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1. Introduction

Everyone is talking about it, but few do anything to stop deforestation. On the one hand,

the South benefits from selling the timber and clearing the land for agriculture or oil

extraction. On the other, the North prefers conservation because the tropical forests are

among the most biodiverse areas in the world, they are inhabited by indigenous people,

and deforestation contributes to 15-20% of the world’s carbon dioxide emissions, causing

global warming.1 If the North’s conservation value is larger than the South’s value of

logging, Coasian bargaining should ensure that the forest is preserved: the North will

simply buy the forests from the South, or pay the current owners for conservation. The

North has plenty of opportunities to do this, either individually or collectively through the

World Bank or the United Nation. The REDD (Reducing Emissions from Deforestation

and Forest Degradation) initiative intends to do exactly this, but REDD is a recent

phenomenon, offered to a limited extent, and so the puzzle remains: why isn’t the North

buying conservation from the South?2

Earlier studies have pointed to corruption, electoral cycles, unclear property rights,

multiple users and owners, multiple buyers, leakage, and the difficulties to monitor and

enforce contracts.3 But even when we abstract from these obstacles, the current paper

shows that inefficiencies continue to exist in the market for conservation, and they are

fundamentally tied to the nature of the good. For traditional goods, the owner may sell

the good to a potential buyer who intends to consume it. Trade is then predicted to

1IPCC (2007). Negative externalities from forest loss and degradation cost between $2 trillion and $4.5
trillion a year according to The Economist (Sept. 23rd, 2010, citing a UN-backed effort, The Economics
of Ecosystems and Biodiversity, TEEB).

2There are several ways of defining the REDD funds; see Karsenty (2008) on details or Parker et al.
(2009) for a summary of the various proposals and the distinction between RED, REDD, and REDD+.
The 2010 Cancun Agreements (UNFCCC, 2010) recognize the importance of reducing deforestation and
forest degredation, but are quite imprecise regarding who should pay and how this should be implemented.

3See, for example, Alston and Andersson (2011), Burgess et al. (2011), Angelsen (2010), and the
references therein. For an earlier overview of the sources of deforestation, see Angelsen and Kaimowitz
(1999).
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take place immediately if the buyer’s consumption value is larger than the seller’s. For

conservation goods, however, the buyer is happy with the status quo. He does not desire

to consume the good, but only to prevent the seller from consuming it in the future. The

seller is willing to preserve the good today if the buyer is likely to pay tomorrow, but the

buyer is in no hurry to cash out as long as the seller waits. This contradiction implies

that conservation must end at a positive rate, I find.

Conservation goods are different from traditional goods, but they are not confined to

rainforests. There are many examples of ”payments for environmental/ecosystem services

(PES; Engel et al., 2008). Bohm (1993) and Harstad (2011) have argued that a climate

coalition would benefit from purchasing and conserving foreign fossil fuel deposits. The

puzzle is why this is not observed in reality. The conservation good can also be real

captives or hostages,4 a peace of art, or historical ruins: as long as the good is conserved,

the buyer may be in no hurry to pay. A legendary example is the nine books of Sibylline

prophecy that were offered to the last King of Rome, Tarquinius Superbus. Books with

prophecies were consulted in stress of war, or in time of plague or famine, and the King was

perhaps in no hurry to pay as long as these books would be available later. Consequently,

the seller had to gradually burn six books before the King accepted to buy the remaining

three.5

To formalize the market for conservation, I present a model with a seller (S), a buyer

(B), and a good (e.g., the forest). S prefers to consume (or ”cut”) the good but B’s

value of conserving it is larger. In each period, B decides whether to contact S. If done, S

suggests a price and B decides whether to accept. If there is no trade, S has the possibility

4The present model, predicting whether an exogenously given hostage will be killed or released, con-
tributes to the literature on hostage-taking (surveyed by Sandler and Arce, 2007). However, I ignore
how the incentive to take hostages is affected by commitment (Selten, 1988), reputation or uncertainty
(Lapan and Sandler, 1988).

5According to the legend, the seller was a strange woman who appeared before the King. She asked
for a steep price and the King declined. The woman asked again for the exact same price for six books
after burning three of them. The King continued to laugh at her, but accepted the original price for the
three remaining books after the woman decided to burn yet three books (Ihne, 1871:74-75).

3



to cut. The game stops if the good is sold or consumed. Efficiency requires that the good

is never consumed.

Unfortunately, there is only one Markov-perfect equilibrium6 in pure strategies: B

never buys; S always cuts. In particular, it cannot be an equilibrium that B purchases

the good with probability one at a decent price. If B followed such a strategy, S would

conserve the good until B’s next chance of buying the good. Anticipating this, B has an

incentive to deviate.

There is also a set of equilibria in mixed strategies. In each of these, B is more likely

to buy if the value of cutting is large, while S is more likely to cut if the conservation

value is low. Each of the mixed equilibria is associated with a unique equilibrium price.

The set of equilibrium prices is a closed interval. For a high equilibrium price, B is less

likely to buy, while S is more likely to cut. The aggregate welfare is therefore maximized

at the lowest possible price. However, if S can announce the equilibrium price (in addition

to the price in the current period) at the meeting with B, S selects the highest possible

price.

These equilibria survive if the forest can be cut gradually. In fact, the equilibrium

probability of cutting can be interpreted as the random or deterministic expected fraction

that is being cut every period. Thus, random actions are not necessary for the argument.

It is easy to analyze questions regarding incentives in this model. For example, if S

had the possibility to invest and increase the conservation value, she would never make

such an investment. Even if the price would increase following such an investment, S

would not benefit since B would be less likely to buy. If the seller were able to invest

and raise the market value of cutting, the incentives to do so would be stronger than if

conservation were not an issue. The reason is that, if the value of cutting increases, B

6Dynamic games with multiple subgame-perfect equilibria often restrict attention to Markov-perfect
equilibria since they are robust and simple (strategies are then conditioned on only the coarsest payoff-
relevant partition of histories); see Maskin and Tirole (2001) for more on definition and justification.
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buys with a higher probability.

Is a rental market better? After all, the renter is then committing to only one period,

and this reduces the cost of contacting the seller. A rental market is also more similar

to the existing REDD contracts, and the reader may be interested in analyzing them for

that reason. Unfortunately, I find that the rental market is not necessarily more efficient

that the sales market. In fact, the rental market has exactly the same problems and

comparative statics as the sales market: The only pure strategy equilibrium is that B

never rents, while S always cuts. There is a range of equilibria in mixed strategies and, in

each of these, B is more likely to pay for conservation if the consumption value is large.

For every equilibrium in the sales market, there exists an equilibrium in the rental market

giving identical payoffs.

By comparison, however, the rental market and the sales market are not identical. On

the one hand, the rental market may be strictly worse since the equilibrium is in mixed

strategies in every period as long as the good is not consumed. Thus, the forest is cut

in finite time almost for sure in the rental market. On the other hand, if there is a cost

of protecting the good (to prevent illegal logging or re-nationalization, for example) and

this cost is higher for B than for S (who is ”local”), then the rental market (i) minimizes

protection costs, (ii) exists for a larger parameter-set than does the sales market, and

(iii) permits the first-best is an equilibrium outcome (while the sales market does not).

The model predicts the rental market, rather than the sales market, to be both better

and the equilibrium choice if and only if the conservation value is small relative to the

consumption value, while B’s protection cost is high relative to S’ protection cost. In

other words, domestic conservation will be bought, while conservation across countries

will be rented.

All results survive if time is continuous and there are multiple buyers or sellers.7 If the

7If there are multiple sellers with different goods, the buyer(s) may play the described game with each
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number of buyers grows, the aggregate value of conservation increases, and it becomes

more important to buy the forest and prevent cutting. Unfortunately, the equilibrium

implies the opposite: the cutting rate increases with the number of buyers. Furthermore,

the most likely buyer (or renter) has a high protection cost and a relatively low value of

conservation.8 These results are perverse and lead to additional inefficiencies. To mitigate

these inefficiencies, all potential buyers may be better off if they collectively agreed to

permit some type of ”privatization” (e.g., allowing for eco-tourism) that increases the

owner’s value even if that would reduce the total conservation value and ex post efficiency.

The paper contributes to the debate surrounding the Coase theorem. Coase (1960)

argued that if property rights are well defined and there is no transaction costs, then the

outcome is efficient and invariant to the initial allocation of rights. Coasian bargaining

may break down if there are small transaction costs (Anderlini and Felli, 2006) or private

information (Farrell, 1987). Dixit and Olson (2000) and Ellingsen and Paltseva (2011)

have argued that when the agents are free to opt out of the negotiations, some of them may

prefer to ”stay home” if the others are, in any case, providing some (although inefficiently

little) public goods. These assumptions are not necessary for the reasoning in this paper:

instead, it is the possibility to abstain combined with the nature of the good that leads

to inefficiency, since the buyer prefers to buy later rather than sooner - as long as the

seller does not consume the good in the meanwhile. While this reasoning requires a

dynamic framework, the model is different from both durable goods markets9 and classic

of them independently, and the results below are unchanged. In reality, there can also be multiple users
of the same forest, but PES-contracts may force them to act as one seller (Phelps et al., 2010).

8Consistent with this prediction, Norway is one of the few active providers of REDD funds and has
already initiated results-based payments through partnerships with Brazil, Guyana, and Indonesia.

