively, this “neutrality result” can be understood from the first order conditions
of the representative household. With a representative household, the intratemporal and
intertemporal first order conditions govern the optimal paths of consumption and labor
supply, which in turn govern the optimal paths of output/income and saving in the short
run. Thus, the households in a lumpy investment model would like to follow the same saving
path as in the frictionless model; after all the household side is the same in both models. The
question is, whether they are able to do so when adjusting the capital stock is costly. The
answer turns out to be yes, as long as the households can substitute between the extensive
and intensive margins of investment (see Gourio and Kashyap (2007) for this insight). To
be concrete, facing a positive aggregate productivity shock, households use investment to
increase consumption in the future. In a frictionless model they do this entirely through the
intensive margin of investment: every firm invests a little more. With nonconvex capital
adjustment costs this is no longer optimal, instead a few firms invest a lot. Households
concentrate the desired amount of investment into a few firms which really need to invest,
and recover essentially the same aggregate saving/investment path as in a frictionless model.

This intuition rests on the assumption that there is only one type of capital good, fixed
capital, that firms can invest in and households can save in. This is the dual role of fixed
capital in standard models: factor of production and the only means of saving, which in
turn implies the familiar equality between saving and (fixed capital) investment. Thus for
the economy as a whole investment and consumption dynamics are tightly linked. However,
in reality people may save through multiple channels. We show that aggregate investment
in fixed capital is more sensitive to nonconvex adjustment costs even in general equilibrium,
once we introduce multiple channels of saving.

The key intuition for this result is the substitution between different saving channels. In-
troducing more saving channels offers more margins of choice to the households, in addition
to the extensive/intensive margin choice in fixed capital investment: they can switch opti-
mally into other ways of saving to smooth consumption, if adjusting fixed capital is costly.
As a result, the investment decisions in fixed capital will be more sensitive to the frictions
in capital adjustment. Viewed from another perspective, extra saving channels enhance the
households’ ability to smooth consumption, which in turn implies smoother interest rate
movements. Smoother interest rate movements bring the dynamics of the general equilib-
rium model closer to those in a partial equilibrium model, where lumpiness is known to
matter. Note that there is a general insight here: when aggregate resource constraints and
general equilibrium effects are important for aggregate dynamics, the precise details of how
these general equilibrium effects are introduced into the physical environment matter.
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We study the implications of multiple saving vehicles for the “neutrality question” in
a quantitative DSGE model. We extend the model in Khan and Thomas (2003) into a
two-sector setting with an intermediate goods sector and a final goods sector. At the same
time, we incorporate a second way of saving: inventories. The final goods sector has the
opportunity to store the output from the intermediate goods sector as inventories. The
incentive to hold inventories is generated by fixed ordering costs for shipments from the
intermediate goods to the final goods sector. Viewed from a different angle, we build on the
inventory model in Khan and Thomas (2007) and add nonconvex capital adjustment costs
in the intermediate goods sector. We choose inventories as the second capital type because,
1) it is a highly cyclical component in the national accounts and, 2) it is a natural saving
vehicle to buffer against shocks in the short-run. Methodologically, our paper provides the
first quantitative analysis of how nonconvex capital adjustment frictions impact aggregate
dynamics in the presence of capital good heterogeneity.

Figure 1: Impulse Response Function of Fixed Investment
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Notes: This figure shows the impulse response functions of fixed capital investment to a one standard deviation aggregate
productivity shock in the intermediate goods sector. ‘Model I1’ has the baseline calibrated nonconvex fixed capital adjustment
cost parameter and the baseline calibrated inventory order cost parameter. ‘Model I2’ has zero nonconvex fixed capital adjust-
ment cost and the baseline inventory order cost parameter. ‘Model NI1’ has the baseline calibrated nonconvex fixed capital
adjustment cost parameter and zero inventories. ‘Model NI2’ has zero nonconvex fixed capital adjustment cost and zero inven-
tories. The difference between the IRFs of ‘Model I2’ and ‘Model I1’ is the effect of nonconvex fixed capital adjustment costs
in the presence inventories. The difference between the IRFs of ‘Model NI2’ and ‘Model NI1’ is the effect of nonconvex fixed
capital adjustment costs without inventories. There is no need to recalibrate the fixed capital adjustment cost parameter or the
inventory order cost parameter, as our calibration targets, being long-run targets, are not sensitive across model specifications.

Figure 1 summarizes our findings. It shows the impulse response functions of fixed capital
investment to a one standard deviation productivity shock. The nonconvex fixed capital
adjustment costs dampen the initial response of fixed capital investment to a productivity
shock by 2.99 percentage points in the presence of inventories (‘Model I1’ versus ‘Model
I2’). That is, the ‘no capital adjustment costs’-impact response is approximately 50% higher
than the one with capital adjustment costs. In contrast, without inventories nonconvex
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fixed capital adjustment costs dampen the initial response of fixed capital investment to a
productivity shock by only 1.91 percentage points (‘Model NI1’ versus ‘Model NI2’). That
is, the ‘no capital adjustment costs’-impact response is only 24% higher than the one with
capital adjustment costs. In addition, with inventories the response of investment in the
model with the baseline level of nonconvex fixed capital adjustment costs is flatter than that
in the model without these capital adjustment frictions. This means that with inventories
nonconvex capital adjustment costs stretch the propagation of the productivity shock by
more than capital adjustment frictions can do without inventories.

Figure 1 also shows that inventories dampen the impact response of fixed capital invest-
ment at every level of fixed capital adjustment costs. With a positive productivity shock
households’ higher demand for saving can be partially satisfied by inventories, which are now
relatively cheap to produce. And this is done the more so, the higher the nonconvex fixed
capital adjustment is, i.e. the more costly the usage of fixed capital is as a saving vehicle:
10.01% impact response versus 9.01% impact response in the frictionless fixed capital ad-
justment model, yet 8.10% impact response versus 6.02% impact response in the model with
the baseline calibrated nonconvex fixed capital adjustment cost parameter.

