
NBER WORKING PAPER SERIES

DETERRENCE AND THE DEATH PENALTY:
PARTIAL IDENTIFICATION ANALYSIS USING REPEATED CROSS SECTIONS

Charles F. Manski
John V. Pepper

Working Paper 17455
http://www.nber.org/papers/w17455

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2011

An early version of this research was prepared for presentation at the National Research Council Workshop
on Deterrence and the Death Penalty, April 2011.  We have benefitted from comments received at
the workshop, the opportunity to present the work in seminars at the University of Bern and the University
of Virginia, and the comments of Daniel Nagin.  Manski’s research was supported in part by National
Science Foundation grant SES-0911181. The views expressed herein are those of the authors and do
not necessarily reflect the views of the National Bureau of Economic Research.¸˛

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2011 by Charles F. Manski and John V. Pepper. All rights reserved. Short sections of text, not to
exceed two paragraphs, may be quoted without explicit permission provided that full credit, including
© notice, is given to the source.



Deterrence and the Death Penalty: Partial Identification Analysis Using Repeated Cross Sections
Charles F. Manski and John V. Pepper
NBER Working Paper No. 17455
September 2011
JEL No. C21,K14

ABSTRACT

Researchers have long used repeated cross sectional observations of homicide rates and sanctions to
examine the deterrent effect of the adoption and implementation of death penalty statutes.  The empirical
literature, however, has failed to achieve consensus.  A fundamental problem is that the outcomes
of counterfactual policies are not observable. Hence, the data alone cannot identify the deterrent effect
of capital punishment.  How then should research proceed?  It is tempting to impose assumptions strong
enough to yield a definitive finding, but strong assumptions may be inaccurate and yield flawed conclusions.
Instead, we study the identifying power of relatively weak assumptions restricting variation in treatment
response across places and time.  The results are findings of partial identification that bound the deterrent
effect of capital punishment.  By successively adding stronger identifying assumptions, we seek to
make transparent how assumptions shape inference.  We perform empirical analysis using state-level
data in the United States in 1975 and 1977.  Under the weakest restrictions, there is substantial ambiguity:
we cannot rule out the possibility that having a death penalty statute substantially increases or decreases
homicide.  This ambiguity is reduced when we impose stronger assumptions, but inferences are sensitive
to the maintained restrictions.  Combining the data with some assumptions implies that the death penalty
increases homicide, but other assumptions imply that the death penalty deters it.

Charles F. Manski
Department of Economics
Northwestern University
2001 Sheridan Road
Evanston, IL  60208
and NBER
cfmanski@northwestern.edu

John V. Pepper
Department of Economics
University of Virginia
P.O. Box 400182 
Charlottesville, VA 22904-4182
jvp3m@virginia.edu



Ehrlich (1975, p. 398): “In fact, the empirical analysis suggests that on the average the tradeoff

between the execution of an offender and the lives of potential victims it might have saved was of

the order of 1 for 8 for the period 1933!1967 in the United States.”

Blumstein, Cohen, and Nagin (1978, p. 62): “The current evidence on the deterrent effect of capital

punishment is inadequate for drawing any substantive conclusion.”

1. Introduction

Researchers have long used data on homicide rates and sanctions to examine the deterrent

effect of capital punishment.  There is now a large body of work addressing this controversial

question, yet the literature has failed to achieve consensus on even the most basic matters.  Donohue

and Wolfers (2005), who review a set of recent studies, provide a striking illustration.  They find that

a seemingly trivial change to the model estimated by Dezhbakhsk, Rubin and Shepard (2003) “flips

the sign of the original estimates: instead of saving eighteen lives, each execution leads to eighteen

lives lost.” 

Numerous shortcomings of the research were documented over thirty years ago in the report

of the National Research Council (NRC) Panel on Research on Deterrent and Incapacitative Effects

(Blumstein, Cohen, and Nagin, 1978).  These problems persist in more recent work.  A fundamental

difficulty is that the outcomes of counterfactual policies are unobservable.  Data alone cannot reveal

what the homicide rate in a state without (with) a death penalty would have been had the state (not)

adopted a death penalty statute.  Here, as always when analyzing treatment response, data must be

combined with assumptions to enable inference on counterfactual outcomes.   Hence, research
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confronts the selection problem.

If available data alone cannot reveal the deterrent effects of capital punishment, how should

research proceed?  It is tempting to impose assumptions strong enough to yield a definitive finding.

When this is achieved, a deterrent effect is said to be point-identified.  Researchers often recognize

that strong assumptions may have little foundation, but they apply them nonetheless. They may

defend their strong assumptions as necessary to “provide answers.”  However, strong assumptions

may be inaccurate, yielding flawed and conflicting conclusions.  One of us has cautioned against the

imposition of untenable strong assumptions as follows (Manski, 2003, p. 1): 

The Law of Decreasing Credibility: The credibility of inference decreases with the strength

of the assumptions maintained.  

We have seen this repeatedly in the empirical literature on the death penalty.  

With this in mind, we study inference under various relatively weak assumptions that may

possess greater credibility.   The assumptions we study do not point-identify deterrent effects, but

they do partially identify them, yielding bounds rather than point estimates.  Analysis of partial

identification of treatment effects has developed and been applied over the past twenty years,

beginning with Manski (1990) and continuing through our present work.  See Manski (2003 and

2007) for textbook expositions.  Some applications include Manski and Nagin (1998), Manski and

Pepper (2000), Pepper (2000),  Blundell et al. (2007), and Gundersen, Kreider, and Pepper (2011).

The basic insight of partial identification analysis is that identification need not be an all or

nothing undertaking.  Available data and credible assumptions may lead to partial conclusions.

Some may find this ambiguity frustrating and be tempted to impose strong assumptions in order to

provide definitive answers. We caution against such a reaction.
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W e  u s e  d a t a  p r o v i d e d  b y  J u s t i n  W o l f e r s  a t1

http://bpp.wharton.upenn.edu/jwolfers/DeathPenalty.shtml.  This archive reports annual state level
data from 1930 to 2004.  See Donohue and Wolfers (2005) for a detailed description. 

