
NBER WORKING PAPER SERIES

TIME AS A TRADE BARRIER

David Hummels
Georg Schaur

Working Paper 17758
http://www.nber.org/papers/w17758

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
January 2012

For many helpful comments and discussions we thank seminar audiences at NBER, EIIT, The World
Bank, the Universities of Michigan, Maryland, Colorado, Purdue, and the Minneapolis Fed, and are
especially indebted to Jason Abrevaya, Andrew Bernard, Bruce Blonigen, Alan Deardorff, James Harrigan,
Tom Hertel, Pete Klenow, Christian Vossler, and Kei-Mu Yi.  We are grateful for funding under NSF
Grant 0318242, and from the Global Supply Chain Management Initiative.  All errors remain our own.
The views expressed herein are those of the authors and do not necessarily reflect the views of the
National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2012 by David Hummels and Georg Schaur. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



Time as a Trade Barrier
David Hummels and Georg Schaur
NBER Working Paper No. 17758
January 2012
JEL No. F1,F15

ABSTRACT

A large and growing share of international trade is carried on airplanes.  Air cargo is many times more
expensive than maritime transport but arrives in destination markets much faster. We model firms’
choice between exporting goods using fast but expensive air cargo and slow but cheap ocean cargo.
This choice depends on the price elasticity of demand and the value that consumers attach to fast delivery
and is revealed in the relative market shares of firms who air and ocean ship.  We use US imports data
that provide rich variation in the premium paid for air shipping and in time lags for ocean transit to
identify these parameters and extract consumer’s valuation of time.  By exploiting variation across
US entry coasts we are able to control for selection and for unobserved shocks to product quality and
variety that affect market shares.   We estimate that each day in transit is equivalent to an ad-valorem
tariff of 0.6 to 2.3 percent and that the most time-sensitive trade flows are those involving parts and
components trade.  These results suggest a link between sharp declines in the price of air shipping
and rapid growth in trade as well as growth in world-wide fragmentation of production.  Our estimates
are also useful for assessing the economic impact of policies that raise or lower time to trade such
as security screening of cargo, port infrastructure investment, or streamlined customs procedures.

David Hummels
Krannert School of Management
Purdue University
403 West State Street
West Lafayette, IN  47907-1310
and NBER
hummelsd@purdue.edu

Georg Schaur
University of Tennessee
Department of Economics
519 Stokely Management Center
Knoxville TN 37996
gschaur@utk.edu



1 
 

   1  Introduction 

Moving traded goods over long distances takes time. Ocean-borne cargo leaving European 

ports takes an average of 20 days to reach US ports and 30 days to reach Japan.  Air borne cargo 

requires only a day or less to most destinations, but it is also much more expensive. In 2005, goods 

imported into the US faced per kilogram charges for air freight that were, on average, 6.5 times 

higher than ocean freight charges. 

Despite the expense, a large fraction of world trade travels by air.  Excluding Canada and 

Mexico, 36 percent of US imports by value and 58 percent of US exports by value were airborne in 

2000.  Numbers are similar for many other countries.  In 2004, air cargo as a share of export 

value was 29 percent for the UK, 42 percent for Ireland, and 51 percent for Singapore; 22 percent 

of Argentine and 32 percent of Brazilian imports were airborne.1  Further, the reliance on 

airplanes is rising steadily over time.  From 1965-2004, worldwide use of air cargo grew 2.6 times 

faster than use of ocean cargo.2   

In sum, airplanes are fast, expensive, and increasingly important to trade.  In this paper we 

examine two hypotheses suggested by these facts:  lengthy shipping times impose costs that 

impede trade and firms engaged in trade exhibit significant willingness-to-pay to avoid these costs.   

What are these time costs?  Lengthy shipping times impose inventory-holding and 

depreciation costs on shippers.  Inventory-holding costs include both the capital cost of the goods 

while in transit, as well as the need to hold larger buffer-stock inventories at the final destination to 

accommodate variation in arrival time.  Depreciation captures any reason that a newly produced 

good might be preferable to an older good.  This could include literal spoilage (fresh produce or 

cut flowers), or rapid technological obsolescence for goods such as consumer electronics.  

Evans and Harrigan (2005), Aizenman (2004), and Hummels and Schaur (2010) 

emphasize the interaction between timeliness and demand uncertainty.3 Long lags between 

ordering and delivery require firms to commit to quantities supplied well before uncertain demand 

is resolved. Forecast errors then result in lost profitability as firms over- or under-supply the 

                                                       
1  Cristea et al (2011) provide systematic data on trade by transport mode for many countries in 2004. 
2 Hummels (2007) calculates that worldwide use of airborne cargo (measured in kg-km) grew 11.7 percent per year 
from 1965-2004 compared to 4.4 percent per year for ocean cargo. 
3  Evans and Harrigan (2005) provide a model of and empirical evidence on lean retailing in the apparel industry and 
emphasize location choice – the higher the restocking rate for particular clothing items, the greater is the reliance on 
proximate import sources.  Hummels and Schaur (2010) provide evidence on uncertainty revealed by past price 
volatility and emphasize modal choice, showing that goods with high volatility are more likely to be air shipped.     
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market. Similarly, firms that adapt their products to reflect changing consumer tastes will find it 

difficult to respond to late arriving signals about those tastes when resupply is a slow boat ride 

away.  This results in lost sales as firms face a mismatch between the product characteristics on 

offer and those desired by consumers.   

These costs will be magnified in the presence of product fragmentation.  When countries 

specialize in stages of production and trade intermediate inputs the inventory-holding and 

depreciation costs for early-stage value-added accrue throughout the duration of the production 

chain.  Similarly, demand uncertainty for the final product can ripple throughout upstream stages.  

Perhaps most importantly, the absence of key components due to late arrival or quality defects can 

idle an entire assembly plant, making the ability to ship rapidly worth potentially many times the 

value of the components being transported.4   

In the same vein one can construct many examples, both in an international trade context or 

more broadly, in which timeliness is important for consumers and producers.  The challenge is 

finding data that would allow the econometrician to go beyond anecdote and toward careful 

measurement.  To identify the magnitude and the source of time costs it is necessary to examine 

some tradeoff in the data, some choice in which firms exhibit their willingness to pay to avoid time 

delays.  In this paper we examine the modal choice decisions of firms engaged in trade and the 

trade-off between fast and expensive air transport versus slow and inexpensive ocean shipping.   

In the model consumers have preferences over goods that are differentiated along both 

horizontal and quality dimensions, and slow delivery reduces consumers’ perception of product 

quality. This creates an incentive for producers to improve perceived quality of the delivered 

product by shipping it via airplane.  Freight carriers charge shipping costs that are proportional to 

quantity, not value, shipped, and the unit cost of air shipping exceeds that of ocean shipping.  Unit 

shipping costs imply that the air freight premium, measured in ad-valorem terms, is decreasing in 

product prices. That is, high price firms incur a smaller increase in delivered prices when they 

upgrade quality using airplanes, and are more likely to air ship goods, while low price firms are 

more likely to employ ocean shipping.  This is consistent with patterns in the data:  for 75 percent 

of trade by value and 90 percent of trade in manufacturing categories we see similar goods (same 

HS-6 group) coming from the same exporter shipped using both air and ocean modes.   

                                                       
4  Harrigan and Venables (2006) argue that this is an important force driving economic agglomeration, but firms need 
not cluster geographically if long distances can be rapidly bridged with airplanes. 
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We show that consumers’ valuation of time is then revealed in the relative revenues of the 

two types of firms.  Since air shipping is expensive, consumers shift purchases away from the 

firm that air ships in proportion to the price elasticity of demand.  Conditional on prices, 

consumers shift purchases toward the firm that air ships in proportion to their valuation of time. 

This revenue shifting will be strongest when demand is more price elastic and when the time 

delays are greatest.  A consumer buying goods from a nearby exporter may be unwilling to pay 

the air premium to save a few days in transit, but that same consumer will pay the air premium if 

the exporter is many weeks of ocean travel away.  By combining our estimates of these two 

effects we can extract the price-equivalent of the consumers’ valuation of each day of delay. 

The model also allows us to examine an alternative explanation for the use of air shipment 

and its rapid rise over time.  Hummels (2007) shows that the cost of air shipping a kilogram of 

cargo dropped an order of magnitude between 1955 and 2005, and that the value of trade grew 

faster than the weight of trade as bulk commodities represent a falling share of traded goods.  

Because the premium paid for air shipping is lower for high value/weight products, a fall in the 

weight of trade pushes goods toward air shipping. Harrigan (2010) formalizes this insight in a 

model of comparative advantage to predict that distant countries will specialize in lightweight 

goods that are air shipped. He shows that that the longer the distance to the destination market, the 

higher the unit values of the products delivered and that Canada and Mexico have a relatively low 

US market share for products that are air shipped buy the rest of the world.  

While Harrigan (2010) assumes there exists some preference for timely delivery the 

question is how large this preference must be to generate observed patterns of trade.  For 

sufficiently high value products, the ad-valorem air freight premium becomes vanishingly small, 

and even a very small value of time will shift goods onto planes.  In short, the use of airplanes is 

not by itself evidence that consumers place a large value on timeliness.  It is necessary to 

demonstrate that consumers are willing to pay a premium in ad-valorem terms, and conditional on 

that premium, to shift purchases more rapidly toward airplanes the longer is the ocean voyage.     

To estimate this model we use data on US imports 1991-2005 that allow us to construct, for 

air and ocean modes, measures of revenues, prices, shipping costs, and numbers of shipments that 

are specific to each exporter x HS 6 digit product x US entry coast x year.  We combine this with 

a detailed ocean shipping schedule for all ocean vessels worldwide that provides us with shipping 

times for each exporter x US entry coast.  We then relate relative (air/ocean) revenues to relative 
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prices, relative shipping costs and time delays.  We exploit variation in the price/speed trade off 

across exporters, products, entry points and time in order to identify consumers’ willingness to pay 

for time savings. 

Importantly, the rich structure of the data allows us to address a host of econometric 

concerns that have been raised in the trade literature. Helpman, Melitz and Rubinstein (2008) and 

Chaney (2008) point out that trade costs induce selection out of markets and that regressions of 

export sales on trade costs incorporate both this selection effect and an extensive margin (number 

of firms trading) response to the costs.  We control for selection with a two-step estimator that 

uses the exporter’s sales to the world (less the US) for each product x year to predict the probability 

that it will sell that product to the US.  While this does not affect our estimates in the second stage, 

the success of the first stage suggests that this strategy could be useful for future studies that need 

selection variables operating at highly disaggregated levels.  

We face an additional and somewhat different extensive margin problem than the 

literature, which contemplates firms selecting out of markets as trade costs rise.  We have a modal 

extensive margin in which firms stay in the market but potentially switch between modes in 

response to changes in relative trade costs.  To control for this modal extensive margin we 

normalize revenues by the number of shipments made.  The normalized dependent variables are 

akin to average sales per firm, and the transformed data exhibits the muted trade cost response 

predicted by Helpman, Melitz, Rubinstein (2008) and Chaney (2008) theories.  This suggests that 

our strategy may also be useful for future studies that wish to control for firm entry and exit 

occurring within disaggregated product categories. 

