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1 Introduction

Recent research in asset pricing has focused on models of dynamic economies in order to provide

a better understanding of the underlying economic forces behind various empirical regularities

observed in financial markets. Three of the empirical regularities that have received particular

attention in the literature are the high historical average risk premium on corporate equities

(Mehra and Prescott 1985), large cross sectional variation in historical average returns across

various asset classes (Fama and French 1992) (Fama and French 1995) and low risk free rate

(Weil 1989).

Among the various representative agent consumption based models that have been proposed

for explaining these patterns, three have received wide attention: the external habit formation

model of Campbell and Cochrane (1999), the rare disasters model of Rietz (1988) and Barro

(2006) and the long run risk model of Bansal and Yaron (2004).1 Lettau and Wachter (2007)

and Santos and Veronesi (2009) argue that it is difficult to reconcile the external habit formation

model of Campbell and Cochrane (1999) with the value premium. Gabaix (2008) and Gourio

(2008) point out that there is little evidence that value and growth stocks have differential

exposure to disaster risk and therefore rare disaster models will have difficulties in explaining

the value premium puzzle.

The evidence for the long run risk model has been mixed. On the one hand, Bansal, Yaron,

and Kiku (2007), Bansal, Dittmar, and Lundblad (2005), Bansal, Dittmar, and Kiku (2009),

Malloy, Moskowitz, and Vissing-Jørgensen (2009) and Da (2009) find that long run risk models

can explain the cross section of stock returns. On the other hand, the studies of Beeler and

Campbell (2012), Marakani (2009), Ferson, Nallareddy, and Xie (2012), Constantinides and

Ghosh (2008) and others either dispute the interpretation of the results of the former studies

1Asset pricing models can also be written on the basis of production and productivity shocks as in (Zhang
2005). Since our focus is on consumption based representations, we do not examine production based models.
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and/or find other empirical evidence casting doubt on the ability of long run risk models to

explain the cross section of stock returns.

The mixed empirical support may be in part due to the use of per capita aggregate con-

sumption as a proxy for the consumption of the marginal investor in empirical studies of the

long run risk models. There is some evidence suggesting that the consumption of shareholders

may be a better proxy. For example, Malloy, Moskowitz, and Vissing-Jørgensen (2009) find

that shareholders’ consumption risk explains the cross section of stock returns better than

the risk associated with aggregate per capita consumption. The difficulty is that shareholder

consumption data is available for a shorter length of time and may exhibit non-stationarities

as documented by Parker and Vissing-Jorgensen (2010).2 He and Krishnamurthy (2008) and

Adrian, Etula, and Muir (2011) take the stand that financial intermediaries are more likely to

consistently be at the margin in securities markets and their consumption and wealth changes

may be more relevant for explaining variations in security prices over time and in the cross

section.

We therefore assume that the marginal investors’ equilibrium consumption evolves accord-

ing to a long run risk process of a form similar to that proposed by Bansal and Yaron (2004),

without imposing the restriction that aggregate per capita consumption is a good proxy for

the marginal investors’ consumption. We show that the long run risk factors in this model

economy are also the factors affecting temporal evolution of the log price to dividend ratios of

stocks. Using this fact, the long run risk factors can be estimated through principal component

analysis of the covariance matrix of log price to dividend ratios of a collection of stocks. We

assume that it is reasonable to ignore the term involving the marginal investors’ contempora-

2Parker and Vissing-Jorgensen (2010) find that the relation between the consumption of high income house-
holds, which is a good proxy for shareholder consumption, and aggregate consumption and income fluctuations
is non-stationary and exhibits large changes after 1980. Malloy, Moskowitz, and Vissing-Jørgensen (2009) over-
come the short data series by extrapolating the shareholder consumption data by using it’s projection on other
variables but this procedure assumes that the relationships are stationary.
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neous consumption growth in the asset pricing relation that we derive, since the state variables

and their innovations explain the bulk of the risk premium in the long run risk model.3

We use price dividend ratio factors rather than return factors in our analysis as the use

of the former enables us to directly estimate the slow moving long run risk state variables.

Therefore, their use allows us to test the model implied relationship between these factors

and the macroeconomic variables of interest. This would not be possible with only study

of the return factors as we show that they do not contain information about the expected

consumption/dividend growth factors in the long run risk model. We verify this empirically by

showing that this factor, estimated using our methodology, drives out the Fama-French factors

in predictive regressions of these quantities.

We also find and clarify the relationship between the asset pricing relations implied by

both these methodologies. This relationship implies that, under certain assumptions, both

asset pricing relations are approximately equivalent. This finding provides an explanation for

the good performance of the Fama-French three factor model as it implies that the latter is

approximately equivalent to the price dividend ratio factor model for asset pricing purposes.

Our methodology does not focus on a particular parametric version of the long run risk

model, and does not require projecting the future consumption growth and its volatility on

the log market price to dividend ratio and the real risk free rate to estimate the long run

risk factors as in (Bansal, Yaron, and Kiku 2007), (Constantinides and Ghosh 2008) and

(Ferson, Nallareddy, and Xie 2012). This is an advantage since both consumption growth and

the real risk free rate are measured with considerable error. As we show using Monte Carlo

simulations, this error could be large enough to result in the rejection of the long run risk

model too often even when it holds. The disadvantage is that our method will have a lower

3While the marginal investors’ consumption might not be directly observable, it is likely to be positively
correlated with measures of aggregate consumption growth. We find that the inclusion of aggregate consumption
growth in the empirical analysis does not significantly change our results.
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power if the particular parametric model that Constantinides and Ghosh (2008) consider is

indeed the right one.

We find that the cross section of average excess returns on several well diversified portfolios

are consistent with long run risk models where the long run risk state variables are adequately

represented by the two log price dividend ratio factors that we identify using this approach.

While this result alone is consistent with a variety of asset pricing models, we also find that

the two factors predict future aggregate consumption and dividend growth as well as track

contemporaneous consumption growth volatility. This is consistent with long run risk models

under the assumption that the factors that affect the consumption of the marginal investor

also affects aggregate consumption. Our findings provide some evidence against standard time

separable power utility based representative agent models. However, we can not rule out

representative agent models with alternative preferences or models where agents have time

separable power utility but face decision making costs as in (Jagannathan and Wang 2007)

and (Jagannathan, Marakani, Takehara, and Wang 2012). These conclusions are robust to

the recent critique of factor models by Kleibergen (2010) and the look ahead bias critique of

Ferson, Nallareddy, and Xie (2012).

This enables an answer to one of the important critiques of the long run risk model raised

by Beeler and Campbell (2012). Beeler and Campbell (2012) point out that the log market

price dividend ratio does not predict dividend or consumption growth. We show that a price

dividend ratio factor does predict both dividend growth a real time measure of consumption

growth. This does not show up in the log market price dividend ratio as the market price

dividend ratio weights most strongly on the volatility price dividend ratio factor.

The rest of the paper is organized as follows. Section 2 introduces our version of the long

run risk model which encompasses the ones of Bansal and Yaron (2004), Bansal, Yaron, and

Kiku (2007) and Zhou and Zhu (2009). Section 3 discusses the implication of the model for

the factor structure of log price to dividend ratios and asset pricing. Section 4 describes the
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data. Section 5 develops the econometric specifications and discusses the empirical findings.

Section 6 concludes.

2 The Long Run Risk Model

Our main aim is to use a model which is flexible enough to encompass a large range of long run

risk models extant in the literature while retaining and emphasizing the core assumptions of the

framework which are that there are common persistent components of expected consumption

and dividend growth and persistent components of volatility. We model the dividends of

individual well diversified portfolios as in (Hansen, Heaton, and Li 2008) and (Kiku 2006).

The relative advantages of this approach are discussed in detail by Bansal, Dittmar, and Kiku

(2009).

We consider the following long run risk model which accommodates the specifications pro-

posed by Bansal and Yaron (2004), Bansal, Yaron, and Kiku (2007) and Zhou and Zhu (2009)

as special cases.4 Let c, Xi, 1 ≤ i ≤ n and Vj , 1 ≤ j ≤ m be the log consumption process,

n processes that determine it’s conditional growth rate and m processes that determine the

volatility of it’s conditional growth rate respectively. Let dl, l ≤ 1 ≤ L be the log dividend

processes of L portfolios (in general, the lower case variables correspond to the logarithm of

the upper case variables). We assume that these quantities follow the processes

ct+∆t =ct +

(
µ+

n∑
i=1

Xi,t

)
∆t+

√√√√ m∑
j=1

δ2
c,jVj,t (Wt+∆t −Wt)

−
m∑
k=1

ϕw,k
√
Vk,t (Zk,t+∆t − Zk,t)

(1)

4Note that the volatility process has to be modified to an Ornstein-Uhlenbeck one to accommodate the first
two specifications. This modification does not affect any of the fundamental theoretical results or empirical
analysis.
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Xi,t+∆t =Xi,t(1− αi∆t) + ϕi,x

√√√√ m∑
j=1

δ2
x,i,jVj,t (Yi,t+∆t − Yi,t), 1 ≤ i ≤ n (2)

Vi,t+∆t =Vi,t − κi(Vi,t − V̄i)∆t+ σi
√
Vi,t (Zi,t+∆t − Zi,t), 1 ≤ i ≤ m (3)

dl,t+∆t =dl,t +

(
µl +

n∑
i=1

φl,iXi,t

)
∆t+ πl,c

(
∆ct+∆t −

(
µ+

n∑
i=1

Xi,t

)
∆t

)

+
n∑
i=1

πi,l,x(Xi,t+∆t −Xi,t(1− αi∆t))

+
m∑
j=1

πj,l,wσj
√
Vj,t (Zj,t+∆t − Zj,t)

+

√√√√ m∑
k=1

δ2
l,d,kVk,t σl,d(Bl,t+∆t −Bl,t)

(4)

whereW , Yi, 1 ≤ i ≤ n, Zj , 1 ≤ j ≤ m andB are independent Wiener processes and
∑m

i=1 δ
2
c,i =∑m

j=1 δ
2
x,i,j =

∑m
k=1 δ

2
l,d,k = 1 (as pointed out by Zhou and Zhu (2009), these variables are

necessary to ensure that the market volatility is decoupled from the consumption growth

volatility as is the case in the data). The basic time interval of the process is assumed to be

the same as that for which consumption is observed. This ensures that the stochastic discount

factor can be related to the innovations in the processes c, X and V . If the basic time interval

of the process is smaller than that for which consumption is observed, time aggregation effects

prevent the calculation of the stochastic discount factor as shown by Bansal, Yaron, and Kiku

(2007) as the true innovations cannot be recovered from the observed data. We note that at

least some of the αi and νi must be small for the risks to be long lived and carry a high price.

In the above equations, consumption is defined as a rate rather than per period so that

consumption from time t to t + ∆t is Ct+∆t∆t and log consumption from t to t + ∆t is

ct+∆t + log ∆t. While this generally makes no difference as the log consumption is just offset

by a constant, it ensures that the continuous time limit exists and (as we show in appendix

A) also makes it easy to obtain it. It further shows that the solution method of Bansal and
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Yaron (2004) is general enough to apply to continuous time models. One consequence of this

definition is that the log-linearization constants depend on ∆t. This is due to the fact that

consumption and dividends are flow variables whose magnitude depend on the time interval

(the shorter the time interval, the smaller the consumption and dividend). This fact implies

that the log-linearization constants, which are functions of the average wealth to consumption

or price to dividend ratio, are inversely related to the time scale. This explains the dependence

of these log-linearization constants, and hence the market prices of risk, on the time unit chosen

in the formulae below.5

This long run risk process, when written in continuous time, incorporates the one proposed

by Zhou and Zhu (2009) as a special case (specifically with n = 1, m = 2 and ϕw,i = 0, 1 ≤ i ≤

m). When the volatility process (3) is modified to an Ornstein-Uhlenbeck one plus a constant

by modifying the second term to σi,w∆Zi,t+1 and the final term in (1) to −
∑m

k=1 ϕw,k(Zk,t+∆t−

Zk,t), it incorporates the ones proposed by Bansal and Yaron (2004) and Bansal, Yaron, and

Kiku (2007) as special cases (specifically with n = 1, m = 1, ϕw,i = 0, 1 ≤ i ≤ m, πi,l,x =

0, 1 ≤ i ≤ n, 1 ≤ l ≤ L and πi,l,w = 0, 1 ≤ i ≤ m, 1 ≤ l ≤ L).

We now look more closely at the dividend growth specification (4) in this formulation. Most

importantly, we note that the embedded assumption in (4) that the expected dividend growth

of all the portfolios depends on the same set of state variables X that determine expected

consumption growth is not essential but convenient. In general, we can make the expected

dividend growth depend on more AR(1) state variables Y so that

Et[∆dl,t+∆t] =

µl +
n∑
i=1

φl,iXi,t +

no∑
j=1

ζl,jYj,t

∆t (5)

instead of (µl+
∑n

i=1 φl,iXi,t)∆t. The innovations of these state variables Y which are unrelated

to future consumption/dividend growth or consumption growth volatility must then have zero

5This makes a small contribution as the solution method of Bansal and Yaron (2004) is simpler than the
continuous time solution method used by Zhou and Zhu (2009)
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price of risk and this can be empirically examined. A more intuitive way to think about

this is to interpret the restriction of using a single set of state variables to determine both

expected quantities as a criterion for the choice of portfolios to use. In other words, we want

to choose portfolios whose characteristics are related to future consumption growth. To do

so effectively, we use the studies of Parker and Julliard (2005) and Malloy, Moskowitz, and

Vissing-Jørgensen (2009) to help pin-point assets whose cross-sectional variation is related to

future consumption growth. Once the choice is made, the extra restrictions on any identified

state variables corresponding to Y can then be examined.6

Menzly, Santos, and Veronesi (2004) develop an alternative way of modeling the process

for aggregate dividends starting from the process for the dividends of individual firms in an

economy. While attractive for theoretical analysis, the disadvantage in empirical studies is that

it ignores investment which, as shown by Bansal, Dittmar, and Kiku (2009), plays a major

part in linking the aggregate stock market dividends to the dividends paid out by individual

firms.

Consumers in the model have Epstein-Zin-Weil preferences (Epstein and Zin 1989) (Weil

1990)

Ut = ((1− δ)C
1−γ
θ

t + δEt[U
1−γ
t+1 ]

1
θ )

θ
1−γ (6)

As noted by Bansal and Yaron (2004), we need γ > 1/ψ to generate a positive equity risk

premium as expected dividend growth is positively related to expected consumption growth

(as noted by Bansal and Yaron (2004), Bansal, Yaron, and Kiku (2007), Bansal, Dittmar,

and Lundblad (2005), Bansal, Dittmar, and Kiku (2009) and others). This implies that they

prefer early resolution of uncertainty and that shocks to expected consumption growth carry a

positive price of risk (as pointed out by Kaltenbrunner and Lochstoer (2010)) which is high if

the expected consumption growth is persistent. This high price of risk results in a high equity

premium and low risk-free rate.

6With our choice of portfolios, we do not find any state variables or factors of this type.
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3 Factor structure of log P/D ratios

In appendix A, we show, using the approach of Bansal and Yaron (2004) and Bansal, Yaron,

and Kiku (2007), that this long run risk model implies that

log

(
Pl,t
Dl,t

)
= pl,t − dl,t = A0,l +

n∑
i=1

A1,l,iXi,t +
m∑
j=1

A2,l,jVj,t (7)

where Pl,t is the price of portfolio l, A1,l,i =
(φl,i−1/ψ)∆t

1−ν1,l(1−αi∆t) , 1 ≤ i ≤ n (ν1,l being a log-

linearization constant which is endogenously determined in the model) and where the expres-

sions for A2,l,j , 1 ≤ j ≤ m are derived in appendix A. This generalizes the equivalent results

by Bansal and Yaron (2004), Bansal, Yaron, and Kiku (2007) and Zhou and Zhu (2009) to the

situation when there are multiple state variables describing predictable consumption growth

and consumption growth volatility. If additional state variables Y are needed in determining

the dividend growth, (7) changes to

log

(
Pl,t
Dl,t

)
= pl,t − dl,t = A0,l +

n∑
i=1

A1,l,iXi,t +

n0∑
k=1

A1o,k,lYk,t +

m∑
j=1

A2,l,jVj,t (8)

where A1o,l,k =
ζl,k∆t

1−ν1,l(1−αk∆t) , 1 ≤ k ≤ n0 where αk is the AR(1) coefficient for the process for

Yk,t.

Since the real risk-free rate can be viewed as a special type of dividend-price ratio, it also

follows that

rf,t = A0,f +
n∑
i=1

A1,f,iXi,t +
m∑
j=1

A2,f,jVj,t (9)

where A1,f,i = 1/ψ.
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We show that the log stochastic discount factor for this model is given by

mt+∆t =∆t

Γ0 +
n∑
i=1

Γ1,iXi,t +
m∑
j=1

Γ2,jVj,t


− αc

√√√√ m∑
j=1

δ2
c,jVj,t(Wt+∆t −Wt)

−
n∑
i=1

αx,i

√√√√ m∑
j=1

δ2
x,i,jVj,t(Yi,t+∆t − Yi,t)

−
m∑
j=1

αv,j
√
Vj,t(Zj,t+∆t − Zj,t)

(10)

where Γ1,i = −1/ψ, αc = γ and αx,i = γ−1/ψ
1−ν1(1−αi∆t) .7 The expression for αv,j is complicated

and does not directly concern us here, but we note that it was shown by Bansal and Yaron

(2004) that αv,j < 0 if γ − 1/ψ > 0 and ψ > 1.

The relatively simple form of λx,i implies that it can be used together with a reasonable

approximation for 1−ν1 = exp(c−w)∆t
1+exp(c−w)∆t

≈ exp(c− w)∆t to estimate γ−1/ψ once a component

Xi is identified. The estimation of ν1, which can at best be done heuristically, is a cost that

has to be paid when the parameters are not explicitly specified. It must be cautioned that

while this estimate is likely to be imprecise due to it’s indirect nature, it is still useful in that

it allows to relate the empirical results back to the underlying preferences.