Another direct implication of our mechanism is that the households’ ability to smooth
consumption is enhanced by capital goods heterogeneity. This is because multiple ways
of saving expand the agents’ choice set when it comes to consumption smoothing. The
consumers are able to move closer to their first-best consumption/saving choices when they
can save in both inventories and fixed capital. In the end, inventories partially offset the
hindering effect on consumption smoothing introduced by fixed capital adjustment frictions.
The impulse response functions of consumption to an aggregate productivity shock from
the lumpy investment model and the frictionless adjustment model are very similar when
inventories exist. Similarly, the volatility and persistence of aggregate consumption are much
less sensitive to fixed capital adjustment frictions in models with inventories.

Our paper speaks to the debate on the aggregate neutrality of nonconvex fixed capital ad-
justment frictions. As mentioned, Thomas (2002), Khan and Thomas (2003) and Khan and
Thomas (2008) come down on the neutrality side. Similarly, House (2008) argues that fixed
adjustment costs are irrelevant for aggregate dynamics when the depreciation rate of fixed
capital approaches zero, as firms are nearly indifferent regarding the timing of investment.
Miao and Wang (2011), in an analytical framework, provide specific conditions on prefer-
ences, technology and the fixed adjustment cost distribution under which fixed adjustment
costs are neutral for business cycles dynamics.

On the other side of the debate are Gourio and Kashyap (2007) and Bachmann et al.
(2011), who argue that the neutrality results in Thomas (2002), Khan and Thomas (2003)
and Khan and Thomas (2008) are specific to their calibration strategy and inconsistent with
some nonlinear aspects of the time series of the aggregate investment rate in the U.S. These
papers on both sides share the ‘one capital good’-set-up. Another paper related to ours is
Fiori (2012), which also features lumpy capital adjustment in a two-sector model and non-
neutrality results. The non-neutrality there is caused by movements of the relative price of
investment, which in our set up is constant by assumption. In addition, and related to our
results, Johnston (2009) and Reiter et al. (2011) show that investment lumpiness matters in
the aggregate in models with sticky prices.

The rest of the paper proceeds as follows. Section 2 outlines the model. Section 3 discusses
the calibration and model solution. Section 4 presents the results. Section 5 concludes.
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2 The Model

2.1 The Environment

There are three kinds of agents in the economy: final goods producers, intermediate goods
producers and households. The final goods producers use the intermediate goods, of which
they hold inventories in equilibrium, and labor to produce the final goods. Final output
can be either consumed or invested as fixed capital. The intermediate goods producers
combine fixed capital and labor to produce the intermediate goods. Households consume
final goods and provide homogeneous labor to both types of producers. They own all the
firms. They receive wage and dividend payments from both types of firms and purchase
their consumption goods from the final goods producers. All markets are competitive. We
impose nonconvex fixed capital adjustment costs in the intermediate good sector.

2.1.1 The Final Goods Producers

There is a continuum of final goods producers. They use intermediate goods,m, and labor, n,
to produce the final output through a production function G(m,n). The production function
is strictly concave and has decreasing returns to scale. Whenever the final goods producers
purchase intermediate goods, they face a fixed cost of ordering and delivery, denoted in units
of labor, ϵ. To avoid incurring the fixed cost frequently, the final good producers optimally
hold a stock of inventories of the intermediate goods. Denote the inventory level for an
individual producer as s ∈ R+.

The final goods producers differ in their fixed cost parameter for ordering, ϵ ∈ [0, ϵ]. In
each period, this parameter is drawn independently for every firm from a time invariant
distribution H(ϵ). At the beginning of the period, a typical final firm starts with its stock of
inventories, s, inherited from the previous period. It also learns its fixed cost parameter, ϵ.
The firm decides whether to adjust its inventory level. If the firm adjusts, it pays the fixed
cost and chooses a new inventory level. Otherwise, the firm enters the production phase with
the inherited inventory level s. We denote the quantity of adjustment by xm. The inventory
stock ready for production is s1 = s+ xm, with xm = 0 if the firm does not adjust.

After the inventory decision the firm determines its labor input, n, and the intermediate
goods input, m ∈ [0, s1], for current production. Intermediate goods are used up in produc-
tion. The remaining stock of intermediate goods, s′ = s1 −m ≥ 0, is the starting stock of
inventories for the next period. Stored inventories incur a unit cost of σ, denoted in units of
final output. In the end, the output of a typical final firm is y = G(m,n)− σs′.

2.1.2 Intermediate Goods Producers

There is a continuum of intermediate goods producers. They are subject to an aggregate
productivity shock, which is the sole source of aggregate uncertainty.1 Let z denote the
aggregate productivity level. It follows a Markov chain, z ∈ {z1, · · · , zNz}, where P (z′ =
zj|z = zi) = πij ≥ 0 and

∑Nz

j=1 πij = 1 for all i.

1As pointed out in Khan and Thomas (2007), placing aggregate productivity in the intermediate sector
is necessary in this physical environment to generate a countercyclical relative price of intermediate goods,
a feature found in the U.S. data.
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Each firm produces with fixed capital and labor. Whenever the firm decides to adjust its
capital stock, it has to pay a fixed cost, denoted in units of labor. In each period, the cost
to adjust capital is drawn independently for every firm from a time invariant distribution
I(ζ). A typical intermediate good producer is identified by its capital stock, k, and its cost
to adjust capital, ζ ∈ [0, ζ].

At the beginning of each period, the firm learns aggregate productivity, z, and its id-
iosyncratic cost to adjust capital, ζ. It starts with a fixed capital stock, k, inherited from
the previous period. First, it decides about the labor input, l. It combines l and k according
to a production function zF (k, l). The F (·) function is strictly concave and has decreasing
returns to scale.2 After production, the firm chooses whether to adjust its capital stock. It
can pay a fixed cost to adjust its capital stock by investing i. In this case, the new capital
stock for the next period in efficiency units is k′ = [(1 − δ)k + i]/γ, where δ is the depre-
ciation rate and γ is the steady state growth rate of the economy. Alternatively, the firm
can avoid the adjustment cost and start the next period with the depreciated capital stock
k′ = (1− δ)k/γ.