Imposing strong but untenable assumptions cannot not truly resolve problems of inference

on the deterrent effects of capital punishment.  The NRC Panel on Research on Deterrent and

Incapacitative Effects recognized this when it concluded that “research on this topic is not likely to

produce findings that will or should have much influence on policymakers” (Blumstein, Cohen, and

Nagin, 1978, p.63).  The lesson of past research is that researchers and policymakers must cope with

ambiguity.

To demonstrate partial identification analysis in a relatively simple setting, this paper

considers the problem of drawing inferences on the deterrent effects of death penalty statutes using

data from repeated cross sections of states.   We focus on the years following the 1972 Supreme1

Court case Furman vs. Georgia, which resulted in a de facto moratorium on the application of the

death penalty, and the 1976 case Gregg vs. Georgia, which ruled that the death penalty could be

applied subject to certain criteria.  We examine the effect of death penalty statutes on the national

homicide rate  in two years: 1975, the last full year of the federal moratorium on death penalty, and

1977, the first full year after the moratorium was lifted.  In 1975 the death penalty was illegal

throughout the country, and in 1977 thirty-two states had legal death penalty statutes.  For each state

and each year, we observe the homicide rate and whether the death penalty is legal.

Table 1 displays the homicide rate per 100,000 residents in 1975 and 1977 in the states that

did and did not legalize the death penalty after the Gregg decision.  The former are the “treated”

states and the latter are the “untreated” ones.  Here and throughout the paper, we include the District

of Columbia and regard it as equivalent to a state.  When computing averages across states, we
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 DID estimates have been reported in numerous policy analyses, including evaluations of2

the death penalty.  For example, Dezhbakhsh and Shepherd (2006) used the federal moratorium of
the 1970s as a ‘‘judicial experiment.’’ More broadly, they used data from 1960–2000 to compare
murder rates immediately before and after changes in death penalty laws. They concluded that the
death penalty has a substantial deterrent effect on homicides.  Examining the same questions using
the same data, Donohue and Wolfers (2005) concluded that there is no evidence that the death
penalty deters homicides.

weight each state by its population. The thirty-two states with legal death penalty statutes in 1977

contained seventy percent of the total population.

Table 1: Homicide Rates per 100,000 Residents by Year and Treatment Status in 1977

Group Total

Year Untreated Treated 

1975 8.0 10.3  9.6

1977 6.9 9.7  8.8

Total 7.5 10.0  9.2

The data in the table may be used to compute three simple estimates of the effect of death

penalty statutes on the national homicide rate.  A “before-and-after” analysis compares homicide

rates in the treated states in 1975 and 1977, yielding the estimate !0.6 (9.7 ! 10.3).

Contemporaneous comparison of 1977 homicide rates in the treated and untreated states yields the

estimate 2.8 (9.7 ! 6.9).  The difference-in-difference (DID) estimate  compares the time-series

changes in homicide rates in the treated and untreated states, yielding the estimate 0.5 [(9.7 ! 10.3)

! (6.9 ! 8.0)].2

These three estimates yield different empirical findings.  Given certain assumptions, each

appropriately measures the effect on death penalty statutes on the national homicide rate.  However,
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the assumptions that justify this interpretation differ across estimates.  Moreover, one may think that

none of the requisite assumptions is credible.  

In Section 2, we formally define the empirical question and the selection problem.  Section

3 presents two polar approaches to inference.  At one pole, deterrent effects are point-identified

under strong assumptions needed to  justify the three estimates described above.  At the other, they

are partially identified using only the data and an a priori bound on the maximum possible value of

the mean counterfactual homicide rate.  No other assumptions are imposed to address the selection

problem.

Section 4 applies new results on partial identification developed in our companion technical

paper (Manski and Pepper, 2011).  These results exploit the variation of homicide rates and death

penalty status in repeated cross sections of states to explore middle ground assumptions.  By

successively adding stronger assumptions and determining their identifying power, our analysis

makes transparent how assumptions shape inferences about the effect of capital punishment on

homicide.

The assumptions that we consider restrict the potential variation of treatment response or

treatment effects over time and/or across states.  Under the weakest assumptions, there is

considerable ambiguity: we cannot rule out the possibility that the death penalty substantially

increases or decreases the mean homicide rate across states.  This ambiguity is reduced by imposing

stronger assumptions, but inferences are highly sensitive.  Given the available data, imposing certain

assumptions implies that the death penalty increases homicide but other assumptions imply that the

death penalty deters it.
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This paper does not provide measures of statistical precision when presenting our findings

on average treatment effects.  That is, we view the states in 1975 and 1977 as constituting the

population of interest, rather than as realizations from some sampling process.  One reason we do

this is expositional.  We want to focus attention on the identification problem arising from the

unobservability of counterfactual outcomes.  Statistical precision of estimates is a second-order

concern relative to this problem.

Another reason is that measurement of statistical precision requires specification of a

sampling process that generates the data, but we are unsure what type of sampling process would be

reasonable to assume.  Existing methods for computing confidence intervals in partial identification

analysis assume that the data are a random sample drawn from an infinite population; see, for

example, Imbens and Manski (2004) and Chernozhukov, Hong, and Tamer (2007).  This sampling

assumption does not seem natural when considering states as units of observation.

2. Average Treatment Effects and the Selection Problem

We consider the problem of learning the effect of death penalty statutes on the national

homicide rate.  This is the population-wide average treatment effect (ATE)

d d dATE   /  E[Y (1)] ! E[Y (0)]. (1)
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Here there are two mutually exclusive treatments: treatment t = 1 denotes a state sanctions regime

that includes the presence of a death penalty statute and t = 0 denotes one without such a statute.

Defining the treatment to be the presence or absence of a death penalty statute is a representation of

actual sanctions policy intended to simplify analysis.  While this comparison addresses a well-

defined question, the resulting analysis cannot reveal the mechanisms by which the statute impacts

crime. One might like to differentiate treatments by the specifics of the death penalty statute enacted,

the way it is implemented, and by the nature of the non-capital sanctions that a state has in place. 

dThe outcome Y (1) denotes the homicide rate if a state were to have a death penalty statute,

dY (0) denotes the analogous outcome if the state were not to have a death penalty statute, and d

dindicates whether the year is 1975 or 1977 ( = 0 if 1975, = 1 if 1977).  ATE  expresses how the

national homicide rate in year d would differ if all states were to have a death penalty statute versus

what would occur if all states had a death penalty moratorium.