A recent literature emphasizes the importance of quality differentiation in trade.  

Empirically, quality is measured either as price variation5 or as a residual of quantity demanded 

controlling for prices.6  Unlike this literature we have an explicit measure of one aspect of quality, 

timely delivery, for which we directly estimate consumers’ valuation.  In addition, we employ 

various fixed effect estimators to provide strong controls for unobserved quality and variety that 

affect relative revenues.   

In the most robust treatment we hold fixed unobservables that are specific to an exporter x 

product x time and exploit variation across US entry points in order to identify the effects.  For 

                                                       
5  Examples include Schott (2004), Hallak (2006), Choi et al (2009), and Baldwin and Harrigan (2011). 
6 Examples include Hummels-Klenow (2005), Hallak-Schott(2011), Khandelwal (2010).     
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example, we can examine air relative to ocean revenues for German firms selling machine tools to 

customers on the US East and West coasts. The need to traverse the Panama Canal means that 

German ocean cargo arrives on the East coast 12 days sooner than the West coast.  We can then 

hold fixed the relative quality of air and ocean shipped German machine tools in a given year and 

exploit this quirk of geography to generate variation across US coasts in the relative share of air 

shipping as a function of relative time delays, and relative freight prices.   

The ability to exploit variation in modal revenues across exporter-product-coast-time 

observations allows us to control for unobserved quality variation in a manner that is considerably 

more general than what is found in the literature on estimating import demand elasticities or in the 

literature on quality and trade.  This technique also allows us to control for a final reason that air 

cargo is employed in trade.  For some countries, air shipping may be especially effective as a way 

to bridge firms and customers located in continental interiors.  Air cargo avoids overland shipping 

and the cost, congestion, and occasionally corruption found in ocean ports.  By exploiting 

variation across US coasts for a given exporter-product-time, we hold fixed the characteristics of 

exporters – their geography, income, infrastructure – that may affect usage of air shipments. 

We find that air revenues are high relative to ocean revenues when the air freight premium 

is low, and when shipment lags are long.  In the pooled specifications we estimate that each day in 

transit is worth from 0.6 to 2.1 percent of the value of the good.  We also estimate the model 

separately for each End-Use category and find considerable heterogeneity across products in time 

sensitivity. The most striking result from the disaggregated product regressions is that parts and 

components have a time sensitivity that is 60 percent higher than other goods. 

 The econometric technique employed here directly identifies the value of time saving from 

transport modal choice, but the estimates are informative about many policies and sources of 

technological change that speed goods to market.  For example, imposing strict port security 

procedures such as those being currently contemplated in the US could significantly slow the flow 

of goods into the domestic market.  Streamlining elaborate customs procedures or investing in 

more efficient port infrastructure may allow goods to reach their destinations more quickly and 

boost trade.  Djankov, Freund and Pham (2010) investigate this possibility using product-specific 

estimates of per day time costs taken from an earlier draft of this paper. They find that countries 

with long customs delays see reduced trade volumes, and the largest reductions in trade occur in 

the most time sensitive products.  In a related paper, Hummels (2007b) directly calculates the 
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tariff equivalent of customs and port delays taken from World Bank “Doing Business” data. He 

combines estimates of per day time costs taken from an earlier draft of this paper with data on days 

lost to customs delays and port clearance and finds that customs delays prove a far larger barrier to 

trade than do applied tariffs.7   

Our estimates also have implications for changing patterns of trade and the international 

organization of production.  In the post-war era, world trade has grown much faster than output 

with typical explanations attributing this growth to declining tariffs and improved technology 

(information and transportation).8  To the extent that time is a barrier to trade, declines in air 

shipping prices may help explain both aggregate trade growth and a shift toward trade in especially 

time sensitive goods or forms of production organization.  

 As an example, an important recent feature of trade is especially rapid growth in the 

fragmentation of production.  Hummels, Ishii and Yi (2000) document that vertical specialization 

(the use of imported inputs in exported goods) has increased 30%, and been responsible for 

roughly half of overall trade growth from 1970-1990.9  The explosive growth in China’s exports – 

a tenfold increase from 1992-2006 – is also directly linked to fragmentation as roughly half of 

these exports are categorized as processing trade.10  Our estimates show that parts and 

components are among the most time sensitive products.  This suggests that the rapid declines in 

air transport costs, and the corresponding reduction in the cost of time-saving, may be responsible 

for the growth of time and coordination-intensive forms of integration.   

 The paper proceeds as follows.  Section 2 models the firm’s choice of shipping mode and 

generates predictions for relative export revenues. Section 3 describes the data and specification 

issues in estimation. Section 4 provides results. Section 5 concludes. 

 

2  Theory 

In our data we see exporter-by-product trade flows into the U.S. disaggregated by 

transportation mode (air and ocean vessel). In many instances, data for a single trade flow indicates 

that both air and ocean modes were used in the same time period. In other instances, an 

                                                       
7 For example, Latin American exporters face applied average tariffs of 4 percent, and time costs of customs delays of 
8 percent ad-valorem, while Sub-Saharan exporters face applied tariffs of 4 percent and time costs of customs delays 
equal to 16 percent.  
8 Two important papers are Yi (2003) and Baier and Bergstrand (2001). 
9 See Johnson and Noguera (2011) for related but more detailed calculations for a recent cross-section. 
10 Feenstra and Wei (2009) 



7 
 

(exporter-by- product) trade flow enters the US either by ocean or by air in a single time period, 

but the mode chosen may vary across periods, across exporters, or across varieties within a 

narrowly defined product classification. Our goal in this section is to provide a simple theoretical 

structure that yields these outcomes in order to organize our analysis of modal use and its 

implications for the value of time savings. 

We focus on US import demands within a narrow product category k (in the data, an HS6 

or HS10 digit good). Since all variables below are product specific, and all destinations are in the 

US, we suppress production and destination superscript for notational ease, reintroducing it where 

appropriate in the empirical section.   

Import demand is CES across varieties, summed across export locations j and across firms 

z within each location j. 

  1/
z z
j jj i

U q


       1 /     

where  is the elasticity of substitution between goods and exp( )z z z
j j jdays      is a 

price-equivalent demand shifter that depends on a firm z, location j-specific quality, z
j , and a 

term exp( )z
jdays 

 
that captures the consumer disutility of slow delivery.   

This formulation of demand is similar to the literature on quality in trade, including Hallak 

(2006), Hummels-Klenow (2005), and Hallak-Schott (2011), with the exception that these papers 

treat all elements of quality as unobservable.  In contrast, we measure timeliness as an important 

measurable component of quality. Time in transit, ( ) jdays z , depends on exporter location 

because of differences in distance to the import market and infrastructure quality, but also depends 

on the endogenous choice of firm z to pay a premium for timely delivery. 

 With real expenditures on product k given by E, demands for firm z from exporter j, selling 

at a delivered price *z
jp  are  

 
*

= .
exp( )

z
jz

j z z
j j

p
q E

days



 


 
          

  (1) 

Other things equal, a consumer gets more utility from a good that arrives sooner rather than later, 

which is expressed by increasing demand for that good.  A 1% price reduction raises demand by 

 %, and a 1 day reduction in delivery times raises demand by  .  That is, the time valuation 
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parameter  translates days of delay into a price (or tariff) equivalent form, and the elasticity of 

substitution   translates this into the quantity of lost sales. 

 Turning to the production side of the model, the firm z marginal cost of delivering a 

product from export location j to the market via mode m=air,ocean is m
jz g , where z

 
is the 

marginal cost of production (potentially correlated with unobserved quality z
j ) and m

jg  is a 

location-j, mode-m specific per unit shipping charge.  That is to say, m
jg is proportional to the 

quantity, not the value shipped as with iceberg costs (see Hummels-Skiba 2004 for evidence on 

this point).  We assume (and our data bear out) that air shipping is more expensive than ocean 

shipping, A O
j jg g .   

The firm pays fixed costs FC at the beginning of the period and commits to a mode of 

transportation.  The firm charges prices that are a markup over marginal costs, * ( ) /z m
j jp z g   .  

Multiplying by the quantity demanded from (1) and subtracting fixed and variable costs yields 

 
( ) ( ) /

( ) =
1 exp( )

m m
j jm

j z m
j j

z g z g
z E FC

days





  


  

          

 (2) 

To determine the optimal transport mode the firm compares the profitability of air versus ocean 

shipping. The firm chooses air if ( ) > ( )a o
j jz z  . Taking logs of (2), assuming that airborne 

cargoes can reach their destination in one day, and simplifying implies 

  

 (1 ) ln( ) ln( ) 1 > 0a o o
j j jz g z g days                 

 (3) 

 

Equation (3) shows that a firm trades the greater expense of air shipping against the 

improved “quality” of a product that arrives 1o
jdays   days earlier. Long ocean shipping times are 

more likely to induce a switch to air shipping when consumers attach greater value to timeliness, 

and when goods are closer substitutes. The latter effect operates because we have defined   in 

price equivalent terms in order to measure the effect of timeliness on quantities shipped. Higher 

elasticities of substitution translate into larger quantity effects. 

The additive form of shipping costs also implies that modal choice depends on marginal 

costs of production. Since >a o
j jg g , using air shipping always results in a higher delivered price, 
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ln( ) ln( ) > 0a o
j jz g z g   . But the magnitude of this difference -- the impact that the air shipping 

premium has on delivered prices -- is decreasing in marginal costs of production,  

 
  ln / = < 0.

a o a
j j j

o a o
j j j

z g g g
z

z g z g z g

  
  

    
 

To see the intuition, suppose a pair of shoes can be shipped by air for $11 or by ocean for $1. For 

$9 shoes, the air freight premium is equivalent to a 100 percent tariff.  For $99 shoes, the air 

freight premium is equivalent to only a 10 percent tariff. 

To complete the firm’s problem, it must be the case that for the optimal mode, profits from 

exporting exceed fixed costs, or 

 

 (1 ) ln( ) ln ( ) lnm m
j j jz g days FC           

    (4) 

 

This defines a selection equation indicating whether or not a particular location successfully 

exports a product to the importer.   

This relationship is shown in Figure 1, which graphs the log profitability (before fixed 

costs) of each mode against the marginal cost of production.  At the crossing point, firms are 

indifferent between modes.  For costs below z only ocean shipping is chosen, above z  only air 

shipping is chosen.  An increase in  , or a decrease in /a o
j jg g shifts the a (air profits) curve up 

and shifts z  to the left.  An increase in FC reduces the range of marginal costs at which a firm 

can successfully export.   

 From this, we can derive two cases that correspond to modal-use patterns in the data.  For 

a single firm, shipping a product to a particular destination at a point in time, it will generally be 

optimal to choose either air or ocean shipping. As we show in the theory appendix, it is 

straightforward to derive a probit model from equation (3) relating the probability of air shipment 

to relative shipping prices and days in transit.  If all variables are observed we can extract 

consumers’ valuation of time saving from that model.  However, this case poses two significant 

challenges for estimation: we do not observe shipping costs for the transport mode not chosen and 

we cannot control for unmeasured product quality variation.   