2.1.3 Households

We assume a continuum of identical households who value consumption and leisure. They
have access to a complete set of state-contingent claims. Households own all the firms. They
provide labor to the firms and receive wage and dividend payments.

The households have the following felicity function:

u(c, nh) = log c− Ahnh,

where nh is the total hours devoted to market work.

2.2 Competitive Equilibrium

2.2.1 Aggregate State Variables

In addition to z, the aggregate productivity level, two endogenously determined distributions
are aggregate state variables in this model: the distribution of the firm-specific inventory
stocks, µ(S), and the distribution of firm-specific fixed capital stocks, λ(K). Both S and K
are subsets of a Borel algebra over R+.

The aggregate state variables are summarized as (z, A), where A = (µ, λ). The distribu-
tion of µ evolves according to a law of motion µ′ = Γµ(z, A), and similarly, the distribution
of λ evolves according to λ′ = Γλ(z, A).

The final good is the numeraire. Workers are paid ω(z, A) per unit of labor input. The
intermediate goods are traded at q(z, A) per unit.

2As Miao and Wang (2011) show, fixed adjustment costs cannot be expected to have a large impact with
constant return to scale. We follow the majority of the literature, e.g. Bachmann et al. (2011), Bloom
(2009), Gourio and Kashyap (2007) as well as Cooper and Haltiwanger (2006), and use a decreasing returns
to scale assumption.

6



2.2.2 Problem of the Household

The households receive a total dividend payment D(z, A) and labor income nh(z, A)ω(z, A)
from the firms. In each period the households determine how much to work and how much to
consume. All we need from the household problem is an intertemporal and an intratemporal
first order condition.

We can express the dynamic programming problems for both types of firms with the
marginal utility of consumption as the pricing kernel:

p(z, A) =
1

c(z, A)
.

Then every firm weighs its current profit by this pricing kernel and discounts its future
expected earnings by β. This changes the unit of the firm’s problems in both sectors to utils
but leaves the policy functions unchanged.

The first-order conditions also imply that the real wage is given by:

ω(z, A) =
Ah

p(z, A)
.

2.2.3 Problem of Final Goods Producers

Let V0 be the value of a final goods producer at the beginning of a period after the inventory
adjustment cost parameter is realized and before any inventory adjustment and production
decisions. Let V1 be the expected value function after the adjustment decision but before
the production decision. Given the aggregate laws of motion Γµ and Γλ, the firm’s problem
is characterized by the following three equations. For expositional ease, the arguments for
functions other than the value functions are omitted.

V0(s, ϵ; z, A) = pqs+max

{
− pωϵ+ Va(z, A),−pqs+ V1(s; z, A)

}
, (1)

Va(z, A) = max
s1>0

{−pqs1 + V1(s1; z, A)}, (2)

and:

V1(s1; z, A) = max
n≥0,s1≥s′≥0

{
p[G(s1 − s′, n)− σs′ − ωn]

+ βEz

[∫ ϵ

0

V0(s
′, ϵ; z′, A′)d(H(ϵ))

]}
.

(3)

The expectation is taken over z′, next period’s aggregate productivity.
Equation (1) describes the binary inventory adjustment decision of the firm. The firm

adjusts if the value of entering the production phase with the optimally adjusted inventory
level, described by Va(·) in equation (2), minus the cost of adjustment, exceeds the value of
directly entering the production phase with the inherited inventory level, V1(s; z, A).
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The solution to equation (1) amounts to a cut-off rule in ϵ. The firm adjusts if:

−pωϵ+ Va(z, A) ≥ −pqs+ V1(s; z, A).

Therefore the cut-off value is:

ϵ̃(s; z, A) =
Va(z, A)− V1(s; z, A) + pqs

pω
.

Given the support of the adjustment cost distribution, this cut-off value is modified to:

ϵ∗ = max(0,min(ϵ, ϵ̃)).

The firm adjusts if its draw is smaller than or equal to ϵ∗(s; z, A).
Equation (2) describes the value of inventory adjustment. The solution to this equation

is the optimal target level of inventory, s∗1(s, ϵ; z, A). Note that the optimization problem,
which is formulated in terms of the stock of inventories, s, instead of order flows, does not
depend on any firm-specific characteristics. Therefore in any period, all the adjusting firms
choose the same inventory target level, s∗1(z, A).

Equation (1) and (2) jointly determine the production-time inventory level, s1:

s1(s, ϵ; z, A) =

{
s∗1(z, A) if ϵ ≤ ϵ∗(s; z, A)

s if ϵ > ϵ∗(s; z, A)
.

Equation (3) describes the production phase. The firm finds the optimal inventory level
for the next period and the optimal employment level for this period. The decision for next
period’s inventory level, s′, is equivalent to deciding about the amount of intermediate goods
to be used up in current production.

The solution for employment does not depend on the continuation value function. There-
fore, given s′, it is the analytical solution to:

∂G(s1 − s′, n∗)

∂n
= ω.

The optimal employment and inventory usage decision jointly imply the optimal output
level:

y∗(s1; z, A) = G(s1 − s′∗(s1; z, A), n
∗(s1; z, A))− σs′∗(s1; z, A).