In the case of no measurement error, (7) can be inverted to express the state variables

(Xi, Vj) as a linear combinations of log P/D ratios. This enables the expression of the log

stochastic discount factor as

mt+∆t = ∆t

(
Ξ̃0 +

m+n∑
i=1

Ξ̃1,iFi,t

)
− αc(ct+∆t − ct)−

m+n∑
i=1

αq,iIFi,t+∆t (11)

7Note that the value of αx,i depends on ∆t but the risk premium does not. αx,i varies inversely with ∆t as
1 − ν1 is proportional to ∆t. Since the risk premium due to this risk is given by the product of αx,i and the
covariance between the return and the innovation to Xi which is proportional to ∆t, the inverse relationship
between αx,i and ∆t implies that the risk premium is independent of it.
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where Fi and IFi, 1 ≤ i ≤ n+m are the n+m principal components of the log P/D ratios (or,

equivalently, any linear combination of n+m log P/D ratios) and their innovations respectively.

(7) implies that the log P/D ratios of assets follow a strict factor structure (up to the

loglinear approximation) in the model.8 Since log P/D ratios are not exact linear combinations

of a small number of factors in the data, we use a slightly modified relation in our empirical

work. This relation is

log

(
Pl,t
Dl,t

)
= pl,t − dl,t = A0,l +

n∑
i=1

A1,l,iXi,t +

m∑
j=1

A2,l,jVj,t + εl,t (12)

where εl,t ∼ N(0, Ve) are i.i.d. εl,t can be thought of as deviations that arise due to market

imperfections such as illiquidity or due to the existence of incompletely diversified idiosyncratic

factors. In section 5, we show that, given the assumed error structure, principal component

analysis (or singular value decomposition) can be used to estimate the linear subspace that the

n+m factors span once n+m is specified and that statistical tests suggested in the literature

can be used to estimate n+m from the data.

This differs from the methodology used by Bansal, Yaron, and Kiku (2007) and Ferson,

Nallareddy, and Xie (2012) in estimating the linear subspace of the factors with the use of sev-

eral log P/D ratios rather than the projection of the realized long term consumption growth

and its volatility on the log market P/D ratio and the real risk free rate. We show in ap-

pendix C, by using Monte Carlo simulations of the long run risk model, that our methodology

produces much fewer spurious rejections of the model when reasonable measurement errors in

consumption growth and the real risk free rate are taken into account.

The principal asset pricing relation that we use in this study is

Et

[
exp

(
Ξ̃0 +

m+n∑
i=1

Ξ̃1,iFi,t − αc∆ct+1 −
m+n∑
i=1

αq,iIFi,t+1

)
(Ri,t+1 −Rf,t+1)

]
= 0 (13)

8The reader must note that these factors are different though related to the pricing factors discussed below.
This terminology for both types of quantities is standard but unfortunate.
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derived using the standard asset pricing relation

Et[exp(mt+1)(Ri,t+1 −Rf,t)] = 0 (14)

and (11) (with ∆t set to 1).

We empirically evaluate the asset pricing relation in equation (14) using cross sectional

regressions and GMM. The cross sectional regression results are particularly useful in relat-

ing our results to those in the literature that use various linear beta pricing representations.

The appropriate pricing relations for the cross sectional regressions are developed in the next

section. In contrast, the GMM results directly examine the nonlinear pricing relationship (14).

3.1 The Linear Beta Pricing Relation

The beta pricing relation can be derived from the fundamental equations of the model (1), (2),

(3) and (4) together with the form of the preferences (6). To simplify the notation, we set ∆t

to 1 in this derivation and use the index l for the asset rather than i for clarity as the latter is

generally used as the index for the X state variables.

Theorem 1. The model defined by (37), (38), (39) and (40) implies the beta pricing relation

E[rl,t+1 − rf,t]+
1

2
Var

rl,t+1 − rf,t −
m∑
j=1

βl,VjVj,t

 =

m∑
j=1

(
n∑
i=1

αx,iβl,Yiδ
2
x,i,jϕ

2
x,i + αv,jβl,Zjσ

2
j + αcβl,cδ

2
c,j

)
V̄j

=

n∑
i=1

βl,YiλYi +

m∑
j=1

βl,ZjλZj + βl,cλc

(15)
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where

λYi = αx,iϕ
2
x,i

m∑
j=1

δ2
x,i,j V̄j (16)

λZj = αv,jσ
2
j V̄j (17)

λc = αc

m∑
j=1

δ2
c,j V̄j (18)

where the βl,Vj , 1 ≤ j ≤ m, βl,Yi , 1 ≤ i ≤ n, βl,Zj , 1 ≤ j ≤ m and βl,c are, respectively,

the multiple regression coefficients obtained on regressing rl,t+1 − rf,t on Vj,t, 1 ≤ j ≤ m,

Yi,t+1, 1 ≤ 1 ≤ n, Zj,t+1, 1 ≤ j ≤ m and the residuals obtained on regressing ∆ct+1 against

Xi,t, 1 ≤ i ≤ n.

This can be written in terms of the n+m log price dividend ratio factors Fi, 1 ≤ i ≤ m+n

and their innovations IFi, 1 ≤ n+m as

E[rl,t+1 − rf,t]+
1

2
Var

[
rl,t+1 − rf,t −

m+n∑
i=1

βl,FiFi,t

]
=

m+n∑
i=1

βl,IFiλIFi + βl,cλc

(19)

When there is only one volatility factor, the beta pricing relation can also be written as

E[rl,t+1 − rf,t]+
1

2
Var [rl,t+1 − rf,t]

= β2
l,V Var[Vt] +

(
n∑
i=1

αx,iβl,Yiδ
2
x,iϕ

2
x,i + αvβl,Zσ

2 + αcβl,cδ
2
c

)
V̄

= β2
l,V λV +

n∑
i=1

βl,YiλYi + βl,ZλZ + βl,cλc

(20)
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with the βs defined in a similar manner as above and where

λV = Var[Vt] (21)

λYi = αx,iϕ
2
x,iV̄ (22)

λZ = αvσ
2V̄ (23)

λc = αcV̄ (24)

This can be written in terms of the n+m log price dividend ratio factors Fi, 1 ≤ i ≤ n+ 1 and

their innovations IFi, 1 ≤ n+ 1 as

E[rl,t+1 − rf,t]+
1

2
Var [rl,t+1 − rf,t]

= β2
l,Fk

λFk +
n+1∑
i=1

βl,IFiλIFi + βl,cλc

(25)

where the βs are as defined above and Fk is some log price dividend ratio factor that has

non-zero correlation with the volatility factor.

Proof. See appendix B.

In addition to the model considered in this paper, (19) also holds for the long run risk

models of Bansal and Yaron (2004), Bansal, Yaron, and Kiku (2007), Yang (2011) and Zhou

and Zhu (2009). In addition, (25) holds for the long run risk models of Bansal and Yaron

(2004), Bansal, Yaron, and Kiku (2007) and Yang (2011). (It does not hold for the model of

Zhou and Zhu (2009) as it has more than one volatility factor.) Proof of these statements are

available upon request.

Theorem 2. The model defined by (1), (2), (3) and (4) implies the beta pricing relation

E[rl,t+1 − rf,t] =

m∑
j=1

βl,Vj V̄j (26)
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where βl,Vj is the coefficient obtained upon regressing rl,t+1 − rf,t on Vj,t.

This can be written in terms of the n+m log price dividend ratio factors Fi, 1 ≤ i ≤ m+n

as

E[rl,t+1 − rf,t] =

m+n∑
i=1

βl,FiλFi (27)

Proof. See appendix B.

(27) holds for our model because of the Bessel process used for the volatility. It does not

therefore hold for the long run risk models of Bansal and Yaron (2004) and Bansal, Yaron,

and Kiku (2007) which use Ornstein-Uhlenbeck processes for the volatility. While it can be

argued that a Bessel process is a more reasonable one from a theoretical point of view as it does

not admit negative values,9 this means that (27) is not a general implication of long run risk

models. However, it’s analysis is interesting and can provide some insight as to the economic

forces that determine the time series variation in the cross section of expected returns.

It is also interesting to note that, when there is only volatility factor (as we find in this

study), (27) is a statement of the fact that there is only one factor driving the cross section of

expected returns. In this sense, the results of Gibbons and Ferson (1985) are consistent with

our finding of one volatility factor as they find that the returns of the Dow Jones 30 stocks are

consistent with a single, time-varying risk premium.

We are unable to test this hypothesis satisfactorily in our approach as the lagged factor

betas are not significantly different from each other. This is related to econometric issues which

arise due to the fact that the major part of the return is composed of the long run risk factor

innovations. This leads to poor estimation of the betas with respect to the lagged factors and

spurious rejections of the relation in asset pricing tests. This can be shown using Monte Carlo

simulations.10

9In the calibration of Bansal, Yaron, and Kiku (2012), the probability of negative volatilities in the stable
distribution is nearly 20%.

10The analysis of a Monte Carlo simulation showing this in the context of the CAPM is available upon request.
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3.2 Relation to Standard Linear Factor Models

We note from the standard loglinear approximation of Campbell and Shiller (1988) that in-

novations of the log P/D ratios are similar to innovations in excess returns minus dividend

growth.

Explicitly, the loglinear approximation (28) states that the return is approximately given

by

rl,t+1 − rf,t ≈ ν0,l − rf,t + ν1,l(pl,t+1 − dl,t+1)− (pl,t − dl,t) + ∆dl,t+1 (28)

This, in turn, can be written as

rl,t+1 − rf,t ≈Et[rl,t+1 − rf,t] + ν1,l(pl,t+1 − dl,t+1 − Et[pl,t+1 − dl,t+1])︸ ︷︷ ︸
price dividend ratio innovation

+ (dl,t+1 − dl,t − Et[dl,t+1 − dl,t])︸ ︷︷ ︸
dividend growth innovation

(29)

Hence, the factor structure of excess returns is composed of three parts

1. the factor structure in expected excess returns (given by the V factors);

2. the factor structure of innovations to the log price dividend ratios;

3. the factor structure in dividend growth innovations; and

Since the model does not constrain the factor structure in dividend growth innovations, it

does not imply any specific relation between the return and P/D factor structures. We do,

however, show in appendix C that it can be chosen in a manner to make these factor structures

consistent with data. We also document, in this appendix, that these factor structures are,

in fact, different in the data so that the use of one instead of the other is not vacuous. The

dividend growth innovation factor structure, loosely speaking, can thus explain the fact that

the price dividend ratios of the twenty five Fama-French portfolios have a two factor structure

while their excess returns have a three factor structure.
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In other words, the methodology that we use closely parallels the standard factor analysis

and principal component analysis methods of Connor and Korajczyk (1986), Lehmann and

Modest (1988), Lehmann and Modest (2005) and Connor and Korajczyk (2009) but differs in

the way the factors are constructed. While standard factor analysis constructs factors from the

returns themselves, this methodology pays more attention to returns that are not explained by

contemporaneous dividend growth, or in other words, to the more interesting non-trivial part

of returns.

It must be emphasized that, despite these close parallels, the methodology used by us is

vital as it enables to estimate the slow moving long run risk factors directly which is not

possible with the return factors. This is because the return factors only directly contain the

volatility type long run risk factors and even these are swamped by the remaining sets of factors

identified above, namely the innovations in the long run risk factors and the dividend growth

innovations.

4 Data

We examine the cross section of annual returns on several stock portfolios for the period 1943

to 2008, i.e., 66 years. While we primarily use annual consumption data, we compute con-

sumption growth volatility using quarterly consumption data to obtain more precise estimates.

Consumption data is obtained from the National Income and Product Accounts (NIPA) ta-

bles available at the BEA web site. Real annual per capita consumption is defined to be the

nominal aggregate annual consumption of nondurables and services divided by the NIPA esti-

mate of the mid-year population and deflated by the implicit personal consumption deflator.11

Annual consumption growth is defined to be the first difference of the logarithm of this series.

11Since we make use of data expressed in terms of chained dollars, we use a Tornqvist type index (Whelan 2000)
to construct the implicit consumption deflator.
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Quarterly seasonally adjusted consumption data is also obtained from NIPA and it’s growth

is defined in an analogous manner.

The proxy for the nominal risk-free rate is the Fama 3 month T-bill rate obtained from

CRSP. It is converted to two proxies of the real risk free rate using the realized and past

inflation as measured by the CPI (as discussed in the relevant section of this paper). The CPI

data for this is obtained from CRSP.

The stock market proxy (used to determine the relationship between the factors and future

dividend growth and expected returns) is defined as the CRSP value-weighted index of all

stocks listed on the NYSE, AMEX and NASDAQ. The construction of portfolios based on size

and book-to-market ratios is as in (Fama and French 1993) and (Fama and French 1996). Data

on the 25 (5 × 5) portfolios sorted on the basis of both these characteristics is obtained from

Ken French’s web site.

For testing the asset pricing relationships with portfolios other than the ones used to

estimate the factors (we call this out of sample testing), we use three sets of ten portfolios each

formed on the basis of long term reversal, short term reversal and the earnings to price (E/P)

ratio. The long term reversal portfolios are formed monthly on the basis of stock’s return over

the past five years minus it’s return over the past year. In other words, they are formed at time

t − 1 (time being indexed by month) by sorting stocks into ten portfolios according to their

returns from t− 61 to t− 13. Similarly, short term reversal portfolios are formed at time t− 1

by sorting stocks into ten portfolios based on their return from t− 2 to t− 1. The E/P based

portfolios are formed at the end of June of year t by sorting stocks into ten portfolios (using

NYSE breakpoints) on the basis of their E/P ratios where E is defined to be the earnings before

extraordinary items during fiscal year t− 1 and P is defined to be the market capitalization at

the end of December of year t − 1. Data on these thirty portfolios is also obtained from Ken

French’s web site.
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Monthly dividends of these portfolios are calculated using the difference between the returns

of the corresponding dividend reinvested and non-reinvested portfolios. The price-dividend

ratios are then calculated by dividing the real price of the non-reinvested portfolio by the

sum of the lagged twelve real monthly dividends. This procedure accounts for the pronounced

seasonality of the dividend series. The nominal prices and dividends are deflated by the CPI

to get these real prices and dividends. As pointed by Van Binsbergen and Koijen (2010), the

effect of assumptions regarding the handling of dividends paid during the year on the price

dividend ratios is negligible with the correlation between the different measures being about

0.9999.

Real time consumption data is obtained from the web site of the Federal Reserve Bank of

St. Louis and is described by Croushore and Stark (2001). The real consumption during a

quarter is defined to be the sum of the real consumption of nondurables and services during that

quarter. The real consumption during a year is defined to be the sum of the real consumptions

during each quarter of that year. Real per capita consumption during a period is defined to

be the real consumption during that period divided by the mid-period estimate of population.

The real time annual per capita consumption growth for year t is defined to be the difference

between the logarithms of the real per capita consumptions during years t and t−1 respectively

as calculated using data of vintage Q1 of year t + 1. To provide an example, the data set of

Q1 1976 vintage is used to construct the real time annual per capita consumption growth for

1975. It is constructed by adding the real nondurables and services consumptions of Q1-Q4

1974 and Q1-Q4 1975, dividing each of them by the mid-year estimates of the population, and

then taking the difference of the logarithms of the corresponding quantities.
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5 Empirical Findings

5.1 Structural Break Implied by the Factors

Marakani (2009) documents strong evidence that the parameters of long run risk models could

not have been the same before and after 1942. Hence, we only consider the post 1942 period

in our analysis and assume that consumers are myopic and do not consider the possibility of

regime change in the model.12 We defer the examination of an extended model where the

consumers are aware of possible regime shifts to future research.13

5.2 Construction of the Principal Components and Their Innovations

From (7), the problem of obtaining the factors of log P/D ratios is, for a fixed number of

factors n+m, equivalent to the problem of finding time series processes Fn+m
i,t to solve

V (n+m) = min
Λ,Fn+m

1

NT

N∑
i=1

T∑
t=1

(
Xi,t − Λn+m

i Fn+m
i,t

)2
(30)

whereX is the matrix of demeaned log P/D ratios, N is the number of portfolios, T is the length

of the time series, F are the factors and Λ are the loadings of the individual log P/D ratios on

them (the superscript n+m keeps track of the number of assumed factors). The equivalency

of the two problems follows trivially from the assumption that the error terms are i.i.d and

Gaussian. Hence, this problem is the same as the well studied standard factor analysis problem

(of which (Connor and Korajczyk 2009) is an excellent review). The assumptions regarding

the error terms are not crucial for our results as they hold even if we perform the principal

component analysis after first scaling the log P/D ratios to make them each have unit variance

or after first scaling them each according to their residual variances. In other words, our results

are robust to the use of different specifications for the error term.

12The use of post-1945 or post-1950 data does not significantly change our results.
13In this context, we note that Bekaert and Engstrom (2010) have recently argued that habit formation models

are better able to incorporate the very different dynamics observed during and after the Great Depression.
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Hence, the factors can be calculated by singular value decomposition of the matrix of de-

meaned log P/D ratios. This is equivalent to the more usual method of using the eigenvectors of

the covariance matrix or directly solving (30), but is preferred because it has greater numerical

stability. The number of relevant factors k = m + n is determined by using the information

criterion

argmin
k

ICp2 ≡ argmin
k

(
log V (k) + 2k

(
N + T

NT

)
log min(N,T )

)
(31)

suggested by Bai and Ng (2008) and by Connor and Korajczyk (2009). This method is known

to be consistent when the number of quantities and the length of the time series become large.

As pointed out by Bai and Ng (2008), traditional methods usually overestimate the number of

factors that are present in the data.
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Figure 1: Information criterion as a function of the number of factors for the annual log P/D
ratios of the 25 Fama-French portfolios formed on the basis of size and book to market ratio
over the period 1943-2008.
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Scree plot of variances explained by the principal components of the

 log price dividend ratios of the 25 Fama−French portfolios
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Figure 2: Variances explained by the first ten principal components of the annual log P/D
ratios of the 25 Fama-French portfolios formed on the basis of size and book to market ratio
over the period 1943-2008.