 Consider a second case.  When we look at national trade data we are aggregating over 

multiple firms.  Suppose we have two firms from exporter j with different marginal costs.  If 
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1 2< <j j jz z z  , the first firm ocean ships and the second firm air ships.  The firm that ocean ships 

(now denoted with an “o”) generates export revenues inclusive of shipping charges 

  
1

1
* = ( )

exp( ) 1
o o o
j jo o

j j

r E z g
days

 
  

            
     (5) 

and similarly for the firm that air ships.  Writing revenue in relative terms and taking logs 

    ( )*
ln = ( 1) (1 ) ln

( )*j

a a
j jo a a o o

j j j j jo o
j

r z v
days ln z g ln z g

r z v
  

 
            

 
  (6) 

To take the theory to the data we need to transform equation (6) so that all variables are 

observable.  The first step is to rewrite the difference in marginal costs (unobservable) as a 

function of (observable) export prices and shipping charges.  Delivered prices inclusive of 

shipping charges (denoted *) are * = ( ) /m m m
j j jp z g  .  We can then take the difference in marginal 

costs, from equation (6) and transform it into the difference in delivered prices so long as the 

markup on the origin price is independent of delivery mode.11  

 

    1 1
ln ln( ) ln ln( ) ln * ln *a a o o a a o O a o

j j j j j j j j j jln z g ln z g z g z g p p
 

             (7) 

 

While shipping costs are imposed on a per unit basis they can be rewritten in ad-valorem 

terms by dividing through by origin prices, m
jp

 

ln * ln 1 ln ln
m
jm m m m

j j j jm
j

g
p p p f

p

  
         

 ,         = 1 > 1
m
jm

j m
j

g
f

p

 
  

 
   (8)   

 

where m
jf is the ad-valorem equivalent of unit shipping charges facing the firm. Of course, m

jf  is 

not an exogenous technological parameter, but instead depends on the origin price that the firm 

                                                       
11 Origin prices are independent of delivery mode if the CES markup on the marginal cost inclusive of delivery is the 
same for both modes.  Amazon.com for example does not alter the list price of a book depending on whether a buyer 
chooses next day or delayed shipping; it simply adds the freight premium on to the published price.  Theoretically this 
assumption is justified if the supply of goods into the shipping channel is perfectly competitive so that factory gate 
prices equal marginal costs.  If we are instead in a monopolistic competition setting there is a nonlinear interaction 
between markups and entry mode.  This nonlinear interaction can be approximated by a Taylor expansion that yields 
the same form used here, which is to say that the feedback effects onto markups are of second order importance.  
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charges. Using data on ad-valorem charges while omitting data on prices and quality would be 

problematic, a point we address in detail in Section 3. Using (7) and (8) in (6), we can express the 

difference in marginal costs as the difference in origin prices plus differences in ad-valorem 

shipping charges.  

 

ln( ) ln( ) = ln ln ln lna a o o a o a o
j j j j j j j jz g z g p p f f     

     
(9)

 

 

We do not want to induce bias in our estimates by including shipping charges on both sides 

of the estimating equation.  Noting that * /r f r , we rewrite revenues inclusive of shipping 

charges in (6) as revenues exclusive of these charges by subtracting ln( / )a o
j jf f  from both sides.  

( )
ln ( 1) (1 ) ln ln ln

( )

a a a a
j j j jo

jo o o o
j j j j

r z p f v
days

r z p f v
   

     
                    

    (10) 

 

Equation (10) captures a trade-off similar to that in equation (3), only expressed in revenue 

rather than probability terms.  Consumers view goods from the two firms as imperfect substitutes, 

and alter their relative purchases as a function of relative price and relative quality.  We identify 

this in the data as a tradeoff – ocean shipped goods have lower costs but are perceived by 

consumers to be of lower quality because they arrive days or weeks later than an air shipped good. 

The cost difference induces larger movements in revenues when   is large (the goods are close 

substitutes).  Time delays induce larger movemenets in revenues when   is large and 

consumers have a higher valuation for timeliness,  .  Combining estimates of   and   we 

can extract consumers willingness to pay for timely delivery.  Finally, we account for the 

possibility that consumers may also perceive a quality difference between the two types of firms 

that is unrelated to timeliness.  This appears as the last term in equation (10).  We discuss this in 

depth in Section 3. 

Equation (10) generalizes to the case of many firms.  Let m
jN  denote the number of firms 

of type m
jz , and write aggregate revenues ( )m

jR z  as an aggregation over all firms that export using 

mode m.  In relative terms, aggregate revenues are 
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 (11) 

 

The distinction between revenues per firm and revenues aggregated over m
jN  firms displays the 

potential importance of a modal extensive margin – defined not as the number of firms exporting 

but the number of firms within an industry that export using a given mode of transportation.   

How this modal extensive margin adjusts in the data is not immediately clear.  For 

example, if a given exporter has a small number of firms exporting a specific product to the US, 

and the marginal cost of those firms is not close to z , then the modal extensive margin will not 

adjust to small cost shocks.   

However, if an exporter has many firms close to the z  cutoff, then an endogenous 

adjustment of the modal extensive margin must be addressed. We show in appendix I that equation 

(11) is a second order approximation of a model in which heterogenous firms draw marginal costs 

z from a distribution as in Melitz (2003). In that case the mass (number) of firms in each mode 

adjusts continuously in response to changes in time delays and shipping costs, and the included 

variables for cost and quality are weighted averages over the firms in each mode.  We discuss the 

treatment of the modal extensive margin at length in the Section 3. 

 

3  Data and Specifications 

We estimate equations (10) and (11) and exploit variation in the relative revenues for air 

and ocean shipped goods to identify   and  .   In this section we describe the data employed 

and the exact sources of variation we will use, and then discuss how we will address selection, 

endogeneity, and the possibility of an endogenous extensive margin. 

 

3.1  Data 

We employ highly disaggregated data from the U.S. Imports of Merchandise database, 

which reports US imports at monthly frequencies from 1991-2005. We have quantities (in kg), the 

total value of the shipments (in US$), shipping charges (US$), and number of distinct shipment 

records reported separately for each exporter x HS10 product category x US customs district (the 

point where the imports enter the US) x transportation mode (m=air, ocean) x time period.  These 

data allow us to calculate mode-specific revenues, origin prices, shipping costs in ad-valorem 
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terms, and number of shipments.12 

We begin with roughly 45 million trade observations that arrive in the US by air or ocean.  

We drop inland customs districts13 along with Puerto Rico, Hawaii, and the Virgin Islands, which 

accounts for 7 percent of imports by value. Most imports from Canada and Mexico arrive overland 

and so do not appear in the air or ocean shipments data.  We drop the remaining imports from 

Canada and Mexico that arrive by air or ocean in U.S. coastal districts (4 percent of import value), 

as we lack reliable transport cost and time data for these shipments and because these shipments 

have a dominant outside option (overland transport). 

When taking equations (10) and (11) to the data, an observation is an HS6 digit good k 

(roughly 5000 distinct products), exported from country j, arriving at US coast c (c=west, east), via 

mode m (m=air,ocean) in year t. That is, we aggregate over all HS10 goods within an HS6, 

aggregate over all entry ports within the US east or west coasts, and aggregate over all months 

within a year. At this level of aggregation we have 2.1 million jkct observations. 

Conceptually, aggregating over products in this way is equivalent to treating an HS6 

product code as an industry and HS10 products as individual varieties within each industry.14  

Aggregating over months within a year and over customs districts within a coast may represent an 

aggregation of different exporting firms shipping within an HS6 code, or it may represent an 

aggregation of shipments for a given firm as it sells at different points in time or to customers 

located in different places within the US.  We return to this point in Section 3.4. 

A potential difficulty with aggregating over HS10 codes is that we may combine products 

that are fundamentally dissimilar in their shipment characteristics and shipping costs. This can be 

seen most clearly by inspecting the distribution of relative prices and relative freight prices, and we 

see very large differences in these variables in some cases. Accordingly, we trim our sample by 

dropping observations with either relative prices or relative freight costs below the 1st percentile 

and above the 99th percentile. We further trim our sample by eliminating HS codes in which the air 

share of revenues (calculated over all exporters and time periods) is less than 1 percent or greater 

than 99 percent.15  

                                                       
12 See section 3.4 for more details on the construction and use of the number of shipments variable. 
13 Shipments into inland districts have very high air shares. While these districts do record some ocean shipments 
these presumably include overland transport for which we lack data on both costs and transit times.   
14 In a robustness check we maintain maximum disaggregation and use a probit model to predict the probability that 
air shipping is employed as a function of relative freight prices and ocean shipment days. 
15 Some HS codes have air shares very close to zero or very close to 1. This suggests that one mode is used almost 



14 
 

 Table 1 reports data on the use of air shipment in our sample.  Over all observations, air 

revenues represent 28 percent of import value16, with higher shares for Europe (39 percent) and 

Asia (27 percent) than for other regions.  This primarily represents differences in the product 

composition of trade across regions, as 52 percent of capital goods and 31 percent of consumer 

goods are air shipped, with smaller numbers elsewhere.  The automotive category has the lowest 

air share (2 percent) because finished cars are rarely air shipped, but has higher air shares if we 

focus more narrowly on parts and components within automotive. Looking over all product codes 

that contain some parts and components trade, the air share is 41 percent.   

A modest degree of aggregation allows us to compare revenues, prices, and shipping costs 

for very similar products coming from the same exporter that nevertheless use different shipping 

modes.  Table 1 shows that in the sample as a whole we observe “mode mixing observations” – 

both air and ocean shipping employed – for trade equal to 75 percent of total import value.  The 

mixing observations are much more common in Asia and Europe than in other regions, again 

reflecting product composition. Mode mixing is less common for food (50 percent) and industrial 

supplies (36 percent), but in other categories ranges from 85 to 92 percent of trade.  Of note, the 

air share of trade for the mode mixing observations is similar to the air share of trade over all 

obervations. This indicates that trade omitted from our mode mixing observations is roughly 

balanced between observations using only air and using only ocean shipments. 

Figure 2 shows the time series on the use of air shipping in the sample. Air revenues as a 

share of imports rise steadily until 2000, after which they fall.  This pattern is found when using 

all observations, or only mode mixing observations, and it is found within every regional and 

product group listed in Table 1.  That is to say, the large changes in air usage in our sample are not 

due to compositional change in what is traded but reflect within group changes.  The pattern is 

also consistent with movements in cargo prices in this period, as the cost of air shipping fell until 

2000, then rose sharply.  These facts suggest that this is an ideal period for identifying modal 

substitution in the data and the extent to which higher air shipping prices trade off against more 

rapid delivery times. 

