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1 Introduction

The internet has dramatically reduced the cost of changing prices, displays and information

provided to consumers, and of measuring the response to these types of changes. As a result

internet platforms, retailers and advertisers increasingly can customize and vary their o¤ers.

One e¤ect of this �exibility is to facilitate learning. Google, for instance, conducts thousands

of experiments each year to re�ne its search platform (Varian, 2010). Our goal in this paper

is to describe and illustrate another bene�t: what amounts to large-scale experimentation by

market participants can be used to address traditional economic questions about consumer

behavior and market outcomes.

Our analysis focuses on eBay, the largest e-commerce platform and a primary sales chan-

nel for tens of thousands of retailers. We de�ne a �seller experiment�on eBay to be a case

where a given seller lists a given item multiple times while varying pricing or auction pa-

rameters. This practice � analogues of which can be observed in other internet markets,

such as for sponsored search or display advertising � is extremely common. Of the hundred

million listings appearing on eBay on a given day, more than half will reappear on the site

again as a separate listing, often with modi�ed sale parameters. Drawing on a single year

of listings, we assemble a dataset consisting of hundreds of thousands of seller experiments

conducted across thousands of diverse sub-markets.

We show how the targeted variation created by seller experimentation can address a range

of old and new questions about consumer behavior and auction design in internet markets. In

particular, we use the data to quantify the price variability or dispersion for identical listings,

to evaluate the hypothesis that eBay consumers engage in �excessive�bidding (e.g., Lee and

Malmendier, 2011), to measure the e¤ect of auction reserve prices (Kamins et al., 2004; Ku et

al., 2006; Reiley, 2006; Lucking-Reiley et al., 2007; Simonsohn and Ariely, 2008), to analyze

the impact of �buy now�options in consumer auctions (Stadi�rd et al., 2004; Ackerberg et

al., 2006; Anderson et al., 2008), and to assess whether consumers systematically underweight

shipping fees (Tyan, 2005; Hossain and Morgan, 2006; Brown, Hossain and Morgan, 2010).

In each case, we provide evidence based on thousands of distinct experiments across a wide

range of product categories.
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Our �ndings sharpen, enrich and in some cases overturn earlier results that have been

obtained in observational or experimental studies of particular items. For instance, we �nd

substantial price variation in auctions for identical items conducted by the same seller, even

when the auctions are held concurrently. But we observe relatively few instances of obvious

overbidding, that is cases where a bidder pays more at auction than a concurrent posted

price for the same item o¤ered by the same seller. We �nd clear and consistent relationships

between auction reserve prices, sale probabilities and closing prices, and similarly between

�buy now� prices and sale outcomes. These relationships are surprisingly stable across

diverse products and categories, and provide useful evidence on market demand in a large

retail marketplace. We also con�rm earlier �ndings that certain prices, such as shipping fees,

are not fully internalized by buyers.

Apart from the speci�c �ndings, we view the empirical strategy as interesting in its own

right. Since the early days of the internet, it has been clear that the vast and detailed data

being collected in online markets would provide opportunities to study consumer behavior,

to test theories of competition and market structure, and to analyze the e¤ects of changes in

search costs, product variety, and market organization, all in relatively structured environ-

ments. The di¢ culty has been to �nd empirical approaches that yield plausible identi�cation

of parameters of interest across a wide range of settings. In principle, the scale and diversity

of many internet markets should be ideal for this purpose; in practice, it has not always been

easy to leverage these advantages.

The two main approaches to studying internet markets such as eBay have been observa-

tional studies that relate sales outcomes such as auction price to di¤erences in sale parameters

such as reserve prices, shipping fees or seller reputation (e.g., Bajari and Hortacsu, 2004),

and �eld experiments in which a researcher sells identical items under di¤erent conditions

(e.g., Lucking-Reiley, 1999). Most observational studies focus on a narrow product category

� a particular type of coin or trading card, or a speci�c laptop or electronics component

� but even then can have a di¢ cult time controlling for confounding di¤erences between

listings, such as the identity of the seller or the exact quality of the item. Field experiments

help address these confounding issues, but can have the drawback of small sample size. More

importantly, both approaches, even when executed expertly, can lead to narrow results that
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may be speci�c to a particular item or time window. Because one of the most interesting

aspects of markets like eBay is their scale and diversity, an empirical approach that entirely

strips away these features, rather than exploiting them, is somewhat disappointing.

Several studies take an approach that is closer to the one we propose. Ostrovsky and

Schwarz (2010) study a platform-wide �eld experiment in which reserve prices in Yahoo!�s

search advertising market were changed for thousands of individual keywords. Elfenbein,

Fisman and McManus (2010) de�ne seller experiments in a way that is almost the same as

in this paper in studying the e¤ect of charity contributions by eBay sellers, although they do

not remark on either the prevalence of duplicate listings or the opportunity for using them

as a broader research tool.

The remainder of the paper proceeds as follows. Section 2 describes the salient features

of eBay�s platform, the use of duplicate listings and �experiments�by retail sellers, our data

construction, and summary statistics. Section 3 uses the experiments data to analyze the

issues described above: price variability, excessive bidding, reserve and �buy now�prices,

and shipping fees. Section 4 compares the use of seller experiments with alternative empirical

approaches; we illustrate the possible endogeneity that can confound observational studies, as

well as the substantial heterogeneity across product categories that can threaten the external

validity of narrow studies. In Section 5 we conclude by discussing various explanations for

why sellers vary sale parameters and engage in the type of experimentation we exploit. A

lengthy appendix provides many additional analyses, addressing potential concerns about

our speci�c de�nition of a seller experiment used in the paper. We replicate all the results

using a range of samples and matching approaches, showing that the results are highly

consistent across alternative speci�cations and de�nitions of an experiment.

2 Background, Data, and Empirical Strategy

2.1 Background and Empirical Challenge

Our analysis focuses on the e-commerce platform eBay, which in 2009 (the year of our data)

had approximately ninety million active users and $57 billion in gross merchandise volume.
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The eBay marketplace includes large and active sub-markets for collectibles, electronics,

clothes, cars, tickets, toys, books, jewelry and art, both new and used. Products are o¤ered

by both consumer sellers and professional retailers. The size and diversity of the platform,

and the relative ease of gathering data and running �eld experiments, has captured signif-

icant attention from researchers, who have used eBay both as a prototype for large online

markets, and as a laboratory to investigate traditional questions about consumer behavior,

competition and market design.1

A key challenge in this work, and more generally in using the data becoming available

from other large and diverse online markets, is heterogeneity. For example, the items sold on

eBay range from used cars o¤ered for tens of thousands of dollars to �Silly Bandz�o¤ered

for less than two dollars. Some sellers do millions of dollars in annual sales; others sell

just one item. Primarily for this reason, researchers often have focused on very narrowly

de�ned product categories, such as speci�c pop-music CDs (Nekipelov, 2007), collectible

coins (Bajari and Hortacsu, 2003), Pokemon cards (Katkar and Reiley, 2006), or board

games (Lee and Malmendier, 2011).

Sellers also have considerable �exibility and low cost in varying their sales strategy.

Among other things, sellers on eBay can choose their listing title and thumbnail picture, a

longer item description for consumers to study after clicking on their listing, and their sales

mechanism. Traditionally, most sellers have used ascending auctions. For an auction sale,

the seller can choose the auction duration, the start price, whether to specify an additional

secret reserve price, and whether to o¤er a �Buy It Now�(BIN) feature that allows bidders

to preempt the auction and purchase the item at a �xed price before an initial bid is made.

Nowadays, many sellers also o¤er items for sale at regular posted prices; indeed, posted price

transactions account for more than half of eBay�s sales volume. It is easy for sellers to vary

all these parameters as well as others such as the shipping fee.

As an illustration, Figure 1(a) shows the eBay listings displayed following a search for

�taylormade driver�(a type of golf club).2 Within this narrow product category, it is already

1Bajari and Hortacsu (2004) and Hasker and Sickles (2010) review dozens of papers using data from eBay.
Ambrus and Burns (2010) provides a recent state-of-the-art theory of rational bidding behavior.

2Consumers shopping on eBay �nd items either by typing in search terms or browsing through di¤erent
categories of products. Products are displayed as listings similar to Figure 1(a), and can be sorted in various
ways. The default sort is based on a relevance algorithm. Consumers then click on individual listings to see
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apparent that listings vary widely. The products themselves are di¤erentiated (men�s clubs,

women�s clubs, di¤erent models, sizes, new and used), as are the sellers (some are �top-

rated� for instance) and the sales mechanisms (posted prices, auctions, BIN auctions, all

with di¤erent end times and current prices), and shipping arrangements and fees. Even

a quick perusal of the �gure should make it clear that attributing patterns in the data to

speci�c strategies or choices of sales mechanisms, even for a narrowly de�ned set of products,

is a challenge.

To circumvent this concern, our empirical strategy is to identify cases in which particular

sellers o¤ering particular goods �experiment� by varying their pricing or sales strategies.

This means focusing on more professional retailers who are using the platform to sell new

consumer products, rather than on one-time sellers or those o¤ering unique or used goods.