We carry out this procedure on the annual log P/D ratios of the 25 Fama French portfolios

from 1943 (to account for the structural break). We find two significant factors in this series

(as well as in the quarterly and monthly series of log P/D ratios – not reported).

We plot the information criterion as a function of the number of factors in figure 1 and the

variances explained by the principal components in figure 2.

Using the same procedure, we find two factors in the first differences of the quarterly log

P/D ratios of these portfolios. We also note that the plot of the variances explained by their

principal components in figure 3 unambiguously points to a two factor structure.

We tabulate the rotations that relate the annual log P/D ratios of the 25 Fama-French

portfolios to their first two principal components, denoted by F1,2 with the subscript the

principal component, in table 1. From the rotation matrices, we find that F1 loads positively

on all the portfolios and loads slightly more on the small stock portfolios. In contrast, F2
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Scree plot of variances explained by the principal components of the differences in

 log price dividend ratios of the 25 Fama−French portfolios
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Figure 3: Since a factor structure for the log P/D ratios also implies a similar factor structure
for the first differences in the log P/D ratios, we check that the first differences of the log P/D
ratios also shows a two factor structure in the data. The above graph shows the variances
explained by the first ten principal components of the first differences of the log P/D ratios
of the 25 Fama-French portfolios formed on the basis of size and book to market ratio over
the period 1943-2008. It shows that these first differences also exhibit the expected two factor
structure.

loads positively on large and value stocks and negatively on growth and small stocks. We thus

expect F2 to be closely related to the cross sectional differences among the portfolios.

We estimate the innovations of the two identified principal components as the OLS residuals

obtained on regressing them on n lags of themselves, n being the smallest value for which they

are serially uncorrelated at the 10% level according to both the Ljung-Box and Durbin-Watson

tests. n is always found to be one for the annual data and sometimes two for the quarterly

data (not reported). We denote these estimated innovations as IF1 and IF2.
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Rotation matrix for F1

Growth Value
1 2 3 4 5

Small 1 0·356 0·267 0·206 0·194 0·169
2 0·354 0·244 0·198 0·168 0·135
3 0·314 0·210 0·176 0·152 0·135
4 0·234 0·176 0·154 0·125 0·100

Large 5 0·148 0·116 0·104 0·114 0·116

Rotation matrix for F2

Growth Value
1 2 3 4 5

Small 1 −0·458 −0·140 −0·082 0·028 0·104
2 −0·289 −0·055 0·089 0·194 0·211
3 −0·177 0·025 0·185 0·231 0·221
4 −0·064 0·091 0·170 0·302 0·243

Large 5 −0·005 0·077 0·186 0·275 0·315

Table 1: The rotation matrix that relates the log annual price dividend ratios of the 25 Fama-
French portfolios formed on the basis of size and book to market ratio to their first and second
principal components. F1 and F2 represent the first and second principal components of the
annual log P/D ratios over the period 1943-2008.

5.3 Principal Components & the Long Run Risk Factors

Since the Xi factors represent joint predictable components of consumption and dividend

growth, a positive and significant coefficient should result on regressing future consumption

and dividend growth against these factors. Similarly, since the Vj factors are components of the

consumption growth volatility, regressing consumption growth volatility against them should

also lead to a positive and significant coefficient. Since the principal component analysis only

identifies affine transformations of the full set of long run risk factors, we can, in general,

expect to find that the principal components will be related to both the Xi and Vj factors

and that both regressions above will lead to significant coefficients given that the long run

risk model holds. However, we find that only the volatility regression generates a significant

coefficient for the first identified principal component F1 and that only the future consumption

and dividend growth regression generates a significant coefficient for the second identified
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principal component F2. This implies that the first identified principal component is naturally

identifiable as an affine function of the only V factor and that the second identified principal

component is naturally identifiable as an affine function of the only X factor.

We now examine the volatility regression in some detail. In order to construct a consump-

tion volatility series, we estimate the innovations of quarterly consumption growth εv,t as the

OLS residuals obtained on regressing it on n lags of itself, n being the smallest value for which

they are uncorrelated at the 10% level according to both the Ljung-Box and Durbin-Watson

tests. n is found to be three for this data series. Using these estimated innovations, the

consumption volatility series is estimated as

vnt = log

n∑
i=1

ε2v,bt+n/2−ic

n
(32)

This methodology is standard and has been used in the context of long run risk models by

Beeler and Campbell (2012).

The results of regressing v24
t , v

12
t and v6

t on F q1 and F q2 , the factors constructed using

quarterly log P/D ratios, are summarized in table 2. We also include the results of regressing

de-trended v24
t , v

12
t and v6

t on de-trended F q1 as a robustness check as both consumption growth

volatility and the first principal component have a pronounced time trend in the data as seen in

figure 4. They show that F1 is very closely related to consumption growth volatility with the R2

of the 24 quarter volatility regression being as high as 81%. Even the R2 for 6 quarter volatility

regression, where the measurement error is likely to be high, is quite high at 47%. Further,

the fact that the coefficients of F1 in the various regressions are very similar to each other

(i.e. for volatilities estimated over several horizons) provides strong evidence that the relation

is robust. In contrast, there is no evidence at all that F2 is related to consumption growth

volatility. This result, when combined with the result, detailed below, that F1 is unrelated to

future consumption and dividend growth, leads to the conclusion that F1 is an affine function of

a V type factor. This conclusion follows because F1 satisfies the conditions we have identified
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for such a factor : it is an affine function of log P/D ratios, it tracks consumption growth

volatility and does not predict future consumption or dividend growth.14

Regression of consumption growth volatility on F1 and F2

F1 F2 R2

24 quarter volatility −0.213∗∗∗ (0.027) 0.081 (0.094) 81.2%
12 quarter volatility −0.234∗∗∗ (0.052) 0.074 (0.190) 62.7%
6 quarter volatility −0.235∗∗∗ (0.062) 0.024 (0.209) 46.9%

Regression of de-trended consumption growth
volatility on de-trended F1

F1 R2

24 quarter volatility −0.134∗∗∗ (0.028) 32.2%
12 quarter volatility −0.153∗∗ (0.071) 13.6%
6 quarter volatility −0.176∗ (0.116) 9.5%

Table 2: Results of regressing volatility as defined in (32) against F1 and F2, the two significant
principal components of the log P/D ratios of the 25 Fama-French portfolios formed on the
basis of size and book to market ratio over the period 1947-2008. The standard errors are
Newey-West corrected with the required number of lags estimated using the procedure in
(Newey and West 1994). The principal components of the quarterly log P/D ratios were used
in these regressions. Use of the rotation matrix for the annual log P/D ratios to create quarterly
versions of these principal components leads to very similar results.

We now examine the dividend and consumption growth regressions in detail. The results

of regressing annual real market dividend growth (i.e., growth of annual market dividends

deflated by the CPI) on the lagged values of F1 and F2 are summarized in table 3. We find,

from them, that F2, but not F1, predicts market dividend growth. This predictive ability is

weakly robust to lagging twice to account for time aggregation with the coefficient for F2 being

significant at the 10% level.15 (It should also be noted that time aggregation is generally not

14When analyzing the results obtained after de-trending, the reader should keep in mind that removing this
time trend removes important information as neither quantity is expected to have a time trend on a theoretical
basis. This is probably the reason for the lower R2 obtained after the trends are removed. The most important
aspect of these results, which is that the coefficient of de-trended F1 is significant and has the same sign as
without de-trending, still provides support to our conclusion.

15It is interesting that F2, which weights the value portfolios more heavily, predicts future market dividend
growth better than the log market P/D ratio (whose inability to predict dividend growth is well known (Cochrane
2005)). We hypothesize that this is because value stocks have a low duration which makes their P/D ratios
depend more on dividend growth than on future expected excess returns.
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12 quarter consumption growth volatility and the first principal component of the log price dividend ratios of the

 25 Fama−French portfolios formed on the basis on size and B/M ratio

Figure 4: Plot of the 12 quarter consumption growth volatility and F1, the first principal
component of the log price dividend ratios of the 25 Fama-French portfolios formed on the
basis of size and B/M ratio, over the period 1947-2008.

considered an issue with respect to dividend growth.) While our results are robust to time

aggregation of dividend growth along this dimension, we acknowledge that such aggregation

also leads to biases in our estimates of the price dividend ratios since we calculate them, as is

conventional in the literature, using dividends aggregated on an annual basis in order to adjust

for their pronounced seasonality. However, we also note that time aggregation of dividend

growth, in contrast to time aggregation of consumption growth, is generally not considered a

significant issue in the literature, that our model specification is annual rather than monthly

and that our results are robust to the use of either of the conventional assumptions regarding

the investment of dividends received during the year (the first being that such dividends are

invested in nominal cash until the end of the year and the second being that they are invested

in the asset itself until the end of the year16).

16The convention used in the presented calculations is equivalent to the assumption that dividends received
during the year are consumed immediately and that the agent is completely indifferent to the timings of these
dividends during the year.
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The results of regressing annual real time consumption growth against the lagged values of

F a1 and F a2 are also summarized in table 3. We find, from them, that F a2 also predicts real time

consumption growth as defined in the data section and that this predictive ability is robust

to lagging twice to account for time aggregation. This is in accordance with the long run risk

hypothesis that dividend and consumption growth share the same persistent component(s)

X.17 From the results in table 3, we conclude that F2 can be identified as an affine function of

a X type factor as it satisfies the essential properties of such factors : it is an affine function

of log P/D ratios, predicts dividend and consumption growth but not consumption growth

volatility.

We find that F2 also satisfies another expected property of the X factor in many long run

risk models. It has been pointed out by Bansal, Yaron, and Kiku (2007), Bansal, Dittmar, and

Lundblad (2005), Bansal, Dittmar, and Kiku (2009), Da (2009) and others, the long run risk

model implies that assets with higher sensitivity of predictable dividend growth to the long

run risk factor X, which is measured by φi,l in our model, have higher expected excess returns.

While this is not an implication of the long run risk model we use as we do not set πi,l,x to zero,

our version still implies a positive relationship between φi,l and the expected excess return of

asset l holding πi,l,x constant. Hence, if the long run risk model holds, we do find that the

coefficients obtained on regressing portfolio dividend growths on FX are significantly different

from each other and are related to their excess returns in the expected manner. Specifically,

we find that the F test strongly rejects the equality of the regression coefficients obtained on

regressing real dividend growth of each of the 25 portfolios on the lagged value of F2 at the

p < 0.001 level and that these regression coefficients are higher for the portfolios of small and

value stocks which have higher excess returns. We note that this result is not very surprising

17We note that while the use of this measure of consumption is not standard, it is more relevant for the
current analysis as it better matches the information structure of the consumers in the economy. (It is also
possible that real time data captures the sentiment of consumers as it reflects their current view of the state of
the economy.)
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Regression of market dividend growth on lagged F1 and F2, compared
with that on the lagged log market P/D ratio

(IPCD stands for the implicit personal consumption deflator)
F a

1,t F a
2,t log(P/D)m,t R2

∆dm,t+1 deflated by CPI
0.0004 (0.0031) 0.0317∗∗∗ (0.0079) 16.0%

0.003 (0.027) 0.0%
After one yr -0.0005 (0.0032) 0.0134∗ (0.0089) 2.9%

∆dm,t+1 deflated by IPCD
-0.0002 (0.0032) 0.0288∗∗∗ (0.0079) 13.3%

-0.002 (0.026) 0.0%
After one yr -0.0012 (0.0033) 0.0126∗ (0.0088) 2.9%
dm,t+3 − dm,t 0.0008 (0.0135) 0.0571∗∗ (0.0261) 11.6%

dm formed by deflating with CPI 0.005 (0.107) 0.0%
dm,t+3 − dm,t -0.0012 (0.0132) 0.0543∗∗ (0.0247) 10.9%

dm formed by deflating with IPCD -0.011 (0.103) 0.0%

Regression of real time annual consumption growth on lagged F1 and F2

F1,t F2,t R2

∆cRT
t+1 −2× 10−4(9× 10−4) 0.0068∗ (0.0037) 17.4%

∆cRT
t+2 −5× 10−4(7× 10−4) 0.0054∗∗ (0.0021) 9.8%

∆cRT
t+1 + ∆cRT

t+2 −5× 10−4(1.5× 10−3) 0.0123∗∗ (0.0050) 18.9%

Table 3: Results of regressing real annual market dividend growth (∆dm where dm is the log
real annual market dividend) and real time consumption growth (∆cRT ) against lagged F1

and F2, the two significant principal components of the log P/D ratios of the 25 Fama-French
portfolios formed on the basis of size and book to market ratio, and the lagged log market P/D
ratio (log(P/D)m). The standard errors are Newey-West corrected with the required number
of lags estimated using the procedure in (Newey and West 1994). The regressions using the
log market P/D ratio are for the same time period as for the ones using F1 and F2 (1944-2008
for the one year dividend growth regressions, 1946-2008 for the three year dividend growth
regressions). The one and two year real time consumption growth regressions are over the
periods 1966-2008 and 1967-2008 respectively.

given the form of the rotation matrix relating F2 to the log P/D ratios.18 We do not test this

relation explicitly as it is not an implication of the model we use.

Given the long run risk model, we also expect to find little if any cross-sectional variation

of the sensitivity of dividend growth to the volatility factor. Empirically, we do find that this

is largely the case with corresponding F statistic for F1 (the principal component related to

the volatility) being much lesser at 1.73 (p = 0.015). While this is marginally significant, it

18As in (Bansal, Dittmar, and Lundblad 2005), most of the individual coefficients are not significant but they
are significantly different from each other.
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is mostly because the regression coefficients for the portfolios corresponding to the smallest

stocks being larger than the others.19 Since the size premium is much less robust than the

value premium, we see that this cross-sectional variation is not strongly related to expected

excess returns.

Since the above regressions involve the whole sample and are subject to forward looking

bias, we investigate whether the predictability implications that lead to the identification of

the first two principal components as affine functions of the long run risk factors X and V

hold out of sample in the section on asset pricing test results, and find that they indeed do so.

We also show that look-ahead bias-free versions of the factors and their innovations estimated

using the 25 Fama-French portfolios formed on the basis of size and book to market ratio

successfully explain the expected returns of three sets of ten portfolios formed on the basis of

short term reversal, long term reversal and the earnings to price ratio.20 Hence, we see that

our results are robust both to forward looking bias and are not an artifact of testing the model

with the same portfolios as those that are used to estimate the factors.

5.4 Asset Pricing Tests

Since the dividends in this analysis have to be measured annually due to seasonality consider-

ations, the asset pricing restrictions are only strictly correct at the annual time scale. Hence,

we restrict ourselves to annual data in the following analysis.21

5.4.1 Cross Sectional Regressions

When we investigate the pricing relationship (15) using the 25 Fama-French portfolios, we

find that it performs well. The cross sectional regression results are tabulated in table 4 and

19We used annual values for the above analysis in order to eliminate issues arising from dividend and CPI
seasonality as well as to minimize the confounding effects that arise from overlapping regressions.

20They also explain the expected excess returns of the 25 Fama-French portfolios formed on the basis of size
and book to market ratio.

21In unreported results, we find that the model also exhibits good performance at the quarterly time scale.
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Results of the cross sectional regression
E[ri,t+∆t − rf,t] + 1

2Var[ri,t+∆t − rf,t] = β2
F−V ol

λF−V ol +
∑n+m

j=1 βIFjλIFj + β∆cλ∆c

for the 25 Fama-French portfolios formed on the basis of size and book to market ratio
Intercept λF−V ol λIF−V ol λIFX λ∆c R2

OLS -0.027 -76.51 0.689 0.458 -0.0035 77.4%
(-0.82) (-2.79) (2.96) (3.97) (-0.98) (72.9%)

-0.023 0.545 0.464 -0.0033 68.8%
(-0.70) (2.47) (4.01) (-0.93) (64.4%)
(-0.44) (1.71) (2.66) (-0.62)

WLS -0.023 0.577 0.417 0.0000
(-0.48) (1.94) (2.66) (0.01)

Pricing errors ×100

Growth Value
1 2 3 4 5

Small 1 0.270 1.609 0.141 -0.874 -1.793
2 1.899 -0.697 -1.430 0.065 -2.621
3 -0.139 -0.145 -0.443 -0.245 -0.430
4 -0.702 1.781 0.479 1.006 -0.503

Large 5 -0.518 1.507 -1.327 0.691 2.420

Table 4: Results of the two pass cross sectional regression, E[ri,t+∆t−rf,t]+ 1
2Var[ri,t+∆t−rf,t] =

β2
F−V ol

λF−V ol +
∑n+m

j=1 βIFjλIFj + β∆cλ∆c, of the 25 Fama-French portfolios formed on the
basis of size and book to market ratio, on lagged F−V ol and concurrent IF−V ol and IFX
over the period 1944-2008. F−V ol and FX are the first two principal components of the log
P/D ratios of the 25 Fama-French portfolios formed on the basis of size and book to market
ratio over the period 1943-2008 which, as we show, can be interpreted as negative volatility
and consumption/dividend growth factors while IF−V ol and IFX are their innovations. For
the OLS coefficients, the t values with and without the Shanken correction (Shanken 1992)
(Shanken and Zhou 2007) are reported below the coefficient (the value without the correction
is reported first) while for the WLS coefficients, only the t values with the correction are
reported. The R2 adjusted for the number of variables is reported below the unadjusted R2.

plotted in figure 5. The OLS R2 is quite high at 77.4%.22 Further, the estimates of the

cross-sectional regression intercept is insignificant, having an absolute t statistic value of 0.82.