Table 1 also reports on the premia paid to air ship goods.  For each jkct observation we 

calculate air freight costs relative to ocean freight costs, both on a per weight and an ad-valorem 

                                                                                                                                                                               
exclusively, and the outlying observations may be unusual situations or data errors.   
16 This is considerably smaller than the 33 percent share of air shipments in non-North American imports.  The 
difference comes from dropping inland shipments from our estimation sample.  
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basis.  We calculate the air premium per kg as a ratio, /A O
jckt jcktg g , and report the median value 

over all observations within the group.  For All Imports, air freight costs per kilogram are at the 

median 6.46 times higher than ocean freight costs per kilogram.  We calculate the ad-valorem air 

premium as a difference, A O
jckt jcktf f , and again report the median value over all observations 

within the group.  For All Imports, the median ad-valorem air premium is 5 percent. That is, 

ocean shipping costs are equivalent to a 3 percent tariff and air shipping costs are equivalent to an 

8 percent tariff, so the use of air cargo raises delivered prices for the median good by 5 percentage 

points.  Figure 3 shows that there is significant variation over observations in the extent of these 

premia and at the high end firms are paying substantially more to air ship similar goods.  At the 

90th percentile air freight costs per kg are 27 times higher than ocean freight, and the ad-valorem 

air premia reaches a hefty 34 percent.  

The remaining variable needed is ocean shipping time to the US.  We employ a master 

shipping schedule of all vessel movements worldwide derived from the Port2Port Evaluation Tool.  

For most large exporters it is possible to construct a direct routing between the dominant ocean 

port in that exporter and a port or ports on the US east or west coast.  If there are multiple port-port 

combinations within a coast we take the average time to that coast.  For some smaller exporters 

there are no direct routings to one or both US coasts.  In these cases we construct all possible 

indirect routings (e.g. transiting through Hamburg, through Rotterdam, etc.) and choose the time 

minimizing indirect routing to each coast.   

In some of our specifications we exploit cross-exporter variation, while in others we 

exploit within exporter variation across entry coasts.  We display transit times in Figure 4.  The 

horizontal axis measures the total transit time to the US, averaging over coasts, while the vertical 

axis measures the difference between transit times to the east coast and west coast for a given 

exporter.  Total transit time varies enormously across countries, from as little as a few days to as 

many as 48 days for some African exporters.  A key point here is that, due to quirks of geography, 

the shipment time difference to the US coasts varies considerably across countries.  For Latin 

America countries there is a minimal difference (0-4 days) in travel time to east and west coast, 

European shipments arrive on the east coast 10-14 days before the west coast, and some Asian 

shipments arrive on the east coast up to 14 days after the west coast.  

3.2  Specification 

We can now rewrite equation (11) in terms of observable and unobservable components, 
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providing subscripts to reflect the exporter j, product k, time t and coast c variation that we will 

exploit in the data.   

 

 ln (1 ) ln ln 1 ,
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   (12) 

At its most general, we will exploit variation across all dimensions (exporter j-product k –coast 

c-time t) of the data.  In other specifications we experiment with different combinations of fixed 

effects to control for unobservable components in the errors, and thereby exploit only certain kinds 

of within-variation.  We will also experiment with pooling over different product groups at 

different levels of aggregation. In our baseline regressions we pool over all HS6 industries, which 

implies that the key elasticities ( ,  ) are identical across all products. In some cases we pool over 

all observations within a given end-use category and estimate parameters specific to that end-use 

category. 

 

3.3  Selection 

Recalling equation (4) and Figure 1, we only observe exports from a given 

exporter-product if profits from exporting net of fixed costs are positive for some firms in the 

industry.  When exploiting the variation detailed in (12), firms could be selected out of the sample 

because they have high marginal costs of production, face high shipping costs or fixed costs of 

exporting, or because they are selling a time sensitive good and their exports take a long time to 

travel to the US. 

Concern about selection bias and zero trade flows at the aggregate level has motivated 

researchers to estimate a 2 step selection model.  For example,  Helpman, Melitz and Rubinstein 

(2008) use variables intended to capture differences across exporters (or exporter-importer pairs) 

in the level of exporting fixed costs to identify the probability of selection, and then include the 

inverse Mill’s ratio as a regressor in the second stage.  This works in their context because they 

are focused on aggregate trade flows.  We are focused on highly disaggregated trade flows and in 

many specifications will incorporate exporter fixed effects.  If we use country specific 

information in the first stage to predict the probability of observing a particular trade flow, the 
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inverse Mill's ratio varies across exporters but not within exporters over products or over time and 

so is absorbed by a country level fixed effect. 

We are interested in selection operating at a much lower level, and want to ask whether a 

particular exporter j ships an HS6 good k to the US at time t. Rather than applying fixed cost 

proxies in the first stage, we use the volume of j's exports of k at time t to markets other than the US 

to indicate the latent profitability of jkt exports to the US.17  For example, suppose Germany has a 

comparative advantage in machine tools.  Then Germany will export a high volume of machine 

tools to the rest of the world and it will be more likely that machine tool exports to the US will be 

sufficiently profitable to exceed fixed costs of trade.  In terms of Figure 1, instead of exploiting 

country level variation in the fixed cost schedule as in Helpman et al (2008), we are exploiting jkt 

variation in the position of the profit schedules. 

We also include (the log of) ocean transit times in the selection equation as we are 

independently interested in how time affects the probability of a shipment to the US occurring (as 

well as its modal switching effects conditional on exporting). We do not observe the price or 

freight rate information if we don't observe trade and so these variables are not included in the 

selection equation. 

 

3.4  Modal Extensive Margin 

The distinction between revenues per firm (10) and revenues aggregated over m
jN  firms 

(11) displays the potential importance of the modal extensive margin -- defined as the number of 

firms within an HS6 product that export using a given mode of transportation.  Accounting for the 

modal extensive margin is an important contribution of this paper.  We use two approaches:  

controlling for the extensive margin with fixed effects; and directly measuring the extensive 

margin with data on the number of shipments. 

How the modal extensive extensive margin adjusts in the data is not immediately clear, and 

it is not a margin that has been contemplated in the literature. Helpman, Melitz and Rubinstein 

(2008), for example, are focused on a cross-sectional question of whether at least one firm from 

any industry successfully exports to a given destination country at a point in time.  This is relevant 

                                                       
17Two recent papers, Autor, et al (2011) and Hummels et al (2011) use a similar strategy to identify latent profitability 
of exports in an instrumental variables context.  They use an exporter’s sales to the rest of the world in a particular 
product code to instrument for its sales in a specific import market. 
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because with a continuum of firms spanning all of manufacturing activity, it seems highly likely 

that some firms are close to the point where small changes in costs induce selection in and out of 

the market. 

In contrast, we employ data that are highly disaggregated (by exporter, HS6 product, time 

and entry point into the US) so there may be relatively few firms involved in any jkct trade flow.18 

If none of those firms is close to z  in Figure 1, then we will not see switching between modes in 

response to small cost shocks.  In this case, a judicious use of fixed effects can absorb the modal 

extensive margin.  In the next section we will describe a number of fixed effects strategies 

designed to absorb unobserved variation in product variety and quality. 

Our second strategy supposes that firms within a given jkc trade flow switch modes over 

time in response to cost shocks so that fixed effects estimators will be insufficient to absorb the 

modal extensive margin.  Here we use data on the number of shipments to control for the number 

of firms participating in the market.   

When a firm exports into the US they electronically file a Shipper’s Export Declaration 

Form, and the data on that form constitute one record.  The public use imports data remove firm 

identifiers and aggregate over all the records with the same characteristics (i.e. same exporter, 

HS10 product, US customs district, month, and transportation mode), but include a count of 

records as a variable in the data. At the most disaggregated level of the imports data, most monthly 

observations consist of a single shipment, though some have multiple records. As we aggregate the 

data over products, months, and customs districts we are then counting the number of distinct 

shipments that occurred within each mode.19   

Having multiple shipments for a jkct observation could reflect multiple shipments by the 

same firm (during different months within the year or to customers in different customs districts 

within the US), or it could reflect distinct shipments by multiple firms. Using the latter 

interpretation, the shipment count variable becomes a useful proxy for the number of firms 

participating in the market.   We can then account for variation in the number of shipments (or 

                                                       
18 There are not many data sets that allow a systematic evaluation of how many firms export in a very specific 
(destination x product) trade flow, but those that do suggest very few firms are involved.  As an example, Hummels et 
al (2011) look at Danish firm-level exports at the HS6 x destination level, and report that in 90 percent of observations 
3 or fewer firms are involved in the trade flow. 
19 Strictly speaking, the record count includes both air and ocean shipments within a given exporter-hs10-customs 
district-time observation.  However, in 91.3% of these observations (by count) we can uniquely distinguish the mode 
used.  For the remaining observations where we can't distinguish the number of shipments by mode, we assign a share 
of the shipments to each mode according the shipment value. 
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firms) across the two modes at the same jkct level of variation found in the rest of our data. 

Of course, including the number of firms in each mode as a regressor would pose 

endogeneity concerns. If the firms switch between modes of transportation in response to demand 

fluctuations, shocks to the relative revenues may be correlated with the relative number of 

shipments. Happily, the structure of the model solves this problem. Starting from equation (11), 

we divide relative revenues by relative shipments to get back to equation (10).  Provided that the 

number of shipments is a useful proxy for the number of firms, we now have an expression for the 

average revenues per firm that has eliminated the modal extensive margin problem.  Rewriting 

estimating equation (12) with this adjustment, we have  
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 (13) 

 

3.5  Prices and Unmeasured Quality  

The standard concern with including prices in a demand equation is that there are 

components of the error terms that are correlated with quantities demanded and with prices. This 

could reflect quality variation, or if the consumer values variety at the firm level, the number of 

distinct varieties for sale.  Recalling estimating equation (12), the error term contains 

unobservable components  
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The terms m
jktc  and m

jktcN  reflect demand shifters that are jktc and mode m specific and 

potentially correlated with regressors of interest, while the remaining term jktc is uncorrelated 

with regressors.  It is not feasible to construct instruments for prices that are jktcm varying, and so 

we use the rich panel structure of the data to account for the unobserved components of the 

demand equation.  
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In what follows we refer to “quality” but this should be read as any demand shifter that is 

potentially correlated with prices.  For example, in specification (12) that uses relative revenues 

as a dependent variable we are treating the m
jktcN extensive margin terms as if they were quality, so 

one can substitute the phrase “variety and quality” everywhere “quality” appears in the discussion.  

In specification (13) using relative revenues per shipment as a dependent variable we will 

eliminate the m
jktcN terms by dividing both sides of the equation by a proxy for m

jktcN .    

The appropriate fixed effect estimators to use depend on the structure of the error term 

jktc .  We step through several cases and the associated estimator we employ.  The simplest case 

is that quality varies by countries, commodities, US entry coasts and time, but for a given jktc 

quality does not vary across transportation modes. In this case, expressing the equation in shares 

eliminates the relative qualities from the expression, or / = 1, =a o
jktc jktc jktc jktc    .  No fixed 

effects are needed, and OLS provides a consistent estimator. 

Next suppose that quality varies across modes in an exporter-specific manner (i.e. the ratio 

of air/ocean quality is consistently high for German firms and low for Brazilian firms), but assume 

that the ratio of air/ocean qualities is time invariant and the same for each product and coast. In this 

case quality for mode m can be decomposed as =m m
jktc j jktcv  . Expressing in shares eliminates the 

exporter-time-specific term, leaving an error of  

  = ln /a o
jktc j j jktc      

Inclusion of exporter fixed effects (implemented via mean differencing) into the differenced 

equation eliminates the remaining problematic correlation. In this case we are exploiting 

within-exporter variation across products, entry coasts, and time.   

