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An extensive literature has documented the fact that interest-rate differentials across countries

are not, on average, counteracted by offsetting currency movements. As a result, it is possible to

earn excess returns by investing in high-interest-rate currencies and borrowing in low-interest-rate

currencies.

This paper presents a simple two-country model in which this failure of uncovered interest parity

(UIP)—also known as the forward premium puzzle—emerges in equilibrium. The outputs of the two

countries are imperfect substitutes for one another, so units matter, and there are two separate term

structures of interest rates, one for each good. Global financial markets are assumed to be perfectly

integrated; assets are real rather than nominal, and are priced as if by a representative global investor

with power utility; there are no non-tradable goods, no liquidity issues, no portfolio constraints.

Even so, UIP fails to hold. Suppose, for example, that both countries have the same distribution

of output growth, and that one country is much smaller than the other. In equilibrium, the smaller

country has a higher short-term real interest rate. (Hassan (2009) documents that small countries

tend to have higher nominal interest rates.) As a result, UIP fails, since the small country’s exchange

rate does not depreciate enough, on average, to offset the interest-rate differential. In fact, on the

contrary, the exchange rate is expected to appreciate—an example of Siegel’s (1972) “paradox”—so

UIP fails in the strong sense that this expected appreciation actually increases the expected excess

return on the carry trade.

Why does the smaller country have a higher interest rate? Any risk-based explanation must

provide a story for why the small country’s bond underperforms in bad states of the world. In

the model considered here, bad states are those in which the large country experiences low output

growth, since its output contributes the majority of the representative investor’s consumption. But

bad news for the large country corresponds to an increase in the relative supply of the small country’s

good, and so to a depreciation in its exchange rate. This depreciation also causes the small-country

bond to underperform; hence the risk premium.

Figure 1 provides an illustration. It shows a sample realization over a two-year period, in a

numerical example in which output growth is i.i.d. across the two countries.1 Panel 1a plots the paths

of exogenous fundamentals: the outputs, or dividends, produced by the two countries. Initially, the

larger country (black line) contributes 80% of global output.2 After about 0.6 years, it experiences a

1Although the paper’s theoretical results cover the case in which dividends are correlated across countries, I use this

i.i.d. example throughout the paper so that all correlations and asymmetries that emerge do so endogenously.
2The example is set up so that the exchange rate initially equals 1: thus the large country’s time-0 output share, in

common units, is 4/(4 + 1) = 0.8. In the notation that will be introduced below—and labelling the small country as
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Figure 1: Sample paths of perpetuity prices in each currency, for different values of η. Each figure

is plotted on a log scale, and is based on the same underlying path of fundamentals, shown in panel

(a).
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disaster that causes its output to drop; the smaller country experiences a similar disaster after about

1.5 years.

The panels below show how the behavior of perpetuity prices depends on the elasticity of sub-

stitution between goods, η, with the large country’s bond in black and the small country’s bond in

red. The left-hand column sets η = 1, so that consumption is a Cobb-Douglas aggregator of the

two goods. Panels 1b and 1e illustrate the well-known feature of the Cobb-Douglas setup that bond

prices are constant in their own currency, despite the large shocks each country experiences. On the

other hand, the exchange rate is extremely volatile, so for example the price of the large country’s

bond, denominated in the small country’s units, jumps up when the large country experiences its

output disaster. The right-hand column shows the other extreme, in which the two goods are perfect

substitutes. The exchange rate effect disappears: panels 1d and 1g show that bond prices in the

perfect substitutes case are the same—and time-varying—in each set of units. Put crudely, in the

Cobb-Douglas case all the action is in exchange rates and none in valuation ratios, in conflict with

the empirical evidence that movements in valuation ratios are a major driver of movements in asset

prices;3 and in the perfect substitutes case all the action is in valuation ratios and none in exchange

rates.

In between, both effects are present. Panel 1c shows that in large country units, exchange rate

movements exacerbate the poor performance of the small country’s bond when the large country

suffers its disaster. As a result, the small bond is riskier than the large bond, and so the overall level

of the small bond’s price is lower, reflecting higher interest rates in the small country and hence the

emergence of a carry trade. Notice, also, that the carry trade experiences severe underperformance

at times of large-country disaster. Panel 1f shows the corresponding plots viewed in small country

units. The large country’s disaster reduces the relative supply of its good, so its currency appreciates.

In small-country units, the large country’s bond therefore outperforms at the time of disaster and

hence is a hedge, so earns a negative excess return.

The price-dividend ratios of the output claims associated with each of the two countries also

depend on the relative size of the two economies, as in Cochrane, Longstaff and Santa-Clara (2008)

and Martin (2011a). If, say, the large country experiences bad output news then the other country’s

output share increases; its output claim is now riskier—more correlated with consumption growth—

so requires a higher excess return and a lower price-dividend ratio. In this way, shocks to one country

country 1, with a 20% output share—s0 = w = 0.2.
3See, for example, Campbell and Ammer (1993), or Cochrane (2008) for a recent survey.
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affect asset valuations in the other country. Furthermore, if goods are imperfect substitutes, then the

small country’s currency depreciates when the large country experiences bad output news, as before.

This amplifies the underperformance of the small-country output claim in large-country units. Figure

5, in the Appendix, illustrates this, using the same sample paths for output as Figure 1.

To what extent are these effects dependent on the particular numerical example chosen? Less

than one might think: the failure of UIP occurs in any calibration of the model, and I also provide

economically interpretable nonparametric conditions under which I am able to sign the direction

in which UIP fails—that is, to show when it is the small country whose bonds are risky, as in the

example above. An unusual feature of the paper is that it develops a method of demonstrating that

this relationship holds in a diagrammatic way via visual proofs. (These visual proofs were the original

route to the more conventional algebraic proofs which are also provided.) I apply this nonparametric

approach to show that various other relationships hold within the model, for example between risk

premia on the large and small countries’ output claims, in own and foreign units.

Frankel (1980), Hansen and Hodrick (1980), and Fama (1984) are amongst the early contributions

to the literature on the forward premium puzzle. More recently, Brunnermeier, Nagel and Pedersen

(2008) and Jurek (2009) have emphasized the fact that realized returns on carry trade strategies are

negatively skewed. Burnside, Eichenbaum, Kleshchelski and Rebelo (2008) suggest that the excess

returns apparently available on the currency carry trade may reflect a peso problem; but Jorda and

Taylor (2009) argue that the forward premium puzzle returns once one considers more sophisticated

carry trade strategies that exploit information about fundamentals. More generally, Dumas, Harvey

and Ruiz (2003) present evidence that international markets are well integrated; Lustig, Roussanov

and Verdelhan (2009) provide support for the idea that the behavior of international asset prices is

amenable to a risk-based explanation; and Hollifield and Yaron (2001) argue that models of currency

risk premia should focus on real, as opposed to nominal, risk. Alvarez, Atkeson and Kehoe (2007),

working in a lognormal framework, emphasize the contrast between the data and the predictions of

conventional macroeconomic models.

Various theoretical models have been offered in response to this evidence. Verdelhan (2010)

considers a model with habit formation. Colacito and Croce (2010) and Bansal and Shaliastovich

(2010) argue that long-run risk, together with Epstein-Zin preferences, can explain the forward pre-

mium puzzle. Farhi, Fraiberger, Gabaix, Ranciere and Verdelhan (2009) construct a model featuring

rare disasters, and present supporting evidence from FX option data. Hassan (2009) linearizes a

two-period lognormal model with nontraded goods and introduces money via a cash-in-advance con-
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straint. Plantin and Shin (2008) present a game theoretic analysis in an environment with trading

frictions; their model endogenously generates sudden losses on the carry trade. Backus, Gavaz-

zoni, Telmer, and Zin (2010) explore the failure of UIP in a nominal, lognormal, framework with

exogenously specified Taylor rules.

This paper makes comparatively simple assumptions about preferences and cashflows and em-

phasizes, instead, the interaction between intratemporal and intertemporal prices. Although the

ingredients of the model are fairly standard, it has not previously been solved. I compute asset

prices by extending the approach of Martin (2011a) to the imperfect substitution case; this avoids

the need to rely on log-linearizations, on log utility, or on a unit elasticity of substitution between

goods. The framework does allow for jumps, but none of the qualitative results depends on their

presence. However, allowing for the possibility of jumps shows that the results hold independently

of Merton’s (1973) ICAPM, since the ICAPM does not hold once asset prices can jump.4 Moreover,

there is an increasingly large body of work that emphasizes the importance of nonlognormality in

financial markets (Rietz (1988), Barro (2006), Martin (2011b)). The challenge is to allow for non-

lognormality without sacrificing tractability; my approach lets me do so in a model that is hard to

solve even in the lognormal case. Cole and Obstfeld (1991), Zapatero (1995), Pavlova and Rigobon

(2007), and Stathopoulos (2009) also explore the consequences of intratemporal price adjustment,

but all four papers rely on assumptions of log utility and unit elasticity of substitution between

goods in deriving their analytical results. To my knowledge, no other papers in this literature derive

calibration-free results of the type derived here.