2.2.4 Problem of the Intermediate Goods Producers

Let W0 be the value function of the intermediate good producers prior to the realization of
the adjustment cost parameter ζ. Let W1 be the value function after the realization of ζ.
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The intermediate good producer’s problem can be summarized by the following equation:

W1(k, ζ; z, A) = max
l

{
p · [q · zF (k, l)− lω]+

max {Wi(k; z, A),−pζω +Wa(k; z, A)}
}
,

(4)

where:

Wa(k; z, A) = max
k′

{−(γk′ − (1− δ)k)p+ βEz [W0((k
′; z′, A′)]} , (5)

Wi(k; z, A) = βEz [W0((1− δ)k/γ; z′, A′)] , (6)

W0(k; z, A) =

∫ ζ

0

W1(k, ζ; z, A)d(I(ζ)). (7)

The expectation in equation (5) and (6) is taken over z′, next period’s aggregate productivity.
In equation (4), the firm first solves for the optimal employment, given the fixed capital

stock. The solution is :

∂qzF (k, l∗)

∂l
= ω.

After the production decision, the firm solves the binary fixed capital adjustment decision.
The firm adjusts if the expected value from the optimally adjusted fixed capital stock, given
in equation (5), minus the cost of adjustment, exceeds the expected value from the unadjusted
fixed capital stock, given in equation (6).

The solution to the adjustment decision follows a cut-off rule for ζ. The firm adjusts if:

−pωζ +Wa(k; z, A) ≥Wi(k; z, A).

Therefore the cut-off value for ζ is:

ζ̃(k; z, A) =
Wa(k; z, A)−Wi(k; z, A)

pω
.

The restriction from the support of the cost distribution applies, so that

ζ∗ = max(0,min(ζ, ζ̃)).

The firm adjusts to the target capital stock if its adjustment cost is smaller than or equal to
ζ∗(k; z, A).

The optimal adjustment target for fixed capital is given by the solution to equation (5).
Although the value function depends on the level of individual capital stocks, the resulting
policy function, k∗, does not. After the binary adjustment decision, the capital stock for the
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next period is:

k′(k; z, A) =

{
k∗(z, A) if ζ ≤ ζ∗(k; z, A)

(1− δ)k/γ if ζ > ζ∗(k; z, A)
.

2.2.5 Recursive Equilibrium

A recursive competitive equilibrium for the economy defined by:{
u(c, nh), β, F (k, l), G(m,n), σ, δ, γ,H(ϵ), I(ζ), z

}
,

is a set of functions:{
V0, V1,W0,W1, xm, n, s

′, k′, l, i, c, nh, p, q, ω,D,Γµ,Γλ

}
,

such that:

1. Given ω, q, p, Γµ and Γλ, V0 and V1 solve the final firm’s problem.

2. Given ω, q, p, Γµ and Γλ, W0 and W1 solve the intermediate firm’s problem.

3. Given ω, D and p, c satisfies the household’s first-order conditions.

4. The final goods market clears:

c(z, A) =

∫
S

∫ ϵ

0

y(s, ϵ; z, A)d(H(ϵ))d(µ(s))

−
∫
K

∫ ζ

0

i(k, ζ; z, A)d(I(ζ))d(λ(k)).

5. The intermediate goods market clears:∫
S

∫ ϵ

0

xm(s, ϵ; z, A)d(H(ϵ))d(µ(s)) =∫
K

∫ ζ

0

zF (k, n(k, ζ; z, A))d(I(ζ))d(λ(k)).

6. The labor market clears:

nh(z, A) =

∫
S

∫ ϵ

0

(n(s; z, A) + ϵ · 1(xm(s, ϵ; z, A) ̸= 0)) d(H(ϵ))d(µ(s))

+

∫
K

∫ ζ

0

(l(k, n(k; z, A)) + ζ · 1(i(k, ζ; z, A) ̸= 0))d(I(ζ))d(λ(k)).

7. The laws of motion for aggregate state variables are consistent with individual decisions
and the stochastic processes governing z:
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(a) Γµ(z, A) defined by s′(s, ϵ; z, A) and H(ϵ);

(b) Γλ(z, A) defined by k′(k, ζ; z, A) and I(ζ).

2.2.6 Some Terminology

Final Sales (FS), is defined as the total output of the final goods sector. Intermediate
goods demand, X, is the total amount of intermediate goods purchased by the final goods
sector. Intermediate goods usage, M, is the total amount of intermediate goods used up
in production by the final goods sector. The difference between the two evaluated at the
relative price of intermediate goods is Net Inventory Investment (NII):

NII = q × (X−M).

Total investment is the sum of fixed capital investment and net inventory investment:

Total Investment = Fixed Capital Investment + NII.

Finally, Gross Domestic Product (GDP) in this physical environment is defined as the sum
of final sales and net inventory investment:

GDP = FS + NII.

3 Calibration and Computation

3.1 Baseline Parameters

The model period is a quarter. We choose the following functional forms for the production
functions:

F (k, l) = kθk lθl ,

G(m,n) = mθmnθn .

We discretize the productivity process z into Nz = 11 points following Tauchen (1986).
The underlying continuous productivity process follows an AR(1) in logarithms with auto-
correlation ρz = 0.956 and an innovation process with standard deviation σz = 0.015.

We set the subjective discount factor, β = 0.984, the depreciation rate δ = 0.017, and
the steady state growth factor γ = 1.004. Ah is calibrated so that the aggregate labor input
equals 0.33. θm = 0.499 is calibrated to match the share of intermediate inputs in final
output. We set θk = 0.25 and θl = 0.5, the values used in Bloom (2009), which amounts
to a capital elasticity of the firms’ revenue function of 0.53 and – if we reinterpret the
decreasing returns to scale production function in the intermediate goods sector as resulting
from monopolistic competition – an implicit markup of 33%. We calibrate θn to match an
aggregate labor share of 0.64. These parameters are summarized in Table 1:

3Cooper and Haltiwanger (2006), using LRD manufacturing data, estimate this parameter to be 0.592;
Hennessy and Whited (2005), using Compustat data, find 0.551.
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Table 1: Baseline Parameters

β Ah θm θn θk θl ρz σz δ γ
0.984 2.128 0.499 0.367 0.250 0.500 0.956 0.015 0.017 1.004

Notes: β is the subjective discount factor of the households; Ah is the preference parameter for leisure; θm is the material share in the final
good production function; θn is the labor share in the final good production function; θk is the capital share in the intermediate good production
function; θl is the labor share in the intermediate good production function; ρz is the auto-correlation for the aggregate productivity process; σz
is the standard deviation for aggregate productivity innovations; δ is the depreciation rate; γ is the steady state growth rate.