Similarly, it may be that quality differs across modes and changes systematically across 

countries and across HS6 commodities such that we can write =m m m
jktc j k jktcv   and the combined 

disturbance is  

   = ln / ln /a o a o
jktc j j k k jktc          

The nuisance terms here are eliminated by a combination of exporter fixed effects and HS6 

commodity fixed effects. In this case the ratio of air/ocean quality can be different for Germany 

than Brazil, and different for machine tools versus microchips. Taking this one step further, we can 
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allow unobserved quality to be exporter-HS6 product specific or =m m
jktc jk jktcv  . We absorb this 

unobserved quality variation with fixed effects that are specific to an exporter-HS6 product. In this 

case we are exploiting variation across time and entry coasts with a given exporter-HS6. 

Finally, suppose that even this is not sufficient, and that the unobserved quality shifters 

differ across modes, countries and time in a way that cannot be log additively decomposed as 

above. This could be related to functional form.  It may also be that an exporter experiences 

quality change over time that is product specific and where the degree of quality change is 

systematically related to modal choice. For example, Germany rapidly innovates in machine tool 

quality and new innovations are more likely to be airborne than older and more standardized 

products. To deal with this case we write quality differences as =m m
jktc jkt cv   and exploit the 

presence of coastal variation in the data, so that 

  = ln /a o
jktc jkt jkt jktc       

Here we employ fixed effects that have exporter x HS6 product x time variation, and 

identify relevant parameters by exploiting cross-coast variation in all relevant variables. To see 

how this would work, our firms in the German machine tool industry have customers on the US 

East and West coasts. When selling to West coast customers ocean cargo must traverse the Panama 

Canal and requires 14 days longer than for shipments to the East Coast.  This yields variation 

across coasts in the relative share of air shipping, relative time delays, and relative freight prices. 

It should be noted that the ability to exploit variation in modal shares across jktc 

observations allows us to control for unobserved quality variation in a manner that is considerably 

more general than what is found in the literature on estimating import demand elasticities or in the 

literature on quality and trade.  The literature on quality and trade focuses on quality differences 

that are explained by exporter variables such as endowments, or importer variables such as per 

capita income, but makes no attempt to explain cross-product variation.  The literature on import 

demand elasticities either ignores quality, or assumes quality-related shocks to demand and supply 

are uncorrelated.20 

As an ancillary benefit, the aggressive use of exporter, exporter-product, and 

exporter-product-time fixed effects controls for many variables that may affect the likelihood of or 

                                                       
20 See Hillberry-Hummels (2011) for a recent review of this literature.  The state of the art papers, Feenstra (1994), 
and Broda-Weinstein (2006) assume demand and supply shocks are uncorrelated. 
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revenues from air shipping.  This could include the exporter’s level of development, delays 

associated with customs clearance, the quality of their infrastructure (in absolute terms or 

infrastructure for air relative to ocean shipping), or quirks of geography (being land-locked or 

having significant inland production). 

 

3.6  Unit Values as Prices and the Endogeneity of Ad-Valorem Freight Rates 

In many applications trade economists employ “prices” from trade data that are really unit 

values, or value/quantity. In our data, the quantity measure is kilograms, and so the “prices” we 

observe are values per kilogram. That may not correspond to a unit of quantity that is sensible from 

a utility perspective, which can create problems when using “prices” to estimate demand 

equations.   

To see this, define prices p and shipping costs g as above, in terms of a quantity unit q that 

enters the utility function and is consistent across firms and shipping modes. We construct unit 

values as the ratio of total value and total kilograms shipped. ˆ = / /p pq wq p w , where 

= (Total Weight in kg) /w q  is a measure of product bulk. Compared to semiconductors, iron ore 

has very low unit values measured in dollars per kg, but this simply reflects differences in product 

bulk.  Similarly, shipping prices per kilogram are ˆ = /g g w . 

If shippers set freight rates in terms of costs per kg, ĝ , the price of shipping relative to the 

utility measure of quantity, q, can vary across goods because product bulk (w) varies. In other 

words, we can rewrite the optimization problem keeping in mind the translation between q and kg 

when we write marginal costs per unit of quantity, ˆ=z g z gw  . 

To see how this matters, consider the relationship between origin and destination unit 

values, captured in equation (8). When employing unit values and kg units of quantity, we can 

rewrite that as  

 
ˆ

ˆ 1 = 1 =
ˆ
g p g p

p f
p w p w

   
     

   
  

We now have an expression where unit production costs and unit transportation costs are 

expressed in kg quantity units.  When we use this in equation (12), we have 
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/
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jktc jktc jktc jktc jktc

p q p w f
days

p q p w f
   

   
            

   
  

  

The unit value “price” terms now reflect differences in the bulk factor, but the ad-valorem freight 

terms do not because bulk appears in both the numerator and denominator and therefore cancels. If 

the bulk factor varies across firms within a product category, then high bulk firms will choose to 

ocean ship and low bulk firms will air ship. This implies unit values differences will overstate 

price differences, or ˆ ˆ/ > /a o a op p p p . In this case, the coefficient on unit values will be biased 

toward zero even if we have perfectly controlled for unobserved quality variation.21 For this 

reason, we will use the coefficients on relative freight prices and not unit value differences to 

identify  . 

A potential concern is that freight prices themselves are endogenous. This could arise 

because ad-valorem freight rates, f, are constructed by dividing per unit shipping charges, g, by 

prices. Or it could be that the unit shipping charges themselves are responsive to the quantities 

shipped. Evidence for both kinds of endogeneity are analyzed at length in Hummels et al (2009). 

Hummels et al (2009) show that the major cause of endogeneity in ad-valorem freight 

prices is differences in the prices of products shipped. This is not a concern in the present context 

for two reasons. As we have just discussed, unit values can vary substantially for reasons unrelated 

to prices per (utility-relevant) quantities. If shippers charge per kg shipped, then high bulk 

translates into higher shipping costs both in per unit and ad-valorem terms. When we measure 

freight differences in air and ocean shipping, part of this reflects differences in bulk that increase 

the freight price per (utility-relevant) units of quantity. This moves the relative prices of air and 

ocean in a way that identifies the elasticity of substitution. In other words, it provides precisely the 

variation that is useful in identifying the relevant parameters.  

Suppose however, that the unit value differences between air and ocean shipments do 

reflect true price variation and not merely differences in bulk. Were we to omit unit values from 

the regression, or were the regression to omit important quality variation, this could potentially 

bias the coefficients on freight charges. However, as discussed at length in the previous section, 

                                                       
21 In the limiting case, suppose that prices per (utility-relevant) quantity unit were the same for two firms.  Bulk and 
value per kg differ across firms in a way that shifts some goods to boats and some to planes. Since the unit value 
difference, in and of itself, is irrelevant to the consumer there should be no response of modal choice to unit value 
differences. 
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the regressions explicitly include unit values and employ an aggressive differencing strategy to 

remove quality variation as a source of differences in relative demands. 

A secondary concern is that unit shipping charges, g, are themselves endogenous to 

quantities shipped.  For example, exporters that trade higher quantities of goods will invest in 

better transportation infrastructure, and there will be more entry by transport providers on densely 

traded routes. As Hummels et al (2009) show, these scale effects are characteristics of trade routes 

(i.e. particular exporter-importer combinations) and are much stronger when considering thinly 

traded developing country routes, not densely traded routes involving the US. Since we employ 

only US imports data, use mode differencing and include exporter, exporter-product, and 

exporter-product-time fixed effects, these scale differences are differenced out or swept into 

constants. 

However, for the sake of completeness we experiment with instrumenting strategies for 

freight rates. Finding instruments that vary across jkct observations is difficult. However, if the 

regessors are sequentially exogenous such that their lags are not systematically related with the 

contemporaneous disturbance, then lagged variables are valid instruments. The instrumental 

variable assumption is that past freight rates are correlated with contemporaneous freight rates, but 

they do not significantly explain today’s relative revenues.  

 

4  Results 

To summarize the discussion to this point, we have shown that consumers who value time 

savings will trade off the higher cost of air shipping against the higher implicit quality of a good 

that arrives several days earlier.  The precise value consumers attach to time savings can be 

extracted by estimating the parameters in that tradeoff using equations (12) and (13) along with 

various fixed effect estimators.  The coefficient on relative freight prices identifies consumer 

sensitivity to price changes,  , and the coefficient on days in transit identifies the 

quality-reducing effect of shipment delays, measured in terms of reduced quantities sold,  .  

Combining the two yields the price or tariff-equivalent of the time delay,  . 

 

4.1 Baseline Specification 

We begin with estimates that do not condition on selection and pool over all products.  

Recall that differences across commodities in the level of relative revenues and relative freight 
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prices will be swept out in specifications using commodity fixed effects. Pooling in this way 

maximizes the available observations, simplifies presentation, and yields estimated parameters 

that are observation weighted average of the commodity level response. We provide commodity 

specific parameter estimates below. 

Table 3 reports the results for the relative revenue equation (12) with different sets of fixed 

effects.  Standard errors are clustered on exporters. Across all five columns, we see two clear 

patterns:  increased ocean shipment times induce substitution toward air shipping, and high 

relative freight prices for air shipping induce substitution toward ocean shipping. Table 3 also 

shows that the coefficient on unit values ranges from small and negative to small and positive.  

This is consistent with our discussion in Section 3.6 noting that unit values are not prices and that 

differences in product bulk make variation in freight rates, not unit values, a more reliable measure 

of the price elasticity of demand. 

Consumers valuation of timeliness   is constructed as the ratio of two coefficients: ocean 

days divided by relative freight prices, and the standard errors are constructed using the Delta 

Method. We estimate that time sensitivity  ranges from 0.003 for the OLS estimates to .021 for 

the fixed effects that exploit differences across coasts for a given exporter-product-time period.  

At the high end this implies that one additional day in transit is equivalent to a 2.1 percent tariff. 

There are significant differences in magnitudes across the specifications and so it is worth 

understanding where those differences come from. Across the specifications the number of 

observations changes depending on the requirements of the fixed effects.  The most pronounced 

change comes in the coast-differenced specification because it requires that we observe for a given 

exporter-HS6 product both air and ocean shipments to both coasts.  However, if we apply 

specifications 1-4 to the sample for column 5 we get very little change in the table.  

Rather, the coefficient pattern reveals the importance of controlling for unobserved 

heterogeneity.  As increasingly stringent fixed effects absorb progressively more variation, the 

estimated price elasticity of demand falls and the impact of the transit time on the relative revenues 

increases. The most pronounced change in transit days comes once we introduce exporter fixed 

effects (singly, or in combination with other FE).  Across countries there are likely unobserved 

differences in the relative quality of airport and ocean port infrastructure.  There may also be 

unobserved differences across countries in inland shipment costs and inland transit time that 

primarily affect ocean shipments.  That is, a country with many exporting firms in its interior will 
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endure costs and long inland transit times as goods are trucked to the coast for ocean shipping but 

these can be avoided by using interior airports.  This variation is removed from our data, leaving 

identification of the days in transit variable to come from differences across countries in shipping 

time to the US east versus west coast.  If these unobserved country characeristics change over 

time they will still plague specifications in columns 2-4, but they will be eliminated in column 5. 