Retailers who want to sell multiple quantities of an item have several listing options. A

common approach is to run auctions with staggered end dates, posting additional auctions as

old auctions expire. It is also possible, but highly unusual, to run multi-unit auctions. Sellers

using �xed prices often post multi-unit listings that can be renewed over time, although some

place multiple simultaneous listings. For instance, Figure 1(b) shows listings from a seller

(with the user name budgetgolfer) who on September 12, 2010 had posted 31 listings for a

particular TaylorMade driver. Of these listings, 20 were auctions that were scheduled to end

in the next week, and 11 o¤ered the driver for a �xed price of $124.99.

Apart from o¤ering di¤erent sales mechanisms, sellers such as budgetgolfer may vary

pricing parameters across concurrent sales or over time. For example, in Figure 1(b) the

displayed listings have two di¤erent shipping fees (either $7.99 or $9.99). Our analysis relies

on the fact that sellers frequently take advantage of this ability to vary prices of fees, often

by signi�cant amounts, creating variation that can illuminate features of market demand

and consumer behavior.

2.2 Experiments data

We construct our data from the universe of eBay.com listings in 2009, excluding only auto

and real estate listings which have a somewhat di¤erent institutional structure. We look for

more detailed item information, place bids, or make purchases.
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sellers o¤ering particular products who post multiple listings during the year, potentially

varying their pricing or sales strategy. Because most eBay listings do not include a well-

de�ned product code such as a ISBN or SKU number, we use the listing title and subtitle

to identify products.

Speci�cally we identify all sets of eBay listings that have an exact match on four variables:

seller identi�cation number, item category, item title and subtitle. For example, the listings

in Figure 1(b) are in the same set, along with other identically matched listings that were

active before or after the day of the screenshot.3 We drop single listings that have no match,

which still leaves us with over 350 million listings, grouped into 55 million matched sets. We

refer to each set as a seller experiment.

Our empirical strategy relies on variation within experiments in sale parameters and

outcomes. In this paper, we focus on auctions (rather than posted price listings), which

leads us to re�ne the data in several ways. In particular, we restrict attention to experiments

that include at least two auction listings, at least one successful posted price listing, and for

which the listings have a non-empty subtitle. The �rst restriction is necessary to have

within-experiment comparisons. The second, as we explain below, provides a useful way to

normalize prices in order to make experiments comparable and compute average treatment

e¤ects. Finally the third restriction allows us to reduce the size of the dataset to make it

manageable, while focusing on more professional retailers who tend to use subtitles.

Selecting experiments according to these criteria leads to our baseline dataset: 244,119

experiments with a total of 7,691,273 listings. The data include cases in which a seller posts

multiple overlapping auctions and in which a seller runs multiple non-overlapping auctions, as

well as combinations thereof. Table 1 presents summary statistics, along with corresponding

statistics for the entire �seller experiments� data and for a large random sample of eBay

auction listings. In the baseline data, just over a third of the listings result in a sale, with an

average price around $67. Sold items obtain, on average, 6.4 bids from 3.6 unique bidders,

and about a third of sales are made via a �Buy It Now�(BIN) option.

3Note that by using title and subtitle to identify items, we exclude cases in which a seller might have
o¤ered the same item with varied listing titles. On the other hand, it is also possible that we might include
certain cases in which a seller o¤ered di¤erent items under the same title or used di¤erent photos for the
same item, although we manually checked a random sample of the data and did not �nd any examples of
this, so we suspect that such instances are not common.
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By construction, the items in our sample are less �unique�and idiosyncratic than many

items sold on eBay, and the sellers relatively professional. This is re�ected in Table 1 in the

fraction of items in the baseline data that are �catalogued,� the experience of the sellers,

and their tendency to use �sophisticated�sale strategies such as a BIN option. It also shows

up in the distribution of items across product categories. Relative to the rest of eBay, our

sample includes more cell phones, video games and electronics, and less clothing, jewelry and

collectibles. Essentially we are looking at professional and semi-professional retailers selling

production goods, while eBay as a whole also includes a vibrant consumer-to-consumer

market.

Table 2 provides additional summary statistics at the experiment level. The average

experiment in our baseline data has 32 auction listings, and about 70 percent of the exper-

iments have at least one sale. Figure 2 shows the distribution of experiment sizes in more

detail. Roughly 45 percent of the experiments have four listings or fewer, but there are a

substantial number of (much) larger experiments. The typical experiment includes multiple

listings that occur over a relatively short time period, just under two months on average.

The analysis below uses variation in sale parameters within experiments to estimate their

e¤ect on auction outcomes, mainly the probability of successful sale and the expected price,

and in some cases the price distribution. The strategy relies on the fact that within matched

sets of listings, what we call experiments, sellers do indeed vary the available sale parameters.

Table 3 shows that, in fact, the amount of variation is dramatic. Speci�cally, Table 3 reports

the number of experiments that contain variation in each of several di¤erent sale parameters

of interest. As can be seen in the �rst column, of the 244,119 experiments in the baseline

sample, more than 140,000 have variation in the auction starting price, more than 17,000

have variation in the shipping fee, more than 90,000 have variation in the BIN option, and

more than 92,000 have variation in the auction duration.

The remaining columns of Table 3 show that we can �nd substantial numbers of experi-

ments with variation in a given sale parameter even if we condition on other sale parameters

being held �xed. This is reassuring as it suggests that we may be able to isolate treatment

e¤ects of one variable of interest at a time. We return to this in the context of speci�c analy-

ses below. For now the main take-away is that even as we restrict the sample to pinpoint
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speci�c types of variation, the scale of the data means that we can still �nd thousands of

experiments that are potentially informative.

2.3 Empirical Strategy

Our empirical analysis relies mainly on �xed e¤ects regressions. Let i index experiments, t

index listings within experiments, and zit denote a listing parameter whose e¤ect we want

to know. For a given outcome of interest yit, we estimate regressions of the form:

yit = �i + f (zit) + "it; (1)

where �i is an experiment �xed e¤ect and "it is an error term assumed to be mean-independent

of zit within experiments.

In principle, we could estimate separate treatment e¤ects for each experiment, but there

are at least two reasons to pool experiments as in our speci�cation. First, the size of most

experiments is small, so pooling provides much greater statistical power. Second, it seems

more interesting to estimate an average treatment e¤ect across a large group of experiments

rather than thousands of distinct e¤ects for individual items. That being said, we break out

estimates by item value, and in Section 4, discuss heterogeneity across item categories.

We rely on three assumptions to estimate average treatment e¤ects. The �rst, which we

maintain throughout the paper, is that the idiosyncratic e¤ects of each experiment denoted

by �i enter in an additive and separable way. The second, which is a bit more subtle, is a

choice of price units. The experiments in our data involve items of very di¤erent value. If

zit is the auction reserve price, a one dollar change might have a large e¤ect for a $5 item,

but little e¤ect for a $500 item. We address this by creating a reference value for each item,

and using it to normalize item prices.

Speci�cally, we de�ne each item�s reference value vi to be the average price across posted

price transactions of that item.4 Then when we analyze the e¤ect of, say, the auction reserve

4Recall that in selecting experiments into our baseline sample, we required each experiment to have at
least one successful posted price listing. Note that we use posted price transactions and not listings so that
the reference value is not a¤ected by excessively high posted prices that never sell. We also experimented
with modi�cations to this de�nition, for example using the median transaction price or trimming outliers
before taking averages, and the results (not reported) remain virtually the same.
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price, we work with the normalized reserve price znit = zit=vi rather than the dollar reserve

price zit. Similarly, when we analyze the e¤ects of auction parameters on the �nal auction

price pit, we work with the normalized price pnit = pit=vi. A more general alternative would

be to estimate treatment e¤ects of the form f (zit; vi) rather than f (zit=vi) but a rather

remarkable �nding below is that there seems to be little gain from doing this.

Our �nal assumption is that sale parameters within each experiment are not correlated

with factors that bear directly on auction outcomes. Here one might raise several concerns.

We de�ne an experiment to be all listings of a given item by a given seller over a period of

up to a year. If for example, demand conditions vary over the year (e.g. due to seasonality

or shifts in demand for the item) and sellers respond to this variation, our estimates would

su¤er from standard endogeneity bias. Alternatively, if the seller had only one copy of the

item, but listed multiple times because her initial listings didn�t sell, our estimates might be

tainted by forms of selection bias.

A natural way to address these concerns and many others is to vary the de�nition of an

experiment. For instance, to address the former concern, one can re-de�ne an experiment

to involve a narrow time window or even concurrent listings. To address the latter, one can

restrict attention to experiments with a large number of listings. A virtue of our general ap-

proach is that it is straightforward to replicate our estimates using alternative speci�cations

or de�nitions of an experiment that might reveal biases in the main results. Because the

number of possible exercises is in�nite, while reader attention is not, we have written a long

appendix that replicates all the results in the paper for a range of di¤erent samples, speci-

�cations and experiment de�nitions. The results remain strikingly similar across them all.

For this reason, the main text proceeds in straight-ahead fashion, and we invite interested

readers to inspect the appendix.

3 Learning from Seller Experiments

In this section, we use the experiments data to analyze selective questions about auction

design, consumer behavior, and market outcomes. Because a primary goal is to illustrate

the potential power and scope of our approach, we intentionally present several di¤erent
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exercises, each relatively brie�y. For the same reason, our choice of topics is skewed toward

those previously studied with eBay data, allowing us to compare and contrast our results. In

ongoing work (Einav et al., 2011), we hope to show how seller experiments can be combined

with other theoretical and empirical approaches to explore more fully some of the �ndings

about consumer preferences and draw out the implications for optimal seller and market

responses.