3.2 Inventory and Adjustment Cost Parameters

We assume that the inventory adjustment costs are uniformly distributed on [0, ϵ]. ϵ is set so
that the average inventory-to-sales ratio in the model equals 0.8185, the average of the real
private non-farm inventory-to-sales ratio in the United States between 1960:1 and 2006:4.
The unit cost of holding inventories, σ, is chosen so that the annual storage cost for all
inventories is 12% of aggregate final output in value (see Richardson (1995) and Khan and
Thomas (2007) for details). These two targets jointly determine ϵ = 0.3900 and σ = 0.0127.

We assume that I(ζ) is uniform between [0, ζ]. The upper bound of the distribution is cho-
sen so that the fraction of lumpy investors, defined as the firms whose gross investment rate
is larger than 20% in a given year, is 18%. This calibration target is taken from Cooper and
Haltiwanger (2006)’s analysis of manufacturing firms in the Longitudinal Research Database
(LRD). This yields ζ = 0.1841.

3.3 Numerical Solution

The inherent non-linearity of the model suggests global numerical solution methods. We use
value function iterations from equation (1) to equation (3) to solve the problem of the final
good producers. We use value function iterations from equation (4) to equation (7) to solve
the intermediate firm’s problem. Howard policy function accelerations are used to speed up
convergence.

Our model gives rise to two endogenous distributions as state variables. We adopt the
methods in Krusell and Smith (1997), Krusell and Smith (1998), Khan and Thomas (2003)
as well as Khan and Thomas (2008) to compute the equilibrium. Denote the Ith moment
of distribution µ(S) and λ(K) as µI(S) and λI(K) respectively. We approximate each
distribution function with its first moment. We find that a log-linear form for the Γ(·)
functions approximates the law of motion rather well in terms of forecasting accuracy:

Γµ(z, λ1, µ1) = log µ′
1 = αµ + βµ log(λ1) + γµ log(µ1) + ψµ log(z), (8)

Γλ(z, λ1, µ1) = log λ′1 = αλ + βλ log(λ1) + γλ log(µ1) + ψλ log(z). (9)
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We adopt similar rules for the pricing kernel and the relative price of intermediate goods:4

log p = αp + βp log(λ1) + γp log(µ1) + ψp log(z), (10)

log q = αq + βq log(λ1) + γq log(µ1) + ψq log(z), (11)

where λ1 is the first moment of the capital stock distribution, and µ1 is the first moment of
the inventory stock distribution.

Given an initial guess for {α{·}, β{·}, γ{·}, ψ{·}}, we solve the value functions as described
above. Then we simulate the model without imposing the pricing rules in equations (10) and
(11). In each model simulation period we search for a pair of prices, (p, q) such that all the
firms optimize and all the markets clear under the forecasting rules in equation (8) and (9).
To improve numerical accuracy, we use the value functions to re-solve all the optimization
problems period by period and for every guess of (p, q). Given the market clearing prices,
we update the capital and inventory stock distributions and proceed into the next period.

At the end of the simulation, we update the parameters {α{·}, β{·}, γ{·}, ψ{·}} using the
simulated time series for the approximating moments and the market clearing prices. Then
we repeat the algorithm with the updated parameters. Upon convergence of the parameters,
we check the accuracy of the Γ(·) functions by the R2 in the regression stage.

4 Results

We study the influence of nonconvex fixed capital adjustment costs on aggregate dynamics in
our model by numerical simulation. We analyze four models that share all parameters other
than ϵ and ζ. ‘Model I1’ and ‘Model I2’ have the calibrated baseline equilibrium inventory
holdings with ϵ = 0.39. ‘Model I1’ has calibrated fixed capital adjustment cost given by
ζ = 0.1841, while ‘Model I2’ features a frictionless technology for adjusting the fixed capital
stock. We also simulate two models without inventories, ‘Model NI1’ and ‘Model NI2’. In
these models, we set ϵ = 0 to eliminate equilibrium inventory holdings.5 ‘Model NI1’ has the
same level of ζ as ‘Model I1’, while ‘Model NI2’ does not feature any frictions in adjusting
the fixed capital stock. The parameter specifications for the four models are summarized
in Table 2. We do not recalibrate ζ in ‘Model NI1’ as the calibration targets are largely
insensitive to the changes in equilibrium inventory levels, as shown in the fourth column
of Table 2. To understand how the presence of inventories interacts with the effects of
nonconvex fixed adjustment costs, we study the cross differences. That is, we contrast the
differences between ‘Model I1’ and ‘Model I2’ with the differences between ‘Model NI1’ and
‘Model NI2’.

We present four sets of results on those four models. We first compare their unconditional
business cycle moments. Second, we study the impulse response functions for fixed capital

4We have experimented with other functional forms for the forecasting rules such as adding interaction
terms between aggregate productivity and the capital and inventory moments. This did not lead to signif-
icant improvements in goodness-of-fit. Our specification performs very well as measured by the R2 of the
equilibrium OLS regressions, which exceeds 0.999 in all specifications.

5In theory, zero inventory adjustment costs are not inconsistent with positive inventory holdings as the
firms might want to hedge against changes in the relative price of intermediate goods. However, in our
simulations no firm holds a positive level of inventories when ϵ = 0.