We also consider inference on the effect of death penalty statutes on homicide in groups of

states with specified observed characteristics.  Let X denote these characteristics.  Then the objective

dX d dis to learn the group-specific average treatment effect ATE   /  E[Y (1)*X] ! E[Y (0)*X].

jd jdNotice that for each state j and year d, there are two potential outcomes, Y (1) and Y (0).

jdThe outcome Y (1) is counterfactual for all states that did not have a death penalty statute in year

jdd, while Y (0) is counterfactual for all states that did have a death penalty.  The observed murder

jd jd jd jd jd jdrate is Y  = Y (1)@Z  + Y (0)@(1 ! Z ), where Z  = 1 denotes that state j has a death penalty statute

jdin year d and Z  = 0 otherwise.
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The fact that the data only reveal one of the two mutually exclusive outcomes constitutes the

selection problem.  Using the Law of Iterated Expectations, the implications for identification of

dE[Y (1)] can be seen by writing this quantity as 

d d d d d d dE[Y (1)]  =  E[Y (1)|Z  = 1]P(Z  = 1) + E[Y (1)|Z  = 0]P(Z  = 0). (2)

jd jd jd jd jd jd jdEach observation in the sample reveals Y (Z ), Z , and X .  (We will sometimes write Y  / Y (Z )

dfor short.)  Hence, the sampling process identifies the selection probability P(Z  = 1), the censoring

d d d dprobability P(Z  = 0), and the mean of Y (1) in states with the death penalty, E[Y (1) | Z  =1].  For

1 1 1 1example, in 1977 we have E[Y (1)|Z  = 1] = 9.7, P(Z  = 1) = 0.70, P(Z  = 0) = 0.30.  However, the

d d dsampling process does not reveal the mean of Y (1) in states without the death penalty, E[Y (1)|Z

d= 0].  Thus, E[Y (1)] only partially identified by the data alone.

3. Polar Approaches to Inference

How might we proceed?  This section considers polar approaches.  One pole makes

assumptions strong enough to point-identify ATEs.  The other only assumes an upper bound on the

homicide rate, the result being wide bounds on ATEs.
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3.1. Assumptions that Point-identify Average Treatment Effects

At one extreme, researchers may impose assumptions strong enough to point-identify average

treatment effects.  This has been the norm in the literature, with researchers applying a variety of

assumptions.  In this section we give assumptions under which the three simple estimates mentioned

in the Introduction identify the effect of death penalty statutes on the national homicide rate.

3.1.1. Random Treatment Selection

jdA common assumption is that the realized treatments Z  are statistically independent of

potential outcomes, as they would be in a classical randomized experiment.  This implies that

1 1 d 1 1 dE[Y (1)]  =  E[Y (1)|Z  = 1] and  E[Y (0)]  =  E[Y (0)|Z  = 0].  The ATE in 1977 is point-identified

1 d 1 dunder this assumption because E[Y (1)|Z  = 1] and  E[Y (0)|Z  = 0] are the observed mean homicide

rates in states that do and do not have the death penalty.

Combining this assumption with the data implies that the death penalty increases the mean

homicide rate by 2.8 per 100,000 (i.e., 9.7 ! 6.9) in 1977.  Without additional assumptions, the ATE

in 1975 is not identified.  The reason is that, with the federal moratorium in place, no states had the

death penalty during that time period. 

The random-selection assumption is credible in randomized experiments, but it is not

generally credible in observational studies where treatments (i.e., death penalty statutes) are self-

selected.  A particular concern is that states may adopt death penalty statutes in part based upon their

beliefs about the deterrent effect of such statutes. 
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3.1.2. Time-Invariant Treatment Response

j j1 jLet X  = 1 if state j is in the treated group (i.e., Z  = 1) and X  = 0 if it is in the untreated

j1group (Z  = 0).  Suppose that, within the group of treated states, mean treatment response is the same

1 0in 1975 and 1977.  Thus, E[Y (@)|X = 1] = E[Y (@)|X = 1].  The data for 1975 and the fact that no state

had a death penalty statute that year imply that

0 0 0                        E[Y (0)|X = 1]  =  E[Y (0)|X = 1, Z = 0]  =  E(Y |X = 1, Z = 0).

The data for 1977 and the fact that only treated states had a death penalty statute that year imply that

1 1 1                        E[Y (1)|X = 1]  =  E[Y (1)|X = 1, Z = 1]  =  E(Y |X = 1, Z = 1).

Combining this with the assumption that mean treatment response does not vary over time for the

treated group implies that the time-invariant effect of treatment on the treated (ETT) is 

X=1 1 0 1 0  ETT  /  ATE   =  E[Y (1)|X = 1] ! E[Y (0)|X = 1]  =  E(Y |X = 1, Z = 1)  !  E(Y |X = 1, Z = 0).

The right-hand side is the estimate of deterrence given by before-and-after analysis of the treated

states.  The empirical finding with the data in Table 1 is !0.6 (9.7 ! 10.3).

Before-and-after analysis of the treated states only reveals the average treatment effect within

this group of states.  One cannot perform an analogous analysis for the untreated states because they

did not have a death penalty statute in either year.  One can interpret the before-and-after estimate
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as giving the effect of death penalty statutes on the national homicide rate if one thinks it credible

to assume that the effect of treatment on the treated equals the effect of treatment on the untreated.

However, the data in Table 1 make this interpretation suspect.  The data show that the homicide rate

in the untreated states fell from 8.0 in 1975 to 6.9 in 1977.  Thus, mean treatment response varied

with time in the untreated states.

3.1.3. Linear Homogeneous Treatment Response

A third assumption that point-identifies the ATE begins by posing a model of linear

homogeneous treatment response. Let

jd j jdY (t)  =  "  + $@d + (@t + * . (3)

The parameter ( measures the effect on the homicide rate of having the death penalty.  This effect

is assumed to be homogeneous across states j and dates d.  The date-specific intercept $@d shifts the

response function additively by date.  Observe that this intercept does not vary with the treatment

jt or across states j.  Similarly, the state-specific intercept "  allows the response function to differ

jdadditively by state.   The unobserved random variable *  varies across states and periods. 