3.1 Price Dispersion and �Excessive Bidding�

One of the initial hypotheses about internet commerce was that low search costs should lead

to low price dispersion. Subsequent studies, however, including Bailey (1998), Brynjolfsson

and Smith (2001), Baye, Morgan and Scholten (2004) and Ellison and Ellison (2009), have

found substantial dispersion even in structured price comparison settings. And recent work

by Lee and Malmendier (2011) provides even more striking evidence on consumer search.

They present an episode on eBay in 2004 in which a particular board game was available from

two sellers for $129.95, while other sellers o¤ered the game for auction. Lee and Malmendier

�nd that auction prices exceeded the posted price more than 40 percent of the time, often

by 10 dollars or more. They argue that this is inconsistent with rational search behavior and

that a signi�cant number of consumers are irrationally over-bidding.

A complicating factor in existing studies is that prices are compared across retailers.

This makes it di¢ cult to disentangle di¤erences in retailer attractiveness from frictions in

consumer search. Our experiments approach allows us to estimate price variability across

auctions by a single seller, eliminating variation driven by seller di¤erences. Moreover, we can

construct estimates for hundreds of thousands of items across a range of categories and for

narrower or wider time windows. In addition, because a substantial fraction of the auctions

in our data take place in the presence of a concurrent posted price, we can examine the Lee

and Malmendier over-bidding hypothesis, expanding from a single item sold by heterogeneous

sellers to hundreds of thousands of items sold by �xed sellers.

The coe¢ cient of variation, or the standard deviation of auction prices divided by the

mean price, provides a basic measure of price dispersion across a set of sales. We compute it

for each experiment, and for a �ner partition that divides the listings in each experiment by

10



calendar month. Table 4 shows, regardless of whether we look at broader or narrower time

windows, that there is considerable dispersion in auction sale prices holding both the item

and seller �xed. The average coe¢ cient of price variation across experiments is 0.11 (0.10

with the �ner partition of each experiment). If we broaden our sample to include groups

of duplicate auction listings with no matching �xed price sale, the average climbs to 0.15.

There is notably less variability for experienced sellers, or when the seller uses a BIN option

or a higher reserve price. For the broader sample of experiments, there is also a surprising

consistency in price dispersion across product categories.

Next, we compare observed auction prices in our data to posted prices of the same object.

Recall that we de�ned an item�s reference price or �value�vi to be the average price across

posted price sales of the item by the same seller. For a successful auction with price pit,

de�ne pit=vi to be the relative price. Figure 3(a) plots the distribution of relative auction

prices for items with values less than $10, between $10 and $30, between $30 and $100, and

between $100 and $1,000. Our data also include a few goods that sell for posted prices above

$1,000, but they are su¢ ciently rare that we drop them to focus the analysis.

Looking across all the auctions, the average relative price is around 0.84, and the median

is around 0.87. So around half of the auction sales we observe occurred at a discount of 13

percent or more relative to the posted price. We also observe occasions when the auction

price exceeds the reference price, as in Lee and Malmendier (2011). But the frequency of

this happening is relatively low. Less than 20 percent of auctions sold for above the posted

price, and most of these �excess bidding�episodes involve very small overpayments. To see

this, Figure 3(b) plots the analogous distribution of pit � vi; the absolute (dollar) di¤erence

between the auction and reference price. Of the 1,178,855 successful auctions in our sample,

only about 5 percent result in prices more than $10 above the item�s posted price.

To be consistent with the subsequent analysis in the paper, Figure 3 compares auction

prices to the average posted sale price of the same item over the course of the year. If

one is looking for over-bidding, a more apt comparison might be to a concurrent posted

price o¤ered by the same seller, should one exist. In the appendix we repeat the analysis,

limiting attention to auctions for which there was a matched posted price o¤er available at

the auction close (when most bidding occurs). Our data includes 98,536 successful auctions
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that meet this criteria. Interestingly, when we replicate Figure 3 for this smaller sample,

the results are nearly the same, with the vast majority of auction sales occurring below the

posted price and very few meaningfully above (see Appendix Figure G.3).

To summarize, we have used hundreds of thousands of matched auction listings to doc-

ument non-trivial price variation across sales of identical goods by identical sellers. The

same approach indicates that auction prices exceed their matched posted price rather infre-

quently, and on average are well below. The latter �nding suggests that consumers who pay

the posted price, rather than getting a discount by avoiding auction fever, are paying extra

for the convenience of an immediate guaranteed purchase. We explore this issue, and the

implications for sellers in deciding whether to o¤er items by auction, posted price or both

in Einav et al. (2011).

3.2 Auction Design Parameters

Sellers o¤ering goods by auction must decide on the duration of the auction, the ending

time, the reserve price, whether the reserve price is known to bidders, and in the speci�c

case of eBay, whether to o¤er buyers the option to �buy now�at a price that disappears

when the �rst bid is made. Although auction theory and targeted empirical studies have

had a considerable amount to say about all these aspects of auction design, the use of �seller

experiments�provides an opportunity to analyze the e¤ect of auction design parameters in

a controlled fashion, in large data samples, across a wide range of items.

3.2.1 Auction Starting Price

Variation in auction start prices (or reserve prices) o¤ers a chance to test some basic principles

of auction theory. In standard private value auction models, an increase in the reserve price

lowers the probability of a successful sale, but raises the price conditional on sale. The price

increase occurs because increasing the reserve price from s to s0 either eliminates sales that

would occur at prices between s and s0 or forces their price up to s0. Conditional on the

auction price increasing above s0, the distribution of sale prices is the same whether the

reserve price was s or s0. In contrast, models that allow endogenous entry or common values
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can allow more nuanced e¤ects of reserve prices.

Past studies of eBay reserve prices have reached di¤erent conclusions about their e¤ect.

Ku et al. (2006) found that in contrast to the standard auction theory model, lower start

prices increased both the odds of sale and the price conditional on sale. Their explanation is

based on escalating commitment. Lower start prices attract buyers who become committed

to the auction and continue to bid aggressively as the price rises. Simonsohn and Ariely

(2008) found that while lower start prices did not necessarily increase the price conditional

on sale, they increased the price conditional on it rising above the higher start price �again

consistent with the �bidding frenzy�theory. In contrast, other researchers (Kamins et al.,

2004; Reiley, 2006; Lucking-Reiley et al., 2007) found that lower start prices generally led to

lower prices conditional on sale, without testing the upper tail.

To study the e¤ect of auction start prices, we look for experiments with variation in

the start price. There are 142,653 such experiments in our baseline sample. To limit the

variation in other auction parameters, we reduce the sample to focus on listings with free

shipping, no secret reserve price, and no BIN option. This leaves 19,777 experiments with

start price variation, encompassing a total of 494,170 listings, or about 25 listings on average

per experiment. We maintain our strategy of normalizing both start and sale prices by the

item�s value, which facilitates comparison across experiments.

Table 5 shows the variation in start prices in the data. The top panel presents the overall

variation in (normalized) start prices by price category. The bottom panel summarizes

the within-experiment price variation. For the latter, we �nd the minimum and maximum

(normalized) start price for each experiment, and cross-tabulate the experiments according

to these numbers. There is stunning variation in the reserve prices across auctions of the

same item. For instance, of the 3,262 experiments that contain at least one very low start

price (pnit = pit=vi < 0:05), 1,401 (43 percent) have at least one listing with a start price of

pnit > 0:85, and several hundred have at least one start price of p
n
it > 1. So not only can we

�nd thousands of experiments with some start price variation, many sellers vary their start

price dramatically.

We use this variation to estimate �xed-e¤ects regressions where the dependent variable

is either an indicator for a successful sale or the price conditional on sale. We allow the start
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price to have a �exibly estimated non-linear e¤ect by using a set of indicator variables for

di¤erent start price levels. The regression results are presented in Table 6, and in Figure 4.

The top panel of Figure 4 plots the e¤ect of the (normalized) start price on the probability

of sale. A sale is almost guaranteed when the start price is very low, but the sale probability

drops to less than 0:2 for high start prices. The �gure shows separate sales curves for each

of our four value categories. These come from separately estimated regressions, so that each

plot is an average sales curve for a set of items of roughly similar value. The sales curves are

remarkably similar across price categories, suggesting an interesting scaling property: the

probability of sale appears to depend largely on the start price relative to the item�s value,

and not so much on the value or start price per se.

The second panel of Figure 4 plots the e¤ect of the auction start price on the �nal sale

price. The relationship is estimated only for auctions that result in a sale, and again the

(normalized) price curves are remarkably similar across price categories. For start prices

that are below 0.6 as a fraction of the item�s posted price value, the expected auction price

conditional on sale is generally around 0.8. The �at price curve for low start prices suggests

that competition among buyers keeps auction prices from slipping very far on average even

if the start price is very low. For start prices above 0.6, expected prices conditional on sale

are higher (although the probability of sale is also lower, per the results in the top panel).