This, together with the insignificant intercepts and high R2 values in the other cross sectional

22The pricing relationship (15) is also empirically supported at the quarterly frequency. While we do not
report detailed results at this frequency for brevity, we note that the cross sectional regression intercept is not
significantly different from zero and that the OLS R2 is greater than 65%.
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Figure 5: Results of the cross sectional regression of the 25 Fama-French portfolios formed on
the basis of size and book to market ratio using IF−V ol, IFX and lagged values of F−V ol over
the period 1944-2008. F−V ol and FX are the first two principal components of the log P/D
ratios of the 25 Fama-French portfolios formed on the basis of size and book to market ratio
over the period 1943-2008 which, as we show, can be interpreted as negative volatility and
consumption/dividend growth factors. IF−V ol and IFX are their innovations.

regressions detailed below provides support for our specification as the intercept must be zero

for a correctly specified model, a fact emphasized by Jagannathan and Wang (2007).

Since we obtained the P/D ratio factors using the 25 Fama and French portfolios, it is

necessary to check that these factors can price other portfolios as well. For that purpose we

examine three sets of ten portfolios formed on the basis of short term reversal, long term

reversal, and the E/P ratios. The cross sectional regression results are tabulated in table 5

and plotted in figure 6. We again find that the R2 is high at 79.1% and the intercept is low

at -1.6%/year and not statistically different from zero at conventional significance levels with

the absolute value of the t statistic being only 0.71.
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Results of the cross sectional regression for 30 portfolios
E[ri,t+∆t − rf,t] + 1

2Var[ri,t+∆t − rf,t] = β2
F−V ol

λF−V ol +
∑n+m

j=1 βIFjλIFj + β∆cλ∆c

Intercept λF−V ol λIF−V ol λIFX λ∆c R2

OLS -0.016 -50.78 0.476 0.476 -0.0030 79.1%
(-0.71) (-1.65) (2.51) (4.36) (-0.88) (75.8%)

-0.008 0.412 0.437 -0.0030 76.1%
(-0.39) (2.15) (4.18) (-0.88) (73.4%)
(-0.25) (1.61) (2.98) (-0.61)

WLS -0.013 0.450 0.443 -0.0028
(-0.39) (1.83) (3.04) (-0.57)

Pricing errors ×100
bottom top

1 2 3 4 5 6 7 8 9 10
Long term reversal 0·721 −0·915 −0·351 0·653 0·278 −0·636 −0·831 −0·003 1·700 0·404
Short term reversal 0·829 −2·109 −1·905 0·012 −0·059 1·404 0·967 0·322 −0·646 2·003

E/P ratio −1·157 0·539 0·869 0·874 −0·250 −0·962 −1·073 0·106 −0·795 0·013

Table 5: Results of the cross sectional regression, E[ri,t+∆t − rf,t] + 1
2Var[ri,t+∆t − rf,t] =

β2
F−V ol

λF−V ol +
∑n+m

j=1 βIFjλIFj + β∆cλ∆c, of 30 portfolios (three sets of ten portfolios formed

on the basis of long term reversal, short term reversal and the E/P ratio) on lagged F−V ol
and concurrent IF−V ol and IFX over the period 1952-2008. F−V ol and FX are the first two
principal components of the log P/D ratios of the 25 Fama-French portfolios formed on the
basis of size and book to market ratio over the period 1943-2008 which, as we show, can be
interpreted as negative volatility and consumption/dividend growth factors. IF−V ol and IFX
are their innovations. For the OLS coefficients, the t values with and without the Shanken
correction (Shanken 1992) (Shanken and Zhou 2007) are reported below the coefficient (the
value without the correction is reported first) while for the WLS coefficients, only the t values
with the correction are reported. The R2 adjusted for the number of variables is reported
below the unadjusted R2.

A common concern when using the cross sectional methodology is that the betas do not

show sufficient cross sectional variation. However, we find that this is not the case. The F test

for the hypothesis that the factor innovation betas are the same is strongly rejected for both

factor innovations (p < 0.001). However, the analogous test for the lagged negative volatility

factor cannot reject the hypothesis that these lagged volatility factor betas are different from

each other even at the 10% level of significance. Hence, we also report the results excluding

the lagged volatility factor betas in tables 4 and 5.
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Figure 6: Results of the cross sectional regression of 30 portfolios (three sets of ten portfolios
formed on the basis of long term reversal, short term reversal and the E/P ratio) using lagged
F−V ol, IF−V ol and IFX over the period 1952-2008. F−V ol and FX are the first two principal
components of the log P/D ratios of the 25 Fama-French portfolios formed on the basis of size
and book to market ratio over the period 1943-2008 which, as we show, can be interpreted
as negative volatility and consumption/dividend growth factors. IF−V ol and IFX are their
innovations.

5.4.2 Robustness tests

Since the excess returns of the 25 Fama-French portfolios formed on the basis of size and

book to market ratio have a strong factor structure, it is important to use robust test statis-

tics to eliminate the problem of useless factors being identified as useful (a problem force-

fully brought out by Lewellen, Nagel, and Shanken (2006), Kleibergen (2009) and Kleibergen

(2010)). Hence, we test the above cross sectional regressions using the robust test statistics

suggested by Kleibergen (2009) in appendix D to ensure that the factors here are not useless

and that the hypothesis of factor pricing is not rejected. As shown in detail in this appendix,

we find that both conditions are satisfied for our model specifications.
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We also note that the number of time series observations in our analysis is small due to our

low frequency data and that we find the betas of the assets to be significantly different from

each other. As noted by Kan and Zhang (1999), these characteristics make it much less likely

that a useless factor is spuriously found to be “useful” in a cross-sectional regression. Finally,

we note that the cross-sectional regression intercept should be zero if the model is correctly

specified, as emphasized by Jagannathan and Wang (2007), and that the intercept that we

obtain for each of the cross-sectional regressions examined in the previous subsection is indeed

close to zero and insignificantly different from it. In particular, the intercepts in all the cross

sectional regressions that we investigate are insignificant and the absolute t statistic value is

always less than 1.

As Ferson, Nallareddy, and Xie (2012) emphasize, it is important to check whether the

results are robust to possible look ahead bias. We therefore investigate this later in this

section. We find that our findings are not due to possible look ahead bias. In fact, we find that

the bias free estimates of the log P/D factors and their innovations perform slightly better.

5.4.3 Price Dividend Ratio Factors vs Return Factors

The common practice in the empirical finance literature is to use excess return factors. We

therefore examine the relation between them and the price dividend ratio factors.

We now interpret these results in terms of our earlier discussion relating price dividend

ratio and return factors. Recall that it follows from (29) that the factor structure of returns is

composed of three parts : (i) the factor structure of expected returns, (ii) the factor structure

of innovations to the log price dividend ratios; and (iii) the factor structure of dividend growth

innovations. As we show in appendix C, the latter can be chosen in a manner to make the log

price dividend ratio factor structure consistent with the return factor structure.
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Results of the constrained cross sectional regression for the 25 Fama-French portfolios
formed on the basis of size and book to market ratio on the Fama-French factors,

lagged F−V ol and concurrent IF−V ol, IFX
E[ri,t+∆t−rf,t]+ 1

2
Var[ri,t+∆t−rf,t] = β2

F−V ol
λF−V ol +

∑n+m
j=1 βIFjλIFj +βMktλMkt+βSMBλSMB+βHMLλHML

λF−V ol λIF−V ol λIFX λMkt λSMB λHML

OLS 422.3 0.595 0.329 7.53 2.18 6.83
(1.71) (3.58) (3.40) (3.21) (1.30) (4.11)

OLS 0.624 0.344 7.72 2.46 6.77
(3.76) (3.72) (3.33) (1.47) (4.07)
(3.12) (2.84) (3.26) (1.44) (3.97)

Results of the constrained cross sectional regression for 30 portfolios formed on the
basis of the earnings to price ratio, long term reversal and short term reversal

on the Fama-French factors, IF−V ol, IFX and lagged F−V ol
E[ri,t+∆t−rf,t]+ 1

2
Var[ri,t+∆t−rf,t] = β2

F−V ol
λF−V ol +

∑n+m
j=1 βIFjλIFj +βMktλMkt+βSMBλSMB+βHMLλHML

λF−V ol λIF−V ol λIFX λMkt λSMB λHML

OLS -153.4 0.583 0.287 7.50 1.77 6.26
(-1.32) (3.78) (3.76) (2.98) (0.62) (2.74)

OLS 0.556 0.318 7.19 0.20 7.05
(3.62) (3.97) (2.88) (0.08) (3.13)
(3.18) (3.25) (2.83) (0.06) (2.70)

Table 6: Results of the constrained cross sectional regression of the 25 Fama-French portfolios
formed on the basis of size and book to market ratio over the period 1944-2008, and three sets
of ten portfolios formed on the basis of earnings to price ratio, long term reversal and short term
reversal over the period 1952-2008, on lagged F−V ol, IF−V ol and IFX , and the Fama-French
factors Mkt, SMB and HML. F−V ol and FX are the first two principal components of the log
P/D ratios of the 25 Fama-French portfolios formed on the basis of size and book to market
ratio over the period 1943-2008 which, as we show, can be interpreted as negative volatility
and consumption/dividend growth factors. IF−V ol and IFX are their innovations. The t
values with and without the Shanken correction (Shanken 1992) (Shanken and Zhou 2007) are
reported below the coefficient (the value without the correction is reported first).

Another way to look at this, in the context of our model, is by using the following relation

(see Appendix B, equation (91))

rl,t+1 − rf,t =

m∑
j=1

βel,VjVj,t + βl,c(∆ct+1 − Et[∆ct+1]) +

n∑
i=1

βl,Yi(Xi,t+1 − Et[Xi,t+1])

+
m∑
j=1

βl,Zj (Vj,t+1 − Et[Vj,t+1]) + εl,t+1

(33)
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where the βs follow from the form of the dividend process.23 It follows that, for our model,

principal component analysis will recover the volatility factors, Vj,t, j = 1, 2...m, the innovation

to the consumption growth of the representative agent, (∆ct+1−Et[∆ct+1]),24 innovations in the

factors that drive expected consumption growth, (Xi,t+1−Et[Xi,t+1]), i = 1, 2, ..n, innovations

in the factors that drive volatility, (Vj,t+1 − Et[Vj,t+1]), j = 1, 2..m, and the factors in the

dividend growth innovations εl,t+1.

However, it is key to note that this principal component analysis will not recover the

factors driving expected consumption growth, Xi,t, i = 1, 2, . . . , n. Further, the factors driving

expected consumption growth and volatility will explain only a small part of the variance in

comparison with their innovations and εl,t+1 may have some factor structure that may not

be relevant for explaining the cross section of expected returns. This will lead to imprecise

estimates of Vj,t, j = 1, 2...m. Hence, it will be difficult to evaluate the important implications

of the long run risk models that Vj,t, j = 1, 2...m should track consumption growth volatility

over time and that Xi,t, i = 1, 2...n should forecast consumption and dividend growth rates

based on excess return factors alone.

Regression of real market dividend growth and real time consumption growth
on lagged FX and Fama-French factors

Mkt−Rf t SMBt HMLt FX,t R2

∆dm,t+1 0.00053∗ (0.00031) 0.00004 (0.00066) 0.00047 (0.00051) 0.0266∗∗∗ (0.0075) 19.0%
dm,t+2 − dm,t -0.00026 (0.00093) -0.00002 (0.0012) 0.00102 (0.00068) 0.0472∗∗ (0.0179) 16.2%
cRT
t+2 − cRT

t 0.00019 (0.00012) 0.00021 (0.00020) 0.00012 (0.00017) 0.00939∗∗ (0.0049) 25.6%

Table 7: Results of predictive regressions for market dividend (dm) and real time consumption
(cRT ) growth using the three Fama-French factors and the identified X type P/D factor,
FX , which is the second principal component of the log P/D ratios of the 25 Fama-French
portfolios. The standard errors are Newey-West corrected with the required number of lags
estimated using the procedure in (Newey and West 1994). The regressions for market dividend
growth are over the period 1944-2008 while those for the real time consumption growth are
over the period 1966-2008.

23It should be noted that this equation is specialized to our model while 29 is generally valid. For example,
the βl,c is zero for the market in many standard long run risk models such as the ones studied by (Bansal and
Yaron 2004) and (Constantinides and Ghosh 2008) and that an asset dependent constant will also be present if
the volatility is an Ornstein-Uhlenbeck process.

24This will not be recovered in some long run risk models such as the one in (Bansal and Yaron 2004)
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This point is empirically supported by the results documented in table 7. These results show

that the estimated consumption/dividend growth factor using P/D ratios is able to predict

dividend and real time consumption growth much better than the Fama-French factors. In

fact, the regressions documented in the table show that the identified X type P/D factor is

able to completely drive out the Fama-French factors when predicting these quantities. This

factor is also far superior to just the use of the market price dividend ratio as documented in

table 3.

In order to better understand the relationship between the Fama-French and P/D factors,

we investigate the relation between the innovations of the log price dividend ratio factors and

the Fama-French factors (which are excess return factors) as the latter have been proposed as

proxies for future consumption growth by Parker and Julliard (2005) and consumption growth

volatility by Boguth and Kuehn (2008). We summarize the results of regressing IF−V ol and

IFX on the annual Fama-French factors in table 8. We find, from them, that IF−V ol and

IFX can be approximately written as Mkt + SMB and Mkt + HML respectively. In other

words, we find that, in the framework of this analysis, excess market returns are related to both

consumption growth and consumption growth volatility, that SMB is related to consumption

growth volatility and that HML is related to future consumption and dividend growth.

We can thus see that the Fama-French factors can be interpreted within the context of the

long run risk model as capturing innovations to the long run risk factors with SMB capturing

innovations to consumption growth volatility, HML capturing innovations to expected con-

sumption growth and the excess market return capturing innovations in both these quantities.

Interestingly, we find that (see table (6)) the Fama-French (return) factors do not drive out the

long run risk factors and the long run risk factor innovations, which is consistent with these

observations. Hence, the strong empirical support for the Fama and French three factor model

does not necessarily mean that the data is inconsistent with long run risk models. The two

models may be alternative representations of the same underlying phenomenon.
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Regressions of IF−V ol and IFX on the Fama-French factors

Intercept Rm −Rf SMB HML R2

IF−V ol −0.39∗∗∗ (0.09) 3.95∗∗∗ (0.42) 2.10∗∗∗ (0.58) 0.50 (0.56) 68.8%
IFX −0.19∗∗∗ (0.04) 1.42∗∗∗ (0.18) −0.22 (0.25) 1.42∗∗∗ (0.25) 60.0%

Table 8: Results of regressing IF−V ol and IFX on the annual Fama-French factors. IF−V ol
and IFX are the innovations of the first two principal components of the log P/D ratios of
the 25 Fama-French portfolios formed on the basis of size and book to market ratio over the
period 1943-2008 which, as we show, can be interpreted as negative volatility and consump-
tion/dividend growth factors. The regressions are over the period 1944-2008.

5.4.4 Addressing look ahead bias

To check the robustness of the results, we estimate the rotation matrices relating the log price

dividend ratios of the portfolios to their first two principal components using only data from

1943 to 1975 and use them to construct out of sample version of the factors from 1976 to 2008.

We find that these estimated out of sample factors, labelled F os1 and F os2 , track consumption

growth volatility and predict market dividend and real time consumption growth in a manner

similar to that documented for the in sample factors.

Regression of 24 quarter consumption growth volatility on F os
1 and F os

2

Intercept F os
1 F os

2 R2

v24
t 0.171∗∗∗ (0.016) −0.0050∗∗∗ (0.0007) 0.0022 (0.0026) 74.1%

Table 9: Results of regressing real annual market dividend growth against lagged F os1 and
F os2 , the out of sample estimates of the first and second price to dividend ratio factors. The
regressions are over the period 1976-2008 while the factors’ rotation matrices estimated using
data from 1943-1975. The standard errors are Newey-West corrected with the required number
of lags estimated using the procedure of (Newey and West 1994).

The results of regressing 24 quarter consumption growth volatility on the estimated out of

sample factors, summarized in table 9, show that the relation found in the paper is robust.

Specifically, consumption growth volatility is found to be very significantly negatively related

to the first out of sample factor F os1 and to be unrelated to the second out of sample factor

F os2 .
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Regression of market dividend growth on F os
1 and F os

2 and the
log market price dividend ratio

F os
1 F os

2 log(P/D)m R2

1 yr. Mkt div. growth
-0.0066 (0.0055) 0.0491∗∗∗ (0.0183) 20.8%

0.012 (0.036) 0.8%

3 yr. Mkt div. growth
0.0026 (0.0263) 0.0593 (0.0453) 13.4%

0.066 (0.138) 5.7%

Regression of real time annual consumption growth on lagged values of F os
1 and F os

2

F os
1 F os

2 R2

∆cRT
t+1 4.1× 10−4(0.0010) 0.0063∗∗ (0.0031) 13.9%

∆cRT
t+2 5.5× 10−4(6.8× 10−4) 0.0045∗∗ (0.0016) 5.8%

∆cRT
t+1 + ∆cRT

t+2 7.6× 10−4(1.5× 10−3) 0.0123∗∗ (0.0050) 18.9%

Table 10: Results of regressing real annual market dividend growth and real time consumption
growth (∆cRT ) against lagged F os1 and F os2 , the out of sample estimates of the first and second
price to dividend ratio factors. The regressions are over the period 1976-2008 while the factors’
rotation matrices estimated using data from 1943-1975. The standard errors are Newey-West
corrected with the required number of lags estimated using the procedure of (Newey and
West 1994). The regressions using the log market price dividend ratio use data from 1976
onwards in order to be consistent with the others.

The predictability of real time consumption and market dividend growth using the out of

sample factors are summarized in table 10. We can see that only the second factor is relevant

in predicting real time consumption growth and market dividend growth. The result for the

three year market dividend growth seems marginal but that is because the number of data

points is much smaller and the R2 of the regression is still found to be quite high.