Evaluated at realized values of treatments and outcomes, the model yields

jd j jd jdY   =  "  + $@d + (@Z  + * . (4)
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The conventional practice is to impose distributional assumptions that point-identify (.  Here is one

assumption that achieves this objective.

j j1 jAs in Section 3.1.2, let X  = 1 if state j is in the treated group (i.e., Z  = 1) and X  = 0 if it is

j1 d d din the untreated group (Z  = 0).  Assume that, for each date d, E(* *X, Z ) = 0 and E("*X, Z ) =

E("*X).  Then

d d d                                E(Y *X, Z )  =  E("*X) + $@d + (@Z .

It follows that 

 

1 1 0 0( =  [E(Y *X = 1, Z  = 1) ! E(Y *X = 1, Z  = 0)] ! 

1 1 0 0[E(Y * X =  0, Z  = 0) ! E(Y *X = 0, Z  = 0)]. (5)

Thus, the ATE is point identified.  The right-hand side of (5) is the DID form.  Given the model and

the data on homicide rates and executions summarized in Table 1, we find that the death penalty

statute increases the homicide rate in every state and date by 0.5.

The problem with this approach to identification is, again, credibility.  The linear

homogeneous response model in equation (3) is generally difficult to justify, as policies are typically

thought to have heterogeneous effects (Manski, 1990; Moffitt, 2005).  The distributional

assumptions used above in conjunction with the linear model are also hard to justify.  Instead,

researchers often apply instrumental-variable assumptions asserting that potential outcomes are

mean-independent of some observed covariate that is statistically associated with the realized
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treatment.  Finding instrumental variables that satisfy this condition, however, has proven to be

difficult in studies of the death penalty (Donohue and Wolfers, 2005).  

3.2. Partial Identification Assuming Bounded Outcomes

Imposing assumptions strong enough to yield a definitive finding is alluring, but strong

assumptions may be inaccurate, yielding flawed and conflicting conclusions.  Rather than attempt

to point-identify the ATE, partial-identification analysis does not impose the strong assumptions that

have been used in the literature.  Instead, we make weaker assumptions that yield bounds on the

deterrent effect of the death penalty.  Given the conflicting findings in the literature and the

methodological challenges in addressing the selection problem, deriving bounds under assumptions

that may be credible seems an important step forward.

A natural starting point is to ask what the data alone reveal about the ATE.  Recall that

d d d d d d dE[Y (1)]  =  E[Y (1) | Z  = 1]@P(Z  = 1)  + E[Y (1) |Z  = 0]@P(Z  = 0).

The selection problem arises because the data do not reveal the homicide rate if a death penalty

statute were in place for states where there was no such statute.  However, we do know that the

dhomicide rate per 100,000 residents logically cannot be larger than 100,000.  Thus, Y (1) 0 [0,

d d100,000] and, hence, E[Y (1) = 1| Z = 0] 0 [0, 100,000]. To put a more reasonable upper bound on

this counterfactual mean outcome, note that across all states and both years (1975 and 1977), the



14

observed homicide rate always was in the range [0.8, 32.8].  Thus, it seems reasonable to assume that

d dE[Y (1)|Z  = 0] 0 [0, 35].

Using this upper bound, it follows that

d d d d dE[Y (1)  ]  0  {E[Y (1) | Z  = 1]@P(Z  = 1) + 0@P(Z  = 0),

d d d d                            E[Y (1) | Z  = 1]@P(Z  = 1) + 35@P(Z  = 0)} (6)

dObserve that the width of this bound increases with the censoring probability P(Z  = 0).  Thus, if a

dlarge fraction of states adopt death penalty statutes, the width of the bound on E[Y (1)] is relatively

dnarrow.  In that case, the data do not reveal much about the distribution of Y (0), so the analogous

dbound on E[Y (0)] is wide.

Consider, for example, drawing inferences on mean potential outcomes during the

0moratorium, when no states had the death penalty.  Hence, P(Z  = 0) = 1.  In this case, the data alone

provide no information on the mean outcome if all states were to adopt a death penalty, but they

point-identify the mean outcome if all states were to not have a death penalty.

The sharp bound on the ATE can be found by taking the appropriate difference between the

d dlower (upper) bound on E[Y (1)] and the upper (lower) bound on E[Y (0)] (Manski, 1990).  Given

the restriction that the counterfactual mean outcomes lie in the interval [0, 35], the width of the

bound on the ATE necessarily equals 35.  It follows that, in the absence of additional assumptions,

the data cannot reveal the sign of the effect of the death penalty on the murder rate.

Table 2 displays the bounds on the ATE for 1975 and 1977.  The data show that in 1977,

seventy percent of the population resided in states which legalized the death penalty.  In this year,



15

the population weighted murder rate was 9.7 in states with the death penalty and 6.9 in states without

1 1 1 1 1it.  Thus, P(Z  = 1) = 0.70, E[Y (1) | Z  = 1] = 9.7, and E[Y (0) | Z  = 0] = 6.9.  Thus, evaluation of

1 1the bound in (6) shows that E[Y (1)] must be in the interval [6.8, 17.3] and E[Y (0)] must be in the

interval [2.1, 26.6].  These bounds on mean potential murder rates imply that the ATE must be in

the interval [-19.8, 15.2].

Importantly, these bounds are not a confidence interval – they do not express statistical

imprecision created by sampling variability.  Rather, the bounds express the ambiguity created by

the selection problem.  Assuming only that counterfactual mean potential murder rates cannot exceed

35, the data reveal that the ATE lies in the interval [-19.8, 15.2].  Recall that the ATE under the

random-selection assumption was 2.8, with before-and-after analysis was !0.6, and the DID estimate

was 0.5. 