The next section discusses UIP and the forward premium puzzle, and lists some necessary ingre-

dients of any model in which UIP fails to hold. Section 2 sets up the model, which contains these

ingredients. Section 3 characterizes asset prices, the exchange rate, and expected returns. Section 4

considers the small-country limit. Section 5 concludes. All proofs are in the Appendix.

1 UIP and the forward premium puzzle

UIP is a conjectured relationship between next year’s spot exchange rate between two countries,

et+1, today’s spot exchange rate, et, and 1-year interest rates in each country, i1,t and i2,t:

E log et+1 = log et + i1,t − i2,t . (1)

4See Adler and Dumas (1983) for an early application of ICAPM logic to international finance.
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The thought behind (1) is this: if country 2 has a lower interest rate than country 1, surely this

should be compensated by the expected appreciation of its currency? Unfortunately this natural

idea is decisively rejected by the data: in the relationship

log et+1 − log et = a0 + a1(i1,t − i2,t) + εt+1 , (2)

UIP holds if a0 = 0 and a1 = 1. Typically, however, a1 is estimated to be close to zero, or even

negative.

An equivalent formulation of the UIP relationship exploits covered interest parity, which is the

no-arbitrage relationship between today’s 1-year forward exchange rate, ft, today’s spot exchange

rate, and the two countries’ 1-year rates: log ft = log et+i1,t−i2,t. This shows that (1) is equivalent to

E log et+1 = log ft. The failure of UIP can therefore be rephrased as the failure of forward exchange

rates to be unbiased predictors of future exchange rates.

We can also use the fact that et+1/et = M2,t+1/M1,t+1—where Mi,t+1 is the stochastic discount

factor that prices assets denominated in the units of country i, i = 1, 2—to gain some understanding

of necessary ingredients of models that generate the violation of UIP. For, we can take logs then

expectations to conclude that, as an identity,

Et∆ log et+1 = Et logM2,t+1 − Et logM1,t+1 . (3)

Now, if M1,t+1 and M2,t+1 were roughly constant—as would be the case if either there were little

risk in the economy, or if investors were roughly risk-neutral—then we could approximate (3) by

Et∆ log et+1 ≈ logEtM2,t+1 − logEtM1,t+1 = i1,t − i2,t . (4)

That is, UIP can be formally justified in economies in which either the price or quantity of risk is

very low. Empirically, however, high Sharpe ratios—the equity premium puzzle—tell us that the

stochastic discount factors Mi,t+1 are volatile. Thus the move from (3) to (4) was not justified, and

we must take the effects of Jensen’s inequality into account, arriving at the identity

Et∆ log et+1 = i1,t − i2,t + logEtM1,t+1 − Et logM1,t+1︸ ︷︷ ︸
Lt(M1,t+1)

− (logEtM2,t+1 − Et logM2,t+1)︸ ︷︷ ︸
Lt(M2,t+1)

. (5)

The terms Lt(Mi,t+1) measure the variability of the SDFs; following Backus, Chernov and Martin

(2011), I call Lt(Mi,t+1) the entropy of Mi,t+1. High SDF entropy translates into high attainable

expected risk-adjusted returns (Bansal and Lehmann (1997), Alvarez and Jermann (2005)), much as

high SDF volatility translates into high attainable Sharpe ratios (Hansen and Jagannathan (1991)).

7



The identity (5) reveals some necessary ingredients of any model in which UIP fails to hold (a point

originally made by Fama (1984), and later revisited by Backus, Foresi and Telmer (2001)). First, as

discussed, the entropies of M1,t+1 and M2,t+1 must be non-zero and economically significant: risk

must matter. Second, there must be an asymmetry: if the entropies were equal they would cancel out,

returning us to a world in which UIP held. Third, to generate the patterns found when estimating

(2), Lt(M1,t+1)− Lt(M2,t+1) should be small at times when i1,t − i2,t is high: if a country has high

interest rates then assets denominated in its currency should earn relatively low risk premia. The

model that follows has these properties.

2 Setup

There are two countries with output streams {D1t} and {D2t} respectively, at least one of which is

nondeterministic. I assume that global markets are perfectly integrated, so assets are priced by a

representative global investor with expected utility

E
∫ ∞
0

e−ρt
C1−γ
t

1− γ
dt ,

where Ct is the consumption aggregator

Ct ≡
[
w1/ηD

η−1
η

1t + (1− w)1/ηD
η−1
η

2t

] η
η−1

.

Here w controls the relative importance of goods 1 and 2, and η ∈ [1,∞) is the elasticity of in-

tratemporal substitution between the goods of the two assets. Write u(D1t, D2t) ≡ C1−γ
t /(1 −

γ) for the instantaneous felicity function, ui(D1t, D2t) for the marginal utility of good i, et ≡

u2(D1t, D2t)/u1(D1t, D2t) for the intratemporal price of a unit of good 2 in units of good 1, and

Miτ ≡ e−ρ(τ−t)ui(D1τ , D2τ )/ui(D1t, D2t) for the stochastic discount factor that prices time-τ claims

to good i. The stochastic discount factors M1τ and M2τ and the relative price et are linked by the

equation
eτ
et

=
M2τ

M1τ
,

which appears as Proposition 1 of Backus, Foresi and Telmer (2001) and as equation 1 of Brandt,

Cochrane and Santa-Clara (2006). For consistency with these papers, I will refer to et as the exchange

rate. (International economists would refer to it as the terms of trade.) When the relative supply of

country 2’s good declines, its relative price—the exchange rate et—increases.
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The price at time t of asset i, in units of good i (“in i-units”) is

Pit = E
∫ ∞
t

MiτDiτ dτ (6)

from Lucas’s (1978) Euler equation. It is important to emphasize that the perturbation logic under-

lying (6) implies that the price Pit is denominated in units of good i.5 I use stars to indicate a price

not expressed in its own units: P ∗2t = P2tet and P ∗1t = P1t/et.

Similarly, the price of a perpetuity, or consol bond, that pays out a constant stream of good i

dividends at a rate of one per unit time, is (in own units)

Bit = E
∫ ∞
t

Miτ dτ . (7)

The outputs of the two countries, D1t and D2t, are taken as exogenous—though they could also

be thought of as being determined by a production side of the economy that is left unmodelled

here—and are assumed to have dividend growth that is i.i.d. over time, though not necessarily across

countries. Formally, ỹit ≡ yit − yi0 ≡ logDit − logDi0 is a Lévy process for i = 1, 2. The relevant

properties of the dividend growth processes are conveniently summarized by the cumulant-generating

function (CGF) c(θ1, θ2) ≡ logE [exp {θ1(y1,t+1 − y1,t) + θ2(y2,t+1 − y2,t)}].6

One of the main themes of the paper is that by exploiting general properties of CGFs, it is possible

to establish features of asset prices in this economy that hold not just for a particular calibration

but for a whole family of driving stochastic processes. The most important such property is that

CGFs are always convex. But I also find it helpful to introduce three nonparametric properties,

each of which the CGF may or may not possess. The first is the exchangeability property,7 which

holds if c(θ1, θ2) = c(θ2, θ1). This can be thought of as imposing a cet. par. assumption: it ensures

the two countries have the same means and volatilities of output growth, the same arrival rates of

jumps, and so on. It therefore focusses attention on the underlying economic mechanism and on

the consequences of asymmetry in country size alone. The second is the convex difference property,

which is a restriction on the higher cumulants of log output growth. It holds in the lognormal

case, and more generally it ensures, roughly speaking, that output growth in each country is not

5In theory, a natural approach would be to work in different units—perhaps the price of the international consump-

tion bundle Ct. My approach is intended to mirror how financial economists think, and work, in practice, i.e. in terms

of dollars and yen and so on, rather than some notion of a global unit of purchasing power.
6Cumulants and cumulant-generating functions are also discussed by Backus, Foresi and Telmer (2001), Backus,

Chernov and Martin (2011) and Martin (2010).
7Two random variables X1, X2 are said to be exchangeable if the joint distribution of (X1, X2) is the same as that

of (X2, X1).
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positively skewed. The third is the linked fundamentals property. In the lognormal case, it is natural

to consider imposing the economically plausible assumption that the correlation between the two

countries’ output growth is nonnegative. The linked fundamentals property, which is the appropriate

generalization of this idea to arbitrary Lévy processes, requires that the CGF is supermodular.