9As conjectured by Coase (1972) and shown by Bulow (1982), the seller of a durable good has an
incentive to later reduce the price for the remaining customers, implying that the buyers are not willing
to pay a high price today, either. If time is infinite and each period short, the price collapses to the
seller’s own valuation. This may in fact also happen in my model, if the buyer has any bargaining power
(as explained in Section 5). The intuition is, however, quite different: For durable goods models, it is
essential that there is more than one buyer valuation, and the price is then gradually dropping over time
so as to sell to more and more of the remaining buyers. In this paper, there is only one buyer type and the
price does not drop over time. More fundamentally, in contrast to the durable goods, the conservation
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war-of-attrition models.10

As an alternative to cutting the forest, a similar game would arise if the owner could

sell the forest to a logger. Such a sale would then create a negative externality on the buyer

interested in conservation. Sale in the presence of externalities were first discussed by Katz

and Shapiro (1986) and later analyzed by Jehiel et al. (1996) who let the seller commit to

a sales mechanism. Jehiel and Moldovanu (1995a) allow for negotiations after the seller is

randomly matched with one of several potential buyers. If the time horizon is finite, delay

can occur if several periods remain before the deadline, whether the externality is positive

or negative. With negative externalities, this delay is generated by a war of attrition game

between potential ”good” buyers who each hope the other good buyer will purchase the

good before the bad buyer does (causing negative externalities on the good ones). This

story requires at least three buyers. Furthermore, trade will take place with certainty

closer to the deadline. If the buyers have bounded recall, Jehiel and Moldovanu (1995b)

detect delay even with infinite time. However, all these strategies are in pure strategies

- and they are not stationary. In fact, Björnerstedt and Westermark (2009) show that

there cannot be delay for sales under negative externalities when restricting attention to

stationary strategies. In other words, trade occurs as soon as the seller is matched with

the ”right” buyer.

This result is nonrobust, as the current paper shows. Formally, the main difference

is that I endogenize matching between the buyer and the seller. Rather than imposing

an exogenous matching, as in the literature just mentioned, I follow Diamond (1971) by

letting the buyer choose whether to contact the seller. The nonrobustness is obviously a

good in this paper is something the buyer would prefer to buy later rather than sooner, as long as it
continues to exist and the price remains the same. This is driving the inefficiency studied below.

10War-of-attrition games were first studied by Maynard Smith (1974) in biological settings, but are
often applied in economics. According to Tirole (1998:311) ”the object of the fight is to induce the rival
to give up. The winning animal keeps the prey; the winning firm obtains monopoly power. The loser
is left wishing it had never entered the fight.” Muthoo (1999:241) provides a similar definition. In this
paper, in contrast, the buyer is perfectly happy with the staus quo, and he does not hope that the seller
will act. Once the buyer acts, he is also very happy that he did not give in earlier.

7



two-edged sword, implying that the delay, emphasized in this paper, would not survive if

a buyer was always forced to meet with the seller. It is also crucial for my results that

the seller has all the bargaining power: if the buyer received a share of the bargaining

surplus, the unique equilibrium requires the lowest possible price and, then, the buyer

buys with probability one. This nonrobustness argument, to continue the debate, is

itself nonrobust: no matter the allocation of bargaining power, the equilibrium is still

inefficient and requires cutting if there are multiple buyers, the meeting cost is positive,

or negotiation failure implies increased cutting.

The next section presents and analyzes a simple model of the sales market. Section

3 analyzes the rental market, compares it to the sales market, and makes predictions

for when we ought to see one rather than the other. Section 4 reviews the results in a

continuous time model and studies the effects of multiple and heterogeneous buyers as

well as policies such as privatization, coordination, and collective action. A number of

extensions and robustness issues are discussed in Section 5, while Section 6 concludes.

The proofs are either in the text or in the Appendix.

2. The Market for Sale

2.1. The Model

The stage game. There are two players: the seller (S or ”she”) and the buyer (B or

”he”). At the beginning of the game, S owns a good (e.g., a forest) which B can purchase.

If B does not buy the good, S decides whether to consume (i.e., ”cut”).

If B does not buy and S does not consume, the status quo stays in place and payoffs

are normalized to zero. If S consumes the good, B looses his conservation value and

receives the payoff −V . S, on the other hand, benefits from consumption. For some

applications and results it is fruitful to distinguish between two consumption values:
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First, consumption gives the direct benefit M , which may be interpreted as the market

value of timber or the accessible land (or the sum of these). In addition, by consuming, S

can stop to guard or protect the forest (for illegal logging, for example), and these savings

are measured by GS. In sum, consumption gives S the payoff M +GS.

If S sells at price P , S’ payoff is P + GS since, also in this case, S has no incentive

to guard the good and the guarding cost is saved. B’s payoff, in this case, is −P − GB,

where GB is the buyer’s cost of guarding or protecting the good.

The results below do hinge on a positive GB or GS and, to simplify, the readers may

want to limit attention to the special case GB = GS = 0. I add these parameters only

to get additional insight in the later sections. Furthermore, it may be realistic to assume

that protection is more costly for a foreign buyer, implying GB ≥ GS (see, e.g., Alston et

al., 2011, or the references therein).

Fig. 1: The seller’s and buyer’s payoffs depend on whether the buyer buys or seller cuts

The exact timing of the stage game is the following. First, the buyer decides whether to

contact the seller. In contrast to the traditional literature (reviewed in the Introduction),

I do not assume that the buyer and the seller necessarily and exogenously match. Instead,

I endogenize this matching by letting the buyer make the choice of whether to visit the

seller (as in Diamond, 1971, for example). If B does contact S, S proposes a price and B

decides whether to accept. If indifferent, it is conventionally assumed that B accepts S’

proposal. If there is no trade, S decides whether to consume.

With only one period, the equilibrium is straightforward:
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Proposition 0. Suppose there is only one period:
(i) For any exogenous P ∈ (M,V −GB), B buys with probability one.
(ii) When S proposes the price, P = V − GB, and there is an equilibrium where B buys
with probability one.
(iii) These equilibria lead to conservation and, if GB ≤ GS, the first-best.

Part (i) shows that the good is conserved with probability one for any exogenous

P ∈ (M,V −GB). This part is for illustration only, since the rest of this paper assumes

that S proposes the price once B contacts S. Then, S proposes P = V − GB and trade

with probability 1 is still an equilibrium. To complement part (ii), note that also other

equilibria exist since B is indifferent when contacting S (B may randomize). To com-

plement part (iii), note that the first-best is never an equilibrium outcome if GS < GB,

since the first-best would then require that B does not buy and that S does not cut. For

GS = GB, the good in the stage game is simply just like any other normal good, and trade

takes place if and only if the buyer values the good more than the seller. This changes

dramatically in the dynamic version of the game.

The dynamic game. With an infinite time horizon, the game terminates only after

sale or consumption. If there is neither trade nor consumption in a given period, we

enter the next, identical, period. Let δ ∈ (0, 1) measure the common discount factor. If

gS and gB measure the per-period or flow protection costs, then GS ≡ gS/ (1− δ) and

GB ≡ gB/ (1− δ). Similarly, V ≡ v/ (1− δ), where v is the buyer’s value of conservation

each period.

Again, the first-best outcome can easily be described. If GB ≤ GS, immediate sale

implements the first-best. If GB > GS, the first-best requires the players to never end the

game. If GB = GS, the first-best is implemented by both these outcomes.

As in most dynamic games, there are multiple subgame-perfect equilibria. For simplic-

ity, I will restrict attention to Markov-perfect equilibria where the players only condition

their strategies on payoff-relevant histories. In this game, the only payoff relevant parti-
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tion of histories is whether or not the game has terminated (following Maskin and Tirole,

2001). Thus, the Markov-perfect equilibrium strategies are necessarily stationary.

2.2. Equilibrium Strategies

Restricting attention to Markov-perfect equilibria, B’s strategy is simply his probability

of contacting S, b ∈ [0, 1], and the probability of accepting an offer from S as a function

of the proposed price. S’ strategy specifies a price offered to B, in case B contacts S, and

the probability of cutting, c ∈ [0, 1], if the good is not sold. One can easily show that

B’s will employ a cutoff-strategy by accepting any price lower than some threshold, P ,

and S will ask for this exact price. Thus, we can summarize the equilibrium strategies as

(b, c, P ).

If M > V − GB, no trading price exists that can make trade mutually beneficial.

Furthermore, if M + GS > δ (V −GB +GS), there exists no mutually beneficial price

that would discourage S from cutting, given the chance. From now on, I thus assume

M +GS < δ (V −GB +GS), implying V −GB > M/δ +GS (1− δ) /δ.11

Proposition 1. Suppose V −GB > M/δ +GS (1− δ) /δ.
(i) There is exactly one equilibrium in pure strategies:

b = 0, c = 1, P = V −GB.

