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1 Introduction

In this study, we evaluate the evidence in favor of excess stock return predictability from

the perspective of a Bayesian investor. We focus on the case of a single predictor variable

to highlight the complex statistical issues that come into play in this deceptively simple

problem.

The investor in our model considers the evidence in favor of the following linear model

for excess returns:

rt+1 = α + βxt + ut+1, (1)

where rt+1 denotes the return on a broad stock index in excess of the riskfree rate, xt denotes

a predictor variable, and ut+1 the unpredictable component of the return. The investor also

places a finite probability on the following model:

rt+1 = α + ut+1. (2)

Namely, the investor assigns a prior probability q to the state of the world in which returns

are predictable (because the prior on β will be smooth, the chance of β = 0 in (1) is

infinitesimal), and a probability 1−q to the state of the world in which returns are completely

unpredictable. In both cases, the parameters are unknown. Thus our model allows for both

parameter uncertainty and “model uncertainty”.1

Allowing for a non-zero probability on (2) is one way in which we depart from previous

studies. Previous Bayesian studies of return predictability allow for uncertainty in the pa-

rameters in (1), but assume flat priors (see Barberis (2000), Brandt, Goyal, Santa-Clara,

and Stroud (2005), Johannes, Polson, and Stroud (2002), Skoulakis (2007) and Stambaugh

(1999)). As Wachter (2010) shows, flat or nearly-flat priors imply a degree of predictability

that is hard to justify economically. Other studies (Kandel and Stambaugh (1996), Pastor

and Stambaugh (2009), Shanken and Tamayo (2011), Wachter and Warusawitharana (2009))

1However, note that our investor is Bayesian, rather than ambiguity averse (e.g. Chen and Epstein (2002)).

Our priors are equivalent to placing a point mass on β = 0 in (1).
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investigate the impact of economically informed prior beliefs. These studies nonetheless as-

sume that the investor places a probability of one on the predictability of returns. However,

an investor who thinks that (2) represents a compelling null hypothesis will have a prior that

places some weight on the possibility that returns are not predictable at all.

Our work also relates to the Bayesian model selection methods of Avramov (2002) and

Cremers (2002). In these studies, the investor has a prior probability over the full set of

possible linear models that make use of a given set of predictor variables. Thus the setting

of these papers is more complex than ours in that many predictor variables are considered.

However, these papers also make the assumption that the predictor variables are either non-

stochastic, or that their shocks are uncorrelated with shocks to returns. These assumptions

are frequently satisfied in a standard ordinary least squares regression, but rarely satisfied

in a predictive regression. In contrast, we are able to formulate and solve the Bayesian

investor’s problem when the regressor is stochastic and correlated with returns.

When we apply our methods to the dividend-price ratio, we find that an investor who

believes that there is a 50% probability of predictability prior to seeing the data updates to

a 86% posterior probability after viewing quarterly postwar data. We find average certainty

equivalent returns of 1% per year for an investor whose prior probability in favor of pre-

dictability is just 20%. For an investor who believes that there is a 50/50 chance of return

predictability, certainty equivalent returns are 1.72%.

We also empirically evaluate the effect of correctly incorporating the initial observation of

the dividend-price ratio into the likelihood (the exact likelihood approach) versus the more

common conditional likelihood approach. In the conditional likelihood approach, the initial

observation of the predictor variable is treated as a known parameter rather than as a draw

from the data generating process. We find that the the unconditional risk premium is poorly

estimated when we condition on the first observation. However, when this is treated as a draw

from the data generating process, the expected return is estimated reliably. Surprisingly, the

posterior mean of the unconditional risk premium is notably lower than the sample average.

Finally, when we examine the evolution of posterior beliefs over the postwar period, we
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find substantial differences between the beliefs implied by our approach, which treats the

regressor as stochastic and realistically captures the relation between the regressor and re-

turns, and beliefs implied by assuming non-stochastic regressors. In particular, our approach

implies that the belief in the predictability of returns rises dramatically over the 2000-2005

period while approaches assuming fixed regressors imply a decline. We also evaluate out-of-

sample performance over this period, and show that our method leads to superior perfor-

mance both when compared with a strategy based on sample averages, and when compared

with a strategy implied by OLS regression.