The most obvious explanation for why the expected sales price increases at higher reserve

price levels is mechanical. When the reserve price is low, many auctions may result in prices

of 70-90% of the posted price value. If the start price is already at the upper end of this

range, the sale price distribution is truncated, eliminating low price sales. Recall that in

the standard private value auction model, however, increasing the start price from s to s0

does not a¤ect the distribution of auction prices above s0. Alternative theories of �escalating

commitment�or �bidding frenzies�suggest that in contrast a higher start price may reduce

the probability of very high sale prices. To assess this, Figure 4(c) plots for various start

price levels the (unconditional) probability of the auction ending at a (normalized) price of

at least x, for selected values of x. That is, it shows the upper tail of the price distribution

for di¤erent start price levels. Interestingly, the upper tail of auction prices is heavier, and

very high auction prices more likely, when sellers use a very low start price rather than a
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moderate or moderately high one.

3.2.2 �Buy It Now�Option

A novel feature of eBay�s marketplace is that for a small fee of 5 to 25 cents, sellers can

enrich a standard auction by o¤ering a �Buy It Now�(BIN) option. The BIN option is a

posted price at which a buyer can short-circuit the auction with an immediate purchase; it

disappears as soon as the item receives a quali�ed bid, in which case a standard auction

ensues. In a standard private value auction model with symmetric bidders, sellers would

not want to o¤er such an option, because a lower value bidder can preempt one with higher

value, reducing the expected price. In practice, however, a BIN option may attract bidders

who value immediate purchase, or prompt early bidding that escalates. Studies by Stadi�rd

et al. (2004), Ackerberg et al. (2006), and Anderson et al. (2008) suggest that o¤ering a BIN

option on eBay can increase seller revenue. For example, Ackerberg et al. (2006) analyze

Dell laptop auctions and �nd that using a BIN option increases expected seller revenue by

$29.

The seller experiment approach allows us to provide large-scale evidence that illuminates

the di¤erent stories. We start by identifying the 90,404 experiments in our baseline sample

that have variation in the BIN price, or in whether the BIN option is used at all. To

avoid confounding the e¤ects of the BIN option with other auction parameters, we restrict

attention to listings with free shipping, no secret reserve price, and a start price that is

e¤ectively non-binding (speci�cally listings with a value of at least $10 and a start price of

less than $1). This leaves us 3,239 experiments with BIN variation, with a total of 123,757

listings, or on average 38 listings per experiment.

Table 7 shows the variation in the BIN price, and parallels Table 5. We again normalize

both sale and BIN prices by item value to facilitate comparison across experiments. The top

panel of Table 7 shows the overall variation in (normalized) BIN price for each price category.

The bottom panel summarizes the within-experiment BIN price variation. Again, we observe

substantial variation in the (normalized) BIN price, both within and across experiments. We

use this variation to estimate the e¤ect of BIN prices, using an analogous strategy to the

one employed in the previous section.
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Table 8 and Figure 5 report the results. Because we have focused attention on auctions

with essentially non-binding start prices, almost all listings (98 percent) in the resulting data

set end in a successful sale. Therefore, we put aside the question of whether the item sells

and instead ask whether it sells via the BIN option or via the standard auction mechanism.

The top panels of Table 8 and Figure 5 report the results. The probability the items sells at

the BIN price is relatively low, and falls further at high BIN prices. The second panel shows

how the BIN price a¤ects the �nal selling price (regardless of whether the item was sold via

the BIN option or standard auction). The plot allows us to somewhat re�ne earlier �ndings

because it appears that relatively low BIN prices in fact reduce seller revenue, while BIN

prices that are similar to the item value have relatively little e¤ect, and only �over-priced�

BIN options generate incremental revenue for the seller.

A more subtle question is whether o¤ering a BIN option at a given BIN price a¤ects

the subsequent sequence of bids (and the sale price) in cases where the BIN option is not

exercised. Such an e¤ect might be expected if the presence of a BIN price helps anchor buyer

beliefs about an item�s value. In the bottom panel of Figure 5, we show for di¤erent BIN

levels, the probability of obtaining a sale price below certain thresholds, that is, the lower

tail of the cumulative price distribution. The likelihood of receiving a very low price below

70% of the reference value is nearly the same for both high and low BIN prices as it is with

no BIN price. There is a modestly positive, although not very dramatic, e¤ect of o¤ering a

high BIN price in terms of reducing the likelihood of a sale in the 70-100% range, consistent

with the overall higher revenue from these sales.

3.2.3 Other Aspects of Auction Design

The seller experiments data provides a rich laboratory to explore the e¤ects of other auction

design parameters. While we hesitate to overwhelm the reader, we brie�y mention a few

that are illustrative and relate to earlier work.

A number of studies have found that longer auctions seem to generate higher revenue

(Lucking-Reiley et al., 2007; Haruvy and Popkowski Leszczyc, 2010), or have analyzed the

e¤ect of ending auctions on di¤erent days of the week or at di¤erent times of the day (Si-

monsohn, 2010). Using a similar empirical strategy to the one employed so far, we identi�ed
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92,266 experiments with variation in auction duration, 129,955 experiments with variation

in the ending time, and 126,027 experiments with variation in the ending day. Our results

suggest that overall the e¤ect of the auction duration is small. On average, we �nd that

longer auctions with a BIN option are slightly more likely to succeed while auction duration

makes little di¤erence for the sale probability of standard auctions with no BIN option. The

e¤ects are not large, however, and are less robust than most of our other �ndings. We also

�nd little e¤ect of the day of the week on which the auction ends, and we con�rm existing

results that auctions that end late at night (midnight to 5am) perform slightly worse.

Another issue that has attracted some debate is the e¤ect of keeping auction reserve

prices secret. On eBay, the seller sets a public reserve price in the form of the auction start

price we analyzed earlier, but (for an additional fee) can also set a secret reserve price that is

not known to potential bidders. When a sellers sets a secret reserve price, bidders know that

it exists, but learn its level only if bidding in the auction exceeds it. Various factors might

make a secret reserve price more or less pro�table than a public reserve price. For instance,

Katkar and Reiley (2006) auctioned 100 Pokemon cards, half with a public reserve price of

30% of the item value and half with a secret reserve of 30% of the item value (and e¤ectively

a zero starting price). They found that secret reserve prices resulted in lower revenue.

To investigate this question using our data, we match listings of the same item into

groups that have similar levels of public and private reserve prices (speci�cally, we do this

in multiple ways: either by matching listings that have exactly the same reserve price, or �

to increase statistical power �by matching listings with reserve prices within 10% of each

other). Because the use of secret reserve prices has been discouraged by eBay and is not

very popular (less than one percent of eBay listings use a secret reserve, and only 0.60%

in our baseline sample), our power is much lower than in previous exercises. Nevertheless,

we do �nd 403 matched groups of listings, so we can estimate the e¤ect of using a secret

reserve price versus a public reserve price of the same magnitude. Our results indicate that

in this sample, there is not much di¤erence in auction outcomes between the public and

secret reserve price sales.
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3.3 Shipping Fees

Shipping arrangements are an important part of internet commerce, and internet retailers

frequently compete to o¤er free or expedited shipping. At the same time, one frequently hears

the idea that shipping fees can act as a hidden price that buyers do not fully internalize

in making shopping decisions. Tyan (2005), Hossain and Morgan (2006), and Brown et

al. (2010) all have studied data from eBay and found that increases in shipping fees can

increase total seller revenue (inclusive of the shipping fee), suggesting that a dollar increase

in the shipping fee does not lead bidders to reduce their bids by a full dollar to compensate.

Seller�s can also have another reason to favor shipping fees: until recently, eBay commissions

(currently 9% for auction listings) were not applied to the shipping component but rather

to the pre-shipping fee sale price.

We are interested in whether buyers internalize shipping fees. To analyze this, we follow

the empirical strategy we have been employing throughout, and select auction experiments

from our baseline data that have variation across listings in the shipping fee. To avoid

complications, we consider only listings with �at shipping fees that are independent of the

buyer location.5 The resulting data contains 117,202 listings grouped into 6,655 experiments,

with an average of 18 listings per experiment. A large fraction of these listings o¤er free

shipping (a feature that is encouraged by eBay). The top panel of Table 9 presents the

distribution of shipping rates across these listings, and the bottom panel of Table 9 presents

the within-experiment variation in shipping fees. In parallel with our earlier analyses, we see

sellers varying their choice of shipping fee considerably for given items.

Table 10 reports results of sale probability and transaction price (conditional on sale) for

several di¤erent subsamples. As the top panel of the table shows, the e¤ect of shipping fees

on the probability of sale is minimal, so we focus our attention on the price e¤ect, which

we analyze in the bottom panel of the table. Unlike our earlier analysis, we choose to run

the price regression without normalizing by the item value, as this helps in facilitating the

quantitative interpretation of the estimated e¤ects. Using this speci�cation, a coe¢ cient of

5Five percent of the listings in our baseline data are associated with a shipping fee that depends on the
location of the buyer. To simplify, our analysis focuses on the remaining 95%. Further excluding listings with
contradictory shipping information in the data leaves us with 89% of the listings that have a �at shipping
rate.
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zero on shipping rate implies that bidders respond to shipping fee changes one-for-one, so

that a higher shipping fee is fully canceled out by a lower sale price, and the overall e¤ect

on total price (sale price plus shipping) is zero. As Table 10 indicates, our estimates suggest

a positive coe¢ cient with a magnitude of about 0.2-0.3, suggesting that only 70-80 percent

of the shipping fee is translated into �nal price.