There is a pronounced change in the freight coefficient (the price elasticity of demand) 

when we include commodity fixed effects (additively, or interacted with other FE).  Some 

commodities are more likely to be air shipped than others due to physical characteristics such as 

perishability or weight and size and this unobserved information is absorbed by the commodity 

effect.  Rather than identifying this coefficient across variation in dissimilar goods (the small air 

freight premium and high air shares for electronics compared to the large air freight premium and 

low air share for bulky furniture), the commodity FE columns identify the coefficient from freight 

cost variation across different source countries and time periods for a given HS6 product. 

A final reason we may see differences across the columns is heterogeneity in product 

quality and variety across observations.  In our discussion of specification issues in Section 3 we 

indicated many possible dimensions of quality heterogeneity that are controlled for across the 

different specifications in Table 1.  What we see here is consistent with the view that the OLS 

estimates overstate the response of relative quantities to relative freight prices differences because 

of that unobserved heterogeneity. To understand the direction of the bias, suppose that air shipped 

goods are higher quality than ocean shipped goods, and that higher quality goods have lower 

ad-valorem freight rates (following the discussion of per unit freight charges in Section 3.6).  In 

the absence of fixed effects that control for quality this generates a negative correlation between 

quality and relative freight rates, and the omitted variable bias is towards finding a larger negative 

effect.  More stringent fixed effects eliminate the bias. 

 

4.2 Accounting for Selection and the Extensive Margin 

The revenue specifications in Table 3 estimate equation (12) assuming that the modal 

extensive margin, the relative number of firms employing ocean and air transport for a given jkct 

observation, is uncorrelated with the regressors after including various fixed effects.  This is a 

reasonable approach if the modal extensive margin exhibits little within-jkct variation, but it is 

problematic if firms substitute between modes in response to cost shocks.  We address this case 
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by estimating equation (13) using revenues per shipment as a dependent variable. If the number of 

shipments is a good proxy for the number of firms operating in each mode, then our dependent 

variable measures average revenues per firm.   

Table 4 provides estimates of equation (13) with various fixed effects, and shows the same 

sign pattern as Table 3:  high relative air freight prices reduce relative air revenues, and longer 

transit times raise relative air revenues.  Our estimates of   range from 0.004 to 0.006  (one day 

is equivalent to a 0.6 percent tariff).  Notably, all coefficient estimates are smaller than in Table 3. 

This suggests that high air freight prices and long transit times lower both the number of shipments 

and revenues per shipments, and the smaller estimates in Table 4 are due to eliminating the number 

of shipments channel.  We also see more consistency across the columns in Table 4, in contrast to 

Table 3.  This suggests that the number of shipments is an important source of unobserved 

heterogeneity removed by the Table 3 fixed effects.  In Table 4 they are differenced out of the 

dependent variable and so the fixed effects have less impact on the estimates.   

In understanding the economics behind Tables 3 and 4, the key question is what the 

number of shipments are actually capturing.  One view of the data is that we are capturing an 

active modal extensive margin.  As we lower air freight prices or increase shipping times we see 

higher air revenues, and some of this response takes the form of firms switching from ocean to air 

shipping.  When we control for this channel we identify a per firm revenue response and so the 

estimated elasticities in Table 4 correspond more closely to the parameters from the model.  This 

interpretation is consistent with the Helpman, Melitz, and Rubinstein (2008) argument that 

ignoring the effect of trade costs on the extensive margin will tend to overstate their impact at the 

firm level.   

An alternative view is that changes in the number of shipments do not reflect firms 

switching between modes, but instead reflect changes in the number of shipments made by a fixed 

set of firms. Consider how a single exporting firm might respond to a cost shock that boosts 

demand for its products. It might make shipments to customers in several different customs 

districts instead of one, or ship every month rather than every other month.  This shows up in the 

data as a rise in the number of shipments.  In this case, calculating revenues per shipment as in 

Table 4 eliminates an important channel through which a single firm could see enhanced revenue. 

We have no way of distinguishing which of these views is correct, and think the truth lies 

somewhere in the middle, that is, with per day time costs somewhere between 0.6 and 2.2 percent 
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ad-valorem. 

There is another extensive margin potentially at work in these data, the possibility that high 

costs and long shipping times could cause a country to have zero exports to the US in a particular 

product.  To address this Table 5 reports the result of a 2 stage Heckman selection estimator.  As 

detailed in Section 3.4, in the first stage we predict the probability that exporter j has positive sales 

of product k to the US at time t using two variables:  j’s exports of k to the rest of the world at time 

t, and (log) ocean days for exporter j to the closest US coast.  We then include the inverse Mills 

ratio in the second stage of the specifications used in Tables 3 and 4.22   

Table 5 reports estimates of the first and second stages of the Heckman estimator.23  The 

first stage is of independent interest for future studies that might desire a selection estimator that 

operates at the exporter-product-time level.  The value of country j’s exports of product k to the 

rest of the world excluding the US is an excellent predictor of the probability of observing those 

same exports to the US.  Long transit times are negatively correlated with the likelihood of 

exporting to the US, with an elasticity of -0.135 and a marginal effect (at the means) of -0.024.  

The first stage is not a fully specified model of the exporting decision but taking the marginal 

effect at face value we can calculate the impact of a reduction in shipping times on the probability 

of seeing trade.  The mean shipment time in our data is 23 days, about the average trip length from 

East Asia to the US.  Decreasing this by 3 days (the average trip length from Europe to the US) 

increases the probability of any one product being exported by 0.13 percent. 

Turning to the second stage we see that the inverse Mills ratio is strongly correlated with 

relative revenues and relative revenues per shipment.  However, the coefficients of interest are 

very similar to those found in Table 3 and 4.  Taken together this suggests that the selection 

correction does affect relative revenues, but is not correlated with the variables of interest once we 

have included other controls in the estimation.   

 

4.3.  Additional Robustness Checks 

 Table 6 reports a set of additional robustness checks.  For brevity we report only the 

                                                       
22 We do not include the coast-differenced specification.  Our selection variables generate an inverse Mills ratio with 
jkt variation but it does not vary across coasts for a given exporter-product-time.  When we difference all variables 
across coasts, the Mills ratio is eliminated.  Put another way, once we control for exporter-product-time effects in the 
coast differencing estimation we have no variation left to predict selection into the sample.  
23 Note that the coefficient estimates in the selection specification are identical across the specifications. That is 
because for each specification we estimate exactly the same selection model over the same sample. 
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coast-differenced specification using relative revenues and relative revenues per shipment (similar 

to column 5 from Tables 3 and 4), and do not include the Heckman correction.  Results are similar 

with other specifications. 

In our main specifications we estimate a linear effect in transit time, which treats an 

increase from 6 to 7 days the same as an increase from 26 to 27 days. However, at sufficiently long 

horizons consumers may be indifferent to marginal changes in delivery time.  In columns 1 and 2 

we experiment with a quadratic in transit time, and find that delays have diminishing impact at 

longer time horizons.  At the sample mean of 23 days (the average travel time for Asia), our 

estimated effects match those from Tables 3 and 4:  ad-valorem time costs of 2.3 percent per day 

(for revenues), and 0.7 percent per day (for revenues per shipment).  Central and South America 

have shorter travel times and much higher time costs at the margin.  At 35 days of travel time (the 

average for Africa, the most temporally distant region) the effect just reaches zero.24  

In our main sample we trimmed outlying observations for relative prices and relative 

freight rates, and dropped products in which the average air share for an HS code was less than 1% 

or greater than 99%.  In columns 3 and 4 of Table 6 we include all these dropped observations.  

We find somewhat larger estimates on transit days, smaller estimates on freight prices and larger 

estimated values for time sensitivity. 

 In Section 3.6 we discussed how our fixed effects specifications account for possible 

sources of endogeneity in freight rates.  For completeness we also experiment with using lagged 

values as instruments.  In columns 5 and 6 we instrument the current period freight rate with its 

first lag, and to examine the impact of dynamics, we also include the lagged dependent variable 

and instrument for today’s freight rate with the second lag of the freight rate.25  The conclusion is 

the same for both dependent variables. Compared to the baseline estimates reported in Tables 3 

and 4, we find somewhat higher elasticities for the freight rate variables, somewhat smaller 

coefficients on days in transit, but the fundamental message is unchanged. 

 We also experimented with with re-estimating our main specifications on sub-samples of 

the data (e.g. using only observations from Europe and Asia) or allowing slope coefficients to vary 

across sub-samples (by exporter income, by year, by season within each year).  While intercepts 
                                                       
24  Note that these estimates do not rely on the full range of transit time (from 3 to 48 days) in the data, but instead fit 
the quadratic on the variation in coast-differenced transit time shown in Figure 4.   
25 It is worth emphasizing that the mean difference panel IV estimator in Column 3 and 4 subtracts the mean over the 
two coasts, not the mean over time. A mean difference estimator that subtracts the mean over time is not consistent 
when we include the lagged dependent variable. 
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varied over these sample cuts, indicating differences in the average reliance on air shipment, we 

found no significant changes in slope coefficients relative to results reported in Tables 3 and 4.  

There were, however, significant differences across product categories, a point we take up in the 

next section. 

 As a final robustness check we experimented with a probit estimation based on a 

sub-sample of the data in which only a single transport mode was chosen. The estimation is based 

directly on equation (3), and is conceptually similar to the relative revenue specification, except 

that here we estimate the probability that air shipping is chosen as a function of freight prices and 

transit time.  Details of the derivation and specification are reported in the appendix.  We find 

coefficients with the same sign pattern as those in Tables 3-6 and using point estimates, time 

effects of similar magnitude. However, the estimated effect of shipment time is not statistically 

significant once we cluster standard errors.  We attribute this loss in precision to three factors:  

losing information about the quantity of sales in the dependent variable; the inability to incorporate 

rich controls for quality heterogeneity in the demand equation; and the need to estimate rather than 

observe shipping costs for the transport mode not chosen. 

 

4.4.  Estimating the Value of Time by Commodity 

The specifications above allow for heterogeneity in the intercepts, but impose homogenous 

slope coefficients across broad product groups. In other words, we assume that all product 

categories have the same modal use response to changes in freight prices and to time delays. This 

has the advantage of maximizing available observations and sources of variation but at the cost of 

losing potentially interesting information about how time values differ across commodities. 

To examine heterogeneity in the coefficient estimates we grouped products by End-Use 

Category and re-estimated equations (12) and (13) separately for each, using Exporter x HS6 fixed 

effects. We report results for 1-digit End Use groupings in Table 7.  Focusing on relative 

revenues, equation (12), we find that results are qualitatively similar to Table 3 across all groups.  

However, we find substantially higher time values for Automotive goods (.043, that is, one day is 

equal to a 4.3 percent ad-valorem tariff) and for foods and beverages (.031)  than for Industrial 

Supplies, Capital Goods and Consumers Goods (all around .02).  In the case of Automotive goods 

this is driven by a combination of a higher coefficient on transit days and a lower coefficient on 

freight costs.  
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When we examine relative revenues per shipment to control for the modal extensive 

margin, equation (13), we see similar sign patterns, but much more dispersion in the estimates. 