13



Table 2: Model Specifications

Model
Name

ζ ϵ
Average
Adjustment
Cost

Fraction of
Lumpy
Adjusters

Note

I1 0.1841 0.3900 0.9300% 18.00% Baseline fixed capital adjustment cost with inventory
I2 0.0000 0.3900 0.0000% 0.000% Frictionless fixed capital adjustment with inventory
NI1 0.1841 0.0000 0.8900% 18.18% Baseline fixed capital adjustment cost without inventory
NI2 0.0000 0.0000 0.0000% 0.000% Frictionless fixed capital adjustment without inventory

Notes: ‘Model I1’ has the baseline calibrated nonconvex fixed capital adjustment cost parameter and the baseline calibrated inventory order cost
parameter. ‘Model I2’ has zero nonconvex fixed capital adjustment cost and the baseline inventory order cost parameter. ‘Model NI1’ has the
baseline calibrated nonconvex fixed capital adjustment cost parameter and zero inventories. ‘Model NI2’ has zero nonconvex fixed capital
adjustment cost and zero inventories. “Average Adjustment Cost” is the average adjustment cost paid as a fraction of firms’ output, conditional
on adjustment. “Fraction of Lumpy Adjusters” is the share of lumpy adjusters, defined as the firms that adjust more than 20% of their initial
capital stocks in a given year, in all firms.

investment and consumption across the four models. Third, we plot the volatility and
persistence for consumption, fixed capital investment and, for the models with inventories,
net inventory investment for a wider range of ζ. And finally, we analyze the role of general
equilibrium price movements in bringing about our results.

4.1 Unconditional Business Cycle Analysis

After computing the equilibrium, we simulate the model for 1,000 periods, of which we
discard the first 100 to eliminate the influence of initial conditions. Except for net inven-
tory investment, fixed capital investment and total investment, all the simulated time series
are transformed by natural logarithms and then detrended by an HP filter with smoothing
parameter 1600. The investment data series are treated differently, because they can po-
tentially take on negative values. We detrend fixed capital investment and total investment
with the HP filter directly and then divide the deviations by the trend. We first divide net
inventory investment by GDP and then apply the HP filter to this ratio.

Table 3: Business Cycle Statistics

(a) Standard Deviation

GDP Consumption Fixed Investment NII Total Investment Inventory Level
Model I1 1.4975 0.6416 9.6619 0.3793 15.0558 1.2204
Model I2 1.5637 0.6336 11.5762 0.3240 16.4462 1.1404
Model NI1 1.4772 0.7624 11.7371 - 11.7371 -
Model NI2 1.5694 0.7436 13.8684 - 13.8684 -
Data 1.6630 0.9015 4.8903 0.4220 8.0616 1.6552

(b) First Order Auto-correlation

GDP Consumption Fixed Investment NII Total Investment Inventory Level
Model I1 0.6833 0.7623 0.7298 0.6157 0.6659 0.9259
Model I2 0.6646 0.7932 0.6110 0.6616 0.6274 0.9379
Model NI1 0.6839 0.7281 0.6648 - 0.6648 -
Model NI2 0.6685 0.7739 0.6251 - 0.6251 -
Data 0.8422 0.8833 0.9006 0.3696 0.6514 0.8908

Notes: “NII” denotes net inventory investment. GDP, consumption, and inventory levels are logged and detrended with an HP filter with a penalty
parameter of 1600. We detrend fixed investment and total investment with the HP filter and then divide the deviations by the trend. We divide
NII by GDP and then detrend this ratio with the HP filter. All the standard deviations reported in Panel (a) are percentage points.

The business cycle statistics in Panel (a) and (b) of Table 3 show several effects of inven-
tories on aggregate dynamics. The first message is that nonconvex fixed capital adjustment
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costs matter for aggregate dynamics. Business cycle dynamics differ significantly between
‘Model I1’ and ‘Model I2’. For example, the percentage standard deviation of fixed capital
investment decreases from 11.58 in the frictionless ‘Model I2’ to 9.66 in the lumpy invest-
ment ‘Model I1’. Persistence of fixed capital investment increases from 0.61 to 0.73. In
contrast, consumption volatility and persistence do not vary as much with the fixed capital
adjustment cost parameter. Consumption dynamics are largely insulated from variations in
capital adjustment frictions in the presence of inventories.6

Regarding the cross differences, the effects of nonconvex fixed capital adjustment costs
change significantly in models where inventories are absent. Most notably, the persistence
of fixed investment only increases by 0.04 between ‘Model NI2’ and ‘Model NI1’, while it
increases by 0.12 between ‘Model I2’ and ‘Model I1’. The volatility of consumption increases
by 0.0188 percentage points between ‘Model NI2’ and ‘Model NI1’ while it only increases
by 0.0080 percentage points between ‘Model I2’ and ‘Model I1’. These results suggest that
inventories strengthen the dampening and propagation effect of fixed adjustment costs on
fixed capital investments.7 At the same time, inventories enhance the households’ ability to
smooth consumption, making fixed capital adjustment costs much less effective in affecting
consumption volatility.

As for net inventory investment and the level of inventories, we see that they behave
exactly the opposite way from fixed capital investment, when the latter is subject to ad-
justment frictions. Their volatility rises and their persistence falls, when capital adjustment
frictions are introduced. This is due to the substitution towards inventories as a means of
saving, as fixed capital becomes more costly to use.

4.2 Conditional Business Cycle Analysis - Impulse Response Func-
tions

The first two panels of Figure 2 show the impulse response functions of aggregate fixed
capital investment and consumption to a positive productivity shock in the intermediate
goods sector. We simulate a shock process that starts with one standard deviation above
the median level of productivity, z = 1, and falls back to unity at the rate of ρz = 0.956.

Fixed Capital Investment Panel(a) of Figure 2 presents the four impulse response func-
tions for fixed capital investment. Comparing the models with ζ = 0.1841 against the models
with ζ = 0 at the same level of inventories, we can see that nonconvex fixed capital adjust-
ment costs dampen the initial responses both with and without inventories. However, at
different levels of inventories, capital adjustment costs dampen these responses to a different
degree. Without inventories, the initial response is dampened by 1.91 percentage points. In

6The excessively high fixed investment volatility, as shown in the third column of Panel (a), is a common
property of two-sector models where fixed capital is only used in intermediate goods production. Khan and
Thomas (2007) find similar results. As fixed adjustment cost works to dampen investment volatility, this
might point to our calibration of ζ being conservative.