In addition, we �nd a distinct e¤ect at zero. Free shipping is associated with an average

price increase of about $3, with the e¤ect being greater (in absolute terms) for more expensive

items. This distinct e¤ect of free shipping is likely to be a combination of buyers�response

to shipping being free (Shimpinier et al., 2007) as well as to eBay�s strategy to encourage

free shipping by prioritizing such listings in the search results. Figure 6 provides a graphical

illustration of our regression estimates. As shown in the �gure, our estimates suggest that

low shipping fees on eBay, of roughly less than $10, are suboptimal. Sellers could increase

pro�ts by either reducing the shipping rate and making it free, or by increasing the shipping

rate and bene�ting from the fact that bidders would only partially internalize this increase.

An alternative way to get at the e¤ect of shipping fees is to exploit the trade-o¤ between

an ex-ante start price and an ex-post shipping fee. A textbook economic analysis would

suggest an equivalence. Selling an item with free shipping and a start price of $10 should

be identical to starting the auction at zero and charging a $10 shipping fee. To investigate

whether this obtains in practice, we identi�ed duplicate listings with same inclusive start

price, that is, the same sum of start price and shipping fee. We then asked whether the

division into shipping fee and start price mattered. We found 279 such experiments in our

baseline sample (and many more where the inclusive start prices were within a 10 cent or

10% range). The conclusions from this exercise are qualitatively similar to what we have

already found: increases in shipping fees reduce the sale price, but less than one-for-one.

4 The Advantage of Seller Experiments

Seller experiments provide a simple way to isolate variation in a range of sale attributes,

providing the opportunity to use large and diverse data to measure various parameters of

interest in a scalable fashion. But does the approach convey any particular advantages
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relative to the many other creative strategies that economists use to estimate treatment

e¤ects? The two most obvious alternatives to our approach in a setting such as eBay are

cross-item observational comparisons that attempt to control for confounding sale attributes,

or alternatively, the use of �eld experiments in which the researcher lists items and varies

di¤erent sales parameters.6 In this section, we illustrate some potential bene�ts of seller

experiments relative to these alternatives.

4.1 Relative to Observational Data

The key concern with observational data in a setting like eBay is the heterogeneity of the

items that are being listed for sale and the sellers doing the listing. This makes it di¢ cult to

specify an appropriate set of control variables to yield apples-to-apples comparisons, partic-

ularly when many item attributes such as the listing title and item photograph are relatively

�unstructured.�We use a variant of the start price analysis from the previous section to

illustrate this point. Our illustration entertains what researchers might have done if they

had access to the same data, but were not able to group listings into seller experiments.

Absent such a grouping, a researcher presumably would have tried to de�ne comparable sets

of products in some other way.

One natural way to group items is to rely on eBay�s product categories. eBay classi�es

products using a hierarchical category structure. At the highest level, listings are partitioned

into almost 35 �meta categories,� such as electronics, collectibles, baby items, and so on.

At the �nest level, products are partitioned into 37,636 �leaf categories,�such as �iPod and

MP3 players�and �developmental baby toys.�Thus, one way a researcher could analyze the

e¤ect of start price is to compare listings within a given leaf or (less ideally) meta category.

We examine this strategy by running our start price exercise in three di¤erent ways:

grouping listings in our baseline sample according to their meta category, their leaf category,

and by seller experiment. In the former two cases, we average item reference values within

6Another possibility might be changes on the platform or the surrounding environment that act as an
instrumental variable by encouraging sellers to shift sale parameters, or speci�c institutional features that
give rise to regression discontinuity or other quasi-experimental designs (see, e.g., Choi, Nesheim, and Rasul,
2011). These approaches have been relatively rare and would appear best-suited for examining one particular
sale parameter at a time, rather than being easily scalable.
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each category to create a category-speci�c reference value, as if all items within the category

were perfectly comparable. We then use this average value to normalize the start price for

each listing in the category, and re-estimate the e¤ect of start price on an indicator for a

successful sale and the �nal (normalized) price conditional on sale, including �xed e¤ects for

the relevant item groupings, but also omitting the �xed e¤ects for comparison. For simplicity,

we report results only for the probability of sale, and not the price conditional on sale.

We report the results in Figure 7, which plots the di¤erently estimated sales curves as

a function of start price. The estimates for which we group items by (either meta or leaf)

category are dramatically di¤erent from what we obtain by grouping identical listings into

experiments. To understand the di¤erence, we can interpret the solid black curve in Figure 7

as an average estimate of how the sale probability changes with the start price for a �xed item

(and seller). In comparison, the solid grey curves are constructed so that the composition of

the items o¤ered at di¤erent start prices is not the same, although they are all in the same

product category. The di¤erences in the estimated sales curves indicate that items o¤ered

at very low and very high start prices are generally more appealing (in the sense of having

a higher probability of sale) than those o¤ered at intermediate start prices.7

Two other patterns in Figure 7 are worth noting. First, the inclusion of �xed e¤ects in

all three analyses makes very little di¤erence. That is, it appears that � at least for this

analysis � the e¤ect of grouping listings into eBay product categories or into sets of identical

items is captured mostly in the construction of the reference value by which we normalize

the start price. Second, it is interesting to note that although the meta category level is

an extremely crude way to categorize products while the leaf category level is an extremely

precise classi�cation, the results obtained from these two exercises are very similar, and

both are dramatically di¤erent from the ��xed item and seller�grouping we rely on using

the experiments approach.

Overall, the analysis points to a considerable problem of accounting for heterogeneity in

large diverse markets such as eBay. This is presumably one reason researchers working with

data from eBay or other online markets typically have restricted attention to a very narrowly

7This potentially makes sense because as we point out in Einav et al. (2011), either very low or relatively
high start prices appear to be desirable from the standpoint of optimal pricing, so the sellers who use these
types of start prices more often may be �better�sellers whose items are more likely to sell.
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de�ned groups of products, such as particular pop-music CDs, collectible coins, Pokemon

cards, or board games. A narrowly drawn set of products may (or may not) mitigate the

problem just identi�ed, but even if it does as in the case of a researcher-conducted experiment,

it raises the concern that the results apply only to a narrow context. It is to this separate

concern that we now turn.

4.2 Relative to Field Experiments

The same ease of listing and selling items that makes seller experiments so prevalent on

eBay and other online platforms also makes these settings appealing for researcher-initiated

�eld experiments. Administering and funding experiments is costly, however, so although

researcher experiments are common, they are typically quite small in scale and scope, focus-

ing on one of a few items, in limited quantity, and varying just one or a few sale parameters

to identify a very limited number of treatment e¤ects.

Relative to such exercises, the key advantage of seller experiments is scale and scope.

While, naturally, seller experiments are not as controlled as �eld experiments, we have shown

that it is possible to identify millions of seller experiments conducted just in a single year on

eBay, and that these experiments cover a wide range of product categories, price levels, and

sale characteristics. The scale make statistical power a non-issue, thus signi�cantly reducing

the possibility of both type one and type two errors. The scope allows researchers to isolate

a wide range of e¤ects, and also to assess whether an e¤ect observed in a particular product

category is broadly representative, or if there is substantial heterogeneity across product

categories or price levels in the e¤ects of di¤erent sales strategies.

To illustrate this last point we again return to our analysis of auction start price, and

re-run the exercise separately for each product meta-category. To facilitate a graphical illus-

tration, we estimate a linear e¤ect of the (normalized) start price on both the probability of

sale (by regressing an indicator equal to one if the item sold on the start price and exper-

iment �xed e¤ects), and the expected (normalized) price conditional on sale (by regressing

the sale price on the start price and experiment �xed e¤ects, using only successful sales).

This yields, for each category, the slope of the average sales curve for items in the category

and the slope of the price curve conditional on sale, with both probability of sale and price
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being a function of the start price.

The results are presented in Figure 8 and Table 11. The x-axis shows the e¤ect of start

price on the probability of sale, so a value of -0.5 means that an increase in the start price

from 0.5 to 0.8 as a fraction of the item�s value reduces the probability of sale by 0.15. The

y-axis shows the e¤ect of start price on the expected price conditional on sale; a value of 0.1

means that an increase in the normalized start price from 0.5 to 0.8 increases the expected

price conditional on sale by 3% of the item�s value. Each point in Figure 8 shows the two

e¤ects of the start price for a particular eBay product category.

Certain features are consistent across all categories. A higher start price always reduces

the probability of sale, and (with the exception of DVDs where the e¤ect is near-zero)

increases the average price of successful sales. Yet, the magnitude of the e¤ects varies quite

dramatically across categories. For example, one can imagine a researcher running a careful

�eld experiment on eBay by listing DVDs (or, more likely, speci�c types of DVDs), randomly

varying their start prices, �nding a large e¤ect on the quantity sold, but very little e¤ect on

price. This researcher may have no reason to believe that DVDs are special, and therefore

conclude that start prices do not a¤ect sale prices, which may be consistent with some

theories and less consistent with others. Yet, as Figure 8 suggests, such conclusions would

be misleading, as the DVDs category is quite an outlier, and the price e¤ects are signi�cantly

larger in all other product categories.