Here the high time value categories are Automotive (.013) and Capital Goods (.009), with much 

lower estimates for Consumer Goods and Industrial Supplies (.004), and an (insignificant) 

negative estimate on both transit days and time value for Foods and Beverages.  Above we 

highlighted two alternative stories (firms changing modes, or firms changing the number of 

shipments to reach a greater number of customers) for the more modest coefficients found when 

using equation (13).  What seems likely in the case of Foods and Beverages, where storability is 

particularly important, is that firms respond to long shipment times by making more frequent 

shipments on airplanes. Once we control for this channel there is no remaining response in terms 

of revenues per shipment. 

The one-digit End Use categories are still fairly broad and we next group products at the 

most disaggregated End-Use Category and re-estimate equations (12) and (13) separately for each, 

using Exporter x HS6 fixed effects.  Figures 5 and 6 show the distribution of time values, with the 

histogram of all estimated coefficients shaded in grey and the histogram featuring only statistically 

significant estimates shaded in black.26  For Figure 5, the mean over the individual group 

estimates shows an average time sensitivity of about 0.02, which is very similar to Table 3, column 

4.27  However, there is significant heterogeneity in the coefficient estimates.  Most of the mass of 

this distribution is positive, and we see some time values ranging as high as .072 or one day being 

worth 7.2 percent ad-valorem. For Figure 6, we again see an average effect similar to Table 4, 

column 4, and again see considerable dispersion.   

As we disaggregate we face a tradeoff – greater flexibility in allowing the model to fit 

different coefficients for different product categories versus the possibility of greater imprecision 

due to the reduced number of observations from which to identify those coefficients. The question 

is then whether the coefficient heterogeneity in Figures 5 and 6 reflect true variation in response 

parameters or noise. 

A possible indication that these estimates reflect true variation can be found in Djankov, 

Freund, and Pham (2010).  They used time cost estimates taken from an earlier draft of this paper 

and showed that countries with long customs delays experienced relatively sharp reductions in 

                                                       
26 The histograms omit insignificant point estimates lying 2 standard deviations from the mean. 
27 This is to be expected, as the pooled estimates in Table 3 are a consistent estimate of the average impact over 
products (see Zellner, 1969; Pesaran and Smith, 1995). 
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exports for goods that exhibited the highest time sensitivity. 

To get at this issue more systematically, we focus on two characteristics of products that 

seem especially relevant for timeliness: perishability, and whether the product is a manufactured 

intermediate input.  To capture these characteristics we drill down to the HS-10 digit level and 

identify product descriptions that contain the word “fresh” (for perishability) or “parts” or 

“components” (for intermediate inputs).  We then calculate, for each exporter-HS6-time 

observation the value share of HS-10 products containing those words, and include this variable 

both independently and interacted with transit time.28   

Results are reported in Table 8.  Focusing on the revenues per shipment we see two 

interesting findings.  First note that a higher “fresh” share increases the use of air shipment, but 

does not significantly interact with transit days.  A likely explanation is that products like “fresh 

fish” are so time sensitive that any delay longer than a few days ruins the product.  As a 

consequence the effect shows up entirely in a higher use of air shipment for all exporters, 

regardless of ocean transit time to the US. 

 There is a very different pattern with parts and components.  An increase in the parts and 

components share of trade for a given exporter-HS6 product results in a sharp increase in the time 

sensitivity of that trade. Comparing a product with zero component share to one that is 100 percent 

components raises time sensitivity by 60 percent. 

 

4  Conclusion 

  Airplanes are fast, expensive, and carry a large and rising share of world trade.  In this 

paper we model substitution between the use or air and ocean cargo in trade and show how to 

extract consumers’ willingness to pay for time savings from that choice. Our estimates control for 

selection intro trade, for unobserved variation in quality, for endogeneity of freight charges, and 

for extensive margin changes in the sets of firms participating in trade by mode.  We estimate that 

each day in transit is worth 0.6 to 2 percent of the value of the good, and that long transit delays 

significantly lower the probability that a country will successfully export a good.  Our estimates 

vary over goods, with especially high time sensitivity exhibited in end use categories motor 

vehicles and parts, and capital goods, and in HS classifications with high shares of parts and 

                                                       
28 Recall that our observations are at the level of HS-6digit products and that we include exporter - hs6 fixed effects.  
By using the movements in the shares of the HS-10 digit products we induce changes over time for a given 
exporter-hs6 that can be used to identify differences in the coefficient. 
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components. Comparing a product with zero component share to one with a 100 percent 

component share raises time sensitivity by 60 percent. 

This last result connects two important changes in patterns of international specialization 

and trade.  In the last several decades the cost of air cargo has dropped an order of magnitude, and 

the use of air cargo has risen 2.6 times faster than ocean cargo.  At the same time there has been a 

sharp rise in intermediate input trade as firms fragment production across multiple locations.  

While many products are time sensitive due to inventory holding costs, perishability, rapid 

technological obsolence, and uncertain demand, these problems are magnified in the presence of 

fragmentation.  It seems reasonable to conclude that the sharp reduction in the cost of linking far 

flung production sites through fast moving airplanes has been an important factor in growing 

fragmentation worldwide.  

Finally, our results are relevant to the increased emphasis on trade facilitation – identifying 

regulatory or other nontariff barriers to trade – in trade negotiations and among aid and 

development groups such as USAID and the World Bank.  Many efforts to facilitate trade, such as 

streamlining customs procedures or improving port infrastructure, generate benefits measured in 

days saved.  With our estimates of the value of each day saved one can then calculate the 

monetary benefits of these initiatives and how they compare to the cost incurred. 
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Appendix 1.  The Probit specification 

Suppose that there is a single firm in j producing good k (or that all firms producing k in 

location j are symmetric). Then we can rewrite the inequality in (3) as a probability model for 

modal choice. First we use equations (7), (8), and (9) to rewrite the difference in marginal costs 

(unobservable) as a function of (obervable) export prices and shipping charges. If a firm charges 

the same origin price regardless of shipping mode, the difference in marginal costs reduces to the 

difference in ad-valorem shipping costs.  Using this in (3) implies that air will be chosen if 

     1 ln ln 1 0A O O
j j jf f days     

      (14)
 

With normally distributed random shocks to modal choice we have a standard probit model. 

       = | = 1 ln( ) ln( ) 1a o o
jt j j jP m a x f f days             (15) 

Sample construction: 

We begin with the sample of 45 million observations discussed in Section 3.1, dropping 

imports from Canada, Mexico, and those imports entering in inland customs districts or outside the 

Mainland US.  We aggregate by coasts, but we do not aggregate over months within a year or over 

HS10 codes within an HS6 code. In the data we only observe the freight rate for the mode that was 

actually chosen.  We predict the the unobserved freight rates by fitting a cost equation based on 

observations where we do see freight data and then fitting them to the remaining observations 

using observable characteristcs.  We employ data on unit freight costs (per kg) and product prices 

(per kg) that are specific to the exporter j, HS10 product k, customs distrct d, time t and mode m, 

and shipment distances that are specific to jdm.  We estimate the following equation separately 

for each mode-HS4 industry so that the intercepts and coefficients are mode-HS4 specific  

      , 4 , 4 , 4
1 2 3=m m hs m hs m m hs m

jckt jckt cj jcktln g ln p ln distance u        (16) 

Using the fitted values, we then predict the unobserved freight rate using observable 

characteristics (mode-HS4, unit prices, and shipment distance).  Much of this data is not specific 

to the firm, and is equivalent to identifying a kind of cost schedule facing firms with particular 

shipment characteristics at a point in time.  The price data are unique to the firm, and following 
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the model, we assume that a given firm charges the same price for both shipment modes. For 

reasons detailed above, differences in the air-ocean freight cost differential across firms also 

results from product price differences, and we include the product price in the regressions.  We 

use customs district data to be more precise about shipment distances but to keep the number of 

observations manageable in the probit equations, we aggregate the fitted freight rates up to the 

coast level. Finally, we omit HS10 products with fewer than 30 observations and drop outlier cases 

(highest and lowest 1% of freight differences, and cases where fitted air shipping charges are less 

than fitted ocean shipping charges. 

 

Additional Specification Issues: 

As in the relative revenue specification we use a Heckman two-step in which the first stage 

predicts the probability of positive exports (to the US in product k at time t) using country j’s 

exports of world k to the world as a whole, and shipping time from j to coast c.   

Quality differences enter as demand shifters in equation (12). The probits are somewhat 

different; since price and quality for a single firm is the same regardless of mode both terms cancel 

in the equation.  However, when we go to the data we exploit variation across firms, and their 

prices and quality will vary.  Consider a model where quality is expensive to produce, like 

Baldwin and Harrigan (2010). High productivity firms produce high quality goods at higher 

marginal cost. Using the logic of our model with per unit shipping charges, this translates to a 

higher likelihood of using air shipping. When we look across firms unobserved quality will be 

correlated with prices, the gap between air and ocean shipping charges, and the likelihood of using 

air shipping. To account for this possibility we incorporate product prices directly in the probit 

equation to absorb quality variation. 

We can then rewrite (15) to reflect the variation across exporter j, HS10 products k, US 

entry coasts c, and time t (at monthly frequencies) and incorporate shipment prices.  For 

simplicity, we follow Table 1 and estimate a single pooled regression.   

.   

     = | = 1.157 ln( ) ln( ) 0.008 1 0.708ln( )

(.41)*** (.008) (.036)***

a o o
jkct jkct jkct jc jkctP m a x f f days p         

High relative air shipping costs and low product prices reduce the probability of using air shipping, 

and both effects are highly significant.  An additional day in transit has a positive effect on the 
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probability of using air shipping with magnitudes similar to those found in the main model in the 

paper.  However, once we cluster the standard errors it is not signficant.  There are a few possible 

reasons for these weaker results in contrast to those from them revenue equation.  First, it may be 

that the model variables have a weak effect on the probability that any particular firm chooses air 

shipping but a strong effect on quantities of trade conditional on a mode being chosen. Second, and 

consistent with the changing coefficients across columns 1-5 of Table 1, there may be substantial 

heterogeneity in quality or variety that is correlated with use of air shipment and with the 

regressors.  We successfully eliminate this in the revenue equations but not the probability 

equations.  Third, it may be that predicting rather than observing freight rates introduces noise in 

the regressor and attenuation bias. 

 

Appendix 2:  Relative Revenues in a Model with Firm Heterogeneity 

Let z  be the constant marginal cost of productions and assume that firms draw their 

productivity from some probability distribution as in Melitz (2003). Based on equation (5), the 

sales of a firm located in country j  are  

 
1

1
( ) = ( ) ( ) = ( )

exp( ) 1
m

j j j jm m
j rj

r z p z q z E z g
days

 
  

            
   (17) 

Assume that the cumulative distribution ( )W z  describes the distribution of z  across firms in 

country j  with support ,H L  such that > > 0H L . Let < < <o e
j jL z z H  be a cutoff such that 

only firms with < e
jz z  export, and only firms with < o

jz z  ocean ship. These cutoffs are 

endogenously determined by the profits at firm realizes employing alternative modes of 

transportation as illustrated in Figure 1, where across countries z represents o
jz and z represents 

e
jz . With a mass of jM  active firms in the economy, the aggregate export revenue generated by 

the ocean shippers is then the integral of (17) over all < o
jz z  applying the distribution ( )W z  and 

the mass of firms jM . This integration is difficult as it is nonlinear in the marginal cost. Therefore 

we apply a second order Taylor approximation to obtain  

 
1

1 1 (1 )( ) ( )
( ) ( )

m m m
j j jm m m

j j j m m
j j

g z
z g g

g


    





    

   


 



38 
 

where m
j is the expected marginal cost of production conditional on transport mode m. 