(ii) There are multiple equilibria in mixed strategies: For every price

P ∈
[
M

δ
+

1− δ

δ
GS, V −GB

]
there is an equilibrium where B buys with probability

b =
M +GS

P −M

(
1− δ

δ

)
,

11However, if M ∈ (δ (V −GB)−GS (1− δ) , V −GB), then there exists a price P ∈ [M,V −GB ]
which is such that, although it does not discourage cutting, it makes trade mutually beneficial at the
trading stage. Then, if B contacts S, S suggests the price V − GB and B accepts. Anticipating this, B
is indifferent when considering to contact S, and every b ∈ [0, 1] is a best response and an element in an
equilibrium (b, c, P ).
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S consumes with probability

c =
(1− δ) (P +GB)

V − δ (P +GB)
,

B rejects any price higher than P , and S suggests exactly the price P if B contacts S.

Fig. 2: The special case GS = GB = 0

Part (i) describes the unique equilibrium in pure strategies. It is easy to check that this

is indeed characterizing an equilibrium: When considering S’ offer, B is willing to accept

P = V −GB since S cuts for sure otherwise. At this P , however, it is a best response for

B to never contact S. Since there is no chance for trade, S cuts. Unfortunately, there is no

other equilibrium in pure strategies: If S cuts for sure (c = 1), she always requires exactly

this price. If, then, B contacts S for sure (b = 1), then S would not cut - a contradiction.

Similarly, c = 0 cannot be an equilibrium since B would then prefer to never buy, and S

must prefer to cut.

Part (ii) shows that there are multiple equilibria in mixed strategies. Each equilibrium

is characterized by some equilibrium price and B is indifferent when considering whether

to show up while S is indifferent when considering to cut. Thus, if B contacts S and he

anticipates the equilibrium price P , he is indifferent between paying P and continuing the

game as if B had never contacted S. S cannot obtain a price higher than the equilibrium
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P , and she proposes exactly this price. This explains why multiple prices are consistent

with an equilibrium even if S can make a take-it-or-leave-it offer when proposing this

period’s price (in Section 2.4, S announces the equilibrium price as well as this period’s

price; leading to a unique equilibrium).

Each player randomizes such that the opponent is just indifferent and, hence, also

willing to randomize. This explains the comparative static. Suppose P increases (i.e.,

compare an equilibrium with a large price to an equilibrium with a small price). Then,

B is less tempted to buy and, to be willing to randomize, S must be more likely to cut.

At the same time, S becomes inclined to wait for the high price and, thus, B will buy

with a smaller probability (as in Fig. 2). For a fixed P , the seller finds cutting more

attractive if the market value, M , increases; if the protection cost, GS, increases; or if the

future is more discounted, in that δ decreases. To ensure that S is still willing to cut in

these situations, the probability for sale, b, must increase. Hence, B is more likely to buy

conservation if the market value is large, the price for conservation small, and if S finds

protection costly. Similarly, for a given price, the buyer finds it less attractive to contact

S if the value of conservation is low and protection is costly. To ensure that B is willing

to buy, nevertheless, S must cut with a larger probability in these circumstances.

Some of these comparative statics are counter-intuitive, and they may deserve a second

thought. If M increases, for example, a first guess may be that S should cut more since

cutting becomes more attractive. In fact, S’s probability of cutting should jump to one, if

initially indifferent. If this happened, however, B would buy with probability one and, as a

best response, S would never cut. Since there is no such equilibrium in pure strategies, this

first guess proved wrong. Instead, B is going to buy with a somewhat larger probability,

and S is still willing to randomize. The result is that, perversely, B is more likely to buy

conservation if the value of cutting is large.

Compared to the one-period version of the game, two differences are striking. First, for
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any exogenous price between the two valuations, the good is conserved with probability

one in the static game, but not in the dynamic version. Second, if S can propose the price,

the equilibrium price can be anything between the valuations in the dynamic game, but

it must equal the upper boundary in the static version.

Purification. If the good is divisible, then randomization is not necessary for this

equilibrium. Instead, c can be interpreted as the fraction of the forest that is cut in each

period, as long as it is not sold. More generally, c must be the expected fraction that is

cut in every period. The equilibria described by Proposition 1 survive if the good can be

gradually consumed or cut in this way. Likewise, b can be interpreted as the expected

fraction that is purchased in each period.12

2.3. Payoffs and Incentives

From Proposition 1, the equilibrium payoffs follow as a corollary:

UB = −P −GB, (2.1)

US =
M +GS

δ
.

B’s equilibrium payoff is pinned down by his payoff when purchasing conservation,

while S’s payoff must be such that, when discounted, it is equal to her value of cutting.

Given this, we can easily study the players’ incentives to influence any of the parameters

in the model, if they could. Although I have not formally modelled any such influence,

it follows straighforwardly that S has no incentive to increase V or decrease GB, for

example. Any of these changes would raise B’s value of conservation. For a given P , this

would make it more attractive for B to contact S unless, as will happen in equilibrium,

12For these equilibria, we may have other MPEs, as well, if strategies can be conditioned on the fraction
consumed so far. However, using the reasoning from Maskin and Tirole (2001), one may argue that the
fraction cut is not payoff-relevant and that the MPEs should not be conditioned on it.
For b to be interpreted as a fraction, it is necessary that B cannot revise its choice of b after observing

P .
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S cuts slower. S’ payoff is unchanged. Even if P happened to increase following such

an eagerness, S would not benefit since B must be less likely to contact S if P is large

- in order to keep S indifferent. A raise in P is always associated with a corresponding

decrease in b, ensuring that S’ payoff is not altered.

Interestingly, note that ∂US/∂M = 1/δ > 1. Thus, S’ incentive to raise the market

value, M , is larger than it would have been if conservation had not been an issue (then,

∂US/∂M = 1). With conservation, B buys with a positive probability, so S has a smaller

chance of being able to enjoy M . This effect ought to reduce S’ incentive to increase M ,

particularly when P is given. However, if M increases marginally, B must buy (and pay

P > M) with an even larger probability. This is beneficial for S, and it may strongly

motivate S to raise M , for example by facilitating trade in tropical timber.

The model can easily be reformulated to let also S enjoy some conservation value.

If VS represents the seller’s present discounted value of conservation, she will enjoy this

value unless the good is cut. As long as VS < M +GS, b > 0 and the seller’s equilibrium

payoff is VS + (M +GS − VS) /δ, which is decreasing in VS! Intuitively, if VS increased,

S would be less willing to cut and, to make her indifferent, B must be less likely to buy.

This decrease in b harms S. Thus, if S could invest in eco-tourism, for example, she would

have no incentive to do this. Similarly, she would have no incentive to reduce her own cost

of protection, since this, as well, would reduce B’s likelihood of paying for conservation.

Corollary 1. The payoffs are given by (2.1). Thus, S has no incentive to increase the
values of conservation or reduce the costs of protection, but strong incentives to raise the
consumption value, M .

We can also consider the incentives of the buyer. A boycott, for example, reducing M ,

would not necessarily benefit B. In fact, in isolation (for a fixed P ), a lower M reduces

the sum of payoffs and thus efficiency: A small M would make it less tempting to cut

and, thus, B can buy with a smaller probability. It is then less likely that B eventually
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buys before S has already cut. However, since UB is also a function of P , the conclusion

might be different if the selected equilibrium price were a function of M .

2.4. Prices and Welfare

Let welfare be an increasing function of both UB and US. Of all equilibria, welfare is

certainly larger in the equilibria characterized by a small price. For the lowest possible

equilibrium price, B buys with probability one. For the highest price in this interval, S

cuts with probability one.

How is the equilibrium P selected? The equilibrium price is the anticipated equilib-

rium, which both S and B may take as given. Anticipating this equilibrium, I have let

S propose a price for the current period once B contacts S. Given the power to set the

price, one may argue that it is reasonable that S picks the equilibrium price, as well. For

example, once B contacts S, S may make the following statement: ”You may think that

the equilibrium price is P , but let me propose that you purchase at price P ′. Since I am

willing to propose P ′ now, it is reasonable that I will propose this P ′ tomorrow, as well,

and thus P ′ is the price I will consider the equilibrium price, from now on.” As long as

P ′ ∈ [M/δ +GS (1− δ) /δ, V −GB] and S believes B to accept the new equilibrium, this

is self-sustaining and it is thus credible that S will propose P ′ forever: S does not need

to commit when announcing such an equilibrium. Thereafter, B will immediately accept,

since B is indifferent trading at P ′ if this is, indeed, the new equilibrium price. If S has

such power to announce the equilibrium price, once B contacts S, S will certainly ask for

the highest price in the feasible interval. Thus, S suggests P = V −GB and B accepts. Of

course, if S’ power to announce the equilibrium price, once B contacts S, is anticipated,

then b and c are given by Proposition 1 for P = V −GB. To summarize:
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Corollary 2. (i) Total welfare is decreasing in P . (ii) If S announces the equilibrium
P when meeting B, then:

P = V −GB ⇒

b =
M +GS

V −GB −M

(
1− δ

δ

)
,

c = 1,

UB = −V,

US =
M +GS

δ
.

Endogenizing P in this way, the probability for conservation is simply b, perversely

increasing in the value of cutting and decreasing in the value of conservation. Note that,

as δ → 1, b → 0 and the good is consumed always and immediately. In short, the sales

market fails miserably.

3. The Rental Market

3.1. A Model of the Rental Market

The above sales market has several shortcomings: (i) the probability of consumption

may be quite large, (ii) if GB > GS, the equilibrium is always inefficient since the first-

best requires no trade and no consumption, (iii) the sales market does not even exist if

GB < V −M , and, finally (iv) a purchase may require foreign ownership if B and S are

different countries. In fact, the threat of nationalization may contribute to a large GB.