Of course, once one sees the results presented in this way, the di¤erences across product

categories become quite natural. Roughly, one can think of categories with a small dp=ds

e¤ect or a large (more negative) dq=ds e¤ect as categories with relatively �at (i.e. elastic)

residual demand curves for individual items, as opposed to relatively steep (inelastic) resid-

ual demand. So Figure 8 tells us that products listed in seemingly commodity categories

such as DVDs, Electronics, Video and Coins fall into the former elastic category, whereas

products listed in potentially more di¤erentiated categories such as Clothing, Jewelry, Sports

Memorabilia and Home fall into the inelastic category. So while a full exploration is well be-

yond the scope of the present paper, Figure 8 suggests the possibility of using our approach

to obtain meaningful comparisons of price sensitivity and competition across retail product

categories.
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5 Conclusion

In this paper we present a new approach to studying behavior and competition in internet

markets, by taking advantage of the ease and prevalence of active and passive experimenta-

tion in these markets. The approach combines the advantages of small-scale �eld experiments

run by researchers with the scale and scope of internet markets and data, in this way avoid-

ing many of the identi�cation problems inherent in large observational studies, but also the

narrowness, small sample sizes and limited scope of many �eld experiments.

To illustrate, we used the approach to revisit a number of questions about consumer

behavior and sales strategies that have been investigated in the literature, sharpening, ex-

panding and in a few cases contradicting prior results. With the access to the relevant data,

our empirical approach is easy to replicate and straightforward to implement. Thus, one

can easily envision using it for a more in-depth analysis of each of the questions we analyze

in this paper, or for dozens of other questions that come up in internet retail, advertising

or labor markets. Our own view is that the �measurement�nature of our approach makes

it perhaps best as a complement to other approaches, either theoretical modeling to derive

hypotheses, or alternative empirical approaches that incorporate compositional e¤ects or at-

tempt to relate �ndings to speci�c economic models or primitives. This is the approach we

are taking in ongoing work.

We conclude with a short discussion of why sellers engage in the type of behavior or

�experimentation� that we exploit. There are several non-exclusive explanations, all of

which relate to the relative ease with which participants in internet markets can adjust their

strategies. On eBay speci�cally, the platform is set up so that sellers of multiple units (e.g.,

retailers of new goods) who want to use an auction format generally post multiple staggered

listings, rather than holding a single large auction. The costs of adjusting listing details,

reserve prices, buy now options, shipping fees and other sale parameters are negligible.

Sellers may choose to make these adjustments in response to demand changes, because they

are unsure about the best strategy, or in an attempt to segment consumers (e.g. target

consumers who want to �buy now�versus those willing to bid in an auction). They may

also post the same item in di¤erent ways simply in the hope of �crowding the shelves�
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and capturing buyer attention.8 Particularly interesting from an economic viewpoint is the

possibility that sellers engage in active experimentation to improve their business practices.

While addressing this possibility and its implications goes beyond the scope of this paper,

we are continuing to explore it.
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Figure 1(a): A standard search results page on eBay

The �gure presents a �standard�screenshot of search results on eBay. This particular screenshot is the result
of searching for �taylormade driver�(a type of golf equipment) on 9/12/2010.
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Figure 1(b): An example of a �seller experiment�

The �gure illustrates a �seller experiment.�As in Figure 1(a), it presents a screenshot of search results on
eBay, but for a much more speci�c golf driver search query that returns 31 listings of the same item that are
o¤ered for sale by the same seller. Of the eight listings showed in the �gure, four are o¤ered at a �xed price
(�Buy It Now�) of $124.99 but are associated with di¤erent shipping fees (of $7.99 and $9.99), and the other
four listings are auctions with di¤erent ending times and shipping fees. As in Figure 1(a), this particular
screenshot was generated on 9/12/2010.
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Figure 2: Number of listings in each experiment

The �gure presents the distribution of the experiment �size� (number of listings) in the entire auction
experiments data (gray) and in our baseline sample (black).
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Figure 3: Auction sale price dispersion

The �gure presents the relationship between transacted auction prices p relative to the �reference value�v
of the same item. The latter is de�ned throughout the paper as the average sale price over all �xed price
listings that transact within the same seller experiment. The top panel reports the distribution of the ratio
p=v, while the bottom panel reports the distribution of the di¤erence (in dollars) p�v. The data underlying
these �gures is the baseline sample without experiments that are associated with items whose reference value
is greater than $1,000 (these cover only 4,701 (1.9%) experiments and 40,685 (0.5%) listings).
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Figure 4: The e¤ect of auction starting price

The top two panels are a graphical presentation of the regression results reported in Table 6 regarding the
e¤ect of auction starting price on listing outcomes. The top panel graphs � for di¤erent ranges of item
values �the probability of sale as a function of the auction (normalized) starting price, and the middle panel
presents the sale price (conditional on sale) as a function of the starting price. The third panel tries to assess
how much of the price e¤ect is driven by simple, �mechanical� selection by plotting selected points of the
truncated sale price distribution for various starting prices (see text for further discussion).
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Figure 5: The e¤ect of BIN price

The top two panels are a graphical presentation of the regression results reported in Table 8 regarding the
e¤ect of auction BIN price on transaction outcomes (recall that we omit the low item value category and
condition on starting price of less than one dollar, so essentially all auctions get transacted). The top panel
graphs the probability of the auction transacting using the BIN option as a function of the (relative) BIN
price, and the middle panel graphs the transaction price as a function of the BIN price. In a similar spirit to
the bottom panel of Figure 4, the bottom panel tries to assess whether the price e¤ect is only due to simple,
�mechanical� truncation by plotting selected points of the sale price distributions for di¤erent BIN prices
(see text for further details).
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Figure 6: The e¤ect of shipping fees

The �gure is a graphical presentation of the regression results reported in Table 10 regarding the e¤ect of
shipping fees. See Table 10 for details.
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Figure 7: Seller experiments versus observational data

The �gure presents the relationship between auction starting price and the probability of sale for the di¤erent
regressions. The black lines represent start price variation within seller experiments, which is the type of
variation used throughout the paper. The dark grey lines represent variation within narrow (�leaf�) product
categories as de�ned by eBay; there are more than 37,000 such categories. The light grey lines represent
variation within broad (�meta�) product categories as de�ned by eBay; there are 35 such categories. There
are two lines for each grouping. The dashed lines represent speci�cations with no �xed e¤ects, so that
groupings are used to generate a reference value (average �xed price transactions for seller experiments, and
average sale price in each category for the category grouping). The solid lines repeat the same exercise, but
are based on regressions that also include group (experiment or category) �xed e¤ects.
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Figure 8: Category heterogeneity

The �gure presents the relationship between auction starting price and the probability of sale (horizontal
axis) and transaction price (vertical axis) for di¤erent product categories, parallel to the regression results
reported in Table 11. For each category, we run a simpli�ed linear regression of the probability of sale on the
(normalized) starting price p=v, and (separately) a regression of the transaction price (conditional on sale)
on the starting price.
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Table 1: Baseline data set

All Auction Exp. Random eBay
(2) (3)

Obs.
(millions) Mean Std. Dev. 25th

pctile
75th
pctile Mean Mean

Listings

Start price ($) 7.69 42.47 194.48 5.45 20.89 26.96 27.90
Fraction with BIN option 7.69 0.73 0.29 0.24
   BIN price ($) (if exists) 5.60 47.70 202.14 7 24 54.16 63.60
Fraction with secret reserve 7.69 0.006 0.006 0.009
   Secret reserve price ($) (if exists) 0.05 355.23 605.45 99 354 323.69 322.39

Fraction with flat rate shipping 7.69 0.95 0.88 0.85
Fraction with free shipping 7.69 0.77 0.27 0.21
   Shipping fee ($) (if flat and >0) 1.65 8.13 16.55 3.99 6.00 8.12 7.41

Auction duration (days) 7.69 3.2 2.5 1.0 7.0 4.5 5.6

Seller feedback score (000s) 7.69 327.0 472.1 4.6 308.0 24.40 26.6
Seller feedback (pct. positive) 7.65 99.3 2.0 98.9 99.8 99.36 97.5
Fraction with a catalog number 7.69 0.21 0.05 0.06

Fraction with associated:
   Fixed price listings 7.69 1.00 0.18 
   Fixed price transactions 7.69 1.00 0.13 
   Overlapping auctions 7.69 0.81 0.53 

Most frequent category Cell Phones, PDAs (24.2%) Clothing (23.2%) Clothing (18.8%)

2nd most frequent category Video Games (19.5%) Jewelry (14.9%) Jewelry (11.9%)

3rd most frequent category Electronics (13.1%) Collectibles (7.7%) Collectibles (10.8%)

4th most frequent category Computers, Networking (6.4%) Home + Garden (4.2%) Toys + Hobbies (5.3%)

5th most frequent category Cameras, Photo (5.3%) Video Games (4.1%) Sports mem, Cards (5.3%)

Fraction sold 7.69 0.35 0.27 0.39

Transactions

Price ($) 2.69 67.39 172.95 8.50 73.01 32.29 38.22
Price including shipping ($) 2.69 69.54 174.96 8.99 76.00 37.18 43.55
Start price / sale price ratio 2.69 0.63 0.44 0.03 1.00 0.70 65.14
Number of bids 2.69 6.4 8.7 1.0 10.0 3.9 4.4
Number of unique bidders 2.69 3.6 3.9 1.0 6.0 2.4 2.7

Baseline Sample
(1)

A unit of observation is a listing. Column (1) presents statistics for the baseline sample. Column (2) presents
statistics for all seller experiments (that is, including those for which we do not have a corresponding �xed
price transaction). Column (3) presents statistics for the population of the entire eBay listings during the
same period.
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Table 2: Baseline data set

Obs.
(000s) Mean Std. Dev. 25th pctile 75th pctile Obs.