Table 2 also derives bounds for 1975, a year in which no states had the death penalty.  In this

0year, P(Z  = 1) = 0, so the data are uninformative about what the mean homicide rate would be if all

0states had a death penalty statute.  However, the data point-identify E[Y (0)] = 9.6.  Thus, for 1975,

we find that the ATE must be in the interval [-9.6, 25.4].  While the bounds for 1975 are different

than those for 1977, both have a width of 35 and both include zero. 
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Table 2: Partial Identification of the ATE Under the Bounded Outcomes Assumption

1975 1977

dProbability of a Death Penalty Statute:  P(Z  = 1) 0 0.7

Murder Rate in States with the Death Penalty: 

d dE[ Y (1) | Z  = 1]

N. A. 9.7

Murder Rate in States without the Death Penalty: 

d dE[ Y (0) | Z  = 0]

9.6 6.9

Bounds:

dE[Y (1)] [0, 35] [6.8 , 17.3]

dE[Y (0)] 9.6 [2.1 , 26.6]

dATE [-9.6, 25.4] [-19.8 ,15.2]

4. Middle-Ground Assumptions

The analysis of Section 3.2 made no assumptions that relate criminal behavior in 1975 and

1977.  Nor did it make assumptions that relate criminal behavior in states that did and did not enact

a death penalty in 1977.  Deterrent effects were permitted to vary across years and states.

One may reasonably believe that there is some commonality in criminal behavior across years

and states.  However, it is not credible to assume as much commonality as the linear homogeneous

model, which supposes that deterrent effects are the same in every year and every state.  This leads



17

 Other authors have studied inference using assumptions that relax the linear homogeneous3

model.  See Athey and Imbens (2006), Chernozhukov, Fernandez-Val, Hahn and Newey (2010) and
Evdokimov (2010).  Their assumptions and analyses differ considerably from what we present here.

us to consider “middle-ground” assumptions that presume some commonality across years or states,

but not homogeneity.  In particular, we apply new analysis of partial identification with repeated

cross-sections developed in Manski and Pepper (2011).3

To begin, Section 4.1 permits treatment effects to vary across states but assumes that they

do not vary across years.  Section 4.2 adds an assumption that date-specific intercepts do not vary

across specified groups of states.  Section 4.3 assumes the existence of bounded instrumental

variables, which bound the variation of average treatment effects across groups of states. An

appendix explains the algorithms used to compute our empirical findings.

Our intent is not to endorse any particular assumption.  It is rather to demonstrate how the

the conclusions drawn depends on the assumptions imposed, thus providing a menu of possibilities

to readers of research on deterrence.

4.1. Date-Invariant Treatment Effects

We begin by assuming that the deterrent effect of the death penalty is the same in 1975 and

1 01977, in the formal sense that ATE  = ATE .  Then the date-invariant ATE must lie in the

intersection of the two date-specific intervals shown in Table 2, these being [-9.6, 25.4] and [-19.8,

15.2].  The result is [!9.6, 15.2].

While there remains much ambiguity about the deterrent effect of the death penalty, the

assumption of date-invariant treatment effects has identifying power.  It reduces the width of the
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bound on the ATE from 35 to 25.  This bound does not allow us to the sign of the ATE, but it does

rule out claims that the death penalty reduces the mean murder rate by more than !9.6 per 100,000

or increases it by more than 15.2.

The analysis below builds on this basic finding.  Section 4.1.1 introduces new notation and

uses it to re-derive the basic finding.  The payoff from introducing the new notation is that it

provides the basis for consideration of further assumptions.  Section 4.1.2 studies the additional

identifying power of placing a priori bounds on time-series variation in mean response levels.

Section 4.1.3 shows the further identifying power of placing a tighter priori bound on counterfactual

mean response levels than the [0, 35] bound assumed heretofore.

4.1.1. Basic Analysis

As earlier, suppose that one observes cross-sections of all the states including the District of

Columbia in 1975 (d = 0) and 1977 (d = 1).  Assume that mean treatment response at date d has the

form

1 0E[Y (t)]  = E[Y (t)] + $.  (7)

Here $ is a date-specific intercept that distinguishes mean response at dates 0 and 1.  Equation (7)

permits mean treatment response levels to vary across dates, but it assumes that the average

1 1 0 0treatment effect is invariant across dates.  Specifically, E[Y (1)] ! E[Y (0)] = E[Y (1)] ! E[Y (0)].

t 0To shorten the notation, let E  / E[Y (t)].  Then (7) is equivalent to
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0 tE[Y (t)]  =  E , (8a)

1 tE[Y (t)]  =  E  +$. (8b)

Equations (8a)!(8b) have identifying power because they reduce the number of unknown mean

dpotential outcomes by one.  Without the assumption, we do not know the four quantities E[Y (t)],

0 1d = 0, 1; t = 0, 1.  With the assumption, we do not know the three quantities (E , E , $).

To obtain the identifying power of the assumption, first consider each date-treatment pair

d(d, t) separately and obtain the identification region for E[Y (t)] using only the assumption of

d dbounded outcomes, as was done in Section 3.2.  Let this interval be called [L (t), U (t)].  Combining

this with (8a)!(8b), the available information is

0 t 0L (t)  #  E   #  U (t),                           t = 0, 1; (9a)

1 t 1L (t)  #  E  + $  #  U (t),                     t = 0, 1. (9b)

0 1Thus, the feasible values of the three unknowns ($, E , E ) are all the triples that satisfy the four

inequalities given in (9a)!(9b). 

d dTable 2 gives the values of [L (t), U (t)], d = 0, 1; t = 0 ,1.  Inserting these values in (9a)!(9b)

0 1 o 1yields these findings for (E , E , $): $  0  [!7.5, 17.0], E   = 9.6, and E  0  [0, 24.8].  Hence, the date-

invariant ATE lies in the interval [!9.6, 15.2], as shown earlier by a more direct argument.
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4.1.2. Bounding Time-Series Variation in Mean Response Levels

The analysis of Section 4.1.1 placed no a priori restrictions on time-series variation in

treatment response levels between 1975 and 1977.  Some states could have become much more

prone to homicide over this period while others could have become much less prone to homicide.

We only assumed that the overall deterrent effect of the death penalty remains stable over time.

Our objective was to learn about the ATE, but we also found that assumption (7) and the data

implied a bound on the variation in mean response levels between 1975 and 1977, namely $ 0 [!7.5,

17.0].  Thus, mean potential homicide rates may have decreased by as much as 7.5 per 100,000 or

increased by as much as 17.0 per 100,000 over the three-year period.