For all these reasons, we may be interested in how a rental market performs.

A rental contract means that B pays S to not cut but instead conserve the good for

one period. By assumption, rental contracts last only one period, and future contracts

cannot be negotiated in advance. This assumption is relaxed in the next section, where

the rental contract can be of any length.

Assume that the pay is conditioned on conservation, as is the typical rental contract

for conservation (e.g., the REDD funds). Otherwise, the game is similar to before: In
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every period, B first decides whether to contact S. If done, S suggests a rental price, p.

If B accepts, B pays p to S and the good is conserved until the next period. If no rental

contract is signed, S decides whether to consume. Consumption ends the game and gives

the payoff M + GS to S and −V to B, just as before. If S does not consume, the game

continues to the next period. Thus, only consumption ends the game.

If the model had only one period and p were exogenously given, the equilibrium out-

come would be unique and first-best for any p ∈ (M −GS, V ). This remains an equilib-

rium if p ∈ [M −GS, V ]. When S sets the price, she suggests p = V and a best response

for B is to contact S and accept this price. But, as before, another best response for B

is to not contact S. Note that the static rental game is identical to the static sales game

when GB = GS = 0.

Just as before, I limit attention to Markov-perfect equilibria that are only conditioned

on whether the good exists. One can easily argue that any other aspect of the history is

not payoff relevant.

3.2. The Equilibrium in the Rental Market

As before, I let b and c represent the probabilities that B contacts S and that S cuts at

her decision node. Thus, B’s strategy is simply (i) his probability of contacting S in any

given period, b ∈ [0, 1], and (ii) the threshold, p, for when he would accept the contract.

S’ strategy is to offer exactly the price, p, if B contacts S and, at the cutting stage, S’

strategy specifies her probability of cutting, c ∈ [0, 1]. The equilibrium can be summarized

by (b, c, p).

If M+GS > V , no p exists that can make renting mutually beneficial. Furthermore, if

(M +GS) /δ > V , there exists no mutually beneficial trading price that would discourage

S from cutting, given the chance. From now on, I thus assume (M +GS) /δ ≤ V.13

13However, if M + GS ∈ (δV, V ), then there exists a price p/ (1− δ) ∈ (δV, V ) which is such that,
although it does not discourage cutting if there is not renting, it makes renting mutually beneficial at the
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Proposition 2. Suppose (M +GS) /δ < V .
(i) There is only one equilibrium in pure strategies:

b = 0, c = 1, p = (1− δ)V.

(ii) There are multiple equilibria in mixed strategies: For every price satisfying

p

1− δ
∈
[
M +GS

δ
, V

]
there is an equilibrium where B rents with probability

b =
M +GS

p

(
1− δ

δ

)
,

S consumes with probability

c =
p (1− δ)

V (1− δ)− δp
,

B rejects any rental price larger than p, and S proposes exactly this price.

3.3. Analogies

Proposition 2 is clearly analogous to Proposition 1. Its intuition is similar, as well, and

thus skipped. Instead, this subsection discusses some further similarities, while the next

compares the two markets.

Note that the equilibrium payoffs are:

US =
M +GS

δ
,

UB = − p

1− δ
.

Proposition 3. Take an equilibrium P for the sales market and an equilibrium p for the
rental market. The two equilibria are identical in that:
(i) B’s payoff is the same if

p

1− δ
= P +GB.

(ii) For any p and P, S’ payoff is the same in the two markets.
(iii) Thus, S’ incentive to affect M , V , GS, or GB is the same.
(iv) Total welfare decreases in the equilibrium price.
(v) If S announces the equilibrium price, UB = −V and c = 1.

trading stage. Then, if B contacts S, S suggests the price p = (1− δ)V and B accepts. Anticipating this,
B is indifferent when considering to contact S, and every b ∈ [0, 1] is a best response and an element in
an equilibrium (b, c, p).
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To explain part (i), note that B’s payoff is determined by his payoff when he always

buys/rents. This payoff is obviously a function of the price, and there should be no

surprise that, for some p and P , B’s payoff is identical in the two markets. Part (ii), in

contrast, says that S’ payoff is identical no matter p and P . The reason is that in both

equilibria, when S randomizes, her discounted payoff must equal the value of cutting.

Thus, if the equilibrium p increases, for example, B is less likely to buy, and the two effects

cancel. Given this, Parts (iii)-(v) hold for the same reasons as before. In particular, the

price maximizing welfare is the smallest possible price, p = (1− δ) (M +GS) /δ, since,

then, b = 1. In this equilibrium, the outcome is actually first-best. However, if S can

announce the equilibrium p when meeting with B, then p = (1− δ)V . Anticipating this,

b = (M +GS) /δV < 1 while c = 1, so the good is consumed relatively fast.

3.4. Buy or Rent Conservation?

Despite the similarities just mentioned, the sales market and the rental market are not

equivalent: (i) In the rental market, the game ends only after consumption. Before that

occurs, B randomizes between renting or not in every period, no matter whether he has

rented earlier. (ii) In the rental market, S is protecting the good and not B. (iii) Thus,

if GS < GB, the first-best is a possible equilibrium outcome in the rental market, while

this happens almost never in the sales market. Finally, (iv) a sales market only exists if

GB < V −M , while the rental market exists whenever GS < V −M .

To make positive predictions, suppose that, once B has contacted S, S can propose

either a rental price or a sales price. In the sales market, for example, B anticipates

some equilibrium price, P , and S cannot charge a higher price. However, S may want to

propose a rental contract, instead, at some price, p. The question is then whether there

exists some p such that S would benefit from proposing p, rather than P , and B would

accept. In the rental market, similarly, B anticipates some equilibrium p. If B contacts S,
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S cannot charge a higher rental price. However, he may want to, instead, propose a price

P for sale. When can S benefit from this?

Proposition 4. (i) Take an equilibrium in the sales market characterized by P. There
exists a rental market equilibrium that is better for both B and S at the negotiation stage
if:

P +GB <
M +GB

δ
. (3.1)

(ii) Conversely, take an equilibrium in the rental market characterized by p. There exists
a sales price such that both B and S are better off trading at this price if:

p

1− δ
>

M +GB

δ
. (3.2)

(iii) If S announces the equilibrium price, conservation will be sold rather than rented if
and only if:

V >
M +GB

δ
. (3.3)

Fig. 3: Renting is predicted if GB is large while V −M is small

Interestingly, parts (i) and (ii) say that a sale is more likely if the equilibrium price

(for sales or rentals) is large. If P is large, for example, S can suggest a high p to keep

B indifferent. At a high p, B rents with a small probability and S cuts with a high

probability in every period. The inefficiencies are then large and, rather than risking

these randomizations, S and B are better of trading once and for all. Similarly, a sale is
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more attractive if M is small, since B is then unlikely to show up (and rent) again. If GB

is large, however, B finds it costly to guard the good, and it is better to pay S for this

job.

If S announces the equilibrium price, the condition for sale in part (i) and (ii) are

identical, and rewritten in part (iii). Since the price is then higher if the conservation value

is high, S is better of selling to B rather than continuing the inefficient randomizations.

Thus, if conservation is sufficiently valuable, conservation is bought rather than rented.

Note that GS does not appear in Proposition 4. Intuitively, one may guess that if GS

is large, then S may prefer to sell, saving the cost of protection. On the other hand, a

higher GS implies that B is more likely to contact S also in the future, and this reduces

the cost of renting. Obviously, the two effects cancel.14

3.5. Multiple Buyers

In reality, there may be multiple potential buyers considering to pay for conservation. To

analyze this, and to motivate the next section, let the game above be unchanged with

one exception: Suppose that, in every period, every i ∈ N = {1, ..., n} decide, at the

same time, whether to contact S. If more than one buyer try to contact S, each of them

is matched with S with an equal probability. The buyers may have different valuations,

protection costs, and they may expect to pay different equilibrium prices.

Proposition 5. There is no equilibrium where more than one buyer buys or rents with
positive probability: bi · bj = 0 ∀ (i, j) ∈ N2, j ̸= i.

The result is disappointing since a larger number of countries makes conservation

more important, from any planner’s point of view. Unfortunately, the only symmetric

(pure or mixed) equilibrium is that no-one ever buys/rents conservation from S, while

14Note that the last condition in Proposition 4 can be rewritten as δV > (M +GS)+ (GB −GS). The
last term shows that renting is better if GB − GS is positive and large. At the same time, renting is
better if (M +GS) is large, since B is then quite likely to rent also in the future. Parameter GS appears
in both terms - but with opposite signs.
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S cuts immediately and with probability one. The intuition is the following: First, if

a country buys with probability one, no-one else buys. If buyer i randomizes, i must

be indifferent when considering to contact S. In addition, i must be indifferent when S

proposes the equilibrium price to i. This double indifference requires that i is indifferent

to be matched with S, given that i tries to contact S. This, in turn, requires there is no

chance than any other buyer is matched with S instead.

Proposition 5 shows that the analysis above, assuming exactly one active buyer, is

relevant even if there are third (passive) parties that would also benefit from conservation.

However, the reasoning behind Proposition 5 relies on discrete time (since j does not want

to contact S if also i might at the same exact time). This motivates our next section,

allowing time to be continuous.