The remainder of the paper is organized as follows. Section 2 describes our statistical

method and contrasts it with alternative approaches. Section 3 describes our empirical

results. Section 4 concludes.

2 Statistical Method

2.1 Data generating processes

Let rt+1 denote continuously compounded excess returns on a stock index from time t to

t+1 and xt the value of a (scalar) predictor variable. We assume that this predictor variable

follows the process

xt+1 = θ + ρxt + vt+1. (3)

Stock returns can be predictable, in which case they follow the process (1) or unpredictable,

in which case they follow the process (2).2 In either case, errors are serially uncorrelated,

2The model we adopt for stock return predictability is assumed by Kandel and Stambaugh (1996), Camp-

bell and Viceira (1999), Stambaugh (1999), Barberis (2000) and many subsequent studies. The idea that the

price-dividend ratio can predict returns is motivated by present-value models of prices (see Campbell and

Shiller (1988)). We have examined the possibility of adding lagged returns on the right hand side of both

the return and predictor variable regression; however the coefficients are insignificant.
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homoskedastic, and jointly normal: ut+1

vt+1

 | rt, . . . , r1, xt, . . . , x0 ∼ N (0,Σ) , (4)

and

Σ =

 σ2
u σuv

σuv σ2
v

 . (5)

As we show below, the correlation between innovations to returns and innovations to the

predictor variable implies that (3) affects inference about returns, even when there is no

predictability.

When the process (3) is stationary, i.e. ρ is between -1 and 1, the predictor variable has

an unconditional mean of

µx =
θ

1− ρ
(6)

and a variance of

σ2
x =

σ2
v

1− ρ2
. (7)

These follow from taking unconditional means and variances on either side of (3). Note

that these are population values conditional on knowing the parameters. Given these, the

population R2 is defined as

Population R2 =
β2σ2

x

β2σ2
x + σ2

u

.

2.2 Prior Beliefs

The investor faces uncertainty both about the model (i.e. whether returns are predictable

or not), and about the parameters of the model. We represent this uncertainty through a

hierarchical prior. There is a probability q that investors face the distribution given by (1),

(3) and (4). We denote this state of the world H1. There is a probability 1− q that investors

face the distribution given by (2), (3) and (4). We denote this state of the world H0. As we

will show, the stochastic properties of x have relevance in both cases.
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The prior information on the parameters is conditional on Hi. Let

b0 = [α, θ, ρ]>

and

b1 = [α, β, θ, ρ]>.

Note that p(b1,Σ|H1) can also be written as p(β, b0,Σ|H1).
3 We set the prior on b0 and Σ

so that

p(b0,Σ|H0) = p(b0,Σ|H1) = p(b0,Σ).

We assume the investor has uninformative beliefs on these parameters. We follow the ap-

proach of Stambaugh (1999) and Zellner (1996), and derive a limiting Jeffreys prior as

explained in Appendix A. As Appendix A shows, this limiting prior takes the form

p(b0,Σ) ∝

 σxσu|Σ|−
5
2 ρ ∈ (−1, 1)

0 otherwise.
(8)

Equation 8 implies that the process for xt is stationary and that the mean (6) and variance

(7) are well defined. Stationarity of xt is a standard assumption in the return predictability

literature. Studies that rely on ordinary least squares make this assumption at least implic-

itly, since without it standard asymptotic arguments fail. Other recent studies (e.g. Cochrane

(2008), Van Binsbergen and Koijen (2010)) explicitly assume stationarity. In Section 3.6,

we discuss how this assumption affects our results.