To further address the critique of Ferson, Nallareddy, and Xie (2012), we also undertake a

complete re-analysis of the model where we remove the possibility of look-ahead bias. We do

so by re-calculating the rotation matrix for the principal components, and therefore the factors

and their innovations, every year with these components and their innovations being calculated

based on the rotation matrix estimated with data up to the previous year. We ensure that a

minimum of 25 years of data is used for the calculation of each rotation matrix. We denote

these no look ahead bias version of the factors as Fnlb1 and Fnlb2 .
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Results of the cross sectional regression
E[ri,t+∆t − rf,t] + 1

2Var[ri,t+∆t − rf,t] = β2
F−V ol

λF−V ol
+
∑n+m

j=1 βIFj
λIFj

+ β∆cλ∆c

using a look-ahead bias free approach for 30 portfolios based on long and short term reversal and the
E/P ratio

Intercept λFnlb
−V ol

λIFnlb
−V ol

λIFnlb
X

λ∆c R2

OLS 0.0005 -117.7 0.339 0.410 -0.0033 70.0%
(0.02) (-1.97) (1.39) (2.71) (-0.96) (68.9%)

OLS 0.014 0.223 0.381 -0.0031 61.9%
(0.49) (0.89) (2.54) (-0.90) (60.5%)
(0.33) (0.66) (1.82) (-0.66)

WLS 0.010 0.273 0.362 -0.0021
(0.26) (0.92) (1.97) (-0.53)

Pricing errors ×100
bottom top

1 2 3 4 5 6 7 8 9 10
Long term reversal 0·748 −1·402 −0·424 1·416 −0·233 −0·792 −1·201 −0·823 0·856 −0·446
Short term reversal −0·106 −2·243 −1·097 −1·392 −0·343 1·654 1·311 0·425 0·851 2·825

E/P ratio 0·583 1·064 0·043 0·554 −0·695 0·178 −1·075 −0·502 0·028 0·240

Table 11: Results of the cross sectional regression, including pricing errors, of 30 portfolios
(three sets of ten portfolios formed on the basis of long term reversal, short term reversal
and the E/P ratio) on lagged Fnlb−V ol and concurrent IFnlb−V ol and IFnlbX from 1968-2008. Fnlb−V ol
and FnlbX are the negative volatility and consumption/dividend growth factors estimated in
a manner free of look-ahead bias and IFnlb−V ol and IFnlbX are their innovations. For the OLS
coefficients, the t values with and without the Shanken correction (Shanken 1992) (Shanken
and Zhou 2007) are reported below the coefficient (the value without the correction is reported
first) while for the WLS coefficients, only the t values with the correction are reported. The
R2 adjusted for the number of variables is reported below the unadjusted R2.

Such a calculation results in reasonable look-ahead bias estimates of the innovations of the

factors as the innovations are estimated in a manner which only makes use of a single rotation

matrix which is calculable by the agent at that time.25 Hence, this version of the robustness

check is most important for establishing the robustness of the cross sectional regressions to

look-ahead bias as the cross sectional regression results are mostly dependent on the factor

innovations.26

25The estimation of the factors themselves is, however, likely to be quite noisy using this approach as different
rotation matrices are used for each year. This why the predictability analysis in tables 9 and 10 was carried out
with look ahead bias free factors estimated with a single rotation matrix.

26We also, however, find that the results of this robustness check for the predictability implications is largely
supportive of our hypothesis and the results are available upon request.
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Figure 7: Results of the cross sectional regression of 30 portfolios (three sets of ten portfo-
lios formed on the basis of long term reversal, short term reversal and the E/P ratio) using
lagged Fnlb−V ol and concurrent IFnlb−V ol, IF

nlb
X and ∆c innovations. Fnlb−V ol and FnlbX are the nega-

tive volatility and consumption/dividend growth factors constructed in a look-ahead bias free
manner and IFnlb−V ol and IFnlbX are their innovations. The cross sectional regression is done
over the period 1968-2008.

For the sake of brevity, we only report the results for the cross-sectional regression of the

thirty portfolios based on long term reversal, short term reversal and the earnings to price

ratio on look-ahead bias free versions of the factors and their innovations as it also removes

the concern that the factors are estimated with the same portfolios as are being tested. These

results are summarized in table 11 and are plotted in figure 7. The results are highly supportive

for the model as the R2 is high and that the intercept of 0.0005 is essentially zero. The latter

is important as it is known from the study of Lewellen, Nagel, and Shanken (2006) that the

R2 by itself is not very significant and that a close to zero intercept with a high R2 provides
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significantly more evidence for the model than just a high R2 (a fact also emphasized by

Jagannathan and Wang (2007)).27

5.4.5 GMM Tests

While the cross sectional regression methodology above provides a nice, intuitive way of under-

standing the importance of the different variables in the stochastic discount factor, it can only

handle linear relationships and needs relatively restrictive assumptions for accurate results.

Since the exact Euler equation restrictions

Et[Mt+1R
e
t+1] = 0 (34)

are nonlinear in nature, we now use GMM to ensure that the above results are robust. The

results of the GMM estimation of (34) using the 25 Fama-French portfolios sorted on the basis

of size and book to market ratio are summarized in table 12. The corresponding results for

the three sets of ten portfolios sorted on the basis of long term reversal, short term reversal

and E/P ratio are summarized in table 13 .

Since excess returns are used in these tests, the mean of the stochastic discount factor

must be accounted for by adding an additional moment condition (as pointed out by Kan

and Robotti (2008)). We report the results obtained after adding this moment condition in

tables 14 and 15 respectively. For the former, we only report the results obtained using the

identity weighting matrix as the estimated optimal weighting matrix is almost singular. These

results are found to be closer to those obtained using the cross sectional regression approach.

In particular, Γ1 is found to be fairly large and significant and αv is found to be negative for

the 25 Fama-French portfolios, though not significantly so.

27While consumption growth was included in this cross sectional regression in order to illustrate the relative
unimportance of consumption growth, it is clear from the almost zero value of λ∆c that it’s addition or removal
has almost no impact on the results.
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Identity weighting matrix

Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
0.463 (0.683)

Γ2

(
V−V̄
F−V ol

)
0.056 (0.107)

αIFX = αx
(
X
FX

)
1.734 (0.742)

αIF−V ol = αv
(
V−V̄
F−V ol

)
0.114 (0.236)

Dist statistic 0.1086

Optimal weighting matrix

Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
0.433 (0.282)

Γ2

(
V−V̄
F−V ol

)
0.036 (0.069)

αIFX = αx
(
X
FX

)
1.559 (0.448)

αIF−V ol = αv
(
V−V̄
F−V ol

)
0.106 (0.149)

J statistic 23.97 (p=0.29)

Table 12: GMM test of the Euler equation restrictions E[Mt+1R
e
t+1] = 0 for the 25 Fama-French

portfolios formed on the basis of size and book to market ratio over the period 1944-2008 without per-
forming the correction for the effect of the unspecified mean of the stochastic discount factor suggested
by (Kan and Robotti 2008). For this, we make use of the expression for the log stochastic discount factor
logMt+∆t = ∆t(Γ0 + Γ1X+ Γ2(V − V̄ )−αx(Xt+∆t−Et[Xt+∆t])−αv(Vt+∆t−Et[Vt+∆t])−αc(ct+∆t−
Et[ct+∆t])), where X and V are the underlying long run risk state variables, and drop the last term since
it is known to be unimportant (we have verified that it’s inclusion does not change the results). F−V ol

and FX are the first two principal components of the log P/D ratios of the 25 Fama-French portfolios
formed on the basis of size and book to market ratio over the period 1943-2008 which, as we show,
can be interpreted as negative volatility and consumption/dividend growth factors which are affinely
related to X and V . IF−V ol and IFX are their innovations. The affine relationship between X and FX

and V and F−V ol together with the zero mean of X imply that X
FX

and V−V̄
F−V ol

, where V̄ is the mean of

V , are the linear coefficients of the affine relationships. Hence, the identified coefficients of F−V ol and
FX and their innovations in the GMM estimation are related to the corresponding coefficients of the
state variables in the manner indicated.

αx, the market price of risk for shocks to expected consumption growth, is notably highly

significantly positive in all of the GMM estimations with estimates of it’s scaled value ranging

from 1.56 to 2.90. Since αx is directly related to the coefficient of relative risk aversion γ, we

can use these estimates to obtain an estimate for γ.

We note that the identification of the two factors in this study also enables the determina-

tion of the relative importance of cash flow and discount rate risks for cross-sectional returns in

the context of long run risk models. This is because the rate at which future equity cash flows

are discounted (the equity risk premium) is determined by the consumption growth volatility

in these models as shown by Bansal and Yaron (2004) and others, which in turn means that

the first factor proxies for discount rate risk and that the second proxies for cash flow risk. The

results of the analysis using the innovations of the two factors indicate that cash flow risk is

cross-sectionally more important than discount rate risk. This result is robust to the inclusion
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Identity weighting matrix

Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
0.329 (0.480)

Γ2

(
V−V̄
F−V ol

)
-0.058 (0.117)

αIFX = αx
(
X
FX

)
2.139 (0.884)

αIF−V ol = αv
(
V−V̄
F−V ol

)
-0.050 (0.286)

Dist statistic 0.0603

Optimal weighting matrix

Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
0.254 (0.295)

Γ2

(
V−V̄
F−V ol

)
-0.075 (0.068)

αIFX = αx
(
X
FX

)
1.758 (0.524)

αIF−V ol = αv
(
V−V̄
F−V ol

)
0.004 (0.181)

J statistic 25.43 (p=0.49)

Table 13: GMM test of the Euler equation restrictions E[Mt+1R
e
t+1] = 0 for the three sets of ten

portfolios formed on the basis of the earnings to price ratio, long term reversal and short term reversal
over the period 1952-2008 without performing the correction for the effect of the unspecified mean of
the stochastic discount factor suggested by (Kan and Robotti 2008). See caption for table 12 for details
regarding the notation.

of the lagged factors, as is seen from the GMM results summarized below. This study thus

underlines the importance of cash flow risk and contributes to the recent strand of literature

that demonstrates that it can explain a large proportion of the cross-sectional return variation

(Campbell and Vuolteenaho 2004) (Bansal, Dittmar, and Lundblad 2005) (Cohen, Polk, and

Vuolteenaho 2008) (Campbell, Polk, and Vuolteenaho 2009) (Da and Warachka 2009).

5.5 Relative Risk Aversion

Since it is largely FX that predicts future dividend and consumption growth, we can, as pointed

out, among others, by Hansen, Heaton, and Li (2008) and Kaltenbrunner and Lochstoer (2010),

use the GMM estimate for the coefficient of scaled innovation of X (i.e. IFX) in the stochastic

discount factor, αIFX , to make an estimate of the preference for the early resolution of uncer-

tainty, i.e. γ−1/ψ. Since the value of the elasticity of intertemporal substitution (EIS), ψ, has

to be large in long run risk models in order for them to be consistent with the low volatility of

the real risk free rate, this value also provides an estimate of the relative risk aversion γ since

γ− < 1/ψ ≈ γ if ψ > 1.28

28We also note that a large value of ψ is not only strongly suggested by the low volatility of the real risk free
rate but also by the analysis of household survey data by Vissing-Jørgensen and Attanasio (2003) and by the
study of an elegant natural experiment by Kapoor and Ravi (2010).
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Identity weighting matrix

Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
2.117 (0.542)

Γ2

(
V−V̄
F−V ol

)
0.115 (0.212)

αIFX = αx

(
X
FX

)
2.314 (0.297)

αIF−V ol = αv

(
V−V̄
F−V ol

)
-0.091 (0.122)

Dist statistic 0.334

Table 14: GMM test of the Euler equation restrictions E[Mt+1R
e
t+1] = 0 for the 25 Fama-French

portfolios formed on the basis of size and book to market ratio over the period 1944-2008, together with
the correction for the biases introduced due to the unspecified mean of the stochastic discount factor
suggested by (Kan and Robotti 2008). For the computation, we make use of the expression for the log
stochastic discount factor logMt+∆t = ∆t(Γ0 +Γ1X+Γ2(V − V̄ )−αx(Xt+∆t−Et[Xt+∆t])−αv(Vt+∆t−
Et[Vt+∆t]) − αc(ct+∆t − Et[ct+∆t])), where X and V are the underlying long run risk state variables,
and drop the last term since it is known to be unimportant (we have verified that it’s inclusion does not
change the results). F−V ol and FX are the first two principal components of the log P/D ratios of the
25 Fama-French portfolios formed on the basis of size and book to market ratio over the period 1943-
2008 which, as we show, can be interpreted as negative volatility and consumption/dividend growth
factors which are affinely related to X and V . IF−V ol and IFX are their innovations. The affine
relationship between X and FX and V and F−V ol together with the zero mean of X imply that X

FX

and V−V̄
F−V ol

, where V̄ is the mean of V , are the linear coefficients of the affine relationships. Hence, the

identified coefficients of F−V ol and FX and their innovations in the GMM estimation are related to the
corresponding coefficients of the state variables in the manner indicated. We carry out this test only
with the identity matrix as the optimal weighting matrix is very close to singular. Note that the Dist
statistic is not comparable with that in table 12 as the means of the stochastic discount factors are
different.

We obtain this estimate by first noting the relation (which follows from the identification

FX ∝ X and the fact that there is only one identified X component)

αIFX =
γ − 1/ψ

1− ν1(1− α∆t)

(
εt

IFX,t

)
=

γ − 1/ψ

1− ν1(1− α∆t)

(
X

FX

) (35)

where IFX,t and εt = ϕxδx
√
V (Yt − Yt−1) stand for the innovations of the second principal

component and X respectively (note that IFX,t and εt are proportional to each other here so

that their ratio is still independent of t). An estimate for X
FX

can be obtained from the results

of the regression in table 3. Using the relation (1), it is not difficult to see that coefficient
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Identity weighting matrix

Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
1.164 (0.761)

Γ2

(
V−V̄
F−V ol

)
-0.002 (0.120)

αIFX = αx
(
X
FX

)
2.882 (1.133)

αIF−V ol = αv
(
V−V̄
F−V ol

)
-0.241 (0.301)

Dist statistic 0.228

Optimal weighting matrix

Coefficient Estimate (Std. Err.)

Γ1

(
X
FX

)
1.165 (0.284)

Γ2

(
V−V̄
F−V ol

)
-0.008 (0.078)

αIFX = αx
(
X
FX

)
2.899 (0.269)

αIF−V ol = αv
(
V−V̄
F−V ol

)
-0.257 (0.091)

J statistic 21.37 (p=0.72)

Table 15: GMM test of the Euler equation restrictions E[Mt+1R
e
t+1] = 0 for the three sets of

ten portfolios formed on the basis of the earnings to price ratio, long term reversal and short
term reversal over the period 1952-2008, together with a correction for the biases introduced by
the unspecified mean of the stochastic discount factor suggested by (Kan and Robotti 2008).
See the caption for table 14 for details regarding the notation. Note that the Dist statistic
is not comparable with that in table 13 as the means of the stochastic discount factors are
different.

obtained when regressing ∆ct+1 + ∆ct+2 on Xt is given by
∑1

i=0(1 − α∆t)i. Hence, the

coefficient obtained when regressing ∆ct+1 + ∆ct+2 on FX is

1∑
i=0

(1− α∆t)i
FX
X

(36)

By noting that the persistence of the X process is the same as that of FX since they are

proportional, we find α to be about 0.15 on the annual time scale. Using this value and the

regression coefficient of 0.0123 obtained in table 3, we find that FX
X ≈ 150. This value, together

with the annual estimate of 0.99712 ≈ 0.97 for ν1 from Bansal and Yaron (2004) and the GMM

estimates of 1.56 to 2.89 for the market price of risk of innovations to FX , give an estimate of

between 40 and 75 for γ − 1/ψ (or equivalently γ since γ � 1/ψ). While high, this estimate is

similar to the value of 60 obtained by Chen, Favilukis, and Ludvigson (2007).

The leverage of market dividend growth on long term consumption growth can be similarly

estimated from the results in table 3. It is found to be about 3.3 when three year market

dividend growth is used in the analysis. This value is remarkably similar to that proposed by

Bansal and Yaron (2004).
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It should be noted that the main reason for the risk aversion estimate to be much higher

than that proposed by Bansal and Yaron (2004) is that the volatility of consumption growth

after the structural break (1.85×10−4) is much lower than for the entire period for which data

is available (4.92× 10−4). If we scale the relative risk aversion value estimates that we obtain

by the ratio of these volatilities, we find that it is very similar to the value of 16 obtained by

Bansal, Yaron, and Kiku (2007). Hence, it is possible that a long run risk model which accounts

for structural breaks or regime shifts in the parameters will require a much lower relative risk

aversion to explain asset prices as such a model can have a much higher unconditional volatility

of consumption growth and still be consistent with the data. We also note that the standard

errors for our estimate are large and we cannot rule out that the relative risk aversion value is

below 10 at the 1% level of significance.

6 Conclusion

In this paper, we show that typical long run risk models, including those of Bansal and Yaron

(2004), Bansal, Yaron, and Kiku (2007) and Zhou and Zhu (2009), imply that the log P/D ratios

of financial assets have a strict factor structure when the intertemporal budget constraint of the

marginal investor can be well approximated by the loglinear method of Campbell and Shiller

(1988). Further, we demonstrate that these factors must be related to aggregate consumption

growth and consumption growth volatility when there is a representative agent. When we

restrict attention to the post-1942 data so as to account for the structural break documented

by Marakani (2009), we find that the log P/D ratios of the 25 Fama-French portfolios have

two significant factors, one of which is related to aggregate consumption growth volatility and

the other to future dividend and real time aggregate consumption growth.

These factors and their innovations do a reasonably good job of explaining the cross section

of returns of not only the 25 portfolios from which they were formed but also three sets of

ten portfolios based on long term reversal, short term reversal and the earnings to price ratio.
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The coefficients obtained from the cross sectional regressions are statistically and economically

significant and have the right sign, and the zero beta rate is economically small and not

significantly different from zero.

We address the critique of Ferson, Nallareddy, and Xie (2012) that the original results of

Bansal, Yaron, and Kiku (2007) are not robust to look ahead bias. Our results go through

even when we use versions of the factors which are free of look-ahead bias. This difference is

due to the fact that we use a different method for estimating the unobserved factors that is

robust to the presence of measurement errors in consumption and the real risk free rate. We

also address one of the important critiques of the long run risk model raised by Beeler and

Campbell (2012). Beeler and Campbell (2012) point out that the log market price dividend

ratio does not predict dividend or consumption growth. We show that a price dividend ratio

factor does predict both dividend growth a real time measure of consumption growth. We

argue that this does not show up in the log market price dividend ratio as the market price

dividend ratio weights most strongly on the volatility price dividend ratio factor.