4. Continuous Time and Multiple Buyers

This section is gradually extending the model in several ways. First, by letting time be

continuous, I allow the seller to cut and a buyer to contact the seller at any point in time.

The common discount rate is r. Second, I let the rental contract be of any length. If there

is an upper boundary on this length, T , then it is easy to show that this constraint will

always bind in equilibrium. Thus, let T ≤ ∞ be the (maximal and equilibrium) length of

a rental contract. Third, I will allow for any number of potential buyers, and the buyers

can be heterogeneous. Fourth, I will let the good have private as well as public good

aspects, and I will endogenize these benefits.

4.1. A Single Buyer - Revisited

As a start, the above results are restated for the case with continuous time.
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Proposition 6. Suppose time is continuous and a rental contract can be of length T .
(i) In the sales market, the only pure strategy equilibrium is b = 0, c = 1, P = V − GB.
In addition, for every P ∈ [M,V −GB] there exists a mixed strategy equilibrium where:

b = r
M +GS

P −M −GS

, (4.1)

c = r
P +GB

V − P −GB

,

UB = −P −GB,

US = M +GS.

(ii) In the rental market, the only pure strategy equilibrium is b = 0, c = 1, p = rV . In
addition, for every p/

(
1− e−rT

)
∈ [M −GS, V ] there exists a mixed strategy equilibrium

where:

b = r
M +GS

p− (M +GS) (1− e−rT )
, (4.2)

c =
r

V (1− e−rT ) /p− 1
,

UB = − p

1− e−rT
,

US = M +GS.

(iii) Once B contacts S, anticipating to buy at price P, a rental contract is preferred if:

P ≤ M + (GB −GS)
1− e−rT

e−rT
.

(iv) Once B contacts S, anticipating to rent at price p, a sales contract is preferred if:

p/r −GB ≥ M + (GB −GS)
1− e−rT

e−rT
.

(v) If S can announce the equilibrium price, the good is sold rather than rented if:

V −GB ≥ M + (GB −GS)
1− e−rT

e−rT
. (4.3)

Part (i) is similar to Proposition 1, and in fact identical when the discount rate is

δ = e−r∆, ∆ is the length of a period, and one takes the limit as ∆ → 0. Part (ii) is also

identical to Proposition 2 if T = ∆ and ∆ → 0.

Parts (iii)-(v) are also quite similar to the above results, Proposition 4, but the effect

of T is new. Remember that the disadvantage with a rental contract is that the players

continue to randomize as soon as one rental contract has expired. If B and S can commit
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to a longer rental contract, then this disadvantage is somewhat mitigated, and a rental

contract becomes more attractive compared to a sales contract. Thus, if T is sufficiently

large, (4.3) can never hold unless GS ≥ GB. If T → 0, however, (4.3) is equivalent to

(3.3) when δ → 1.

4.2. Multiple Buyers

The continuous time model can easily allow multiple buyers. To simplify, suppose there

are n identical potential buyers (heterogeneity is allowed in the next subsection). Thus,

every i ∈ N = {1, ..., n} receives the payoff −V when S cuts, the payoff −P − GB if i

buys, and zero if j ̸= i buys. In the rental market, the payoffs are analogous. As before,

let b represent the rate at which S is contacted by some buyer. Thus, in a symmetric

equilibrium, every i contacts S at the rate bi = 1− (1− b)1/n.

Amazingly, most of the results continue to hold:

Proposition 7. Suppose there are n identical potential buyers. Proposition 6 continues
to hold, with the exception that, in the symmetric equilibrium:
(i) Consumption increases in n in the sales market:

c = r
1 + (1− 1/n) (M +GS) / (P −M −GS)

V/ (P +GB)− 1
.

(ii) Consumption increases in n also in the rental market:

c =
r + (1− 1/n)

(
1− e−rT

)
b

V (1− e−rT ) /p− 1
.

In comparison to Proposition 6, the result is disappointing. If more countries benefit

from conservation, and the planner would be more eager to conserve the good, the outcome

is the reverse. The rate at which some buyer (or a renter) turns up is unchanged if n

grows, but S cuts faster! The intuition is the following. When n is large, every buyer i

benefits since another buyer may contact S and pay for conservation, rather than i. This

reduces i’s willingness to contact S and, to still be willing to randomize, S must cut at a

faster rate.
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The outcome is even worse if the aggregate conservation value is held constant while

n increases (i.e., if the buyers go from acting collectively to acting independently). Then,

Vi = V/n and, for a given P or p, S cuts even faster when n grows, since also Vi decreases

(if the equilibrium price happens to decrease in Vi , however, this effect is somewhat

mitigated). As another prediction, in this situation renting would be more likely as n

grows, since Proposition 6 states that renting is more likely when the buyer’s value is low.

Nevertheless, the similarities to the one-buyer case may be more surprising than the

differences. First, b is independent of n, given the price. The reason is that S is willing to

randomize only if the rate at which some buyer will drop by, b, multiplied by the price,

makes S indifferent. Furthermore, in equilibrium, every buyer receives the payoff pinned

down by the payoff he would receive if contacting S with probability one. Thus, they do

not, in equilibrium, gain from the presence of other buyers: The benefit that the other

countries may pay for conservation cancels with the cost of the faster cutting rate, for a

given price. For related reasons, the buy-versus-rental decision is also independent of n:

in both markets, the payoffs to i ∈ N as well as to S are unaffected by n.

4.3. Heterogeneous Buyers

In reality, potential buyers differ widely in their conservation values as well as in their

protection costs. Let Vi be the loss, experienced by i, if S cuts. If buyer i buys, his

protection cost is Gi.

Proposition 8. (i) In the sales market, there are multiple equilibria in mixed strategies.
For every P ∈ (M,mini {Vi −Gi}), S is contacted at rate (4.1), while S cuts at the rate:

c =
r + b−i

Vi/ (P +Gi)− 1
∀i | bi > 0.

(ii) In the rental market, as well, there are multiple equilibria in mixed strategies. For
every p/

(
1− e−rT

)
∈ (M −GS,mini Vi), S is contacted at rate (4.2), while S cuts at the

rate:

c =
r + (b− bi)

(
1− e−rT

)
Vi (1− e−rT ) /p− 1

∀i | bi > 0.
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Corollary 3. (i) In the sales market, buyer i is more likely to buy than buyer j if
Vi/ (P +Gi) < Vj/ (P +Gj) . (ii) In the rental market, i is more likely to rent than j if
Vi < Vj.

Intuitively, if one buyer has a low conservation value or a high protection cost, he is

less willing to contact S unless he expects that the other buyers are unlikely to pay for

conservation. For these reasons, S should expect to be contacted by a buyer that has a

relatively low conservation value and a high cost of protection. Obviously, this is likely

going to lead to the ”wrong” types of buyers in the sales market.15

4.4. Remedies

Privatization. With multiple buyers, conservation becomes a public good. As we al-

ready know, public goods are under-supplied. A remedy may be to raise the private

value when buying (or renting) the good, even if it comes at the cost of the aggregate

conservation value. For example, if the buyer of a tropical forest is allowed to invest in

eco-tourism, he may earn some private revenues, although it may have detrimental im-

pact on the conservation value of other countries. Increasing the private value can increase

the probability of purchasing in the first place. To evaluate when such ”privatization”

is socially optimal, suppose privatization increases the buyer’s conservation value by W

units and the world’s conservation value by −Z < 0. Ex post (after sale), it is obviously

beneficial with privatization if only if W > Z.

Proposition 9. Ex ante, privatization is beneficial if W > Z/n. This holds for the sales
market as well as for the rental market.

If W ∈ (Z/n, Z), privatization is suboptimal ex post, but beneficial ex ante. The

reason is, of course, that under privatization each buyer benefits more from a purchase

and less from another country’s purchase. They are thus more tempted to buy, and the

15Proposition 8 presumes that all buyers face the same price. If the prices differ, subscript i should be
added to the prices, as the Appendix shows.
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equilibrium cutting rate declines. Note that the condition W > Z/n is identical to the

condition under which privatization is individually optimal to buyer i after i has purchased

the good. Consequently, the privatization decision can be left to the new buyer in the

above model, even though privatization generates negative externalities on the rest of

the world. In equilibrium, every other country’s ex ante payoff is pinned down by the

fact that it, too, could be the actual buyer in the game, enjoying the same privatization

value. Obviously, privatization is not an ideal remedy and it may not always be feasible

for realistic applications.

Collective action. The free-rider problem among potential buyers can be solved in

two alternative ways. The simplest way is to revert to an asymmetric equilibrium where

only one country is a potential buyer. Both this buyer and the seller are indifferent to

this change of equilibrium, for a given equilibrium price, but every other buyer is strictly

benefitting. Thus, the sum of the buyers’ payoffs in this case, referred to as UA, is larger

than the sum of payoffs in the previous section. If there is more than one conservation

good, or it is divisible, then every country would strictly benefit by clearly defining which

buyer is responsible for buying and conserving which good. The war of attrition between

the competing buyers is then solved, but the equilibrium is still inefficient and as described

by Proposition 1.