(000s) Mean Std. Dev. 25th pctile 75th pctile

Number of (auction) listings 244.1 31.5 113.3 2 19 54,984.3 6.4 26.6 2 4
Fraction with positive sales 244.1 0.728 54,984.3 0.579
Number of (auction) sales 244.1 11.0 49.5 0 7 54,984.3 1.8 10.1 0 1
Associated fixed price listings 244.1 6.9 22.6 1 6 4,047.4 4.4 16.4 1 4
Associated successful fixed price listings 244.1 2.9 6.6 1 3 4,047.4 1.3 4.2 0 1

Experiment "duration" (days) 244.1 56.2 72.4 8 77 54,984.3 38.2 57.9 7 42
Experiment sale rate 244.1 0.411 0.383 0.000 0.778 54,984.3 0.306 0.341 0.000 0.500

Experiment average sale price 177.6 101.41 303.64 10.21 89.00 31,854.0 42.75 165.24 7.83 31.00
Experiment median sale price 177.6 101.09 303.36 9.99 88.95 31,854.0 42.62 165.12 7.75 30.99

Baseline Sample All Auction Experiments
(1) (2)

A unit of observation is a seller experiment. Column (1) presents statistics for the baseline sample. Col-
umn (2) presents statistics for all seller experiments (that is, including those for which we do not have a
corresponding �xed price transaction).
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Table 3: Within experiment variation

Sample Baseline
sample

Large
experiments
(10+ listings)

Listings with
start price
below $1

Listings with
free shipping

Listings without
a BIN option

Listings without
a secret
reserve

Auctions that
last (exactly) 7

days

Total number of experiments 244,119 89,670 35,391 143,106 125,282 237,815 114,745

Start price 142,653 79,107 17,350 82,423 62,148 139,526 57,045

Shipping rate (flat rate only) 17,718 8,979 2,127 7,229 16,869 8,096
Free shipping indicator 11,917 4,902 1,633 5,566 11,178 4,553

BIN (any variation) 90,404 53,788 4,312 51,006 87,728 37,962
BIN option indicator 24,052 9,754 2,383 13,154 22,788 8,487

Secret reserve (any variation) 5,267 1,009 1,093 2,165 2,374 1,950
Secret reserve indicator 2,918 652 386 1,215 1,264 1,036

Auction duration 92,226 48,132 12,908 57,069 43,403 89,905
Day of week that auction ends 211,554 87,785 29,096 123,260 102,585 205,988 84,626W
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The table presents the extent of within experiment variation in the baseline sample Each entry in the table
reports the number of experiments that contain within experiment variation in the listing parameter that is
de�ned by the row header, out of the sample de�ned by the column header. The �rst column uses the entire
baseline data, and the other columns stratify the baseline data based on various criteria.
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Table 4: Summary statistics about price dispersion

Number of
Experiments

Avg Coeff. of
Price Var.

Number of
Experiments

Avg Coeff. of
Price Var.

All experiments (with 2+ sales) 143,942 0.11 13,548,775 0.15

Within same calendar month 125,124 0.10 16,427,575 0.13

With start price < $1 43,025 0.19 4,970,210 0.20
With start price >$1 104,548 0.07 8,556,050 0.12

With no BIN option 73,677 0.15 10,336,945 0.16
With BIN option 74,586 0.07 3,121,350 0.10

Experienced seller (feedback > 5,000) 68,696 0.08 3,939,100 0.14
Inexperienced seller (feedback < 250) 26,712 0.15 3,545,215 0.16

With any posted price listings 143,942 0.11 1,373,150 0.13
With posted price at ending time 91,178 0.10 564,060 0.11

Experiments in Specific Categories
   Clothing, Shoes, Accessories 20,586 0.06 631,135 0.13
   Jewelry and Watches 10,612 0.13 4,814,770 0.13
   Video games 13,579 0.09 759,635 0.13
   Cell phones, PDAs 11,154 0.08 581,765 0.14
   Electronics 6,926 0.14 3,001,105 0.18

Baseline Sample All Auction Experiments
(1) (2)

The table presents summary statistics regarding price dispersion in the baseline sample (column (1)) and in
the entire set of auction experiments (column (2)). Each grouping of listings cuts the data in di¤erent ways.
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Table 5: Within and across experiment variation in auction starting price

< $10 $1030 $30100 $1001,000

Number of listings 92,925 184,652 125,326 91,267 494,170

< 0.05 6.5% 7.3% 20.3% 25.3% 13.8%
0.05 to 0.15 6.7% 3.6% 0.5% 0.8% 2.9%
0.15 to 0.30 5.3% 0.7% 1.5% 0.2% 1.7%
0.30 to 0.45 2.1% 1.8% 2.2% 0.7% 1.7%
0.45 to 0.60 5.5% 2.9% 3.5% 1.3% 3.2%
0.60 to 0.85 12.9% 21.7% 17.4% 8.4% 16.5%
0.85 to 1.00 42.1% 44.7% 37.0% 44.4% 42.2%
1.00 to 1.20 11.5% 12.5% 13.8% 16.1% 13.3%
> 1.20 7.3% 4.8% 3.8% 3.0% 4.7%

Item reference value
All listings
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< 0.05 0.05 to
0.15

0.15 to
0.30

0.30 to
0.45

0.45 to
0.60

0.60 to
0.85

0.85 to
1.00

1.00 to
1.20 > 1.20 Total

< 0.05 489 220 204 203 198 547 908 343 150 3,262
0.05 to 0.15 52 95 75 151 290 337 57 44 1,101
0.15 to 0.30 64 139 106 124 104 31 39 607
0.30 to 0.45 48 187 219 104 31 43 632
0.45 to 0.60 115 694 337 91 57 1,294
0.60 to 0.85 1,218 2,784 637 300 4,939
0.85 to 1.00 2,627 2,436 1,068 6,131
1.00 to 1.20 550 667 1,217
> 1.20 594 594

Total 489 272 363 465 757 3,092 7,201 4,176 2,962 19,777

Maximum (within experiment) ratio of auction start price to reference value
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The table uses the baseline sample, and shows the extent of variation in auction starting price. The top
panel presents statistics on the variation in (normalized) starting price across experiments, while the bottom
panel presents variation within experiments.
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Table 6: The e¤ect of auction starting price

Dependent Variable: Sale indicator

Start/value ratio indicator:
   0.050.15 0.066 (0.013) 0.042 (0.010) 0.015 (0.022) 0.086 (0.021)
   0.150.30 0.150 (0.011) 0.075 (0.019) 0.086 (0.015) 0.123 (0.039)
   0.300.45 0.273 (0.017) 0.166 (0.012) 0.171 (0.014) 0.214 (0.028)
   0.450.60 0.416 (0.013) 0.246 (0.010) 0.193 (0.010) 0.373 (0.015)
   0.600.85 0.522 (0.012) 0.476 (0.007) 0.421 (0.007) 0.539 (0.008)
   0.851.00 0.645 (0.011) 0.588 (0.007) 0.597 (0.006) 0.695 (0.006)
   1.001.20 0.674 (0.013) 0.646 (0.008) 0.648 (0.007) 0.775 (0.007)
   > 1.20 0.721 (0.013) 0.694 (0.010) 0.760 (0.010) 0.807 (0.012)

Constant 0.932 (0.010) 0.881 (0.007) 0.906 (0.005) 0.973 (0.004)

Number of listings
Number of experiments

Dependent Variable: Sale price (conditional on sale)

Start/value ratio indicator:
   0.050.15 0.146 (0.036) 0.006 (0.006) 0.024 (0.013) 0.038 (0.007)
   0.150.30 0.084 (0.034) 0.043 (0.011) 0.022 (0.009) 0.031 (0.014)
   0.300.45 0.135 (0.050) 0.038 (0.007) 0.014 (0.009) 0.011 (0.011)
   0.450.60 0.233 (0.039) 0.008 (0.006) 0.005 (0.007) 0.050 (0.007)
   0.600.85 0.255 (0.035) 0.045 (0.005) 0.039 (0.005) 0.032 (0.004)
   0.851.00 0.413 (0.035) 0.185 (0.005) 0.150 (0.005) 0.118 (0.003)
   1.001.20 0.533 (0.045) 0.323 (0.007) 0.273 (0.007) 0.208 (0.004)
   > 1.20 0.762 (0.048) 0.608 (0.010) 0.500 (0.012) 0.544 (0.012)

Constant 0.610 (0.026) 0.769 (0.004) 0.817 (0.002) 0.855 (0.001)

Number of sales
Number of experiments

92,925 184,652 125,326 91,267

Item reference value
< $10 $1030 $30100 $1001,000

3,769 7,183 4,772 4,053

39,174 72,067 60,375 42,285
3,010 5,889 3,762 2,831

The table presents regression results of listing outcomes on (normalized) starting price, using experiment
�xed e¤ects. The dependent variable in the top panel is a dummy variable that is equal to one when the
listing transacts. The dependent variable in the bottom panel is the transaction price (conditional on sale).
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Table 7: Within and across experiment variation in BIN price