Applying the linearization to (17), the aggregate export revenues generated by the exporters in 

country j  that ocean ship are 

 
 

1

( ) ( ) ( ) =
1 exp( )

oz j
j j j jL o

j j

E
p z q z M w z dz M

d






  




 
    

    (18) 

  1 (1 )( )
( ) 1 ( )

ooz j jo o
j j o oL

j j

z
g w z dz

g
  





  

   
  

  

 Multiply and divide the right hand side by the probability of being and ocean shipper, ( < ).o
jW z z

Then, because 
( )

( ) = 0
( < )

oz j o
j oL

j

w z
z dc

W z z
   , the aggregate export revenues of the ocean 

shippers simplify to  

  
1

1= ( ) ( ) ( ) = exp( ) ( ) ,
1

oz jo o o o o
j j j j j j j jL

R p z q z w z dz E d g N


    



        (19) 

where = ( < )o o
j j jN M W z z  is the mass of ocean shippers that serve the export market. Similarly 

for the revenues generated by the air shippers we obtain  

  
1

1= exp( ) ( )
1

a a a a a
j j j j jR E g N


    




     

     (20) 

where = ( < < )a o e
j j j jN M W z z z  is the mass of air shippers. Equations (19) and (20) explain the 

industry level observation in the data that mix air and ocean export revenues in a given time period. 

They show that the relative export revenues derived in equation (11) for firms that are homogenous 

within each mode of transportation are a second order approximation of the relative revenues that 

we obtain if the productivity is heterogenous across firms even within each mode of transportation.  

 Applying the same linearization strategy as for the aggregate revenues, we obtain the  

aggregate quantities  

 
   

1 1,       
exp( ) exp( )

o o a a
j j j j

o o a a
j j j jo a

j j j

g g
Q E N Q E N

d

 
  

 
   

 
                     

    
      

 (21) 

Dividing the aggregate revenues by the aggregate quantities we then obtain  
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    ,    
1 1

o a
j jo o o a a a

j j j j j jo a
j j

R R
p g p g

Q Q

  
 

     
 

 (22) 

To derive the estimation specification divide the aggregate air revenues (20) by the aggregate 

ocean revenues (19) and apply ln( ) ln( ) = ln ln ln ln ,a a o o a o a o
j j j j j j j jg g p p f f        

where 1
m
jm

j m

j

g
f

p
  , similar as in equation (9). 
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Figure 2: Trends in Air-Value Shares



Figure 3: Distribution of Air Freight Premia

Unit of observation: HS6×Coast×Year. Air Premium Value =fa − f o =(1+air charge/air value)-
(1+vessel charge/vessel value). Air Premium Weight =ga/go =(air charge/air weight)/(vessel
charge/vessel weight). Both distribtuions drop the 99th percentile of the air premia. The bottom
figure drops negative air permia.



Figure 4: Transit Times



Figure 5: Distribution of Tau Estimates by 5 digit End-Use Category

Note: Time costs are estimated for 110 5-digit end-use categories; 70 of these are significantly
different from zero at the 10 percent level. Model: equation (12). Fixed Effects: HS6×Exporter.



Figure 6: Distribution of Tau Estimates by 5 digit End-Use Category

Note: Time costs are estimated for 110 5-digit end-use categories; 38 of these are significantly
different from zero at the 10 percent level. Model: equation (13). Fixed Effects: HS6×Exporter.



Table 1: Variation in Air and Trade Shares across Commodity Groups and Regions
All Observations Mode Mixing Observations Median Air

Premium
Group Group Share Air Share of Air

of Imports Share Group Imports Share Value Weight

All Imports:
1.00 .28 .75 .30 .05 6.46

Region:
Central America .03 .13 .60 .14 .03 3.25

South America .06 .12 .33 .21 .06 4.91
Europe .28 .39 .73 .38 .03 5.88

Asia .59 .27 .85 .28 .08 7.73
Australia/Oceania .01 .18 .48 .23 .04 6.00

Africa .04 .10 .15 .11 .08 5.42

End Use Categories:
Food .04 .04 .50 .06 .14 7.11

Industrial Supplies .23 .09 .36 .14 .07 8.90
Capital Goods .28 .52 .89 .52 .02 6.77

Automotive .12 .02 .92 .02 .06 7.58
Consumer Goods .30 .31 .86 .24 .06 5.20

Other .02 .80 .95 .80 -.01 7.70

Product Group:
Components .12 .41 .94 .39 .04 6.45

Fresh .01 .23 .49 .23 .17 5.55

Air Premium Value =fa−f o =(1+air charge/air value)-(1+vessel charge/vessel value). Air Premium
Weight =ga/go =(air charge/air weight)/(vessel charge/vessel weight). A mode mixing observation
is a HS6×Exporter×Year×Coast observation that shows positive air and ocean values.
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Table 3: Revenue Specification
(1) (2) (3) (4) (5)

Log Rel. Price -.078 -.074 .027 .009 .067
(.027)∗∗∗ (.020)∗∗∗ (.011)∗∗ (.009) (.014)∗∗∗

Log Rel. Freight Cost -6.460 -5.823 -3.346 -2.673 -3.301
(.355)∗∗∗ (.299)∗∗∗ (.136)∗∗∗ (.113)∗∗∗ (.196)∗∗∗

Transit Days .018 .045 .049 .060 .069
(.008)∗∗ (.010)∗∗∗ (.014)∗∗∗ (.017)∗∗∗ (.018)∗∗∗

Tau .003 .008 .015 .022 .021
(.001)∗∗ (.002)∗∗∗ (.004)∗∗∗ (.007)∗∗∗ (.006)∗∗∗

Fixed Effects None Exporter Exporter Exporter Coast
+HS6 ×HS6 Differenced

Obs. 528977 528976 528721 513424 244530
R2 .121 .157 .356 .571 .159

Estimation of equation (12). Dependent Variable: log(air revenue/ocean revenue). Standard errors
are robust and clustered by exporter. Regressions include a constant.

Table 4: Revenue per Shipment Specification
(1) (2) (3) (4) (5)

Log Rel. Price .037 .039 .038 .046 .070
(.005)∗∗∗ (.004)∗∗∗ (.006)∗∗∗ (.006)∗∗∗ (.007)∗∗∗

Log Rel. Freight Cost -1.861 -1.900 -1.584 -1.509 -1.554
(.094)∗∗∗ (.081)∗∗∗ (.077)∗∗∗ (.075)∗∗∗ (.095)∗∗∗

Transit Days .008 .011 .008 .009 .010
(.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗

Tau .004 .006 .005 .006 .006
(.0008)∗∗∗ (.001)∗∗∗ (.001)∗∗∗ (.001)∗∗∗ (.001)∗∗∗

Fixed Effects None Exporter Exporter Exporter Coast
+HS6 ×HS6 Differenced

Obs. 528977 528976 528721 513424 244530
R2 .049 .057 .144 .351 .041

Estimation of equation (13). Dependent Variable: log(air revenue per shipment/ocean revenue per
shipment). Standard errors are robust and clustered by exporter. Regressions include a constant.
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Table 6: Robustness Checks
(1) (2) (3) (4) (5) (6)

Dep. Variable Revenue Revenue Revenue Revenue Revenue Revenue
in Log: per Ship. per Ship. per Ship.
Robustness Squared Full Freight Rate
Exercise Transit Days Sample Endogeneity
Log Rel. Price .066 .070 .040 .064 -.042 .037

(.013)∗∗∗ (.007)∗∗∗ (.013)∗∗∗ (.007)∗∗∗ (.034) (.020)∗

Log Rel. Freight Cost -3.147 -1.532 -2.488 -1.242 -5.796 -2.763
(.233)∗∗∗ (.094)∗∗∗ (.186)∗∗∗ (.091)∗∗∗ (.828)∗∗∗ (.480)∗∗∗

Transit Days .225 .032 .077 .012 .028 .007
(.038)∗∗∗ (.005)∗∗∗ (.020)∗∗∗ (.002)∗∗∗ (.0006)∗∗∗ (.0003)∗∗∗

Transit Days -.003 -.0005
Squared (.0006)∗∗∗ (.00008)∗∗∗

Lag Dep. Var. .648 .383
(.004)∗∗∗ (.004)∗∗∗

Lag Freight Cost 1.446 .776
(.189)∗∗∗ (.115)∗∗∗

Tau .026 .007 .031 .010
(.006)∗∗∗ (.0009)∗∗∗ (.010)∗∗∗ (.002)∗∗∗

Fixed Effects Coast Differenced Coast Differenced Coast Differenced, IV
Obs. 244530 244530 321744 321744 110754 110754
R2 .21 .045 .153 .045

Standard errors in columns 1-4 are robust and clustered by exporter. The panel IV in columns 5 and
6 was implemented using Stata’s xtivreg command which does not accomodate robust or clustered
standard errors. The first stage R2 for columns 5 and 6 are 0.43 and 0.42. In both IV regressions
the instrument for the contemporaneous log relative freight rate is the second lag of the log relative
freight rate. In both first stage regressions the instrument significantly predicts the endogenous
variable and the F test rejects the null hypothesis that the instruments don’t have a joint impact on
the endogenous variable. Regressions include a constant.
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Table 8: Time Costs by Product Characteristics
(1) (2) (3) (4)

Dependent Variable: Log Revenue Log Revenue per Shipment
Log Rel. Price .009 .009 .046 .046

(.009) (.009) (.006)∗∗∗ (.006)∗∗∗

Log Rel. Freight Cost -2.676 -2.676 -1.510 -1.510
(.114)∗∗∗ (.114)∗∗∗ (.075)∗∗∗ (.075)∗∗∗

Transit Days .060 .060 .008 .009
(.017)∗∗∗ (.017)∗∗∗ (.002)∗∗∗ (.002)∗∗∗

Component Share .122 -.054
(.094) (.036)

Component Share× Days -.002 .004
(.005) (.002)∗∗∗

Fresh Share .697 .306
(.391)∗ (.137)∗∗

Fresh Share × Days -.037 -.010
(.018)∗∗ (.007)

Tau (Share=0) .023 .023 .005 .006
(.007)∗∗∗ (.007)∗∗∗ (.001)∗∗∗ (.001)∗∗∗

Tau (Share=1) .022 .009 .008 -.0006
(.006)∗∗∗ (.005) (.001)∗∗∗ (.004)

Fixed Effects: Exporter × HS6
Obs. 512012 512012 512012 512012
R2 .571 .571 .352 .352

Estimation of equations (12) and (13) by product characteristics. Standard errors are robust and
clustered by exporter. Regressions include a constant.