I illustrate the results with parametric examples. The framework permits these to be flexibly

specified; I assume that the log outputs have a correlated Brownian motion component with drifts

µi, volatilities σi, i = 1, 2, and correlation κ. There are also two kinds of jumps. The first kind affects

country i idiosyncratically. The second hits both countries simultaneously; the sizes of such jumps

may or may not be correlated. Jumps arrive at times dictated by Poisson processes with arrival rates

ω1 and ω2 for the idiosyncratic jumps, and ω for the simultaneous jumps. Jump sizes are lognormal:

when country i experiences an idiosyncratic jump, the size of that jump is lognormal with mean µJ,i

and volatility σJ,i. When there is a simultaneous jump, the sizes of jumps in the two countries are

jointly lognormal, with means νi, volatilities τi and correlation ξ. The resulting CGF is

c(θ1, θ2) = µ1θ1 + µ2θ2 +
1

2
σ21θ

2
1 + κσ1σ2θ1θ2 +

1

2
σ22θ

2
2 +

+ ω1

(
eµJ,1θ1+

1
2
σ2
J,1θ

2
1 − 1

)
+ ω2

(
eµJ,2θ2+

1
2
σ2
J,2θ

2
2 − 1

)
+

+ ω
(
eν1θ1+ν2θ2+

1
2
τ21 θ

2
1+ξτ1τ2θ1θ2+

1
2
τ22 θ

2
2 − 1

)
. (8)

For notational convenience, let χ = (η−1)/η and γ̂ = (γ+χ−1)/χ. The variable χ ranges between

0 (the Cobb-Douglas case) and 1 (the perfect substitutes case). I make the following assumptions:

Assumption 1. γ ≥ 1 and η ≥ 1.

Assumption 2 (Finiteness conditions). Tastes and technologies are such that

ρ− c[χ(1− γ̂/2),−χγ̂/2] > 0

ρ− c[−χγ̂/2, χ(1− γ̂/2)] > 0

ρ− c[χ(1− 1/χ− γ̂/2),−χγ̂/2] > 0

ρ− c[−χγ̂/2, χ(1− 1/χ− γ̂/2)] > 0.

Typical estimates in the literature put both γ and η somewhere in the range 2–10, so Assumption

1 is very mild. It implies that γ̂ ≥ 0. Assumption 2 requires that the discount rate is sufficiently

high. It ensures that expected utility is finite, as I show in the course of proving Result 2.
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3 Prices, interest rates and expected returns

Price-dividend ratios, interest rates, expected returns, and the exchange rate depend on the relative

sizes of the two countries. The appendix shows that country 1’s share of world output denominated

in common units, st ≡ D1t/(D1t+et ·D2t) ∈ (0, 1), can be used as the state variable for the economy.

In some respects, though, it is more natural to use ût, a monotonic transformation of st, as the state

variable: ût ≡ log[(1 − st)/st]. I express formulas in terms of ût, but plot graphs against the more

easily interpreted st. I drop subscripts when referring to the current (time-0) value of either variable,

so s = s0 and û = û0. If country 1 has a small share of output, s is small and û is large.

Result 1 (Exchange rate). The exchange rate et can be expressed in terms of ût via

et = [(1− w)/w](1−χ)/χ · e−[(1−χ)/χ]ût . (9)

The expected appreciation in good 1’s relative price, FX∗1 , is

FX∗1 dt ≡
Ed(1/et)

1/et
= c(χ− 1, 1− χ) dt, (10)

and the expected appreciation in good 2’s relative price, FX∗2 , is

FX∗2 dt ≡
Edet
et

= c(1− χ, χ− 1) dt. (11)

The average expected appreciation, (FX∗1 + FX∗2 )/2, is positive—an example of Siegel’s (1972)

“paradox”.

Figure 2a shows how the exchange rate varies as a function of country 1’s output share. When

country 1 is small, its goods are in short supply so command a high price. (In the perfect-substitutes

case, η =∞, the relative price would always equal 1, independent of country 1’s output share.) The

figure assumes that the representative investor has time preference rate ρ = 0.04 and risk aversion

γ = 4; that the weight of country 1 in the consumption aggregator is w = 0.2, and the elasticity

of substitution between goods is η = 2; and that the parameters governing technologies are, in the

notation of (8), µ1 = µ2 = 0.02, σ1 = σ2 = 0.1, κ = 0, ω1 = ω2 = 0.02, µJ1 = µJ2 = −0.2,

σJ1 = σJ2 = 0.1, and ω = 0. I choose these parameter values to prove a clean illustration of the

model because they ensure that countries have independent fundamentals and that the two countries

have identically distributed output growth, so that any correlations or asymmetries that emerge are

endogenous. The same calibration is used throughout the paper.
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Figure 2: Left: The exchange rate—the relative price of good 2 in units of good 1—plotted on a

logarithmic scale against s, the output share of country 1. Right: Price-dividend ratio on asset 1,

plotted against s, in the imperfect substitution case η = 2 (black) and the perfect substitution case

(dashed red).

The next result provides integral formulas for the price-dividend ratios of the two countries’

output claims and for the prices of perpetuities that deliver a unit of good i per unit of time. Since

the integrands in these formulas decay exponentially fast, the integrals can be numerically evaluated

effectively instantaneously.8

Result 2 (Valuation ratios). The price-dividend ratios, Pit/Dit, of each country’s output claim, and

the perpetuities denominated in each good, Bit, i = 1, 2, are given by

P1t/D1t = V1,0(ût) (12)

P2t/D2t = V0,1(ût) (13)

B1t = V1−1/χ,0(ût) (14)

B2t = V0,1−1/χ(ût), (15)

where

Vα1,α2(û) ≡
(
eû/2 + e−û/2

)γ̂ ∫ ∞
−∞

eiûvF (v)

ρ− c[χ(α1 − γ̂/2− iv), χ(α2 − γ̂/2 + iv)]
dv (16)

and F (v) is defined in terms of the Beta function, F (v) ≡ 1
2π ·B(γ̂/2− iv, γ̂/2 + iv).

8The integrals can also be expressed in closed form in terms of hypergeometric functions if output growth is

lognormal, as in Martin (2011a).
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These valuation ratios move around over time as dividends, and hence ût and st, move around.

Figure 2b plots the price-dividend ratio of the claim to country 1’s output stream, P1/D1, against

country 1’s output share, s. The solid line is the price-dividend ratio in the imperfect substitution

case, using the same calibration as above, and the dashed line shows the price-dividend ratio in the

perfect substitutes case.

The price-dividend ratio increases sharply as country 1’s share of output declines in both the

perfect and imperfect substitution cases, though the effect is muted in the latter case. To understand

why, we must turn to the behavior of interest rates and risk premia.

Each good has its own set of zero-coupon bond prices, and attached to these bond prices are

zero-coupon yields, which also move around over time, as shocks to the dividends of the two trees

induce changes in û. Three measures of interest rates9 are particularly natural: the riskless rates for

each good, calculated from zero-coupon yields in the limit as T ↓ 0; coupon yields on perpetuities,

1/BiT , provided by equations (14) and (15); and long rates, which are calculated from zero-coupon

yields as T ↑ ∞.

Result 3 (Interest rates). Writing YT,i(û) for the continuously compounded T -period zero-coupon

yield in i-units when the current state is û, we have

YT,1(û) =
−1

T
log

{(
eû/2 + e−û/2

)γ̂ ∫ ∞
−∞

eiûvF (v)e−{ρ−c[χ(1−1/χ−γ̂/2−iv),χ(−γ̂/2+iv)]}T dv

}
YT,2(û) =

−1

T
log

{(
eû/2 + e−û/2

)γ̂ ∫ ∞
−∞

eiûvF (v)e−{ρ−c[χ(−γ̂/2−iv),χ(1−1/χ−γ̂/2+iv)]}T dv

}
.

The riskless rates, Rf,i(û) = limT↓0 YT,i(û), i = 1, 2, are

Rf,1(û) =
(
eû/2 + e−û/2

)γ̂ ∫ ∞
−∞

eiûvF (v) {ρ− c[χ(1− 1/χ− γ̂/2− iv), χ(−γ̂/2 + iv)]} dv

Rf,2(û) =
(
eû/2 + e−û/2

)γ̂ ∫ ∞
−∞

eiûvF (v) {ρ− c[χ(−γ̂/2− iv), χ(1− 1/χ− γ̂/2 + iv)]} dv.

9These are “own-rates of interest”—a concept emphasized by Sraffa (1932), who also provides a picturesque de-

scription of covered interest parity: “[W]e need not stretch our imagination and think of an organised loan market

amongst savages bartering deer for beavers. Loans are currently made in the present world in terms of every commodity

for which there is a forward market. When a cotton spinner borrows a sum of money for three months and uses the

proceeds to purchase spot, a quantity of raw cotton which he simultaneously sells three months forward, he is actually

‘borrowing cotton’ for that period. The rate of interest which he pays, per hundred bales of cotton, is the number of

bales that can be purchased with the following sum of money: the interest on the money required to buy spot 100

bales, plus the excess (or minus the deficiency) of the spot over the forward prices of the 100 bales.”
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Long rates, Y∞,i ≡ limT↑∞YT,i(û), are independent of û, hence constant over time:

Y∞,1 = max
θ∈[0,γ+χ−1]

ρ− c(θ − γ,−θ) (17)

Y∞,2 = max
θ∈[1−χ,γ]

ρ− c(θ − γ,−θ) . (18)

In this notation, the currently prevailing one-year rate in country j, as discussed in Section 1, is

ij,t = Y1,j(û). Figure 3a shows how the riskless rate (black solid line), perpetuity yield (red dashed

line), and long rate (blue dotted line) depend on s. Riskless rates are low when s is close to 0 or to 1

due to precautionary savings demand in the face of an unbalanced—because poorly technologically

diversified—economy, and high when s is close to 0.5. Country 1’s yield curve can be upward-sloping

(if its output share is close to 0 or to 1), downward-sloping (if its output share is close to about 0.45),

or hump-shaped (for output shares close to 0.3 or to 0.6).