Our findings link the classical commonly used linear return factor models in the finance

literature with the more recent long run risk models. Our analysis suggests that they can be

viewed as alternative representations of the same underlying phenomenon. The advantage of

our approach lies in the fact that it additionally enables the estimation of all the underly-

ing state variables of the long run risk model which is not possible with return factor models

alone. More specifically, we show that the return factors do not include the expected consump-

tion/dividend growth factor of long run risk models even though they are estimable using the

P/D factors. This is corroborated empirically as our estimated consumption/dividend growth

factor drives out the Fama-French factors in predictive regressions of dividend and real time

consumption growth.

The link we establish between linear return factor models and long run risk models also

shows that the strong empirical support for the Fama and French three factor model does not
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necessarily mean that the data are inconsistent with long run risk models. The two models

may be alternative representations of the same underlying phenomenon. The advantage of

using the proposed methodology is that it further enables us to estimate the factors of the

long run risk model themselves and hence test implications of the long run risk model which

cannot be investigated with return factors alone. The link also enables us to interpret the

Fama-French factors within the context of the long run risk model.

As Beeler and Campbell (2012) point out, long run risk models imply counter-factually

high predictability of long term aggregate consumption growth, long term dividend growth

and future market volatility by the market price-dividend ratio. In this paper, we address

the first two issues by showing that a log P/D factor does in fact predict long term dividend

growth and real time consumption growth. While we do not consider market volatility in this

paper, we do find, in unreported results, some indicative evidence that the log P/D factors

also predict some aspects of market volatility.

Beeler and Campbell (2012) also point out that long run risk models imply counter-

intuitively high or infinite prices for real risk free consol bonds. This weakness of the long

run risk model (and many other asset pricing models) is related to the fact that the variance

of the permanent and transitory components of it’s stochastic discount factor are inconsistent

with the data as pointed out by Bakshi and Chabi-Yo (2012). Addressing this issue may re-

quire considering alternative stochastic processes for modeling long run risk including trend

stationary models and regime switching models.
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A Log P/D Ratios in the General Long Run Risk Model

The methodology here closely follows that of Bansal and Yaron (2004) and Bansal, Yaron, and

Kiku (2007) as there are only two common cases where solutions to models with Epstein-Zin-

Weil preferences are available in the literature. The first case, which we are interested in here,

is when the returns are loglinear in the state variables and the second is when ψ = 1.

Let c, Xi, 1 ≤ i ≤ n and Vj , 1 ≤ j ≤ m be the log consumption process, n processes that

determine it’s conditional growth rate and m processes that determine it’s conditional growth

rate volatility respectively. Let dl, l ≤ 1 ≤ L be the log dividend processes of L assets (in

general, the lower case variables correspond to the logarithm of the upper case variables). We

assume that these quantities follow the processes

ct+∆t =ct +

(
µ+

n∑
i=1

Xi,t

)
∆t+

√√√√ m∑
j=1

δ2
c,jVj,t (Wt+∆t −Wt)

−
m∑
k=1

ϕw,kσk
√
Vk,t (Zk,t+∆t − Zk,t)

(37)

Xi,t+∆t =Xi,t(1− αi∆t) + ϕx,i

√√√√ m∑
j=1

δ2
x,i,jVj,t (Yi,t+∆t − Yi,t), 1 ≤ i ≤ n (38)

Vi,t+∆t =Vi,t − κi(Vi,t − V̄i)∆t+ σi
√
Vi,t (Zi,t+∆t − Zi,t), 1 ≤ i ≤ m (39)
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and

dl,t+∆t =dl,t +

(
µl +

n∑
i=1

φl,iXi,t

)
∆t+ πl,c

(
∆ct+∆t −

(
µ+

n∑
i=1

Xi,t

)
∆t

)

+
n∑
i=1

πi,l,x(Xi,t+∆t −Xi,t(1− αi∆t))

+
m∑
j=1

πj,l,wσj
√
Vj,t (Zj,t+∆t − Zj,t)

+

√√√√ m∑
k=1

δ2
l,d,kVk,t σl,d(Bl,t+∆t −Bl,t)

(40)

where W , Yi, 1 ≤ i ≤ n, Zj , 1 ≤ j ≤ m are one-dimensional independent Wiener processes,

Bl, 1 ≤ l ≤ L are L Brownian processes which are independent of W , Yi, 1 ≤ i ≤ n and

Zj , 1 ≤ j ≤ m but which can be correlated with each other, and
∑m

i=1 δ
2
c,i =

∑m
j=1 δ

2
x,i,j =∑m

k=1 δ
2
l,d,k = 1. We have written the equations in this form (with the time step being ∆t rather

than 1) to make the time scale dependence of the parameters explicit so that the connection

with the continuous time solution can be made in a straightforward manner. We also define

the consumption and dividend variables as rates since they are flow variables. This means, for

example, that consumption from time t to t+ ∆t is given by Ct+∆t∆t.

Since the consumer preferences are of the Epstein-Zin-Weil type (Epstein and Zin 1989)

(Weil 1990)

Ut = ((1− δ)(Ct∆t)
1−γ
θ + δEt[U

1−γ
t+∆t]

1
θ )

θ
1−γ (41)

where

θ =
1− γ

1− 1/ψ
(42)

the log stochastic discount factor in discrete time can be written as

mt+∆t = θ∆t log δ − θ

ψ
∆ct+∆t + (θ − 1)rc,t+∆t (43)
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where rc,t+∆t is the continuously compounded rate of return on the wealth W (which is the

asset that delivers a dividend of per capita consumption at every time period) from t to t+∆t.

Since we assume complete markets,

Et[exp(mt+∆t + rc,t+∆t)] = 1 (44)

must hold.

The loglinear approximation pioneered by Campbell and Shiller (1988) allows us to write

rc,t+∆t = ν0 + ν1(wt+∆t − ct+∆t)− (wt − ct) + ∆ct+∆t (45)

where

ν0 = log(∆t+ exp(w − c))− ν1(w − c) ≈ exp(c− w)(1 + (c− w))∆t (46)

ν1 =
1

1 + exp(c− w)∆t
≈ 1− exp(c− w)∆t (47)

(the approximation holds when ∆t is small) where the bar stands for the mean value. We

further assume that the log wealth to consumption ratio can be written as

wt − ct = A0 +

n∑
i=1

A1,iXi,t +

m∑
j=1

A2,jVj,t (48)

and justify this below. (This approach is standard and followed by Bansal and Yaron (2004),

Bansal, Yaron, and Kiku (2007) and Zhou and Zhu (2009) as the only non-trivial models with

Epstein-Zin-Weil preferences which can be solved are those where the consumption to wealth

ratio is loglinear in the state variables as above or where ψ = 1, as in the model of Hansen,

Heaton, and Li (2008)).
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Substituting (43), (45) and (48) into (44), using the fact that

logEt[expA(Wt+∆t −Wt)] =
A2∆t

2
(49)

for any A ∈ R and Wiener process W , and that (44) should hold for any possible attainable

combination of state variables (Xi, Vj), we obtain a set of equations which enable us to solve

for A0, A1,i, 1 ≤ i ≤ n and A2,j , 1 ≤ j ≤ m. The fact that such a set of equations with

non-vacuous solutions exist justifies the assumption (48).

The set of equations for A1,i are

(1− γ)∆t+ θA1,i(ν1(1− αi∆t)− 1) = 0 (50)

so that

A1,i =
(1− 1

ψ )∆t

1− ν1(1− αi∆t)
(51)

which, in the limit ∆t → 0, becomes A1,i = 1−1/ψ
exp(c−w)+αi

. This is the same result as that

obtained by Zhou and Zhu (2009), where there is only one X variable, once we relate his

notation of g1 for exp(c− w) and allow for the negative sign which arises from his definition

of A1 in terms of the consumption to wealth ratio. Once we set ∆t = 1 and relabel ν1 as κ1

and αi as 1− ρ (again, there being only one X state variable) to match the notation of Bansal

and Yaron (2004), we find that our result also matches their’s.

The analogous set of equations which enables us to solve for A2,j , 1 ≤ j ≤ m is

(1− γ)2δ2
c,j∆t

2
+ θA2,j(ν1(1− κj∆t)− 1)

+
∆t

2

(θν1

n∑
i=1

A1,iϕx,iδx,i,j

)2

+ (θν1A2,jσj − (1− γ)ϕw,jσj)
2

 = 0

(52)
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Since these equations are quadratic, there are two solutions for each A2,j . However, one of

them diverges when σj → 0. Hence, the other solution is the one which is relevant to the

model. The final equation, which allows us to solve for A0, is

θ

log δ + ν0 + (ν1 − 1)A0 + ν1

m∑
j=1

A2,jκj∆tV̄j

+ (1− γ)µ∆t = 0 (53)

Putting the values for A0, A1,i, 1 ≤ i ≤ n and A2,j , 1 ≤ j ≤ m into (48) and using (45) and

(43), we obtain the log stochastic discount factor

mt+∆t =∆t

Γ0 +
n∑
i=1

Γ1,iXi,t +
m∑
j=1

Γ2,jVj,t


− αc

√√√√ m∑
j=1

δ2
c,jVj,t(Wt+∆t −Wt)

−
n∑
i=1

αx,iϕx,i

√√√√ m∑
j=1

δ2
x,i,jVj,t(Yi,t+∆t − Yi,t)

−
m∑
j=1

αv,jσj
√
Vj,t(Zj,t+∆t − Zj,t)

(54)

where Γ0 = θ log δ − γµ+ (θ − 1)( ν0
∆t + ν1−1

∆t A0 +
∑m

j=1 ν1κjA2,j V̄j), Γ1,i = −1/ψ,∀1 ≤ i ≤ n,

Γ2,j = (θ − 1)A2,j

(
ν1−1
∆t − κj

)
, αc = γ and αx,i = (θ − 1)ν1A1,i = γ−1/ψ

1−ν1(1−αi∆t) ,∀1 ≤ i ≤ n.

The expression for αv,j is complicated and does not directly concern us here as it’s exact form

is unimportant for the beta pricing relation.

Using rf,t = −Et[mt+∆t]− 1
2Vart[mt+∆t], we obtain that

rf,t = A0,f +

n∑
i=1

A1,f,iXi,t +

m∑
j=1

A2,f,jVj,t (55)

whereA0,f = −Γ0, A1,f,i = 1/ψ,∀1 ≤ i ≤ n andA2,f,j = −Γ2−1
2

(
α2
cδ

2
c,j +

∑n
i=1 α

2
x,iδ

2
x,i,jϕ

2
x,i + α2

v,jσ
2
j

)
,∀1 ≤

j ≤ m.
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Using the process for dividend growth (40), we can use a similar loglinear approximation

to write the return for asset l as

rl,t+∆t = ν0,l + ν1,l(pl,t+∆t − dl,t+∆t)− (pl,t − dl,t) + ∆dl,t+∆t (56)

where

ν0,l = log(∆t+ exp(dl − pl))− ν1,l(pl − dl)

≈ exp(dl − pl)(1 + dl − pl)∆t
(57)

ν1,l =
1

1 + exp(dl − pl)∆t
≈ 1− exp(dl − pl)∆t (58)

As before, we assume that log
(
Pt
Dt

)
can be written as

log

(
Pl,t
Dl,t

)
= pl,t − dl,t = A0,l +

n∑
i=1

A1,l,iXi,t +

m∑
j=1

A2,l,jVj,t (59)

We put (59) into (56) and use the fact that (44) must hold for any possible attainable combi-

nation of state variables (Xi, Vj) to obtain a set of equations which enables us to solve for A0,l,

A1,l,i, 1 ≤ i ≤ n and A2,l,j , 1 ≤ j ≤ m. The fact that such a set of equations with non-vacuous

solutions exist justifies the assumption (59).

The equations for A1,l,i, 1 ≤ i ≤ n, 1 ≤ l ≤ L are

(φl,i − 1/ψ)∆t−A1,l,i(1− ν1,l(1− αi∆t)) = 0 (60)

which give

A1,l,i =
(φl,i − 1/ψ)∆t

1− ν1,l(1− αi∆t)
(61)
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As with the solution for A1,i, 1 ≤ i ≤ n, this solution agrees with the continuous time one

(with n = 1,m = 2) of Zhou and Zhu (2009) and the discrete time one (with n = m = 1) of

Bansal and Yaron (2004) and Bansal, Yaron, and Kiku (2007).

The equations for A2,l,j , 1 ≤ j ≤ m, 1 ≤ l ≤ L are quadratic in nature and fairly complex

(as for A2,j , the solutions which do not diverge as σj → 0 are chosen). Since their precise

structure is not important for the beta pricing relation, we do not include them for brevity.

Similarly, we do not include the equation for A0,l, 1 ≤ l ≤ L.29

B Beta Pricing Relations

B.1 First beta pricing relation

The beta pricing relation can be derived from the fundamental equations of the model (37),

(38), (39) and (40) together with the form of the preferences (41). To simplify the notation,

we set ∆t to 1 in this derivation.

29They are available upon request from the authors. Also, it must be noted that, as the equations for
A2,j , 1 ≤ j ≤ m and A2,l,j , 1 ≤ j ≤ m, 1 ≤ l ≤ L are quadratic in nature, real solutions are not guaranteed. Our
numerical experiments indicate that this is not a serious concern as several sets of reasonable parameter values
do not give rise to this problem (this is also shown by (Zhou and Zhu 2009)). If this is a concern, we can replace
the volatility processes by Ornstein-Uhlenbeck ones as done by (Bansal and Yaron 2004) and (Bansal, Yaron,
and Kiku 2007). However, such volatility processes suffer from the problem of admitting negative values even in
continuous time. This can be quite serious, even for some common parameter values, as pointed out by (Beeler
and Campbell 2012). The square root processes used here can also give rise to negative values in discrete time
but the probability of this occurring for reasonable parameter values is minuscule and our numerical experiments
confirm this. Since both ways of modeling volatility have issues but have received wide attention in the literature
and there is no known alternative for which analytical solutions can be derived, we use results which hold for
both of them.
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Theorem 3. The model defined by (37), (38), (39) and (40) implies the beta pricing relation

E[rl,t+1 − rf,t]+
1

2
Var

rl,t+1 − rf,t −
m∑
j=1

βl,VjVj,t

 =

m∑
j=1

(
n∑
i=1

αx,iβl,Yiδ
2
x,i,jϕ

2
x,i + αv,jβl,Zjσ

2
j + αcβl,cδ

2
c,j

)
V̄j

=
n∑
i=1

βl,YiλYi +
m∑
j=1

βl,ZjλZj + βl,cλc

(62)

where

λYi = αx,iϕ
2
x,i

m∑
j=1

δ2
x,i,j V̄j (63)

λZj = αv,jσ
2
j V̄j (64)

λc = αc

m∑
j=1

δ2
c,j V̄j (65)

where the βl,Vj , 1 ≤ j ≤ m, βl,Yi , 1 ≤ i ≤ n, βl,Zj , 1 ≤ j ≤ m and βl,c are, respectively,

the multiple regression coefficients obtained on regressing rl,t+1 − rf,t on Vj,t, 1 ≤ j ≤ m,

Yi,t+1, 1 ≤ 1 ≤ n, Zj,t+1, 1 ≤ j ≤ m and the residuals obtained on regressing ∆ct+1 against

Xi,t, 1 ≤ i ≤ n.