A potentially better solution is for the multiple buyers to solve their collective action

problem by acting as one player. Then, the outcome is as described by Proposition 1,

where the buyer’s valuation is now the sum of the individual valuations. The sum of

the payoffs in this case, referred to as UC , is also larger than the sum of the payoffs in

the previous section. The larger valuation decreases the cutting rate, benefitting all the

players if the equilibrium price stays unchanged. If the seller can announce the equilibrium

price, however, she will raise the price accordingly and in line with Corollary 2. It is then

easy to show that the buyers would prefer the asymmetric equilibria, rather than acting
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as one.

Proposition 10. For a given price, acting as one is better than the asymmetric equilib-
rium: UC > UA. If S can announce the equilibrium price, however, the reverse is true:
UC < UA. Both statements hold for the sales market as well as for the rental market.

5. Robustness

The model above is simple and can be used as a workhorse for several extensions. Such

extensions may help us to understand the robustness of the results above, and they may

generate new results that are of interest. A large number of extensions is analyzed below:

I there derive nonrandom equilibrium strategies (using purification arguments) and allow

for continuous decision-variables (such as the extent to which the forest can be protected)

to show that the main results of this paper hinge neither on the mixed-strategy equi-

libria nor on the binary action variables. I also allow for communication costs, buyers

with bargaining power, and non-Markovian strategies (in particular, the possibility that

bargaining-failure leads to faster cutting).

5.1. Purification of Strategies

As is well-known, mixed strategies can be ”purified” by introducing some noise regarding

future variables. Thus, it is not necessary for the results that the agents are using mixed

strategies in equilibrium, as long as the opponent is uncertain regarding the action taken.

To illustrate this in a simple manner, suppose that the market value of timber, M , is

uniformly distributed on the interval
[
0,M

]
. Furthermore, suppose that the realization

of M is iid across periods and the realization of the future M is not known to S when S

considers to cut in a given period. With these assumptions, it does not matter whether

the realization is known also to B, as long as B is unaware of its realization when taking
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its own action. In any case, S is going to cut at its decision node if and only if:

M ≥ δUS ⇒

c = 1− δUS

M
. (5.1)

The seller’s payoff is then given by:

US = bP + (1− b) (cE (M | M ≥ δUS) + (1− c) δUS)

= bP + (1− b)

((
1− δUS

M

)(
M + δUS

2

)
+

δUS

M
δUS

)
= bP + (1− b)

(
M

2
+

(δUS)
2

2M

)
. (5.2)

As before, P cannot be larger than V . Furthermore, P cannot be smaller than M/2,

since the seller would then reject the buyer’s offer. For a larger P , c must increase, to

keep B indifferent. Then, (5.1) implies that US must decrease. This, from (5.2), requires

a smaller b. For a given P , if M increases, S becomes more tempted to cut, and is willing

to wait only if b increases. The comparative static is thus similar to the one before.

For any given anticipated P , B is indifferent whether to buy and S can therefore charge

exactly this P . Again, there is a range of mixed equilibria characterized by different prices,

and for a large price, c must increase but b must decrease.

Proposition 11. Suppose M ∼ U
[
0,M

]
. There is a continuum of MPEs, each charac-

terized by an equilibrium price P ∈
[
M/2, V

]
. S’ decision whether to cut is deterministic

and depending on the realization of M , but the comparative static is similar to before: As
P increases, b decreases and c increases. For a given P , b increases in M and c decreases
in V .

Thus, the main results emphasized above continues to hold. However, if V increases

and c declines, b must increase. Therefore, in this variant of the model, a valuable

conservation good is less likely to be consumed, in contrast to the setting where S can

announce the equilibrium price.
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5.2. Purification and Interior Solutions

As already mentioned, c could be interpreted as the fraction S is cutting in each period.

Furthermore, rather than having a linear utility in c, making S willing to mix, S could have

concave preferences, pinning down a unique best response for the seller. Similarly, if one

interprets the value of cutting as S’ saved protection costs, one could let the probability

that cutting occurs be a random function of the protection cost. The more S spends on

protection, the more likely it is that the forest survives.

To illustrate this in a simple way, suppose that protecting the good with probability

q costs the seller the amount q2k/2, where k is an arbitrary positive constant. The first-

order condition for q is:

bP + (1− b)

(
M

2
+

(δUS)
2

2M

)

q = δUS/k ⇒

c ≡ 1− q = 1− δUS

k
, and (5.3)

US = bP + (1− b)
(
− (δUS/k)

2 k/2 + (δUS/k) δUS

)
= bP + (1− b) (δUS)

2 /2k ⇒

US =
k

(1− b) δ2
− k

(1− b) δ2

√
1− 2 (1− b) δ2bP/k.

For US to be stable, we require (1− b) δUS/k < 1. Note that δUS/k = 1 − c, so this

is satisfied. Note that both c and US have the similar form as in the previous subsection.

As before, P cannot be larger than V . For a reduced P , c declines, to make B

indifferent. Then, (5.3) implies that US increases, which requires a larger b. Once b = 1,

US = P and (5.3) implies that c = 1 − δP/k. For this c to be positive, we must have
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P < k/δ. Combined with B’s indifference-condition, we get that b = 1 only when:

1− δP

k
=

(1− δ)P

V − δP
⇒

P = P ≡ k + δV

2δ2
− 1

2δ2

√
(k + δV )2 − 4δ2kV .

As before, a range of prices constitute an equilibrium. If P is larger, c must increase,

i.e., q must decrease. This is possible only if b decreases. If V increases, c declines, US

must increase, implying that b must raise. If the protection cost k increases, S would

be less likely to protect, unless US increases, which requires b to increase. Thus, larger

protection cost for S makes B more likely to buy.

Proposition 12. Suppose S can protect the good with probability q at cost q2k/2. For
each P ∈ [P , V ], there is an equilibrium where S’ effort is given by (5.3) and B buys with
probability b ∈ [0, 1]. The comparative static is similar to that before.

To this, one could add costly probabilistic protection also if B ends up buying the

good. Perhaps the cost for B would be larger than the cost for S, as argued above.

Furthermore, it would be desirable to have more general cost functions (for protection).

These and other issues must await further research.

5.3. Buyers with Bargaining Power

Above, for any P > M/δ, the buyer is randomizing and thus indifferent between trading

at P and not trading at all. This indifference implies that the buyer received literally no

bargaining surplus from its interaction with the seller. The seller, empowered to make a

tioli-offer, captures the entire gains from trade. Thus, if the buyer has some bargaining

power, we cannot have P > M/δ. It is easy to see that if the buyer’s bargaining power is

represented by β > 0, the unique equilibrium requires P = M/δ and that the buyer buys

with probability one.

Proposition 13. Suppose the buyer has bargaining power β while the generalized Nash
Bargaining Solution characterizes the outcome for P . If β > 0, the unique equilibrium
requires P = M/δ and b = 1.
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At first, the result is very encouraging: All that is necessary is to give the buyer some

bargaining power, and efficiency will result. However, the fact that P → M/δ when

β > 0 hinges on a number of assumptions. In particular, one needs to assume that it is

only one buyer, there is no cost of contacting the buyer, and there is no penalty following

bargaining-failure. These three assumptions are relaxed in the following three subsections,

where I continue to let β measure a buyer’s bargaining power.

5.4. Costly Negotiations

Suppose that B must pay k ≥ 0 when contacting S. This cost could represent the physical

relocation cost or set-up cost of a meeting with S, or it could represent the political

obstacles necessary to overcome in the domestic arena when initiating such a conservation

policy.

If B is indifferent whether to trade with S at price P , once B has paid the cost k, B’s

surplus of this trade is the cost just paid, k. If S had all the bargaining power, S could

extract this surplus and, anticipating this, B would never have contacted S in the first

place. If B has some bargaining power, however, the equilibrium price is determined by

the fact that S’ surplus must equal the total surplus of trade, multiplied by its bargaining

power 1− β:

P −M = (1− β) (P −M + k)

P = M +
1− β

β
k.

Naturally, the larger is the buyer’s bargaining power, the lower is the price. Just as before,

b and c are given by the equations above. As before, we still have c > 0 and b < 1 as long

as P > M/δ. This requires:

β <
k

(1/δ − 1)M + k
(5.4)

Proposition 14. Suppose B must pay k to contact S. If (5.4) holds, b < 1 and c > 0. If
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k increases or β declines, the unique equilibrium P increases and, as a result, b declines
while c increases.

5.5. Bargaining Failure Leads to Cutting

In the above equilibrium, S is indifferent whether to cut and it is assumed that S continues

to randomize, even if an attempt to negotiate with B has just failed. This a bargaining

failure does not occur in equilibrium, however, it may be reasonable to assume that S

is puzzled by this failure, and concludes that bargaining is not likely to succeed in the

future, either. The best response for S would then be to cut immediately.

Given this threat, S can negotiate a higher price. By using the generalized Nash

Bargaining Solution, the price will be given by:

P = PN ≡ βM + (1− β)V. (5.5)

Just as before, we get c > 0 and b < 1 if P > M/δ. This requires:

β <
V −M/δ

V −M

Note that this condition holds trivially when periods get short and δ → 1.

Proposition 15. Suppose S cuts if negotiations fail. Then, P = PN , given by (5.5),
increases in M and V but decreasing in β.

Again, we get the perverse results that as V increases, the probability that B shows

up to conserve the forest declines.