0.2 0.4 0.6 0.8 1.0
s

0.01

0.02

0.03

0.04

0.05

0.06

(a) Interest rates plotted against output share

1 2 3 4
t

0.96

0.98

1.00

1.02

1.04

(b) Forward and expected spot exchange rates

Figure 3: Left: The riskless rate (black solid), perpetuity yield (red dashed), and long rate (blue

dotted) in 1-units plotted against s. Right: Forward price to time t of good 2 in 1-units (F0→t, black

solid), expected future spot prices (E et = E 1/et, red dashed), and forward price of good 1 in 2-units

(1/F0→t, blue dotted), plotted against t, assuming starting share s = 20%.

The figure is not symmetric: the interest rate in good 1 is higher when country 1 is small than

when it is large. In this example, as country 1’s share of global output declines to zero, its interest

rate approaches 3.25% while the large country’s interest rate drops to 1.18%. From the perspective

of an investor (or economist) thinking in large country units, this might suggest the following carry

trade: borrow at the large-country interest rate of 1.18%, and invest in the small-country interest

rate of 3.25%. We have not yet taken into account the effects of exchange-rate movements, however.

Before doing so, remember that in this example the exchangeability property holds:
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Property 1 (Exchangeability). c(θ1, θ2) = c(θ2, θ1) for all θ1, θ2.

From Result 1, we know that (FX∗1 + FX∗2 )/2, is positive. But by the exchangeability property,

we also know from equations (10) and (11) that FX∗1 = FX∗2 , and hence that both are strictly

positive. Thus exchange rate movements actually work in favor of the carry trade. The reason for

the carry trade’s excess return is (of course) that it is risky: if the large country has bad news, the

small country’s exchange rate deteriorates, and the carry trade has a low return.

Returning to the general case, we can now see how the model generates the failure of uncovered

interest parity in the regression (2). From equation (9) we see that, by construction, log et+1−log et is

independent of information known at time t, because ût inherits the independent increments property

from the Lévy process that drives fundamentals. Therefore cov(log et+1 − log et, i1,t − i2,t) = 0;

combining this with the fact that var(i1,t − i2,t) 6= 0, we have

Result 4 (Failure of UIP). Interest-rate differentials are totally uninformative about future move-

ments of the exchange rate: plim(a1) = 0 for generic calibrations.

Given that the random walk nature of log et+1 − log et was hard-wired in, the interesting aspect

of the model is not that it generates cov(log et+1 − log et, i1,t − i2,t) = 0, but that interest rates can

vary across countries, var(i1,t − i2,t) 6= 0, despite the random walk character of exchange rates.

We can also interpret the failure of UIP in terms of forward rates. Define F0→t to be the time-0

forward price of good 2 in 1-units, for settlement at t. A standard no-arbitrage argument implies

that this forward exchange rate is determined by the spot exchange rate and t-period interest rates

in the two countries: F0→t = e0 · exp {(Yt,1 − Yt,2)t}. Figure 3b shows how the forward exchange

rates F0→t (black solid line) and 1/F0→t (blue dotted line) compare to expected future spot exchange

rates E et and E 1/et (red dashed line) in the numerical example. The starting share of country 1

is s = w = 0.2, so the current spot exchange rate is e0 = 1. Since the example features symmetric

output growth processes, expected future spot exchange rates (shown as a dashed red line) are

the same from the perspective of both countries—E et = E 1/et—and they lie above the spot price

(Siegel’s paradox again). The forward price of good 2 is even higher than its expected future spot

price, while the forward price of good 1 moves in the opposite direction to its expected future spot

price, because interest rates are higher in country 1 than in country 2. This is another manifestation

of the violation of UIP.10

10I plot Figure 3b in levels rather than in logs to show the limited quantitative importance of Siegel’s paradox. In

logs, Figure 3b would show expected appreciation of the log exchange rate equal to zero at all time horizons, and the

lines depicting forward prices would fan out symmetrically around it.
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When the exchangeability property holds, long rates, unlike short rates, are equal across countries:

Y∞,1 = Y∞,2. Given that long rates are constant, this is economically obvious, but to see it formally,

rewrite equation (18) as Y∞,2 = maxθ∈[0,γ+χ−1] ρ−c(−θ, θ−γ). This equals Y∞,1, given in equation

(17), because c(−θ, θ − γ) = c(θ − γ,−θ) by exchangeability. This has an implication that is

interesting in its own right: Y∞,1 = Y∞,2 = ρ− c(−γ/2,−γ/2), so long rates are independent of the

elasticity of substitution between goods.

The expected return, ER, on an asset with price P and instantaneous dividend D is

ERdt ≡ EdP
P

+
Ddt

P
.

This expected return is calculated in the asset’s own units. The expected return on asset 2 in units

of country 1 is

ER∗2 dt ≡
Ed(eP )

eP
+
eD dt

eP
=

Ed(eP )

eP
+
Ddt

P
.

The dividend yield component of expected returns is unit-free, but the expected capital gains com-

ponent depends on exchange rate movements. To the extent that these are correlated with asset

prices, there will be an associated risk premium.

Result 5 (Expected returns). Expected returns, ERα1,α2,λ1,λ2(û), are given by

ERα1,α2,λ1,λ2(û) =
1 +Gα1,α2,λ1,λ2(û)

Vα1,α2(û)
(19)

where Gα1,α2,λ1,λ2(û) is defined to equal

γ̂∑
m=0

(
γ̂

m

)
e(γ̂/2−m)û

∫ ∞
−∞

eiûvF (v)c(λ1 +mχ− γ̂χ/2− iχv, λ2 −mχ+ γ̂χ/2 + iχv)

ρ− c[χ(α1 − γ̂/2− iv), χ(α2 − γ̂/2 + iv)]
dv,

and the values of α1, α2, λ1, λ2, which depend on the asset and reference units of interest, are provided

in Table 1.

Figure 4 shows how risk premia on the good-1 consol bond and on asset 1, in each set of units,

depend on s. Own-unit risk premia are shown in black, and foreign-unit risk premia are shown as

blue dotted lines. The risk premia that would prevail if the goods of the two countries were perfect

substitutes are shown as red dashed lines.

Country 1’s bond earns a risk premium in its own units because interest rates rise in bad times:

if country 1 is small—s is small—then bad times correspond to bad news for country 2 and hence

to a rise in s and (see Figure 3) country 1’s riskless rate; and if country 1 is large—s is large—then
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Expected returns in 1-units Expected returns in 2-units

α1 α2 λ1 λ2 α1 α2 λ1 λ2

tree 1 1 0 1 0 1 0 χ 1− χ

tree 2 0 1 1− χ χ 0 1 0 1

bond 1 1− 1/χ 0 0 0 1− 1/χ 0 χ− 1 1− χ

bond 2 0 1− 1/χ 1− χ χ− 1 0 1− 1/χ 0 0

Table 1: Values of α1, α2, λ1, λ2 for Result 5.
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(a) Good-1 bond risk premia
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(b) Asset 1 risk premia

Figure 4: Left: Good-1 bond risk premia in 1-units (black solid) and in 2-units (blue dotted) and,

for comparison, in the perfect substitutes case (red dashed). Right: Asset 1 risk premia in 1-units

(black solid) and in 2-units (blue dotted) and in the perfect substitutes case (red dashed).

bad times correspond to bad news for country 1, and hence to a decline in s and a rise in country 1’s

riskless rate. Thinking in foreign units, the sign of the risk premium on country 1’s bonds depends

on the size of country 1. If it is small, then the risk premium on country 1’s bond is even larger, due

to the relative price effects discussed above: bad states of the world are those in which country 2 has

bad news, the relative supply of country 1’s good increases, and its relative price declines. This poor

performance in bad states makes country 1’s bonds risky, so they require a sizeable risk premium.

If, on the other hand, country 1 is large, then bad states of the world are associated with a decline

in the relative supply of its own good, associated with a favorable exchange rate adjustment. That

is, country 1’s bond is a hedge, so it earns a negative risk premium.

Figure 4b plots risk premia for asset 1 itself. In own units, the risk premium on asset 1 increases as

country 1’s output share—and hence its correlation with overall consumption—increases. In foreign
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units, the exchange rate effect described in the previous paragraph continues to operate, driving the

risk premium up if country 1 is small, or down if country 1 is large.