This can be written in terms of the n+m log price dividend ratio factors Fi, 1 ≤ i ≤ m+n

and their innovations IFi, 1 ≤ n+m as

E[rl,t+1 − rf,t]+
1

2
Var

[
rl,t+1 − rf,t −

m+n∑
i=1

βl,FiFi,t

]
=

m+n∑
i=1

βl,IFiλIFi + βl,cλc

(66)
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When there is only one volatility factor, the beta pricing relation can also be written as

E[rl,t+1 − rf,t]+
1

2
Var [rl,t+1 − rf,t]

= β2
l,V Var[Vt] +

(
n∑
i=1

αx,iβl,Yiδ
2
x,iϕ

2
x,i + αvβl,Zσ

2 + αcβl,cδ
2
c

)
V̄

= β2
l,V λV +

n∑
i=1

βl,YiλYi + βl,ZλZ + βl,cλc

(67)

with the βs defined in a similar manner as above and where

λV = Var[Vt] (68)

λYi = αx,iϕ
2
x,iV̄ (69)

λZ = αvσ
2V̄ (70)

λc = αcV̄ (71)

This can be written in terms of the n+m log price dividend ratio factors Fi, 1 ≤ i ≤ n+ 1 and

their innovations IFi, 1 ≤ n+ 1 as

E[rl,t+1 − rf,t]+
1

2
Var [rl,t+1 − rf,t]

= β2
l,Fk

λFk +

n+1∑
i=1

βl,IFiλIFi + βl,cλc

(72)

where the βs are as defined above and Fk is some log price dividend ratio factor that has

non-zero correlation with the volatility factor.
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Proof. We use (56) and (59) to write

rl,t+1 =ν0,l + ν1,l

A0,l +
n∑
i=1

A1,l,iXi,t+1 +
m∑
j=1

A2,l,jVj,t+1


−

A0,l +
n∑
i=1

A1,l,iXi,t +
m∑
j=1

A2,l,jVj,t

+ ∆dl,t+1

(73)

Using (37), (38), (39) and (40), (73) becomes

rl,t+1 =ν0,l + (ν1,l − 1)A0,l + ν1,l

m∑
j=1

A2,l,jκj V̄j + µl

+

n∑
i=1

(A1,l,i(ν1,l(1− αi)− 1) + φl,i)Xi,t

+

m∑
j=1

A2,l,j(ν1,l(1− κj)− 1)Vj,t

+ πl,c

√√√√ m∑
j=1

δ2
c,jVj,t(Wt+1 −Wt)−

m∑
j=1

ϕw,jσj
√
Vj,t (Zj,t+1 − Zj,t)


consumption innovation

+

n∑
i=1

(πi,l,x + ν1,lA1,l,i) ϕx,i

√√√√ m∑
j=1

δ2
x,i,jVj,t(Yi,t+1 − Yi,t)

Xi innovation

+ ν1,l

m∑
j=1

A2,l,j σj
√
Vj,t(Zj,t+1 − Zj,t)
Vj innovation

+ σl,d

√√√√ m∑
j=1

δ2
l,d,jVj,t(Bl,t+∆t −Bl,t)

residual

(74)
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which can be written as

rl,t+1 =βl,0 +

n∑
i=1

βl,XiXi,t +

m∑
j=1

βl,VjVj,t + βl,c(∆ct+1 − Et[∆ct+1])

+

n∑
i=1

βl,Yi(Xi,t+1 − Et[Xi,t+1]) +

m∑
j=1

βl,Zj (Vj,t+1 − Et[Vj,t+1]) + εl,t+1

(75)

where

βl,0 = ν0,l + (ν1,l − 1)A0,l + ν1,l

m∑
j=1

A2,l,jκj V̄j + µl (76)

βl,Xi = A1,l,i(ν1,l(1− αi)− 1) + φl,i (77)

βl,Vj = A2,l,j(ν1,l(1− κj)− 1) (78)

βl,c = πl,c (79)

βl,Yi = πi,l,x + ν1,lA1,l,i (80)

βl,Zj = ν1,lA2,l,j (81)

εl,t+1 = σl,d

√√√√ m∑
j=1

δ2
l,d,jVj,t(Bl,t+∆t −Bl,t) (82)

The standard asset pricing relation

Et[exp(mt+1 + rl,t+1)] = 1 (83)

together with conditional normality implies that

Et[mt+1 + rl,t+1] +
1

2
Vart[mt+1 + rl,t+1] = 0 (84)
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From (75) and (43), we get

Et[mt+1 + rl,t+1] = (Γ0 + βl,0) +
n∑
i=1

(Γ1,i + βl,Xi)Xi,t +
m∑
j=1

(Γ2,j + βl,Vj )Vj,t (85)

and

Vart[mt+1 + rl,t+1] =
m∑
j=1

(
n∑
i=1

(βl,Yi − αx,i)
2δ2
x,i,jϕ

2
x,i + (βl,Zj − αv,j)

2σ2
j + (βl,c − αc)2δ2

c,j

)
Vj,t

(86)

Putting (84), (85) and (86) together and using the fact that the asset pricing relation must

hold for any values of Xi,t and Vj,t, we get the following relations

βl,0 = −Γ0 = A0,f (87)

βl,Xi = −Γ1,i = 1/ψ = A1,f (88)

βl,Vj = −Γ2,j −
1

2

(
n∑
i=1

(βl,Yi − αx,i)
2δ2
x,i,jϕ

2
x,i + (βl,Zj − αv,j)

2σ2
j + (βl,c − αc)2δ2

c,j

)
(89)

= A2,f +

(
n∑
i=1

αx,iβl,Yiδ
2
x,i,jϕ

2
x,i + αv,jβl,Zjσ

2
j + αcβl,cδ

2
c,j

)
− 1

2

(
β2
l,Yi
δ2
x,i,jϕ

2
x,i + β2

l,Zj
σ2
j + β2

l,cδ
2
c,j

)

Hence,

rl,t+1 − rf,t =(βl,0 −A0,f ) +
n∑
i=1

(βl,Xi −A1,f,i)Xi,t +
m∑
j=1

(βl,Vj −A2,f,j)Vj,t

+ βl,c(∆ct+1 − Et[∆ct+1]) +

n∑
i=1

βl,Yi(Xi,t+1 − Et[Xi,t+1])

+

m∑
j=1

βl,Zj (Vj,t+1 − Et[Vj,t+1]) + εl,t+1

(90)
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or

rl,t+1 − rf,t =

m∑
j=1

βel,VjVj,t + βl,c(∆ct+1 − Et[∆ct+1]) +

n∑
i=1

βl,Yi(Xi,t+1 − Et[Xi,t+1])

+

m∑
j=1

βl,Zj (Vj,t+1 − Et[Vj,t+1]) + εl,t+1

(91)

where

βel,Vj =

(
n∑
i=1

αx,iβl,Yiδ
2
x,i,jϕ

2
x,i + αv,jβl,Zjσ

2
j + αcβl,cδ

2
c,j

)

− 1

2

(
β2
l,Yi
δ2
x,i,jϕ

2
x,i + β2

l,Zj
σ2
j + β2

l,cδ
2
c,j

) (92)

=⇒
m∑
j=1

βel,VjVj,t =

m∑
j=1

(
n∑
i=1

αx,iβl,Yiδ
2
x,i,jϕ

2
x,i + αv,jβl,Zjσ

2
j + αcβl,cδ

2
c,j

)
Vj,t

− 1

2
Vart[rl,t+1 − rf,t]

(93)

Combining (93) with (91) gives

Et[rl,t+1− rf,t] +
1

2
Vart[rl,t+1− rf,t] =

m∑
j=1

(
n∑
i=1

αx,iβl,Yiδ
2
x,i,jϕ

2
x,i + αv,jβl,Zjσ

2
j + αcβl,cδ

2
c,j

)
Vj,t

(94)

Taking expectations gives

E[rl,t+1 − rf,t]+
1

2
E [Vart [rl,t+1 − rf,t]] =

m∑
j=1

(
n∑
i=1

αx,iβl,Yiδ
2
x,i,jϕ

2
x,i + αv,jβl,Zjσ

2
j + αcβl,cδ

2
c,j

)
V̄j

(95)
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or, equivalently

E[rl,t+1 − rf,t]+
1

2
Var

rl,t+1 − rf,t −
m∑
j=1

βl,VjVj,t

 =

m∑
j=1

(
n∑
i=1

αx,iβl,Yiδ
2
x,i,jϕ

2
x,i + αv,jβl,Zjσ

2
j + αcβl,cδ

2
c,j

)
V̄j

=
n∑
i=1

βl,YiλYi +
m∑
j=1

βl,ZjλZj + βl,cλc

(96)

where

λYi = αx,iϕ
2
x,i

m∑
j=1

δ2
x,i,j V̄j (97)

λZj = αv,jσ
2
j V̄j (98)

λc = αc

m∑
j=1

δ2
c,j V̄j (99)

Since the price dividend ratios are affinely related to the X and V state variables by (59),

this is equivalent to a beta pricing relation in the innovations to the log price-dividend ratio

factors. The computation of the second expression in the left hand side of (96) can be done by

noting that the term in brackets is the residual of regressing rl,t+1−rf,t against Vt and is equal

to the residual of regressing rl,t+1 − rf,t against the lagged log price dividend ratio factors.

An alternative approach using betas instead of residual returns can be developed when

there is one volatility factor. We now proceed to do so.

When there is only one volatility factor (i.e. m = 1), this simplifies to

E[rl,t+1 − rf,t]+
1

2
Var [rl,t+1 − rf,t] =

β2
l,V Var[Vt] +

(
n∑
i=1

αx,iβl,Yiδ
2
x,iϕ

2
x,i + αvβl,Zσ

2 + αcβl,cδ
2
c

)
V̄

(100)
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after dropping the superfluous j subscript. Since E[rl,t+1 − rf,t] = βl,V Vt from (91), a scale

multiple of βl,V can be obtained by regressing rl,t+1 − rf,t against a lagged log price divided

ratio factor which is known to be correlated with the volatility factor.30

It can be shown that the above beta pricing relation also holds when an Ornstein-Uhlenbeck

process is used for the volatilities instead of Bessel processes as in (Bansal and Yaron 2004),

(Constantinides and Ghosh 2008) and (Bansal, Yaron, and Kiku 2007).31

B.2 Second beta pricing relation

Theorem 4. The model defined by (37), (38), (39) and (40) implies the beta pricing relation

E[rl,t+1 − rf,t] =

m∑
j=1

βl,Vj V̄j (101)

where βl,Vj is the coefficient obtained upon regressing rl,t+1 − rf,t on Vj,t.

This can be written in terms of the n+m log price dividend ratio factors Fi, 1 ≤ i ≤ m+n

as

E[rl,t+1 − rf,t] =

m+n∑
i=1

βl,FiλFi (102)

Proof. Taking the expectation at time t of (91), we obtain

Et[rl,t+1 − rf,t] =

m∑
j=1

βl,VjVj,t (103)

30Specifically, we have log
(
Pl,t

Dl,t

)
= pl,t − dl,t = A0,l +

∑n
i=1 A1,l,iXi,t + A2,lVt which can be inverted to

give Vt = k0 +
∑n+1
i=1 ki log

(
Pi,t

Di,t

)
for some n + 1 log price to dividend ratios so that E[rl,t+1 − rf,t] =

βl,V
(
k0 +

∑n+1
i=1 ki log

(
Pi,t

Di,t

))
.

31The proof is available upon request.
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Taking the unconditional expectation, we obtain the result

E[rl,t+1 − rf,t] =
m∑
j=1

βl,Vj V̄j (104)

Since the price dividend ratios are affinely related to the X and V state variables by (59),

this is equivalent to a beta pricing relation in the log price-dividend ratio factors which can be

explicitly written as

E[rl,t+1 − rf,t] =
m+n∑
i=1

βl,FiλFi (105)

This beta pricing relation does not hold when the volatility processes are Ornstein-Uhlenbeck

rather than Bessel. It is, therefore, not an implication of the models of Bansal and Yaron (2004)

and Bansal, Yaron, and Kiku (2007).

C Testing Long Run Risk Models : Monte Carlo Evidence

C.1 The Model

For the purpose of analyzing the performance of the asset pricing tests, we use the long run risk

model of (Bansal and Yaron 2004). In this model, the per capita consumption and dividend

growth rates ∆c and ∆d (for M assets indexed by l) and their common persistent component

x are assumed to follow the processes assumed by (Bansal and Yaron 2004)

∆ct+1 = µ+ xt + σtηt+1 (106)

xt+1 = ρxt + ϕxσtet+1 (107)

∆dl,t+1 = µl,d + φlxt + ϕl,dσul,t+1, 1 ≤ l ≤M (108)

σ2
t+1 = σ2 + ν(σ2

t − σ2) + σwwt+1 (109)
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where the shocks et+1, ηt+1 and wt+1 are taken to be independent standard normals for parsi-

mony. ul,t+1 is a vector of normally distributed shocks with covariance Vu which is independent

of e, η and w. In the simulations, Vu is set so as to fit the factor structure of returns. (Note

that we follow the convention that lowercase characters stand for the logarithm of quantities

denoted by the corresponding uppercase characters.)

Consumers in the model have Epstein-Zin-Weil preferences (Epstein and Zin 1989) (Weil

1990)

Ut = ((1− δ)C
1−γ
θ

t + δEt[U
1−γ
t+1 ]

1
θ )

θ
1−γ (110)

with γ > 1/ψ. This implies that they prefer early resolution of uncertainty and that persistent

consumption and volatility shocks have a high market price of risk. This high price of risk

results in a high equity premium and low risk-free rate. With these preferences, asset returns

satisfy

Et

[
δθ
(
Ct+1

Ct

)−θ/ψ
R
−(1−θ)
a,t+1 Ri,t+1

]
= 1 (111)

where C is per capita consumption, Ra is the gross return on an asset that pays a dividend of

per capita consumption, Ri is the asset return, 0 < δ < 1 is the time discount factor, γ is the

relative risk aversion, ψ is the intertemporal elasticity of substitution (IES) and θ is defined to

be

θ =
1− γ
1− 1

ψ

(112)

The log P/D ratios of assets in this economy have a factor structure (within the loglinear

approximation) with the factors being xt and σ2
t . In other words, if zi,t is the log P/D ratio of

asset i, we have

zi,t = A0,i +A1,ixt +A2,iσ
2
t (113)

This is shown for this particular model by (Bansal and Yaron 2004) and similar results for

related models are shown by (Bansal, Yaron, and Kiku 2007), (Drechsler and Yaron 2011),
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(Zhou and Zhu 2009), (Ferson, Nallareddy, and Xie 2012) and in A of this paper. Since the

dividend processes of the assets are specified in this model, the relation above gives the time

series of their prices for a given realization of the random variables. Hence, the prices and

other quantities of interest in this economy are readily simulated.

C.2 Monte Carlo Simulation of the Model

The global parameters summarized in table 16 while the asset specific parameters are chosen

to replicate the factor structure of log price dividend ratios and returns.32 We first note that

these parameters generate economic moments (calculated from 500 simulations of the long run

risk economy) which are roughly in line with the values observed in post-1942 (to account

for the structural break identified by Marakani (2009)) US consumption and return data as

shown in table 18. When realistic noise is added to the log P/D ratios as described below,

they are also compatible with the predictability of real time consumption growth in the data

as seen from the numbers in table 19. One moment which does not match well is the standard

deviation of the real risk free rate which is much smaller in the simulations than in the data.

This, however, as argued by Beeler and Campbell (2012), points to a strength rather than a

weakness of the long run risk model as most models struggle to make this quantity low enough.

Further, as we argue in the next section, this quantity is very noisily measured which means

that the reported standard deviation would be significantly larger than the actual one.33

The scaled eigenvalues of the covariance matrix of the post-1942 continuously compounded

excess returns of the 25 Fama-French portfolios sorted on the basis of size and book to mar-

ket ratio are tabulated in table 20 together with the mean, 5th and 95th percentiles of the

corresponding values obtained in 500 simulations of the above model for the same time period

32They are available upon request from the authors.
33Measurement error (in either inflation or dividends) can also account for the somewhat low standard devi-

ation of real dividend growth of the portfolios in the simulations.
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Parameter Value

µ 0.02
σ 0.012
ρ 0.85
ϕx 0.45
ν 0.99
σw 10−5

γ 25
ψ 1.5
δ 0.994

Table 16: Global parameters for the simulation (the time unit is one year). µ represents
the unconditional mean of consumption growth, σ it’s conditional volatility, ρ the first order
autocorrelation of the long run risk state variable x, ϕx the conditional volatility of x in relation
to that of consumption growth, ν the first order autocorrelation of volatility, σw the volatility
of volatility, γ the relative risk aversion, ψ the elasticity of intertemporal substitution and δ
the time preference.

(65 years).34 Since the first few eigenvalues, which are of principal interest, are very similar

to those in the data, the model replicates the observed factor structure of excess returns quite

well.

The model also replicates the observed factor structure of log P/D ratios fairly well. This

is best seen from the normalized eigenvalues for the covariance matrix of the log P/D ratios of

the assets, both from the data as well as the simulations, which are tabulated in table 21. The

model’s two factor structure is highly evident here as all the eigenvalues after the second one

are zero. To better reflect the data and investigate the possible consequences of the inclusion

of small, irrelevant factors into the long run risk model, we added white noise with a variance

of 20% of the simulated values to the log P/D ratios. The introduction of this noise can also

be thought of as representing measurement error in the prices or dividends brought about due

to liquidity issues or other market imperfections. The normalized eigenvalues after adding this

34The model was actually simulated for 165 years with the data for the first 100 years being discarded so as
to minimize the effect of the assumed initial values of the dynamic quantities.
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Parameters for the asset dividend growths

l µl,d φl ϕl,d
1 −0.0286 1.7834 19.1677
2 0.0889 3.7689 21.7081
3 0.0160 3.2545 19.4655
4 0.0456 3.4405 23.5766
5 0.0471 2.6758 24.0000
6 0.0907 4.6342 16.6065
7 0.0778 5.8088 16.3543
8 0.0457 2.4918 8.5237
9 0.0928 9.5089 24.0000
10 −0.0145 5.5979 24.0000
11 −0.0012 4.8912 24.0000
12 0.0821 8.5459 22.0032
13 0.0556 10.9271 8.9635
14 0.0272 6.0810 21.8607
15 0.0926 5.1230 24.0000
16 0.0454 5.1540 6.0000
17 0.0327 3.0965 21.1709
18 0.0317 3.3548 16.4485
19 0.0147 3.5232 23.0091
20 0.0619 3.3028 6.6980
21 0.0167 2.5690 12.5081
22 0.0421 10.8271 6.0000
23 0.0901 3.7845 11.6097
24 0.0436 2.5953 24.0000
25 0.0788 3.7323 11.0877

Table 17: Asset-specific parameters for the simulation. The assets are indexed by l. µl,d
represents the unconditional mean of the dividend growth for asset l, φl the dependence of
predictable dividend growth on the long run risk state variable x and ϕl,d the idiosyncratic
volatility of dividend growth.

noise are summarized in table 22. From it, we see that the model is able to replicate the key

elements of this factor structure after adding the noise.35

(Albuquerque, Eichenbaum, and Rebelo 2012) have recently pointed out that some versions

of the long run risk model imply very high consumption-return correlations over long time

scales. We plot this correlation for our simulated model as a function of the time frame in

35Note that it is not necessary to replicate the features of the small factors as these represent a very small
fraction of the variance and are not economically interesting.
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Moment Data Simulation mean 5th percentile 95th percentile

E[∆ct] 0.0199 0.0200 0.0153 0.0246
Std[∆ct] 0.0136 0.0151 0.0105 0.0194

AC(1)[∆ct] 0.243 0.320 0.148 0.488
E[rf,t] 0.0059 0.0035 -0.0012 0.0079

Std[rf,t] 0.0343 0.0067 0.0045 0.0089
Min[rl,t − rf,t] 0.010 0.018 -0.012 0.049
Max[rl,t − rf,t] 0.133 0.209 0.131 0.292
MinE[∆dl,t] -0.023 -0.030 -0.062 0.002
MaxE[∆dl,t] 0.105 0.104 0.070 0.149
Min Std[∆dl,t] 0.087 0.085 0.075 0.095
Max Std[∆dl,t] 0.385 0.306 0.279 0.333

Table 18: Moments implied by the model and from the data. The model implied moments
are obtained from 500 simulations for a time period equal to that of the data (65 years). The
model was actually simulated for 165 years with the first 100 years of data being discarded to
ensure that arbitrary initial values did not have any impact on the results.