One might not think it credible that such large variations in mean potential homicide rates

could  have occurred over such a short time period.  One might be willing to assume that $ must lie

in some narrower interval than [!7.5, 17.0].  Such an assumption may imply a narrower bound on

the ATE.

Consider, for example, the assumption that $ lies in the interval [!5.0, 3.0].  One might

motivate this assumption by the fact that the largest state-specific observed decrease in the homicide

rate between 1975 and 1977 was 5.0 and the largest observed increase was 2.9.  If one uses [!5.0,

3.0] as an a priori bound on $, application of (8) implies that the ATE lies in the interval [!5.8,

12.7], narrowing the bound  [!9.6, 15.2] derived earlier.

Alternatively, consider the much stronger assumption that $ = 0.  This assumption permits

individual states to experience time-series variation in their proneness to homicide, but it supposes
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that there is no national trend.  Combining this assumption with (8) implies that the ATE lies in the

interval [!2.8, 7.7].

Readers of research on deterrence may vary in their beliefs on the credible range of values

for $.  To enable readers to bring to bear their own beliefs and determine the implications for

inference on the ATE, the solid lines in Figure 1 display the bound on the ATE as a function of $.

The figure shows how a priori restrictions on $ reduce ambiguity about deterrence.  A person who

believes that $ # !3 can conclude that the ATE is positive; that is, the death penalty increases the

expected homicide rate.  In contrast, someone who believes that $ $ 8 can conclude that the ATE

is negative; that is, the death penalty deters crime. Someone who thinks that $ may lie in the interval

(!3, 8) cannot identify the sign of the ATE.
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4.1.3. Tighter Bounds on Counterfactual Mean Response Levels

dWe have thus far placed only a very weak bound on the counterfactual homicide rates E[Y (t)

d|Z  � t], supposing that they must lie in the range [0, 35].  Of the 102 state-specific homicide rates

observed to occur in 1975 and 1977, the central ninety percent fall in the interval [2, 15]. Suppose

d dthat one uses this interval as a bound on E[Y (t) |Z  � t] rather than the earlier bound [0, 35].  Then

application of (8) implies that b 0 [!6.1, 3.0] and ATE 0 [!5.2, 5.4].

The dashed lines in Figure 1 display how the bound on the ATE varies with b.  Assuming

the tighter bound on mean counterfactual outcomes substantially narrows the bounds on the ATE

relative to those reported in Section 4.1.2.  Whereas the assumption $ = 0 earlier implied that ATE

0 [!2.8, 7.7], it now implies that ATE 0 [!2.2, 1.7]. A person who believes that $ < !2 can now

conclude that the ATE is positive, while one who believes that $ $2 can conclude that the ATE is

negative.

4.2. Date-Invariant Treatment Effects and Covariate-Invariant Date Intercepts

In Section 4.1, $ was the mean difference in potential murder rates between 1975 and 1975,

the mean being computed across all states in the nation.  Let X be a covariate that separates states

into K distinct groups, each group containing at least one state.  We now combine the assumption

of date-invariant treatment effects with the assumption that groups of states with different values of

X have the same date intercepts.  A stronger version of the assumption was made in the linear
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homogeneous model of Section 3.1, where it was assumed that states with different (covariate,

realized treatment) values share the same mean date intercepts. 

t*X 0Let E  / E[Y (t)*X].  Assume that

0 t*XE[Y (t)*X]  =  E , (10a)

1 t*XE[Y (t)*X]  =  E  + $. (10b).

This repeats assumption (7), now conditional on X, and also assumes that $ does not vary with X.

d dRepeating the earlier derivation, but now conditional on X, let [L (t*x), U (t*x)] be the bound

don E[Y (t)*X] obtained using only the assumption that outcomes are bounded in the range [0, 35].

Combining this with (10a)!(10b), the available information is

0 t*X 0L (t*X)  #  E   #  U (t*X),               t = 0, 1; all X (11a)

1 t*X 1L (t*X)  #  E  + $  #  U (t*X),         t = 0, 1; all X (11b).

0*X 1*XThus, the feasible values of the (2K + 1) unknowns ($,E , E , all X) satisfy the 4K inequalities

given in (11a)!(11b).

Given that $ does not vary with X or t, adding covariates provides additional identifying

information.  When K = 1, as in Section 4.1, there are three unknowns that satisfy four inequalities.

When K = 2, five unknowns satisfy eight inequalities.  When K = 4, nine unknowns satisfy sixteen

inequalities.  And so on.
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To illustrate, we evaluate the ATE with two definitions of X.  First, X indicates whether a

state does or does not have a death penalty statute in 1977; that is, whether it is treated or untreated.

Second, we let X indicate the location of a state in one of four mutually exclusive and exhaustive

census regions.  The derivation of findings in the latter case is not particularly revealing, so we omit

the details.  However, the former case is simple and yields an interesting analytical result.  Hence,

we give the derivation first before examining the empirical findings.

4.2.1. Treatment Group as the Covariate

When the covariate differentiates treated and untreated states, the effect of treatment on the

treated (ETT) is the DID estimate and the effect of treatment on the untreated (ETU) is partially

j j1 j j1 identified.  To see this, let X  = 1 if Z  = 1 and X  = 0 if  Z = 0.  The former are the treated states and

the latter are the untreated ones.  With this definition of X, the eight inequalities (11a)!(11b) become

0*0 0 0*0 1          E   =  E(Y *X = 0),          E  + $  =  E(Y *X = 0),

1*0 1*0            0  #  E   # 35,                   0  #  E  + $  # 35,

0*1 0 0*1           E   =  E(Y *X = 1),          0   #  E  + $  # 35,

1*1 1*1 1           0  #  E   # 35,        E  + $  =  E(Y *X = 1).

Given these bounds, the equalities in the first row point-identify the date intercept, with

1 0$  =  E(Y *X = 0) ! E(Y *X = 0).
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 Manski and Pepper (2011) show that the DID form arises under a yet weaker assumption4

where the date-invariance restriction only applies to the Y(0) response function.  In this case, the
ETT is point-identified at date d = 1 but not at d = 0.