4 The small-country limit

These complicated characterizations of riskless rates, price-dividend ratios, and expected returns

simplify considerably in the small-country limit in which country 1 is very small and country 2

very large; the ability to take limits of the integral formulas is a major advantage of my analytical

approach over the loglinearization approach. In the limit, several features of the model emerge more

clearly, and those emphasized in the example above turn out to be characteristic of a whole family

of possible calibrations.11

In this section, I assume that ρ − c(χ, 1 − χ − γ) > 0, so that the price-dividend ratio of each

country’s output claim is finite in the limit;12 that Rf,1 > 0 and Rf,2 > 0, so that perpetuities have

finite prices; and, strengthening Assumption 1, that γη > 2.13

Result 6 (Asset pricing in the small-country limit). Interest rates are

Rf,1 = ρ− c(χ− 1, 1− χ− γ) (20)

Rf,2 = ρ− c(0,−γ). (21)

Since interest rates are constant, perpetuities are riskless when denominated in their own units,

so do not earn a risk premium. But if returns are computed in foreign units, then a good-i perpetuity

does earn a risk premium, written XS∗B,i, where

XS∗B,1 = c(χ− 1, 1− χ) + c(0,−γ)− c(χ− 1, 1− χ− γ) (22)

XS∗B,2 = c(1− χ, χ− 1) + c(χ− 1, 1− χ− γ)− c(0,−γ). (23)

11By a continuity argument, the strict inequalities presented in Results 7, 8 and 9 of this section also hold away from

the limit point, so long as country 1 is sufficiently small relative to country 2.
12Rather than merely for s ∈ (0, 1), as is ensured by previous assumptions. Strictly speaking, we could allow

ρ− c(χ, 1− χ− γ) < 0 so long as ρ− c(0, 1− γ) > 0, because this is enough to ensure that the large country’s output

claim has a finite price-dividend ratio in the limit. But since this possibility was considered in detail in Martin (2011a),

where it was described as the supercritical case, and since it is harder for the inequalities ρ − c(χ, 1 − χ − γ) < 0

and ρ − c(0, 1 − γ) > 0 to hold simultaneously if χ is close to zero—that is, if imperfect substitution is an important

factor—I rule it out for simplicity.
13There is no real need for this last assumption; I make it because it seems uncontroversial, and because it reduces

the number of cases to consider in Results 7, 8 and 9.
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The dividend yields on the output claims are

D1/P1 = ρ− c(χ, 1− χ− γ) (24)

D2/P2 = ρ− c(0, 1− γ). (25)

Excess returns denominated in own units, XSi, are given by

XS1 = c(1, 0) + c(χ− 1, 1− χ− γ)− c(χ, 1− χ− γ) (26)

XS2 = c(0, 1) + c(0,−γ)− c(0, 1− γ). (27)

Excess returns denominated in foreign units, XS∗i , are given by

XS∗1 = c(χ, 1− χ) + c(0,−γ)− c(χ, 1− χ− γ) (28)

XS∗2 = c(1− χ, χ) + c(χ− 1, 1− χ− γ)− c(0, 1− γ). (29)

The Gordon growth model holds: Di/Pi = XSi +Rf,i −Gi, where G1 ≡ c(1, 0) and G2 ≡ c(0, 1)

are the (log) mean growth rates of output in each country.

In one sense, asset pricing in the large country is just closed-economy asset pricing: equations

(21), (25) and (27) correspond directly to those derived in the one-tree economy of Martin (2010).

But, for example, the risk premium on the large stock market in small-country units, given by

equation (29), is a natural object of interest in a multi-country world that has no counterpart in a

single closed economy.

As one would expect, the excess return on investment in a foreign country’s bond can be de-

composed as the sum of an interest-rate differential and an expected currency return, since we can

rewrite equations (22) and (23) as XS∗B,1 = FX∗1 +Rf,1 −Rf,2 and XS∗B,2 = FX∗2 +Rf,2 −Rf,1.

To put these expressions in more familiar form, suppose that output growth is lognormal, and

make the cet. par. assumption that the exchangeability property holds. Then c(θ1, θ2) = µθ1 +µθ2 +

σ2θ21/2 +κσ2θ1θ2 +σ2θ22/2, where µ is the mean, σ the volatility, and κ the cross-country correlation
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of log output growth in the two countries, and we have

Rf,1 = ρ+ µγ − γ2σ2/2 + σ2(1− κ)(1− χ)(γ + χ− 1)

Rf,2 = ρ+ µγ − γ2σ2/2

XS∗B,1 = γσ2(1− κ)(1− χ)

XS∗B,2 = −(γ + 2χ− 2)σ2(1− κ)(1− χ)

D1/P1 = ρ+ µ(γ − 1)− σ2(γ − 1)2/2− σ2χ(1− κ)(γ + χ− 1)

D2/P2 = ρ+ µ(γ − 1)− σ2(γ − 1)2/2

XS1 = γκσ2 + σ2(1− κ)(1− χ)

XS2 = γσ2

XS∗1 = γκσ2 + γσ2(1− κ)(1− χ)

XS∗2 = γσ2 − (γ + 2χ− 1)σ2(1− κ)(1− χ).

In the perfect substitutes case, χ = 1, there is no exchange-rate risk, so interest rates are equal

in each country, bonds are riskless, and the small country’s equity claim is risky only to the extent

that its fundamentals are correlated with the large country’s fundamentals. All this changes if the

goods are imperfect substitutes (χ < 1). The interest rate is higher in the small than in the large

country; the excess return on the small country’s bond in large units is positive, while that on the

large country’s bond in small units is negative; and the small country’s dividend yield increases, and

its equity risk premium increases—particularly when denominated in foreign units—as exchange-rate

risk becomes important.14

Without the exchangeability assumption, the signs of most of these risk premia can be set ar-

bitrarily even in the lognormal case (for example, by making the small country’s output extremely

volatile, and adjusting its correlation with the large country). The only risk premium for which

this is not true is that of the large country’s equity claim denominated in large units, which is al-

ways positive. In the lognormal case, this is obvious. Although it is no surprise that XS2 > 0

in general, the proof that it holds illustrates how the convexity property of CGFs can be ex-

14Although this particular example should not be taken too literally, it is interesting to note how the extra risk premia

that are in principle observable in a two-country world permit the model’s deep parameters to be easily identified. For

example, observing equity premia in each country in own units (XS1 and XS2) together with the small country’s bond

and equity premia in large units (XS∗
B,1 and XS∗

1 ) enables κ, γ, σ and χ to be identified. (This is not vacuous, since

the equations are nonlinear.) Observing the riskless rate and dividend yield on either country’s output claim would

also enable ρ and µ to be identified.
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ploited. For, XS2 = c(0, 1) + c(0,−γ)− c(0, 1− γ), and note that (0, 1) and (0,−γ), considered as

points in R2, are a midpoint-preserving-spread of (0, 1− γ) and (0, 0). Convexity then implies that

c(0, 1) + c(0,−γ) > c(0, 1 − γ) + c(0, 0), and the result follows because c(0, 0) = 0. Figure 6b in

Appendix B illustrates this logic graphically. This graphical approach was essential in finding proofs

of the more complicated results in the remainder of this section. See Appendix A for the conventional

proofs, and Appendix B for the visual proofs.

To put some discipline on the model without making strong parametric assumptions, it is helpful

to focus attention away from the details of the countries’ output processes by assuming that the

exchangeability property holds. We then have the following result.

Result 7 (Strong failure of UIP for the small country). Suppose Property 1 holds. Then the interest

rate in the small country is higher than the interest rate in the large country: Rf,1 > Rf,2. But

this higher interest rate is not offset by expected exchange rate movements. On the contrary, the

expected appreciations in the relative price of each country’s good are equal, and positive—Siegel’s

(1972) “paradox” once again. Thus uncovered interest parity (UIP) fails in a strong sense: not only

do expected exchange rate movements not fully offset the small country’s higher interest rate, they

actually increase the expected return on the carry trade. That is, XS∗B,1 > FX∗1 > 0.

The corresponding result for the large country relies on a property that restricts the behavior of

the higher cumulants of output growth.

Property 2 (Convex differences). The CGF c(·, ·) has the convex difference property (CDP) if

c(θ1, θ2) − c(θ1 + t, θ2 + t) is convex in (θ1, θ2) for all t > 0, θ1, and θ2 such that (θ1, θ2) and

(θ1 + t, θ2 + t) lie in the triangle ∆ ⊂ R2 whose corners are at (1, 1), (1,−γ − 1) and (−γ − 1, 1).

This property imposes a restriction that neither country has positively skewed log output growth.