7Note that already without inventories we have that nonconvex fixed capital adjustment costs matter
somewhat for aggregate dynamics as our revenue elasticity of capital is lower than in the Khan and Thomas
calibrations; see Gourio and Kashyap (2007) for this insight.
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Figure 2: Impulse Response Functions
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(b) Consumption
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(d) Relative Price

Notes: This figure shows the impulse response functions of fixed capital investment, consumption, net inventory investment(NII)
and the relative price to a one standard deviation aggregate productivity shock in the intermediate goods sector. ‘Model I1’ has
the baseline calibrated nonconvex fixed capital adjustment cost parameter and the baseline calibrated inventory level. ‘Model
I2’ has zero nonconvex fixed capital adjustment cost and the baseline calibrated inventory level. ‘Model NI1’ has the baseline
calibrated nonconvex fixed capital adjustment cost parameter and zero inventories. ‘Model NI2’ has zero nonconvex fixed capital
adjustment cost and zero inventories. The impulse response of net inventory investment is reported in absolute values, instead
of percentage points, as the steady state value of net inventory investment is zero.

contrast, the initial response is dampened by 2.99 percentage points in models with invento-
ries. Inventories also increase shock propagation. Comparing the impulse response function
of ‘Model I1’ with that of ‘Model NI1’ without inventories, we see that the impulse response
function in the model with inventories is flatter.

Both the extra dampening effect and the increased propagation of the shocks come from
the key mechanism in our model: the substitution between fixed capital investment and
inventory investment as a means of saving. When adjusting fixed capital is costly, the
economy switches to inventories for saving. As a result, fixed capital investments do not need
to respond to productivity shocks as much as when inventories are absent. The responses are

16



also more protracted because firms tend to wait for lower adjustment cost draws to invest.
The flip side of the substitution between two saving channels can be observed in Panel(c)

of Figure 2, which shows the impulse response functions of net inventory investment. As
expected, the response of net inventory investment is much stronger when adjusting fixed
capital investment is costly. In ‘Model I1’, the impact response is 0.00098, while in ‘Model
I2’ it is only 0.00063.8

The same mechanism can also explain the other cross effect, namely how lumpy fixed
capital investment changes the effect of inventories on aggregate investment dynamics. For
both levels of fixed capital capital adjustment costs, inventories dampen the positive response
of fixed capital investment to a positive productivity shock, as the latter is no longer used as
much to ensure consumption smoothing. This switching away from fixed capital investment
as a means of saving is stronger, the more costly it is to use, i.e. when fixed capital adjustment
frictions are present. This explains why inventories dampen the initial response of fixed
capital investment by somewhat over 2 percentage points with fixed capital adjustment
frictions, but only by 1 percentage point, when fixed capital can be freely adjusted.

Consumption Another implication from the above mechanism is that consumers’ ability
to smooth consumption is enhanced by inventories. We illustrate this with the impulse
response functions for consumption in Panel(b) of Figure 2.

First, the impact response from the models with inventories is below those from the
models without inventories, for every level of fixed capital adjustment costs. Secondly, the
smoothing effectiveness of inventories is so good that consumers despite the presence of
capital adjustment costs can almost exactly recreate their frictionless consumption path.
Nonconvex fixed capital adjustment costs barely change the response of consumption after
the initial impact, if consumers can save in inventories. In contrast, without inventories
nonconvex fixed capital adjustment costs do interfere with consumption smoothing.

We interpret these response functions as evidence that inventories provide an effective
smoothing device for the consumers. As a result, consumption dynamics are less volatile
when productivity shocks hit and capital adjustment frictions are less relevant for consump-
tion dynamics in the presence of inventories.

4.3 Volatility and Persistence as a Function of Capital Adjustment
Costs

In this section we illustrate the saving vehicle substitution mechanism from a slightly dif-
ferent angle. We now simulate our model under our calibrated inventory level and the “No
Inventory” setup over a wide range of ζ ∈ [0, 0.4]. The lower bound is frictionless adjust-
ment, whereas the upper bound, 0.4, is approximately twice our baseline ζ = 0.1841.9 We
study how the volatility and persistence statistics of fixed capital investment, consumption
and net inventory investment change over this range of fixed capital adjustment costs.

8The impulse responses for NII are reported in absolute changes, not in percentage changes relative to
the steady state. This is because the steady state value for NII is zero.

9At ζ = 0.4 the annual fraction of firms which have lumpy investments is 15.23%, and the annual average
adjustment cost paid conditional on adjustment and measured as a fraction of the firm’s output is 1.66%.
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Figure 3: Volatility and Persistence of Fixed Capital Investment
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Notes: This figure shows the volatility and persistence of fixed capital investment for models with ζ ∈ [0, 0.4]. The x-axis for

both panels shows the upper bound of the capital adjustment cost distribution, ζ. In Panel(a), the y-axis shows the percentage
standard deviation of fixed capital investment. In Panel(b), the y-axis shows the first-order auto-correlation of fixed capital
investment. We detrend fixed capital investment with the HP(1600) filter and then divide the deviations by the trend.

Figure 4: Volatility of Net Inventory Investment
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Notes: See notes to Figure 3. This figure shows the volatility of net inventory investment (NII) for models with ζ ∈ [0, 0.4].
We divide NII by GDP and then detrend this ratio with the HP filter.
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Figure 5: Volatility and Persistence of Consumption
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Notes: See notes to Figure 3. This figure shows the volatility and persistence of aggregate consumption for models with
ζ ∈ [0, 0.4]. Consumption is logged and detrended with an HP filter with a smoothing parameter of 1600.