In our application, $ = !1.1.  Recall that, using only assumption (7) rather than (10), we could only

conclude that $ 0 [!7.5, 17.0].

With knowledge of $ and the full set of inequalities, it is straightforward to assess

identification of the four mean response values.  We find that

0*0 0 0*1 0E   =  E(Y *X = 0), E   =  E(Y *X = 1),

1*0 1*1 1E   0  [max(0, !$), min(35, 35 ! $)]; E   =  E(Y *X = 1) ! $.

Thus, the effect of treatment on the treated is point-identified, with

1*1 0*1 1 0 1 0ETT  /  E  !  E   = [E(Y |X = 1) ! E(Y |X = 1)] ! [E(Y |X = 0) !E(Y |X = 0)].

This is the DID form obtained earlier using the stronger assumptions of the linear homogeneous

model.4

The effect of treatment on the untreated is partially identified.  The data and assumptions

reveal that

1*0 0*0 0 0ETU / E  !  E   0  [max(0, !$) ! E(Y |X = 0),  min(35, 35 ! $) ! E(Y |X = 0)].
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4.2.2. Empirical Findings

Table 3 displays the empirical findings for the ETT, ETU and ATE under many of the

assumptions considered thus far.  Two conclusions warrant attention.

First, while incorporating covariates clearly tightens the estimated bounds on the ATE, there

remains much ambiguity.  For example, when census region is used as a covariate, the bound on the

ATE shrinks from [!9.6, 15.2] to [!9.0, 10.1].  Thus, while the ATE bound shrinks by nearly six

points, we still cannot determine whether the death penalty increases or decrease the national

homicide rate.

Second, when the treatment group is used as a covariate, the ETT is point-identified and

estimated to equal 0.5, but the ATE is only partially identified and estimated to lie in the interval

[!1.9, 8.3].  Researchers often loosely report the DID estimate as “the” effect of deterrence, without

being careful to state their maintained assumptions.  The ATE equals the DID estimate if one

assumes that the ETU equals the ETT, as is the case with the linear homogenous response model.

However, without this or another assumption that makes the ETU equal the ETT, using treatment

group as a covariate does not identify the sign of the ATE.
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Table 3: Treatment Effects with Date-Invariant Treatment Effects, with and without Covariate-
Invariant Date Intercepts

Assumption ETT ETU ATE

Linear Homogeneous Response 0.5 0.5 0.5

Bounded Outcomes, 1977 [!25.3, 9.7] [!6.9, 28.1] [!19.8,15.2]

Bounded Outcomes, 1975 [!35.0, 35.0] [!9.6, 25.4] [!9.6, 25.4]

Date-Invariant Treatment Effects

No Covariate [!9.6, 15.2]

Region as Covariate [!9.0, 10.1]

Treatment Group as Covariate 0.5 [!6.9, 27.0] [!1.9 , 8.3]

4.3. Bounded Instrumental Variables

The model introduced in Section 4.2 assumed common time-series variation in treatment

response across groups of states, but placed no restrictions on cross-sectional variation in treatment

response.  Traditional instrumental variables (IVs) assume that specified groups of treatment units

have the same mean treatment response or the same average treatment effects.  It often is difficult

to motivate such sharp assumptions, but it may be easier to motivate weaker assumptions asserting

that mean response or average treatment effects do not differ too much across groups.  We refer to

such assumptions as asserting the existence of bounded instrumental variables.



29

To demonstrate the idea, we apply it here to group-specific average treatment effects.

Formally, we consider identification of the ATE when the researcher selects a non-negative constant

) and assumes that

x xN | ATE  - ATE | # D for all x and xN. (12)

This assumption bridges the gap between the linear homogenous model, which assumes that the ATE

is identical across all states j and dates d, and the model in (7) which allows the ATE to vary across

states.

When D = 0, inequality (12) gives a traditional instrumental-variable assumption asserting

that groups of states with different covariates have the same average treatment effect.  For example,

the ATE might be assumed to be the same across the two treatment groups or the four census regions

considered in Section 4.2.   The identifying power of this assumption was first analyzed in Manski

(1990), where the bound on the overall ATE was shown to be the intersection of the bounds on the

group-specific ATEs.

Letting ) > 0 weakens the traditional assumption by supposing that the ATE may differ

across groups by no more than ).  The larger the selected value of ), the weaker the assumption.

To assess the sensitivity of inference to choice of ), Figure 2 maintains the assumptions of Sections

4.1 and 4.2, adds assumption (12), and displays the bound on the ATE as a function of ).

Figure 2a takes the covariate to be the treatment group, treated or untreated.  The traditional

IV assumption () = 0) point identifies the ATE, revealing that the death penalty increases the mean

murder rate by 0.5.  This holds because the IV assumption implies that ETT = ETU.  However,
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ambiguity about the ATE increases with ).  Any value of ) larger than one renders it impossible to

sign the ATE.  For example, the bounds on the ATE when ) = 2 and ) = 5 are [!0.3, 0.9] and [!1.2,

1.8] respectively.  Still, these bounds are substantially more informative than the bound of [!1.9, 8.3]

reported in Table 3.

Figure 2b takes the covariate to be the census region.  Setting ) = 0 assumes that all four

regions have the same ATE.  This implies that the overall ATE lies within the interval [!7.6, 1.8].

Setting ) = 2 implies that the ATE lies in the interval [!8.6, 3.2].  Recall that without this restriction

linking the ATE across the four regions, we earlier found that the deterrent effect of the death penalty

lies in the interval [!9.0, 10.1].

The bound on the ATE using census region as a bounded instrumental variable can be further

narrowed if one brings to bear information on the date intercept $.  Figure 3 displays the bound as

a function of $ in the most restrictive case where the ATE is assumed to be the same across all four

regions; that is, ) = 0.  This assumption implies that $ 0 [!2.4, 7.0].  Prior knowledge of the value

of $ within this range substantially narrows the bounds on the ATE.  In fact, the ATE is nearly point

identified if a person knows the exact value of $.  For example, the ATE = 0.4 if $ is known to equal

!1.0, the value found when treatment group is used as the covariate.  And the ATE = !1.6 if $ is

known to equal 1.0.  Moreover, a person who believes that $ is less (greater) than  !0.5 can conclude

that the ATE is positive (negative).  These strong conclusions, however, require sufficiently strong

prior information on ) and $.  Someone who thinks that $ lies in an interval that includes !0.5 or

that the ATE across regions may differ (i.e., ) > 0) cannot necessarily identify the sign of the ATE.
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5. Conclusion 

Readers of the 1978 report of the NRC Panel on Research on Deterrent and Incapacitative

Effects (Blumstein, Cohen, and Nagin, 1978) will not be surprised by the persistent problems

researchers have had in providing credible inference on the deterrent effect of the death penalty.  The

NRC report warned the research community of the fundamental shortcomings of the data and

methods, and questioned whether empirical research could provide useful information at all.