If, for example, output growth is independent in the two countries, so that c(θ1, θ2) can be expressed

as c1(θ1) + c2(θ2), then it is equivalent to c′′′i (θi) ≤ 0, i = 1, 2, in the triangle ∆. In particular,

c′′′i (0) ≤ 0: that is, the third cumulant—skewness—cannot be positive. It is also satisfied if output

growth is lognormal, in disaster calibrations of the type suggested in Barro (2006), and in the

numerical example presented in this paper.15

When it holds, the large country’s bond earns a negative risk premium from the perspective

of investors thinking in small-country units—a type of “exorbitant privilege” (Gourinchas and Rey

(2007), quoting Valéry Giscard d’Estaing).

15The visual proofs, specifically Figures 8b and 10b, reveal why the convex difference property is formulated as it is.
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Result 8 (An exorbitant privilege). Suppose Properties 1 and 2 hold. Then UIP also fails for the

large country, which has the “exorbitant privilege” of paying a negative risk premium on its bonds in

small-country units: XS∗B,2 < 0.

Result 7 showed only that the riskless rate is higher in the small country than in the large

country. Result 8 is stronger: it can be rephrased as saying that the (unfavorable) riskless rate

differential faced by an investor who borrows at the small country’s interest rate and invests at the

large country’s interest rate is sufficiently large that it overcomes the favorable expected exchange

rate movement: Rf,1 −Rf,2 > FX∗2 .

To characterize the risk premia on the two countries’ output claims, I make a final assumption

that the countries have linked fundamentals: in the lognormal case, for example, I want to rule out

the possibility that the correlation between the two countries’ output growth is negative so that the

small country’s output claim is a hedge. The following property turns out to be the appropriate way

to capture this idea.

Property 3 (Linked fundamentals). The two countries have linked fundamentals if the CGF is

supermodular,16 meaning that for all θ1, θ2, φ1, φ2 in ∆,

c(θ1, θ2) + c(φ1, φ2) ≤ c (max {θ1, φ1} ,max {θ2, φ2}) + c (min {θ1, φ1} ,min {θ2, φ2}) .

By Topkis’s (1978) Characterization Theorem, a sufficient condition for Property 3 to hold is

that
∂2c(θ1, θ2)

∂θ1∂θ2
≥ 0 (30)

for all θ1 and θ2 in some open set containing ∆. It is immediate that the linked fundamentals property

holds (with equality) if output growth is independent across countries. In any given parametric

example, it is easy to check whether (30) holds. In the lognormal case, (30) shows that the linked

fundamentals property is equivalent to the correlation between the two countries’ log output growth

being nonnegative.17

16Vives (1990), Milgrom and Roberts (1990a, 1990b), and Athey (2002) present various economic applications of

supermodularity—in particular, to games with strategic complementarities. By Lemma 4 of Athey (2002), supermod-

ularity of the CGF is implied by log-supermodularity of the probability density function of (y1,t+1− y1,t, y2,t+1− y2,t);

this provides another way of generating examples in which the linked fundamentals property holds.
17As with the convex difference property, the easiest and best way to understand what supermodularity imposes is

visually. See Figure 9c and the discussion in the caption.
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Result 9. Suppose Properties 1, 2 and 3 hold. Then there is a critical value η∗ ∈ (1,∞)—where

η∗ = 2 in the lognormal case—such that

0 < XS1 < XS∗1 < XS∗2 < XS2 if η > η∗

0 < XS1 < XS∗2 < XS∗1 < XS2 if η < η∗.

We also have XS∗B,1 ≤ XS∗1 .

If the countries have strictly linked fundamentals18 and η is sufficiently large then we have a total

ordering of risk premia: XS∗B,2 < 0 < XS∗B,1 < XS1 < XS∗1 < XS∗2 < XS2.

Result 9 extends the model’s predictions regarding bond risk premia to risky assets. The risk

premium on the small country’s output claim is greater in foreign units than in own units, XS∗1 >

XS1, while the risk premium on the large country’s claim is smaller in foreign units than in own units,

XS∗2 < XS2. The size of η indexes the amount of currency risk. If the goods of the two countries

are sufficiently poor substitutes (η < η∗), then currency risk is so great that the risk premium on the

small country’s output claim in foreign units exceeds the risk premium on the large country’s claim

in foreign units, XS∗1 > XS∗2 , even though the small country contributes a negligible proportion of

the representative agent’s consumption.

5 Conclusion

The logic of this paper rests on a fundamental asymmetry: the representative agent cares more about

the large country than the small country, since it provides a larger share of consumption. As a result,

when the large country has bad news the relative price of its output increases, while the relative price

of the small country’s output decreases. As a result, interest rates differ across countries. Since, by

construction, the exchange rate follows a random walk, UIP fails in any calibration.

In the small-country limit, some of the complications of the model evaporate, leaving behind the

central intuition. It is then possible to characterize how UIP fails across whole families of possible

calibrations that satisfy some rather general nonparametric restrictions on the cumulant-generating

function. If, say, the random variables driving output growth in the two countries are exchangeable—

loosely speaking, if the two countries have symmetric, but not necessarily independent, output growth

distributions—then the small country’s exchange rate is expected to appreciate. Even so, its bonds

are riskier, and so earn a higher interest rate, than the large country’s bonds.

18That is, if the inequality in the definition of Property 3 is strict.
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A Appendix

Recall the notation χ = (η − 1)/η and γ̂ = (γ + χ − 1)/χ, and let ŷ1t ≡ y1t + [(1 − χ)/χ] logw and

ŷ2t ≡ y2t + [(1− χ)/χ] log(1− w). We also defined the state variable st: st ≡ D1t/(D1t + et ·D2t) ∈

(0, 1) and ût, a monotonic transformation of st: ût ≡ log[(1 − st)/st]. This definition implies that

ût = χ(ŷ2t − ŷ1t).

The consumption aggregator can be expressed as

Ct =
[
eχŷ10+χỹ1t + eχŷ20+χỹ2t

] 1
χ
, (31)

and the price of good 2 in 1-units is

et =

(
1− w
w

)1−χ(D1t

D2t

)1−χ
=

(
1− w
w

)(1−χ)/χ
· e−[(1−χ)/χ]ût . (32)

If η = ∞—the perfect substitutes case—then χ = 1 so et is constant. If, on the other hand,

η = 1, then Ct is a Cobb-Douglas aggregator of the two goods so that Ct ∝ Dw
1tD

1−w
2t . It is easy to

check that this implies that the price-dividend ratio of each asset is constant. Here I assume that

η ∈ (1,∞). From (6), the (unit-free) price-dividend ratio of good 1 is

P1

D10
= E

∫ ∞
0

e−ρt
(
Ct
C0

)−χγ̂ (D1t

D10

)χ
dt , (33)

where γ̂ ≡ (γ + χ− 1)/χ. So,

P1

D10
= Cχγ̂0 ·

∫ ∞
0

e−ρt E

(
eχỹ1t[

eχŷ10+χỹ1t + eχŷ20+χỹ2t
]γ̂
)
dt, (34)
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and similarly, the price (in own units) of a zero-coupon bond that pays a unit of good 1 at time t is

Zt,1 = Ee−ρt
(
Ct
C0

)−χγ̂ (D1t

D10

)χ−1
= Cχγ̂0 e−ρt · E

(
e
χ−1
χ
·χỹ1t[

eχŷ10+χỹ1t + eχŷ20+χỹ2t
]γ̂
)
. (35)

A perpetuity, or consol, that pays a constant stream of good 1, at rate 1 per unit time is just a

portfolio of zero-coupon bonds, so integrating the above expression over t, we find the perpetuity

price (which can also be thought of as a price-dividend ratio, since the dividend is fixed at 1 unit of

the good)

B1 = Cχγ̂0 ·
∫ ∞
0

e−ρt E

(
e
χ−1
χ
·χỹ1t[

eχŷ10+χỹ1t + eχŷ20+χỹ2t
]γ̂
)
dt . (36)

Correspondingly, the price-dividend ratio of asset 2 is

P2

D20
= E

∫ ∞
0

e−ρt
(
Ct
C0

)−χγ̂ (D2t

D20

)χ
dt

= Cχγ̂0 ·
∫ ∞
0

e−ρt E

(
eχỹ2t[

eχŷ10+χỹ1t + eχŷ20+χỹ2t
]γ̂
)
dt , (37)

and the price, in 2-units, of the t-period zero-coupon good-2 bond is

Zt,2 = Ee−ρt
(
Ct
C0

)−χγ̂ (D2t

D20

)χ−1
= Cχγ̂0 e−ρt · E

(
e
χ−1
χ
·χỹ2t[

eχŷ10+χỹ1t + eχŷ20+χỹ2t
]γ̂
)
, (38)

so the price-dividend ratio of the good-2 perpetuity is

B2 = Cχγ̂0 ·
∫ ∞
0

e−ρt E

(
e
χ−1
χ
·χỹ2t[

eχŷ10+χỹ1t + eχŷ20+χỹ2t
]γ̂
)
dt . (39)

Equations (34)–(39) each feature an expectation of the form

E(α1, α2) ≡ E

(
eα1χỹ1t+α2χỹ2t[

eχŷ10+χỹ1t + eχŷ20+χỹ2t
]γ̂
)
, (40)

where the values of α1 and α2 corresponding to the various assets are given in Table 2.