R2 obtained on regressing consumption growth against the lagged values of the first two
principal components of the log P/D ratios

Data Simulation mean 5th percentile 95th percentile
17.4% 32.6% 10.6% 55.2%

Table 19: Predictability of consumption growth in the model and in the data. For the data,
we use real time consumption growth as a measure of consumption growth. The results for the
model are derived from 1000 simulations over 165 years with the data for the first 100 years
being dropped so as to limit the impact of initial values on the numbers.

figure 8. We see from it that our simulated model is compatible with a low value for this

correlation even over long time frames for the given length of the data (65 years).36

We thus see that the long run risk model being simulated here is compatible not only

with many of the important observed moments of macroeconomic quantities but also with the

observed factor structure of excess returns and P/D ratios. Given this, it is interesting to

examine the performance of different asset pricing tests for long run risk models within the

context of these simulations. This will enable the study of the effect of finite sample size and

measurement noise on the efficacy of these tests and will point to the choice of test to be used

36Further details are available on request.
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Eigenvalues of the covariance matrix of excess returns

Data Simulation mean 5th percentile 95th percentile

1.00000 1.00000 1.00000 1.00000
0.06052 0.06171 0.04705 0.07889
0.04741 0.03926 0.02994 0.04970
0.01280 0.01135 0.00871 0.01403
0.00823 0.00807 0.00637 0.01010
0.00626 0.00667 0.00531 0.00824
0.00535 0.00573 0.00455 0.00711
0.00389 0.00497 0.00399 0.00613
0.00339 0.00433 0.00351 0.00541
0.00316 0.00375 0.00302 0.00460
0.00288 0.00331 0.00267 0.00403
0.00231 0.00294 0.00240 0.00359
0.00207 0.00263 0.00214 0.00324
0.00200 0.00236 0.00191 0.00289
0.00149 0.00213 0.00170 0.00265
0.00142 0.00191 0.00152 0.00234
0.00132 0.00171 0.00136 0.00212
0.00108 0.00151 0.00118 0.00186
0.00099 0.00132 0.00106 0.00164
0.00097 0.00112 0.00087 0.00139
0.00074 0.00076 0.00059 0.00095
0.00067 0.00058 0.00045 0.00075
0.00056 0.00040 0.00030 0.00050
0.00045 0.00030 0.00023 0.00038
0.00043 0.00023 0.00017 0.00029

Table 20: Eigenvalues of the covariance matrix of the continuously compounded excess returns
of the 25 Fama-French portfolios formed on the basis of size and book to market ratio over the
period 1944-2008 as well as those obtained by simulating the model for a time span equal to
that of the data (65 years). The model was actually simulated for 165 years with the first 100
years of data being discarded to ensure that arbitrary initial values did not have any impact
on the results.

in this paper. Since we are particularly interested in examining the impact of measurement

noise on these tests, we first turn to the task of establishing a reasonable estimate for the size

of this noise for two important quantities in long run risk models, the consumption growth and

the real risk free rate.
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Eigenvalues of the covariance matrix of log P/D ratios

Data Simulation mean 5th percentile 95th percentile

1.00000 1.00000 1.00000 1.00000
0.06041 0.03598 0.01272 0.07067
0.01669 0.00000 0.00000 0.00000
0.01169 0.00000 0.00000 0.00000
0.00627 0.00000 0.00000 0.00000
0.00522 0.00000 0.00000 0.00000
0.00494 0.00000 0.00000 0.00000
0.00318 0.00000 0.00000 0.00000
0.00245 0.00000 0.00000 0.00000
0.00238 0.00000 0.00000 0.00000
0.00215 0.00000 0.00000 0.00000
0.00168 0.00000 0.00000 0.00000
0.00137 0.00000 0.00000 0.00000
0.00101 0.00000 0.00000 0.00000
0.00094 0.00000 0.00000 0.00000
0.00085 0.00000 0.00000 0.00000
0.00072 0.00000 0.00000 0.00000
0.00063 0.00000 0.00000 0.00000
0.00052 0.00000 0.00000 0.00000
0.00049 0.00000 0.00000 0.00000
0.00046 0.00000 0.00000 0.00000
0.00040 0.00000 0.00000 0.00000
0.00028 0.00000 0.00000 0.00000
0.00022 0.00000 0.00000 0.00000
0.00018 0.00000 0.00000 0.00000

Table 21: Eigenvalues of the covariance matrix of the log P/D ratios of the 25 Fama-French
portfolios formed on the basis of size and book to market ratio over the period 1944-2008 as
well as those obtained by simulating the model for an equivalent time period (65 years). The
model was actually simulated for 165 years with the first 100 years of data being discarded to
ensure that arbitrary initial values did not have any impact on the results.

C.3 Measurement Noise

We do so by analyzing the degree of correlation between different measures for the same

fundamental macroeconomic quantities. For consumption growth, we use the estimates of

consumption growth derived from the continuously revised NIPA tables as well as those from
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Eigenvalues of the covariance matrix of noisy log P/D ratios

Data Simulation mean 5th percentile 95th percentile

1.00000 1.00000 1.00000 1.00000
0.06041 0.04536 0.02144 0.08128
0.01669 0.01451 0.01323 0.01577
0.01169 0.01337 0.01234 0.01442
0.00627 0.01251 0.01160 0.01352
0.00522 0.01179 0.01095 0.01269
0.00494 0.01114 0.01046 0.01183
0.00318 0.01057 0.00989 0.01132
0.00245 0.01003 0.00936 0.01071
0.00238 0.00952 0.00877 0.01022
0.00215 0.00904 0.00842 0.00972
0.00168 0.00859 0.00800 0.00918
0.00137 0.00813 0.00757 0.00872
0.00101 0.00771 0.00712 0.00837
0.00094 0.00730 0.00677 0.00786
0.00085 0.00692 0.00639 0.00751
0.00072 0.00652 0.00603 0.00706
0.00063 0.00615 0.00567 0.00664
0.00052 0.00579 0.00533 0.00627
0.00049 0.00541 0.00496 0.00588
0.00046 0.00506 0.00464 0.00554
0.00040 0.00470 0.00429 0.00514
0.00028 0.00433 0.00388 0.00477
0.00022 0.00394 0.00350 0.00437
0.00018 0.00345 0.00295 0.00390

Table 22: Eigenvalues of the covariance matrix of the log P/D ratios of the 25 Fama-French
portfolios formed on the basis of size and book to market ratio as well as those obtained by
simulating the model for an equivalent period (65 years) and adding some noise to the result.
The model was actually simulated for 165 years with the first 100 years of data being discarded
to ensure that arbitrary initial values did not have any impact on the results.

the real time database maintained by the Federal Reserve Bank of St. Louis (described in

detail by Croushore and Stark (2001)). Regressing these estimates against each other leads to

the results in table 23. The R2 of 67% or about 2
3 indicates that the variance of measurement

noise in consumption growth is about half of the variance of actual consumption growth. We
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Figure 8: Consumption growth - return correlations as a function of the time frame for the
model simulated in this appendix. The simulations are for the same period as the data (65
years). The model was actually simulated for 165 years with the first 100 years of data being
discarded to ensure that arbitrary initial values did not have any impact on the results.

thus simulate measured consumption growth as actual consumption growth plus iid noise with

half it’s realized variance in that simulation.

Regression of ∆ct against ∆cRTt
Coefficient Estimate (Std. Err.)

Intercept 0.0060 (0.0019)
Real time consumption growth 0.838 (0.092)

R2 67.0%

Table 23: Regression of the conventional revised measure of consumption growth (∆ct) on the
corresponding real time measure (∆cRTt ) over the period 1965-2008.

The real risk-free rate has been a problematic quantity to measure accurately since true

real risk-free assets have not been available in the market until recent times (further, even these

recent innovative instruments have limited liquidity). This quantity has therefore usually been

approximated by subtracting some measure of expected inflation from the nominal risk-free

rate. Two implicit assumptions are made in doing so. The first is that the measure of expected
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inflation being used is reasonable and the second is that inflation uncertainty risk is unpriced.

This first issue is a serious one for data over long time frames since inflation survey data is

typically unavailable over the entire period. The general convention in this regard has been to

use lagged or realized inflation. Hence, it is important to understand the possible size of error

that using lagged or realized inflation can cause. We therefore regress the measures of the

real risk free rate made using lagged, realized and expected inflation on each other to estimate

the amount of measurement noise. We tabulate the results in table 24. We see that the R2

of each of the regressions is quite low with the average being under 33%. This indicates that

the measurement noise in the reported real risk free rate has about twice the variance of the

underlying quantity. This is in line with the size of inflation forecast errors as reported by

Croushore (2010). Hence, for the simulations, we model the measured real risk free rate as the

actual risk free rate plus iid noise with twice it’s realized variance.

We do not investigate the second issue (the assumption of zero price of risk for inflation

risk uncertainty) but note that it’s inclusion will only strengthen the results in our favor as the

stock portfolios are real assets and their P/D ratios are real yields and thus are not directly

exposed to inflation risk.

C.4 Type I error of Asset Pricing Tests with Respect to the Long Run Risk

Model

We now analyze the performance of tests of four different asset pricing restrictions of the long

run risk model in order to determine which is the most reasonable one to use in the analysis

in this paper.

A26



Regression of rlagged
f,t against rrealized

f,t

Coefficient Estimate (Std. Err.)

Intercept 0.0046 (0.0028)
rrealized
f,t 0.454 (0.106)

R2 23.6%

Regression of rlagged
f,t against rexpected

f,t

Coefficient Estimate (Std. Err.)

Intercept -0.0023 (0.0030)

rexpected
f,t 0.890 (0.145)

R2 38.6%

Regression of rrealized
f,t against rexpected

f,t

Coefficient Estimate (Std. Err.)

Intercept -0.0007 (0.0035)

rexpected
f,t 0.859 (0.169)

R2 30.4%

Table 24: Regression of three measures of the real risk free rate on each other. The three
measures are computed using the lagged, realized and expected inflation. The regressions are
restricted to the post-1946 period as expected inflation data is only available for it.

The asset pricing restrictions that we consider are related to the one analyzed by Ferson,

Nallareddy, and Xie (2012).37 It is38

E[rl,t+∆t − rf,t] +
1

2
Var[rl,t+∆t − rf,t] ≈ βl,ε̃λε̃ + βl,w̃λw̃ (114)

where the returns rl,t are continuously compounded, x̃ and σ̃2 are the estimated values of xt

and σ2
t and ε̃ and w̃ are the estimated values of the innovations of these processes. x and σ2 are

37Ferson, Nallareddy, and Xie (2012) use GMM with the Euler moment restrictions in the SDF framework. We
use the beta representation which is approximate but quite accurate when dealing with continuously compounded
returns.

38Note that we don’t need a β∆c term as there is no contemporaneous correlation between the dividend growth
and consumption growth innovations in this model.
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estimated in the same manner as by Bansal, Yaron, and Kiku (2007) and Ferson, Nallareddy,

and Xie (2012), i.e. by the use of the following regressions

∆ct+∆t = α0 + α1zm,t + α2rf,t + σtηt+∆t

√
∆t (115)

x̃t = α0 − µ+ α1zm,t + α2rf,t (116)

x̃t+∆t = ρx̃t + ε̃t+∆t

√
∆t (117)

σ2
t η

2
t+∆t∆t = β0 + β1zm,t + β2rf,t + ωt+∆t (118)

σ̃2
t∆t = β0 + β1zm,t + β2rf,t (119)

σ̃2
t+∆t = νσ̃2

t + w̃t+∆t

√
∆t (120)

where zm,t is the log market P/D ratio (taken to be the log P/D ratio of the first asset in the

simulations) and ∆t is one year.

The alternate asset pricing restrictions that we consider are analogous but use the two

largest estimated log P/D ratio factors instead of the log market P/D ratio and the real risk

free rate as they should also span x and σ2. The principal idea behind this approach is that

given the null, they should be more accurately estimated in the presence of measurement error

since they are estimated using multiple assets. The asset pricing restriction analogous to (114)

is then given by

E[rl,t+∆t − rf,t] +
1

2
Var[rl,t+∆t − rf,t] ≈

2∑
i=1

βl,IFiλIFi (121)

where Fi and IFi are the ith principal components of the log P/D ratios of the assets and their

estimated innovations respectively (the latter are estimated by fitting the former to an AR(1)

process).

The above asset pricing relations do not include the β2
l,σ2λσ2 term, which, as we have

shown in theorem 1, should be included in order to make it exact. Excluding it, however, has
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very minor impact on the results both because the short time series in the data and the high

persistence of the long run risk processes makes these βs difficult to estimate precisely and

also because this term captures the variance in expected excess returns which is much smaller

than the expected excess returns. The latter is true because the order of magnitude of the

expected excess returns is 0.1 while that of the variance of the expected excess returns is the

square of this number, i.e. 0.01. Another reason we exclude this term is to ensure that we are

comparing our procedure with the methodology in the extant literature.

We examine whether the hypothesis that the factors being considered are useless is rejected

by the cross sectional regression methodology. This is done using the Wald test for the risk

premia of the factors with their covariance matrix being estimated in the standard manner (see

for eg., (Shanken 1992) and (Shanken and Zhou 2007)). The rejection frequencies for each of

these tests in 1000 simulations are reported in table 25. The results show that the test of the

asset pricing restriction involving the log P/D ratio factors (which also include noise calibrated

to fit the observed factor structure of log P/D ratios) display much greater power than those

involving the estimated long run risk processes. Hence, we use the former in our analysis in

this paper.

Hypothesis
Non-rejection rate

p=0.10 p=0.05 p=0.01

λε̃, λw̃ = 0 12.3% 24.0% 50.4%
λIF1 , λIF2 = 0 0.4% 0.6% 1.5%

Table 25: Rejection frequencies for the hypothesis that the λs of the relevant factors are zero.

C.5 Conclusion

In this appendix, we simulate a 25 asset long run risk economy with parameters chosen so as

to match key economic and financial moments with those in U.S. economic and financial data.

We analyze the type I error of different asset pricing tests within this economy and find, when

realistic measurement noise is introduced into it, that tests using estimates of the long run
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risk components derived from projections of consumption growth onto the log market price

dividend ratio and real risk free rate display high type I error while those estimating the same

components using the principal components of the log price dividend ratios of the assets do

not do so. This implies that the latter type of tests have a more desirable profile. Hence, we

use such tests in this paper.

D Robust Test Statistics
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Figure 9: p-value plot of the test of the joint hypothesis of factor pricing together with
(λIF−V ol , λIFX ) = (λ̂IF−V ol , λ̂IFX ) using the FAR statistic proposed by (Kleibergen 2009) for
the 25 Fama-French portfolios formed on the basis of size and book to market ratio over the
period 1944-2008. λIF−V ol and λIFX are the factor risk premia for IF−V ol and IFX . F−V ol and
FX are the negative volatility and consumption/dividend growth factors and IF−V ol and IFX
are their innovations. F−V ol and FX are the negative volatility and consumption/dividend
growth factors and IF−V ol and IFX are their innovations.

Since the excess returns of the 25 Fama-French portfolios formed on the basis of size and

book to market ratio have a strong factor structure, it is important to use robust test statistics
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to eliminate the problem of useless factors being identified as useful (a problem forcefully

brought out by Kleibergen (2009) and Kleibergen (2010)). Hence, we use the robust test

statistics suggested by Kleibergen (2009) to ensure that the factors here are not useless.

We find that these robust test statistics reject the joint hypothesis that λIF−V ol = λIFX = 0

(non-rejection of the hypothesis would indicate that the pricing factors are useless) and do not

reject either the hypothesis of factor pricing or that of λIF−V ol = λ̂IF−V ol , λIFX = λ̂IFX for

many values of (λ̂IF−V ol , λ̂IFX ) including those estimated using the cross sectional regressions

(rejection of this would indicate that the model is rejected by the data). Figure 9 contains

the plot of the p-values of the FAR test statistic for many different values of (λ̂IF−V ol , λ̂IFX ).

This statistic tests the joint hypothesis of factor pricing and of λIF−V ol = λ̂IF−V ol , λFX = λ̂IFX .

It shows that the joint hypothesis is rejected at λ̂IF−V ol = λ̂IFX = 0 and also that it is not

rejected for many other values of λ̂IF−V ol and λ̂IFX including those in table 4. Further, the

region identified by p > 0.1 excludes λIFX = 0 but not λIF−V ol = 0. This is consistent with

the findings using GMM which are analyzed in the next subsection.

The JGLS statistic which tests the hypothesis of factor pricing for a given value of λIF−V ol

and λIFX is plotted in figure 10. Since it tests a weaker hypothesis, it is not surprising that

it rejects fewer values of λIF−V ol and λIFX than the FAR statistic. When combined with

the GLS-LM statistic, also plotted in figure 10, which tests the hypothesis that λIF−V ol =

λ̂IF−V ol , λFX = λ̂IFX given that factor pricing is correct, it gives very similar results to those

given by the FAR statistic.

Hence, we can conclude that the robust test statistics show that we cannot reject the

hypothesis of factor pricing with the innovations of the two identifid log P/D factors However,

these resuls, together with the findings made through GMM, do cast some doubt on the

significance of λIF−V ol .
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Figure 10: p-value plot of the test of the hypothesis of factor pricing given (λIF−V ol , λIFX ) =

(λ̂IF−V ol , λ̂IFX ) using the JGLS and GLS-LM statistics proposed by Kleibergen (2009) for the
25 Fama-French portfolios formed on the basis of size and book to market ratio over the period
1944-2008. λIF−V ol and λIFX are the factor risk premia for IF−V ol and IFX . F−V ol and FX
are the negative volatility and consumption/dividend growth factors and IF−V ol and IFX are
their innovations. F−V ol and FX are the negative volatility and consumption/dividend growth
factors and IF−V ol and IFX are their innovations.
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