Panel (a) of Figure 3 presents the volatility of fixed capital investment over said ζ-range
for both the baseline inventory model and the “No Inventory” model. Independently of the
level of inventories, higher capital adjustment costs dampen the volatility of fixed capital
investment. The interaction between inventories and nonconvex capital adjustment costs
are most apparent in the persistence of fixed capital investment in Panel (b) of Figure 3.
With inventories, persistence increases from 0.61 to 0.74 when ζ changes from 0 to 0.4. In
contrast, without inventories the persistence only increases from 0.62 to 0.67 over the same
range of ζ. The agents rely less on fixed capital investment when inventories are available.
As a result, the fluctuations in fixed capital investments are dampened and stretched.

We can directly observe the substitution between different saving channels by compar-
ing the volatility of fixed capital investment in Figure 3 to the volatility of net inventory
investment in Figure 4. As fixed adjustment costs get higher, the agents rely more on in-
ventories and less on fixed capital to save. As a result, higher fixed adjustment costs lead
to more volatile net inventory investment and less volatile fixed capital investment. The
standard deviation of net inventory investment increases from 0.32% when ζ = 0 to 0.40%
when ζ = 0.40. Over the same range of ζ, the standard deviation of fixed capital investment
decreases from 11.6% to 8.8%.

Also, we can see the implications of the saving substitution mechanism in the dynamics
of consumption. Figure 5 shows that with inventories the volatility of consumption is lower
for every level of capital adjustment costs. More importantly, as the slopes of the two curves
suggest, the rate at which fixed adjustment costs increases consumption volatility is lower
when inventories exist. In other words, the same increase in fixed adjustment cost forces
consumption volatility to move up higher when inventories are absent from the economy,
whereas it can barely increase consumption volatility when inventories are present.

The change in consumption persistence reveals the same mechanism, as shown in Panel
(b) of Figure 5. The existence of inventories changes the degree to which fixed capital
adjustment costs affect consumption persistence. Over the same range of ζ, consumption
persistence decreases by much less in the inventory models compared to the “No Inventory”
models. 19



4.4 The Effect of Market Clearing

The results on the effectiveness of fixed capital adjustment costs with or without inventories
so far take into account all general equilibrium (GE) effects, i.e. adjustments of real interest
rates and real wages, as well as the relative price of intermediate goods. In this section we
isolate the effects of these price movements on how inventories impact the (non)-neutrality
of nonconvex fixed capital adjustment costs.

To this end, we solve three partial equilibrium versions of our model. In the first case, we
fix both the pricing kernel, p, and the relative price q, at their long-run general equilibrium
averages and simulate the model. In the second case, we fix the pricing kernel (and thus the
real wage) to its long-run general equilibrium average, but allow the relative price to adjust
so that the intermediate goods market clears. In the last case we fix the relative price to
its long-run general equilibrium average, but allow the pricing kernel (and the real wage) to
adjust so that the final goods market clears.

The impulse response functions of fixed capital investment for all three cases are reported
next to the full general equilibrium case – Panel (a) – in Figure 6. Panel(b) is the response
from the first partial equilibrium case where both prices are fixed. Two messages emerge
from this case. First, as is well known in the literature, nonconvex adjustment frictions
matter a lot in partial equilibrium: the impact response drops massively and propagation
arises only when fixed adjustment frictions are introduced. Second, inventories by and large
do not change the effect of fixed adjustment frictions, as the differences between Model I1
and I2 are very similar to the differences between Model NI1 and NI2. Put differently, the
effect of fixed capital adjustment frictions swamps the differential effect of inventories.

Panel(c) presents the response functions from the models where the pricing kernel is fixed
but the relative price is not. The results in these models are very similar to those in the first
case where both prices are fixed. Once again, nonconvex adjustment frictions matter a lot,
but inventories do not interact with them significantly. Market clearing in the intermediate
goods market only leads to slightly dampened fixed investment responses overall, as decreases
in the relative price q (see Panel(d) of Figure 2) lead saving and investment activities away
from fixed capital investment. .

In other words, our exercise of comparing differences in differences really becomes only
interesting, once real interest rate and real wage movements have been taken into account.
The response functions in Panel(d) of Figure 6 come from the models where the pricing
kernel and the real wage move freely to clear the final goods market, yet the relative price of
intermediate goods is fixed. These response functions closely resemble those from the general
equilibrium case. In models with inventories, the impact response of fixed investment is 40%
higher with frictionless fixed capital adjustment, in models without inventories it is only
26% higher. Nevertheless, market clearing in the intermediate goods market does play a
role in rendering fixed capital adjustment frictions more relevant. Recall that in full general
equilibrium the difference in the initial fixed investment response between the frictionless
model and the lumpy model was 50% vs. 24%. The decline of the relative price q after
an increase in aggregate productivity further facilitates the shifting of saving activities into
building up inventories and away from fixed capital investment. This substitution channel,
for a given decline in q, is more valuable in an economy, where fixed capital adjustment is
costly.
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Figure 6: IRF for Fixed Capital Investments in Partial Equilibrium Models
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(b) PE: Both Prices Fixed
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(c) PE: Pricing Kernel Fixed
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(d) PE: Relative Price Fixed

Notes: These are the impulse response functions for fixed capital investments. Panel(a) is the reproduction of Figure 1. Panel(b)
is based on models where both the pricing kernel and the relative price are fixed. Panel(c) is based on models where only the
pricing kernel is fixed. Panel(d) is based on models where only the relative price is fixed.

5 Conclusion

This paper shows that it matters for the aggregate implications of microfrictions how general
equilibrium effects are introduced into the physical environment of dynamic stochastic gen-
eral equilibrium models with these microfrictions. Specifically, we show that how relevant
nonconvex fixed capital adjustment costs are for business cycle dynamics depends on how
the aggregate resource constraint is modeled, depends on how the model is closed.

We develop a dynamic stochastic general equilibrium model to evaluate how the avail-
ability of multiple saving channels, here inventories in addition to fixed capital, affects the
aggregate implications of nonconvex capital adjustment costs. We find that with more than
one ways of saving, capital adjustment costs are more effective in dampening and propagating
the response of fixed capital investment to an aggregate productivity shock.
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