Proof of Result 2: Expression (40) can be rewritten

E(α1, α2) = e−χγ̂(ŷ10+ŷ20)/2 · E

(
eχ(α1−γ̂/2)ỹ1t+χ(α2−γ̂/2)ỹ2t[

eχ(ŷ20+ỹ2t−ŷ10−ỹ1t)/2 + e−χ(ŷ20+ỹ2t−ŷ10−ỹ1t)/2
]γ̂
)
.
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α1 α2

P1/D10 1 0

P2/D20 0 1

B1, ZT,1 1− 1/χ 0

B2, ZT,2 0 1− 1/χ

Table 2: Values of α1 and α2 in (40); all assets priced in own units.

Martin (2011a) shows the Fourier transform result that for ω ∈ R and γ̂ > 0,

1(
eω/2 + e−ω/2

)γ̂ =

∫ ∞
−∞

eiωvF (v) dv , (41)

where i is the complex number
√
−1 and F (v) ≡ 1

2π ·B(γ̂/2 + iv, γ̂/2− iv) defines F (v) in terms of

the Euler beta function. Applying this, we find that

E(α1, α2) = e−χγ̂(ŷ10+ŷ20)/2 · E
(
eχ(α1−γ̂/2)ỹ1t+χ(α2−γ̂/2)ỹ2t

∫ ∞
−∞

eiχ(ŷ20+ỹ2t−ŷ10−ỹ1t)vF (v) dv

)
= e−χγ̂(ŷ10+ŷ20)/2

∫ ∞
−∞

eiûvF (v) · ec(χ(α1−γ̂/2−iv),χ(α2−γ̂/2+iv))t dv (42)

where û ≡ χ(ŷ20 − ŷ10).

The generic expression we want to evaluate is

Vα1,α2(û) = Cχγ̂0

∫ ∞
0

e−ρtE
eα1χỹ1t+α2χỹ2t[

eχ(ŷ10+ỹ1t) + eχ(ŷ20+ỹ2t)
]γ̂ dt

=

[
eχŷ10 + eχŷ20

]γ̂
eχγ̂(ŷ10+ŷ20)/2

·
∫ ∞
0

e−ρt · eχγ̂(ŷ10+ŷ20)/2 · E(α1, α2) dt

=
[
eû/2 + e−û/2

]γ̂ ∫ ∞
t=0

∫ ∞
v=−∞

e−{ρ−c[χ(α1−γ̂/2−iv),χ(α2−γ̂/2+iv)]}teiûvF (v) dv dt

=
[
eû/2 + e−û/2

]γ̂ ∫ ∞
−∞

eiûvF (v)

ρ− c [χ(α1 − γ̂/2− iv), χ(α2 − γ̂/2 + iv)]
dv (43)

using (42) and assuming ρ− c [χ(α1 − γ̂/2), χ(α2 − γ̂/2)] > 0. Using the results of Appendix A.3 of

Martin (2011a), this ensures that for all v ∈ R, Re ρ− c [χ(α1 − γ̂/2− iv), χ(α2 − γ̂/2 + iv)] > 0, as

required.

Proof of Result 1: For arbitrary constants w1 and w2,

E
[
d
(
ew1ŷ1t+w2ŷ2t

)]
= c(w1, w2)e

w1ŷ1t+w2ŷ2t dt . (44)
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The result follows by applying (44) to equation (9), using the definition of û; the proof of Siegel’s

paradox follows by the convexity of the CGF, which implies that c(χ−1, 1−χ)+c(1−χ, χ−1) > 0.

For a visual proof, see Appendix B.

Proof of Result 3: Using the preceding results in equations (35) and (38), we have

Zt,1 =
(
eû/2 + e−û/2

)γ̂
·
∫ ∞
−∞

eiûvF (v)e−{ρ−c[χ(1−1/χ−γ̂/2−iv),χ(−γ̂/2+iv)]}t dv

and

Zt,2 =
(
eû/2 + e−û/2

)γ̂
·
∫ ∞
−∞

eiûvF (v)e−{ρ−c[χ(−γ̂/2−iv),χ(1−1/χ−γ̂/2+iv)]}t dv.

The zero-coupon yields follow immediately; and using l’Hôpital’s rule to take the limit as t ↓ 0, the

riskless rate expressions follow too.

To calculate long rates, we use the method of steepest descent. In the case of the long rate in

1-units, which is

Y∞,1(û) = lim
t↑∞

−1

t
log

{∫ ∞
−∞

eiûvF (v)e−{ρ−c[χ(1−1/χ−γ̂/2−iv),χ(−γ̂/2+iv)]}t dv

}
,

we are interested in a stationary point of ρ− c[χ(1− 1/χ− γ̂/2− iv), χ(−γ̂/2 + iv)], considered as a

function of v ∈ C. If v = ix is pure imaginary, this function is concave when considered as a function

of x ∈ R (Martin (2011a)), so has a stationary point at some ix∗, x∗ ∈ R. If |x∗| < γ/2 then the

contour of integration can be continuously deformed to pass through the stationary point without

crossing a pole. It follows by the method of steepest descent that Y∞,1(û) = ρ−c[χ(1− 1/χ− γ̂/2 +

x∗), χ(−γ̂/2 − x∗)]. If, on the other hand, the stationary point occurs for x∗ > γ̂/2, then there is

a residue to take into account at v = (γ̂/2)i; it turns out that Y∞,1(û) = ρ − c[χ − 1, 1 − χ − γ].

Similarly, if the stationary point occurs at x∗ < −γ̂/2 then Y∞,1(û) = ρ− c[−γ, 0].

These cases can be summarized by writing Y∞,1 = maxθ∈[−γ̂/2,γ̂/2] ρ − c[χ(1 − 1/χ − γ̂/2 +

s), χ(−γ̂/2− s)], or equivalently, Y∞,1 = maxθ∈[0,γ+χ−1] ρ− c(θ − γ,−θ).

By exchangeability, the long rate in 2-units is Y∞,2 = maxθ∈[0,γ+χ−1] ρ− c(−θ, θ− γ), which can

also be rewritten as Y∞,2 = maxθ∈[1−χ,γ] ρ− c(θ − γ,−θ).

Proof of Result 4: A proof was provided in the text.

Proof of Result 5: The dividend yield component of the expected return is the reciprocal of the

valuation ratio, so it remains to calculate EdP/P .

The general problem we face has

P = eλ1ŷ1t+λ2ŷ2t
(
eχ(ŷ1t−ŷ2t)/2 + eχ(ŷ2t−ŷ1t)/2

)γ̂ ∫ ∞
−∞

eiχ(ŷ2t−ŷ1t)vF (v)

ρ− c[χ(α1 − γ̂/2− iv), χ(α2 − γ̂/2 + iv)]
dv ,
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where α1, α2, λ1, λ2 vary from asset to asset and are supplied in Table 1. This can be rewritten as

P =

γ̂∑
m=0

(
γ̂

m

)∫ ∞
−∞

F (v)eŷ1t(λ1+mχ−γ̂χ/2−iχv)+ŷ2t(λ2−mχ+γ̂χ/2+iχv)

ρ− c[χ(α1 − γ̂/2− iv), χ(α2 − γ̂/2 + iv)]
dv ,

so using (44), we find that EdP equals

∑(
γ̂

m

)∫
F (v)c(λ1 +mχ− γ̂χ/2− iχv, λ2 −mχ+ γ̂χ/2 + iχv)eŷ1t(λ1+mχ−γ̂χ/2−iχv)+ŷ2t(λ2−mχ+γ̂χ/2+iχv)

ρ− c[χ(α1 − γ̂/2− iv), χ(α2 − γ̂/2 + iv)]
dv .

Dividing EdP by P and rearranging, the result follows, after defining Gα1,α2,λ1,λ2(û) to equal

γ̂∑
m=0

(
γ̂

m

)
e(γ̂/2−m)û

∫ ∞
−∞

eiûvF (v)c(λ1 +mχ− γ̂χ/2− iχv, λ2 −mχ+ γ̂χ/2 + iχv)

ρ− c[χ(α1 − γ̂/2− iv), χ(α2 − γ̂/2 + iv)]
dv.

Proof of Result 6: The proof is very similar to the proofs of Propositions 6 and 7 in Martin

(2011a), so is omitted.

Proof of Result 7: To show that Rf,1 > Rf,2, I must show that c(0,−γ)− c(χ− 1, 1−χ− γ) > 0.

Invoking exchangeability, this is equivalent to showing that c(0,−γ) + c(−γ, 0) − c(χ − 1, 1 − χ −

γ) − c(1 − χ − γ, χ − 1) > 0. But this is an immediate consequence of the fact that c(·, ·), as a

cumulant-generating function, is strictly convex.