< $10 $1030 $30100 $1001,000

Number of listings 15,277 11,360 65,041 32,079 123,757

No BIN 47.2% 42.9% 20.7% 28.2% 27.9%
< 0.90 8.5% 6.0% 8.4% 15.8% 10.1%
0.90 to 0.95 1.0% 2.5% 17.5% 17.9% 14.2%
0.95 to 1.00 19.6% 16.2% 16.3% 13.2% 15.9%
1.00 to 1.10 8.6% 10.9% 15.2% 13.4% 13.5%
> 1.10 15.1% 21.5% 21.9% 11.5% 18.3%

Item reference value
All listings
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No BIN < 0.90 0.90 to
0.95

0.95 to
1.00

1.00 to
1.10 > 1.10 Total

No BIN 0 108 55 522 440 648 1,773
< 0.90 55 40 102 50 65 312
0.90 to 0.95 18 52 59 33 162
0.95 to 1.00 139 128 148 415
1.00 to 1.10 140 134 274
> 1.10 303 303

Total 0 163 113 815 817 1,331 3,239

Maximum (within experiment) ratio of BIN price to reference value
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The table uses the baseline sample, and shows the extent of variation in auction BIN price. The top panel
presents statistics on the variation in (relative) BIN price across experiments, while the bottom panel presents
variation within experiments.
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Table 8: The e¤ect of BIN price

Fraction sold

Dependent Variable: Sale via BIN option indicator

BIN price to value ratio indicator:
   < 0.90
   0.900.95 0.086 (0.036) 0.055 (0.009) 0.020 (0.011)
   0.951.00 0.122 (0.028) 0.074 (0.009) 0.029 (0.013)
   1.001.10 0.165 (0.033) 0.122 (0.011) 0.096 (0.013)
   > 1.10 0.246 (0.036) 0.240 (0.015) 0.110 (0.017)

Constant 0.355 (0.026) 0.249 (0.009) 0.215 (0.009)

Number of listings
Number of experiments

Dependent Variable: Sale price (conditional on sale)

BIN price to value ratio indicator:
   < 0.90 0.102 (0.018) 0.092 (0.004) 0.113 (0.005)
   0.900.95 0.031 (0.022) 0.049 (0.004) 0.053 (0.005)
   0.951.00 0.000 (0.009) 0.007 (0.004) 0.001 (0.004)
   1.001.10 0.038 (0.012) 0.003 (0.003) 0.011 (0.004)
   > 1.10 0.083 (0.013) 0.012 (0.005) 0.046 (0.009)

Constant (No BIN) 0.825 (0.005) 0.850 (0.002) 0.883 (0.003)

Number of listings
Number of experiments

Value $1030, No BIN, Starting
price < $1

Value $30100, No BIN,
Starting price < $1

Value $1001,000, No BIN,
Starting price < $1

0.982 0.987 0.978

(omitted) (omitted) (omitted)

5,959 50,584 22,254
368 665 624

11,013 64,012 31,200
662 1,026 908

The table presents regression results of listing outcomes on (normalized) BIN price, using experiment �xed
e¤ects. To simplify interpretation, the sample includes all items with reference value greater than $10 and
only listings with starting price that is less than $1, making virtually all items in the sample transact. The
dependent variable in the top panel is a dummy variable that is equal to one when the listing transacts via
the BIN price (rather than via the regular auction). The dependent in the bottom panel is the transaction
price (via BIN or auction).
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Table 9: Within and across experiment variation in shipping rate

< $10 $1030 $30100 $1001,000

Number of listings 12,726 30,929 40,812 32,735 117,202

Free 26.5% 51.1% 37.9% 38.3% 40.3%
0 to $2.50 19.9% 4.0% 1.2% 0.4% 3.7%
$2.50 to $5 37.5% 22.5% 11.8% 2.7% 14.9%
$5 to $10 11.0% 13.5% 24.0% 13.3% 16.8%
$10 to $20 4.6% 6.9% 19.0% 26.2% 16.3%
> $20 0.4% 1.8% 6.0% 19.3% 8.0%

Item reference value
All listings
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0 to $2.50 $2.50 to
$5 $5 to $10 $10 to $20 > $20 Total

Free 385 1,277 995 519 315 3,491
0 to $2.50 91 219 3 0 0 313
$2.50 to $5 559 332 29 2 922
$5 to $10 504 371 10 885
$10 to $20 516 176 692
> $20 352 352

Total 476 2,055 1,834 1,435 855 6,655

Maximum (within experiment) shipping rate

M
in

im
um

 (w
ith

in
ex

pe
rim

en
t)

sh
ip

pi
ng

 ra
te

The table uses the baseline sample, and shows the extent of variation in shipping fees. The top panel
presents statistics on the variation in (dollar) shipping fees across experiments, while the bottom panel
presents variation within experiments.
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Table 10: The e¤ect of shipping fees

Dependent Variable: Sale indicator

Shipping > 0 (indicator) 0.014 (0.0042)   0.056 (0.0130) 0.002 (0.0049)
Shipping fee ($) 0.001 (0.0002) 0.001 (0.0003) 0.015 (0.0023) 0.0003 (0.0003)

Constant 0.639 (0.0024) 0.621 (0.0037) 0.882 (0.0066) 0.959 (0.0025)

Number of listings
Number of experiments

Dependent Variable: Sale price (conditional on sale)

Shipping > 0 (indicator) 2.521 (0.3120)   1.571 (0.2307) 2.940 (0.5063)
Shipping fee ($) 0.181 (0.0202) 0.523 (0.0468) 0.362 (0.0440) 0.039 (0.0329)

Constant 93.734 (0.1576) 93.945 (0.5662) 16.398 (0.0858) 122.066 (0.2533)

Number of sales
Number of experiments

Baseline sample Only listings with positive
shipping rate

Value < $30 & Start price
< $1

Value in $301,000 & Start
price < $1

117,202 70,023 16,990 34,529
6,655 6,655 1,076 1,742

73,034 43,064 13,403 42,335
5,156 4,679 847 2,624

The table presents regression results of listing outcomes on (dollar) shipping fee, using experiment �xed
e¤ects. Column (1) reports results for the baseline sample, while the other columns cut the data in di¤erent
ways. The dependent variable in the top panel is a dummy variable that is equal to one when the listing
transacts. The dependent variable in the bottom panel is the transaction price (conditional on sale). Note
that the transaction price includes the shipping fee, so in a frictionless market the coe¢ cient on shipping fee
should be zero.
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Table 11: Category heterogeneity in the e¤ect of auction starting price

Category Experiments Listings Sales

Coeff. Std. Err. Coeff. Std. Err.

Clothing, Shoes 2,505 24,351 7,692 0.771 (0.030) 0.340 (0.046)

Jewelry + Watches 2,036 54,397 10,951 0.586 (0.022) 0.344 (0.034)

Home + Garden 1,257 51,181 15,656 0.518 (0.041) 0.424 (0.049)

Health, Beauty 1,148 38,367 19,536 0.565 (0.060) 0.226 (0.049)

Cell Phones, PDAs 961 45,519 22,131 0.619 (0.039) 0.149 (0.021)

Computers, Networking 928 17,134 10,000 0.543 (0.056) 0.183 (0.022)

Electronics 836 29,076 19,705 0.677 (0.040) 0.107 (0.022)

Sporting Goods 631 25,120 10,052 0.660 (0.057) 0.196 (0.036)

Collectibles 609 9,113 4,008 0.575 (0.072) 0.208 (0.074)

Video Games 605 12,885 9,076 0.573 (0.055) 0.086 (0.020)

Sports Mem, Cards 556 7,187 1,653 0.634 (0.047) 0.510 (0.120)

Everything Else 329 6,498 3,130 0.651 (0.063) 0.306 (0.097)

Cameras, Photo 534 23,565 12,243 0.854 (0.032) 0.259 (0.030)

Toys + Hobbies 475 7,693 4,462 0.610 (0.034) 0.138 (0.034)

Coins + Paper Money 373 8,964 5,063 0.564 (0.111) 0.264 (0.125)

Business & Industrial 352 7,088 2,765 0.778 (0.067) 0.309 (0.041)

DVDs & Movies 329 6,388 4,844 0.689 (0.076) 0.015 (0.052)

Books 249 1,695 713 0.530 (0.138) 0.178 (0.056)

Crafts 165 4,814 2,173 0.939 (0.091) 0.316 (0.070)

Tickets 162 597 216 0.469 (0.090) 0.098 (0.117)

Pet Supplies 150 5,290 3,127 0.440 (0.071) 0.091 (0.030)

Musical Instruments 121 2,667 982 0.526 (0.116) 0.171 (0.026)

Entertainment Memorabilia 117 3,357 1,224 0.263 (0.210) 0.582 (0.302)

Pooled 0.641 (0.017) 0.204 (0.012)

Dep. Var. is Sale indicator Dep. Var. is Sale Price (if sold)

The table illustrates the heterogeneity in the e¤ects across categories, using regressions that are similar
to those reported in Table 6. We report the e¤ect of auction starting price on the probability of sale and
transaction price (conditional on sale) for di¤erent product categories. For each category, we run a simpli�ed
linear regression of the probability of sale on the (normalized) starting price p=v, and (separately) a regression
of the transaction price (conditional on sale) on the same starting price variable.
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