5.6. Multiple Buyers with Bargaining Power

With multiple buyers having a positive probability of buying, it is not possible that b = 1

since that would require bi = 1 for each of them, and one buyer would find it optimal to

leave the purchase to the other. Similarly, b = 0 is not possible when β > 0, since that

would require c = 1 and a negotiated price (PN) that would make it strictly better for a
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buyer to contact S. Thus, each buyer must be indifferent whether to buy. To investigate

this setting in a simple way, it is here assumed that all potential buyers are identical.

Given b, this implies that each buys with a probability bi such that:

1− b = (1− bi)
n ⇒ bi = 1− (1− b)1/n .

If several buyers decide to buy in a given period, the seller is matched with each of

them with equal probability. Thus, in equilibrium, a buyer receives the payoff:

UB = −P
b

n
− (1− b) (cV − δ (1− c)UB)

= − bP/n+ (1− b) cV

1− δ (1− b) (1− c)
,

since the good is purchased in this period with probability b at price P and, if so, the

probability that i is the buyer is 1/n. Instead of buying with probability bi, another best

response to a buyer is to not buy in this period. This would give the payoff:

UB = − (1− bi)
n−1 (cV − δ (1− c)UB) (5.6)

= − (1− b)1−1/n (cV − δ (1− c)UB)

= − (1− b)1−1/n cV

1− δ (1− b)1−1/n (1− c)
.

A buyer is willing to randomize only if these payoffs are identical. By substituting the

latter equation into the former, we have:

UB = −P
b

n
+ (1− b)1/n UB ⇒ UB = − Pb/n

1− (1− b)1/n
. (5.7)

If negotiations break down, a buyer’s continuation value is −cV + δ (1− c)UB, which,

using (5.6), is equal to (1− b)1/n−1 UB. Thus, once a buyer is matched with the seller, his

bargaining surplus is:

−P − (1− b)1/n−1 UB =
P (1− b)1/n−1 b/n

1− (1− b)1/n
− P

=
Pb/n (1− b)

(1− b)−1/n − 1
− P.
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Since S’ bargaining surplus is P −M , and this is a fraction 1−β of the total surplus, the

negotiated price must satisfy:

P −M

1− β
=

Pb/n (1− b)

(1− b)−1/n − 1
−M ⇒ (5.8)

P

M
=

β

1− (1− β) b/ (1− b)n
[
(1− b)−1/n − 1

] .
So, the equilibrium P increases in M and decreases in β. Furthermore:

Lemma 1. For a given b, the equilibrium P increases in n.

Proof: This holds if the derivative of the following is negative:

n
[
(1− b)−1/n − 1

]
= n

[
e(−1/n) ln(1−b) − 1

]
.

The derivative is: [
(1− b)−1/n − 1

]
+ n (1− b)−1/n

(
1

n2

)
ln (1− b)

=
1− (1− b)1/n + ln (1− b)1/n

(1− b)1/n
,

where the numerator is of the form:

(lnx)− x+ 1.

This function reaches its maximum at 1/x = 1, making it zero, and everywhere else it is

negative. Thus, P does indeed increase in n. QED

For a given P , abstention is better if

(1− b)1−1/n cV

1− δ (1− b)1−1/n (1− c)
≤ bP/n+ (1− b) cV

1− δ (1− b) (1− c)
⇒[

(1− b)1−1/n − (1− b)
]
cV ≤

[
1− δ (1− b)1−1/n (1− c)

]
bP/n, (5.9)

which is less likely to hold if c, V/P , and δ are large. If n increases, a sufficient condition

for abstention to be more tempting is that the derivative of the following expression is

negative:

n (1− b)1−1/n = ne(1−1/n) ln(1−b).
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The derivative is negative if:

(1− b)1−1/n + n (1− b)1−1/n

(
1

n2

)
ln (1− b) < 0 ⇔

1 +
ln (1− b)

n
< 0 ⇔

1

1− b
> en ⇔

b > 1− 1/en,

i.e., if n is sufficiently large, for a given b. Then, at least, an even larger n is making it

more tempting to cheat, and cutting must increase! For smaller n, a more complicated

derivation would be necessary.

Thus, c must be such that (5.9) holds. If V/P is small, δ is large, and n is large and

growing, then c must increase. At c = 1, (5.9) becomes

[
(1− b)1−1/n − (1− b)

]
/b ≤ P/V n. (5.10)

Then, b must be such that this holds to make a buyer indifferent. For this case, P = PN .

Thus, the inequality is more likely to hold if β is small, M is large, V is small, and n is

large, and, in these circumstances, b must decline due the following lemma.

Lemma 2. (5.10) is more likely to hold if b is large.

Proof: Consider the term
[
(1− b)1−1/n − (1− b)

]
. Its derivative w.r.t. b is:

− (1− 1/n) (1− b)−1/n + 1 = 1− n− 1

n

1

(1− b)1/n
.
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Thus, the derivative of b/
[
(1− b)1−1/n − (1− b)

]
w.r.t. b is positive if:

(1− b)(n−1)/n − (1− b)− b

(
1− n− 1

n

1

(1− b)1/n

)
> 0 ⇔

(1− b)(n−1)/n − 1 + b

(
n− 1

n

1

(1− b)1/n

)
> 0 ⇔

1− b

(1− b)1/n
− 1 + b

(
n− 1

n

1

(1− b)1/n

)
> 0 ⇔

1− (1− b)1/n

(1− b)1/n
− b/n

(1− b)1/n
> 0 ⇔

1− (1− b)1/n − b/n > 0 ⇔

n− n (1− b)1/n − b > 0.

Now, note that the l.h.s. is zero for b = 0. Next, note that the inequality is more likely

to hold for b large, since its derivative w.r.t. b is strictly positive:

(1− b)1/n−1 − 1 > 0.

QED

The final proposition summarizes the key findings above.

Proposition 16. Suppose there are multiple active and identical buyers and β > 0.
(i) In equilibrium, b ∈ (0, 1) and c > 0.
(ii) There is a unique equilibrium price, P , which decreases in β but increases in M .
(iii) The sales probability b increases in β but decreases in n.
(iv) The cutting probability c decreases in β but grows when n becomes large, until it hits
the upper boundary c = 1.
(v) If M increases or V decreases, then b is unchanged but c increases until c=1; and, as
M continues to grow or V continues to decline, c stays equal to 1 and b decreases.
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6. Conclusions

Conservation goods are special. The buyer does not want to pay the seller unless he

thinks she will consume the good. The seller does not want to consume if she thinks

the buyer is going to buy. In a dynamic model, the equilibrium is in mixed strategy

and the outcome is inefficient. The rental market may not perform better than the sales

market but, by comparison, the results predict that domestic conservation will be bought,

while conservation in other countries will be rented. This seems consistent with anecdotal

evidence: REDD contracts are rental arrangements; national parks are not.

While the outcome is bad with one buyer, it is worse with multiple potential buyers.

If the buyers are heterogeneous, the results predict that, perversely, the most likely renter

(or buyer) is going to have a relatively low value of conservation (and a high cost of

enforcing protection). The emergence of Norway’s REDD funds is consistent with this

prediction: Norway has already initiated results-based payments through partnerships

with Brazil, Guyana, and Indonesia.

In order to isolate the key feature of conservation goods, I have abstracted from uncer-

tainty, private information, reputation-building, learning, moral hazard, and more compli-

cated utility functions, bargaining procedures, or equilibrium refinements. These aspects

should be included in future research to teach us more about the puzzling nature of

conservation markets.
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7. Appendix: Proofs

In the proofs below, I have allowed for a cost, ki ≥ 0, when buyer i decides to contact
the seller. With only one buyer, this cost is k. For most of the results above, simply set
ki = k = 0.

Proof of Proposition 1. Let P denote the equilibrium price, b the probability that B meets
S, and c the probability that S cuts, given the chance (i.e., at her decision node). Let
Ui (b, c) describe the equilibrium payoff (and thus the continuation value) for i ∈ {B,S}.
We have:

UB (0, c) = −cV + δ (1− c)UB (b, c) ,

UB (1, c) = −P − k −GB,

US (b, 0) = b (P +GS) + (1− b) δUS (b, c) ,

US (b, 1) = b (P +GS) + (1− b) (M +GS) .

Since c ∈ [0, 1], UB must be between −V and 0. Thus, B never buys if P+GB+k > V .
Hence, for such a large P , S will always cut. Similarly, since b ∈ [0, 1], US must be
between M + GS and P + GS. Thus, S always cuts if M + GS > δ (P +GS) , implying
P < M/δ + GS (1/δ − 1) and, then, B always buys if V > M/δ + GB + k, since then
V > P +GB+k. If P ∈ [M/δ +GS (1/δ − 1) , V −GB − k], UB (0, c) = UB (1, c) for some
c ∈ [0, 1] and US (b, 0) = US (b, 1) for some b ∈ [0, 1]. It is easy to see that these equalities
are satisfied for b and c, as described in Proposition 1, making both players willing to
randomize. For a larger (smaller) c, B always (never) buys and S would strictly prefer
to never (always) cut; a contradiction. For a larger (smaller) b, S would prefer to never
(always) cut and B would therefore strictly prefer to never (always) buy; a contradition.
Therefore, for every P ∈ [M/δ +GS (1/δ − 1) , V −GB − k), the b and c described by
Proposition 1 is a unique equilibrium. For P = V −GB −k, there is in addition equilibria
where B buys with a smaller probability: Any b ∈ [0, (M +GS) (1− δ) /δ (V −GB −M)]
is then part of an equilibrium.