In Result 1, I showed that (FX∗1 + FX∗2 )/2 > 0. Since we are assuming here that Property 1

holds, we have FX∗1 = FX∗2 . Combining these two facts, it follows that FX∗1 > 0 and FX∗2 > 0.

Proof of Result 8: XS∗B,2 < 0 if and only if c(0,−γ)−c(1−χ, χ−1)−c(χ−1, 1−χ−γ) > 0. By

exchangeability, this is equivalent to showing that c(0,−γ) + c(−γ, 0)− c(χ− 1, 1− χ− γ)− c(1−

χ− γ, χ− 1)− c(1− χ, χ− 1)− c(χ− 1, 1− χ) > 0. By strict convexity of the CGF, this is true so

long as [c(χ−1−γ/2, 1−χ−γ/2)−2c(−γ/2,−γ/2)+c(1−χ−γ/2, χ−1−γ/2)]− [c(1−χ, χ−1)−

2c(0, 0) + c(χ− 1, 1− χ)] ≥ 0. (Here I am using the fact that γ + 2χ− 2 > 0, which follows because

of the assumption that γη > 2.) But this holds because the convex difference property ensures that

the first term in square brackets is (weakly) greater than the second term in square brackets.

Proof of Result 9: To show that XS1 > 0, I must show that c(1, 0) +c(χ−1, 1−χ−γ)−c(χ, 1−

χ − γ) > 0. This is equivalent to [c(1, 0) − c(χ, 0) − c(0, 0) + c(χ − 1, 0)] + [c(χ, 0) − c(χ − 1, 0) −

c(χ, 1 − χ − γ) + c(χ − 1, 1 − χ − γ)] > 0. This holds because the first term in square brackets is

positive due to strict convexity of the CGF, and the second is nonnegative by supermodularity.

By exchangeability, XS1 < XS∗1 is equivalent to [c(−γ, 0) +c(0,−γ)−c(χ−1, 1−χ−γ)−c(1−

χ − γ, χ − 1)] − [c(1, 0) + c(0, 1) − c(χ, 1 − χ) − c(1 − χ, χ)] > 0. By strict convexity of the CGF,

it suffices to show that [c(−γ/2− 1/2,−γ/2 + 1/2) + c(−γ/2 + 1/2,−γ/2− 1/2)− c(−γ/2 + 1/2−
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χ,−γ−1/2+χ)−c(−γ/2−1/2+χ,−γ/2+1/2−χ)]− [c(1, 0)+c(0, 1)−c(χ, 1−χ)−c(1−χ, χ)] ≥ 0,

which holds by the convex difference property. The proof that XS1 < XS∗2 is very similar, so is

omitted.

By exchangeability, XS∗1 < XS2 is equivalent to [c(χ, 1−χ− γ) + c(1−χ− γ, χ)− c(0, 1− γ)−

c(1−γ, 0)]+[c(1, 0)+c(0, 1)−c(χ, 1−χ)−c(1−χ, χ)] > 0. But each of the terms in square brackets

is positive by strict convexity of the CGF. The proof that XS∗2 < XS2 is very similar, so is omitted.

The final inequality that holds independent of conditions on η is that XS∗B,1 ≤ XS∗1 . This is

equivalent to c(χ, 1− χ)− c(χ, 1− χ− γ)− c(χ− 1, 1− χ) + c(χ− 1, 1− χ− γ) ≥ 0, which follows

from supermodularity.

By exchangeability, the sign of XS∗2−XS∗1 is the same as the sign of the (strictly convex) function

Q(χ) ≡ c(χ− 1, 1− χ− γ) + c(1− χ− γ, χ− 1)− c(0, 1− γ)− c(1− γ, 0)− c(0,−γ)− c(−γ, 0) +

c(χ, 1− χ− γ) + c(1− χ− γ, χ). Now, Q(0) = c(−1, 1− γ) + c(1− γ,−1)− c(0,−γ)− c(−γ, 0) < 0

and Q(1) = −c(0, 1 − γ) − c(1 − γ, 0) + c(1,−γ) + c(−γ, 1) > 0 by strict convexity of c(·, ·). Q(χ)

is also continuous; thus, Q(χ∗) = 0 for some unique χ∗ ∈ (0, 1). Defining η∗ via χ∗ = 1 − 1/η∗, we

have XS∗2 = XS∗1 if η = η∗; XS∗2 < XS∗1 for η < η∗; and XS∗2 > XS∗1 for η > η∗.

It remains to be shown that XS∗B,1 < XS1 if the CGF is strictly supermodular and η is sufficiently

large; equivalently, c(χ− 1, 1− χ) + c(0,−γ)− 2c(χ− 1, 1− χ− γ)− c(1, 0) + c(χ, 1− χ− γ) < 0.

In the case χ = 1, we must show that c(0,−γ) + c(1, 0) − c(1,−γ) > 0 = c(0, 0). This follows by

strict supermodularity. Therefore by continuity, XS∗B,1 < XS1 for χ in some neighborhood of 1;

equivalently, XS∗B,1 < XS1 for sufficiently large η.
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Figure 5: Sample paths of price-dividend ratios, Pi/Di, and prices, Pi of output claims of each

country, for different values of η. All paths are based on the same underlying path of fundamentals,

shown in panel (a).
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B Visual proofs
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(b) This is positive, by convexity

Figure 6: Left: A visual proof of Siegel’s paradox. We must show that c(χ−1, 1−χ)+c(1−χ, χ−1) >

0, or equivalently, because c(0, 0) = 0, that c(χ − 1, 1 − χ) − 2c(0, 0) + c(1 − χ, χ − 1) > 0. Panel

(a) represents the left-hand side of this inequality in the sense that the signed sum of values taken

by the CGF at the indicated points (with signs indicated by black plus and red minus signs) is

the expression on the left-hand side. I will say that the panel is positive if the signed sum that it

represents is positive. So, the aim is to show that the panel is positive. Convexity of the CGF gives

the result.

Right: A visual proof that the large country requires a positive risk premium in own units, XS2 > 0.

We must show that c(0, 1) + c(0,−γ)− c(0, 1− γ)− c(0, 0) > 0. The result follows by convexity of

the CGF.

Note: Part of the advantage of the visual approach, once you’re used to it, is that it is immediately

clear if an expression is positive by virtue of convexity. We require the four points to be arranged

(i) on a straight line, (ii) symmetrically about their midpoint, and (iii) with this sign pattern.
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(b) . . . use exchangeability then convexity

Figure 7: A visual proof that the small country’s bond earns an excess return in foreign units

that is greater than the expected currency return, XS∗B,1 > FX∗1 . We must show that c(0,−γ) −

c(χ − 1, 1 − χ − γ) > 0, i.e. that panel (a) is positive. By exchangeability, this is equivalent to

c(0,−γ) + c(−γ, 0) − c(χ − 1, 1 − χ − γ) − c(1 − χ − γ, χ − 1) > 0. Graphically, this corresponds

to reflecting in the 45 degree line, as shown in panel (b). Panel (b) is positive by convexity, so the

result follows.

Note: from now on, I will exploit exchangeability without further comment. When I do, I plot the

45 degree line.
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(b) . . . use convexity then CDP

Figure 8: A visual proof that the large country’s bond earns a negative risk premium in foreign units,

XS∗B,2 < 0. Exchangeability has already been used in the left panel. In each panel, there are two

groups of points, running from north-west to south-east. In the right panel, the four south-west-most

points have been compressed towards their mid-point. By convexity, this makes the sum smaller.

Even so, it remains positive, by the convex difference property, and thus the left panel was also

positive.

Note: the convex difference property was formulated as it was so that sign patterns like panel (b)

would be positive.
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(c) . . . and this is, by supermodularity

Figure 9: A visual proof that the risk premium on the small country’s output claim is positive in own

units, XS1 > 0. The top panel, which represents XS1, is the sum of the bottom two panels. Now,

panel (b) is strictly positive by convexity of the CGF and panel (c) is nonnegative by supermodularity.

The CGF is zero at the origin, so the top panel really is the sum of the bottom two panels.

Note: panel (c) illustrates what supermodularity “is”, namely the property that every rectangle with

this sign pattern is positive.
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(b) . . . use convexity then CDP

Figure 10: A visual proof that the risk premium on the small country’s output claim is higher in

foreign units than it is in own units, XS1 < XS∗1 . The logic is as in Figure 8.
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(b) Positive by supermodularity

Figure 11: Left: A visual proof that the risk premium on the large country’s output claim, in large-

country units, is higher than the risk premium on the small country’s output claim, in large-country

units, XS∗1 < XS2. Exchangeability has already been used. The two groups of points are both

positive by convexity of the CGF.

Right: A visual proof that in large-country units, the small country’s output claim requires a (weakly)

higher risk premium than its bond, XS∗B,1 ≤ XS∗1 . The result follows immediately by supermodu-

larity.
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