Despite these warnings, various researchers have continued to examine the same or more

recent data using the same or similar methods.  To yield point identification, research continues to

combine data with untenable assumptions.  Yet, as in 1978, the results have been found to be highly

sensitive to these assumptions and no consensus has emerged.  As we see it, the research has failed

to provide meaningful answers. 

Given that deterrence remains an important and controversial question, it seems useful to

consider alternative methodological paradigms.  This paper has demonstrated some of what can be

learned about the deterrent effect of the death penalty under relatively weak assumptions.  In

particular, we have studied the identifying power of assumptions restricting variation in treatment

response across places and time.  The results are findings of partial identification that bound the

deterrent effect of capital punishment.

By successively adding stronger identifying assumptions, the analysis makes transparent how

assumptions shape inferences.  If one assumes only that outcomes are bounded, one cannot identify

the sign of the average treatment effect and one can only draw weak conclusions about its magnitude.

Those who find it credible to make further assumptions can obtain more informative findings.
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Imposing certain assumptions implies that adoption of a death penalty statute increases

homicide, but other assumptions imply that the death penalty deters it.  Thus, society at large can

draw strong conclusions only if there is a consensus favoring particular assumptions.  Without such

a consensus, data on sanctions and murder rates cannot settle the debate about deterrence.  However,

data combined with weak assumptions can bound and focus the debate.  See Manski and Nagin

(1998) for similar analysis of the effect on recidivism of alternative sentencing of juvenile offenders.

To demonstrate partial identification analysis in a simple setting, this paper used only two

years of data (1975 and 1977) and compared two broad treatments (the presence or absence of a

death penalty statute).  Future work can exploit richer data.  Whereas the traditional DID framework

uses only two periods of data, the approach developed in Manski and Pepper (2011) can exploit

multiple periods.

Future work can also use more refined definitions of treatments. One might differentiate

treatments by the specifics of the death penalty statute enacted, the way it is implemented, and by

the nature of the non-capital sanctions that a state has in place. Using more detailed treatment

measures may enable one to study how the specifics of sanctions regimes influence homicide. 

We caution that examining more refined treatments can further complicate identification.

All else equal, the selection problem intensifies as one refines the definition of treatments.  This

occurs because the probability that a person receives a refined treatment is necessarily no larger than

and typically is smaller than the probability of receiving an aggregated treatment.  Refinement of

treatment definition may also raise measurement issues.  Whereas the presence or absence of a death

penalty statute is straightforward to measure, more refined features of sanctions regimes may be less

readily observed.
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Finally, future work might address the problem of measuring statistical precision.  We noted

in the Introduction that measurement of statistical precision requires specification of a sampling

process that generates the data.  However, we are unsure what type of sampling process is reasonable

to assume when the data are a repeated cross-section of states.  Existing methods for statistical

analysis in settings of partial identification assume that the data are a random sample drawn from

an infinite population, but this sampling assumption does not seem natural when considering states

as units of observation.
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Appendix: Computation of Bounds on the ATE under Middle-Ground Assumptions

We used linear programming simplex algorithms coded in Gauss V11 to compute the feasible

values of the unknown parameters in (11a)!(11b).  For this application, these algorithms are

equivalent to a straightforward two step computational method.  The first step derives the feasible

values of $ as the intersection of 2K bounds, each obtained by differencing the bounds on mean

1*Xresponse at dates 0 and 1.  The second step computes the feasible values of E  as the intersection

1*X 0*Xof the dates  0 and 1 bounds on E , where the date 1 bounds follow directly from (11b).  E  is

point identified using data from date 0. 

To illustrate, consider the basic no-covariate date-invariant treatment effect model in Section

0 14.1. The feasible values of the three unknowns ($, E , E ) are the triples that satisfy the four

0 1inequalities given in (9a)!(9b).  Equation (9a) provides initial (non-sharp) bounds on E  and E .  In

0 1. particular, data from date 0 point identify E  and provide no information about E  

0 1Given this initial information on (E , E ), the first step is to derive feasible values of $.

Differencing (9a) and (9b) yields two sets of bounds on $, one for each value of t:  

1 0 1 0L (t) ! U (t)  #  $  #  U (t) ! L (t), t = 0, 1. (13)

Given that $ does not vary across treatments, it must lie in the intersection of the bounds for t = 0

L Uand t = 1.  Let {$ , $ } denote the lower and upper intersection bounds on $. 

1Given these bounds on $, the second step is to update the bounds on E . Equation (9) implies

0 1 0 1two distinct bounds.  From (9a), we know that L (1) # E  # U (1) and, from (9b), we have L (1) !



37

U 1 1 L 1$   # E  # U (1) ! $ .  Given that E  does not vary across dates, it must lie in the intersection of

these two bounds. 

Further iterations provide no additional information about the feasible values of the

1parameters.  Consider, for example, using the updated bounds on E  to further refine the bounds on

1 1 U$.  Focusing on the potentially interesting case where the intersection bounds on E  are {L (1) ! $ ,

1 LU (1) ! $ }, we see that

1 1 L 1 1 UL (1) ! U (1) + $    #  $  #  U (1) ! L (1) + $ .

L UThis lower bound is smaller than $  and the upper bound is larger than $ .  Hence, iteration yields

no improvement.

We use the same two-step approach to derive bounds on the 2K + 1 unknown parameters in

date-invariant models with covariates. When evaluating the feasible values under the bounded

instrumental variable model, values of $ which are inconsistent with inequality (12) are classified

as infeasible. 
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