Regarding the equilibrium price, suppose B and S believes the equlibrium price is
P ∈ [M/δ, V −GB − k]. If B contacts S, he is indifferent to buy at P , and S cannot
charge a higher P . S thus charges P , confirming that this is indeed an equilibrium. Note
that a low price, P < M/δ + GS (1/δ − 1), cannot be an equilibrium since, if it were, S
would cut for sure at her decision node, and under this threat S could demand as much as
V −GB. A high price, P > V −GB, cannot be an equilibrim since then B would reject.
P ∈ (V −GB, V −GB + k] is a possible equilibrium price but B is then never contacting
S. QED

Proof of Proposition 2. The proof is analoguous to the proof of Proposition 1. With a
slight abuse of notation, let now b be the probability that B contacts S to rent, while c is
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the probability that S cuts at her decision node. In equilibrium, we must have:

UB (0, c) = −cV + δ (1− c)UB (b, c) ,

UB (1, c) = −p+ δUB (b, c) ,

US (b, 0) = bp+ (1− b) δUS (b, c) ,

US (b, 1) = bp+ (1− b) (M +GS) .

Since c ∈ [0, 1], UB ∈ [−V, 0], and p > V/ (1− δ) would be rejected and thus never re-
quested by S. Since S can always cut, US >M+GS and S would always prefer to cut ifM+
GS > pδ/ (1− δ), implying that p < (M +GS) (1/δ − 1) cannot be an equilibrium (since
under that threat, S could charge a higher price. If p ∈ [(M +GS) (1/δ − 1) , V/ (1− δ)),
then there is an unique equilibrium where b and c must be such as specified by Propo-
sition 2. If p = V/ (1− δ) then, in addition, there exist equilibria where b is smaller
than what is specified by Proposition 2: any b ∈ [0, (M +GS) /δV ] is then part of an
equilibrium. Since the buyer is indifferent whether to buy for every equilibrium in which
p ∈ [(M +GS) (1/δ − 1) , V/ (1− δ)], S cannot charge a higher price (that would be re-
jected by B) and S asks for exactly p, confirming that every such price is an equilibrium.
QED

Proof of Proposition 3. The proof follows from the text and the earlier propositions.

Proof of Proposition 4. Take a sale P -equilibrium and a rental p-equilibrium. B prefers
buying at P to the rental p-equilibrium (before as well as at the meeting with S) if:

P +GB + k ≤ (p+ k) /(1− δ). (7.1)

At their meeting, B prefers selling at P to the p-equilibrium if:

P +GS ≥ p+ δU r
S = p+M +GS. (7.2)

(i) Consider an equilibrium P . A p exists violating both (7.1) and (7.2) if (3.1) is violated.
Too see this, select the p, as a function of P , making one player indifferent and check
whether the other condition holds.
(ii) Take p as given. Then, a P exists satisfying (7.1) and (7.2) if (3.2) holds. Too see
this, select the P , as a function of p, making one player indifferent and check whether the
other condition holds.
(iii) When S announces the equilibrium price, P + GB = p/ (1− δ) and (7.1) and (7.2)
coincide with (3.3). QED

Proof of Proposition 5. The proof is similar to the reasoning in the text and thus omitted.

Proof of Proposition 6. The proposition follows from Proposition 7 when setting n = 1.

Proofs of Propositions 7 and 8. The proofs allow for heterogeneous values and prices.
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The sales market: The aggregate b and expected P making S willing to randomize follows
from:

M +GS =

∫ ∞

0

e−t(r+
∑

i bi+c)

(∑
i

biPi

)
dt =

∑
i biPi

r +
∑

i bi
⇒

b =
∑
i

bi =
r (M +GS)∑

i biPi/b− (M +GS)
(7.3)

=
r (M +GS)

EP − (M +GS)
,

where EP ≡
∑

i biPi.
Buyer i is willing to randomize when:

Pi +Gi + ki + Zi −Wi =

∫ ∞

0

e−t(r+b−i+c) (cVi + b−iZi) dt =
cVi + b−iZi

c+ b−i + r
⇒

c =
(Pi +Gi + ki + Zi −Wi) (b−i + r)− b−iZi

Vi − (Pi +Gi + ki + Zi −Wi)

=
r (Pi +Gi + ki + Zi −Wi) + b−i (Pi +Gi + ki −Wi)

V − (Pi +Gi + ki + Zi −Wi)
.

Setting Wi = Zi = ki = 0, this becomes:

c =
r + b−i

Vi/ (Pi +Gi)− 1
=

(r + b) (Pi +Gi)− bi (Pi +Gi)

Vi − (Pi +Gi)
.

Since bi = b −
∑

j ̸=i bj and b is given by (7.3), bi decreases by adding another buyer, b−i

increases, and this requires c to increase. Imposing symmetry, bi = b/n.
The rental market: If S is willing to mix, US = M +GS and:

M +GS =

∫ ∞

0

e−t(r+
∑

i bi)
∑
i

bi
(
pi + U r

Se
−rT
)
dt =

∑
bi
(
pi + (M +GS) e

−rT
)

r +
∑

i bi
⇒

b = r
M +GS

Ep+ (M +GS) e−rT − (M +GS)
= r

M +GS

Ep− (1− e−rT ) (M +GS)
.

If buyer i is willing to rent and pay pi+ki at interval T , Ui = Wi−Zi−(pi + ki) /
(
1− e−rT

)
.

If i is willing to randomize, then, in addition:

Ui = −
∫ ∞

0

(
cVi + b−i

[
Zi

(
1− e−rT

)
− e−rTUi

])
e−t(r+b−i+c)dt

= −
cVi + b−i

[
Zi

(
1− e−rT

)
− e−rTUi

]
r + b−i + c

⇒

c =
− (b−i + r)Ui − b−i

[
Zi

(
1− e−rT

)
− e−rTUi

]
Vi + Ui

=
−rUi − b−i (Zi + Ui)

(
1− e−rT

)
Vi + Ui

=
−r
(
Wi − Zi − (pi + ki) /

(
1− e−rT

))
− b−i

[
Wi

(
1− e−rT

)
− (pi + ki)

]
Vi +Wi − Zi − (pi + ki) / (1− e−rT )

.
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If Wi = Zi = ki = 0, this boils down to:

c =
r/
(
1− e−rT

)
+ b−i

Vi/pi − 1/ (1− e−rT )
.

By comparison: Buyer i’s benefit is the same for all p′, T ′ such that Ui is the same:

pi + ki
1− e−rT

= Pi +Gi + ki.

While S prefers sale if and only if:

Pi +GS ≥ pi + e−rTUS = pi + e−rT (M +GS) .

Ensuring that B is (just) willing to accept, this implies:

Pi +GS ≥
(
1− e−rT

)
(Pi +Gi + ki)− ki + e−rT (M +GS) ⇒

Pie
−rT ≥

(
1− e−rT

)
Gi − e−rTki −

(
1− e−rT

)
GS + e−rTM ⇒

Pi + ki −M ≥
(
1/e−rT − 1

)
(Gi −GS) . (7.4)

Equivalently, S prefers selling to an existing rental equilibrium if it can achieve a high
price when selling:

pi + ki
1− e−rT

−Gi − ki +GS ≥ pi + e−rT (M +GS) ⇒

(pi + ki) e
−rT ≥

(
1− e−rT

)
(Gi −GS) + e−rT

(
1− e−rT

)
(M +GS) ⇒

pi + ki
1− e−rT

≥ (Gi −GS) /e
−rT + (M +GS) . (7.5)

If S sets the price, (7.4) becomes Vi −Gi + ki −M ≥
(
1/e−rT − 1

)
(Gi −GS) while (7.5)

becomes Vi ≥ (Gi −GS) /e
−rT +(M +GS) , which are both identical to (4.3) when ki = 0

and buyers are identical. QED

Proof of Proposition 9. The proposition follows directly from the equilibrium payoffs,
since each buyer is willing to randomize and get the payoff −Pi+Wi−Zi−Gi, if buying,
and pi/ (1− δ) +Wi − Zi, if renting. QED

Proof of Proposition 10. Set Wi = Zi = 0. Consider the sales market and suppose, first,
that P is given. In the decentralized equilibrium, where each buyer buys with some
probability, every i’s payoff is −P −GB. If, instead, it is well defined that only one player
purchases, then, following Proposition 7, b remains constant while c declines. This is
clearly increasing the buyers’ aggregate payoff. Furthermore, if the buyers act as one,
then there is still only a single buyer, but this buyer’s valuation increases. Following
Proposition 1, c declines, which clearly is further increasing total welfare (since b stays
the same).

If S can announce the equilibrium price, however, a single buyer (e.g., consisting of
all the countries) receives the same payoff as if the good is cut with probability one. In
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the asymmetric equilibrium, the buyers that have committed not to buy receives a higher
payoff that −Vi since, with a positive probability, the single remaining buyer purchases
and conserves the good. Thus, when S sets the price, the asymmetric equilibrium leads
to a larger aggregate payoff for the buyers than does the asymmetric equilibrium.

The reasoning for the rental market is analoguous and thus omitted. QED
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