The parameter that distinguishes H0 from H1 is β. One approach would be to write

down a prior distribution for β unconditional on the remaining parameters. However, there

are advantages to forming priors on β jointly with priors on other parameters. For example,

a high variance of xt might lower one’s prior on β, while a large residual variance of rt might

raise it. Rather than placing a prior on β directly, we follow Wachter and Warusawitharana

(2009) and place a prior on the population R2. To implement this prior on the R2, we place

3Formally we could write down p(b1,Σ|H0) by assuming p(β|b0,Σ, H0) is a point mass at zero.
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a prior on “normalized” β, that is β adjusted for the variance of x and the variance of u.

Let

η = σ−1u σxβ

denote normalized β. We assume that prior beliefs on η are given by

η|H1 ∼ N(0, σ2
η) (9)

The population R2 is closely related to η:

Population R2 =
β2σ2

x

β2σ2
x + σ2

u

=
η2

η2 + 1
. (10)

Equation (10) provides a mapping between a prior distribution on η and a prior distribution

on the population R2. Given an η draw, an R2 draw can be computed using (10).

A prior on η implies a hierarchical prior on β. The prior for η, (9), implies

β|α, θ, ρ,Σ ∼ N(0, σ2
β), (11)

where

σβ = σησ
−1
x σu.

Because σx is a function of ρ and σv, the prior on β is also implicitly a function of these

parameters. The parameter ση indexes the degree to which the prior is informative. As

ση → ∞, the prior over β becomes uninformative; all values of β are viewed as equally

likely. As ση → 0, the prior converges to p(b0,Σ) multiplied by a point mass at 0, implying

a dogmatic view in no predictability. Combining (11) with (8) implies the joint prior under

H1:

p(b1,Σ|H1) = p(β|b0,Σ, H1)p(b0|H1)

∝ 1√
2πσ2

η

σ2
x|Σ|−

5
2 exp

{
−1

2
β2
(
σ2
ησ
−2
x σ2

u

)−1}
. (12)

Jeffreys invariance theory provides an independent justification for modeling priors on β

as (11). Stambaugh (1999) shows that the limiting Jeffreys prior for b1 and Σ equals

p(b1,Σ|H1) ∝ σ2
x |Σ|

− 5
2 . (13)
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This prior corresponds to the limit of (12) as ση approaches infinity. Modeling the prior for

β as depending on σx not only has a convenient interpretation in terms of the distribution

of the R2, but also implies that an infinite prior variance represents ignorance as defined

by Jeffreys (1961). Note that a prior on β that is independent of σx would not have this

property.

Figure 1 shows the resulting distribution for the population R2 for various values of ση.

Panel A shows the distribution conditional on H1 while Panel B shows the unconditional

distribution. More precisely, for any value k, Panel A shows the prior probability that the

R2 exceeds k, conditional on the existence of predictability. For large values of ση, e.g. 100,

the prior probability that the R2 exceeds k across the relevant range of values for the R2 is

close to one. The lower the value of ση, the less variability in β around its mean of zero,

and the lower the probability that the R2 exceeds k for any value of k. Panel B shows the

unconditional probability that the R2 exceeds k for any value of k, assuming that the prior

probability of predictability, q, is equal to 0.5. By the definition of conditional probability:

p(R2 > k) = p(R2 > k|H1)q.

Therefore Panel B takes the values in Panel A and scales them down by 0.5.

2.3 Likelihood

2.3.1 Likelihood under H1

Under H1, returns and the predictor variable follow the joint process given in (1) and (3).

It is convenient to group observations on returns and contemporaneous observations on the

state variable into a matrix Y and lagged observations on the state variable and the constant

into a matrix X. Let

Y =


r1 x1
...

...

rT xT

 X =


1 x0
...

...

1 xT−1

 ,
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and let

z = vec(Y )

Z1 = I2 ⊗X.

In the above, the vec operator stacks the elements of the matrix columnwise. It follows that

the likelihood conditional on H1 and on the first observation x0 takes the form of

p(D|b1,Σ, x0, H1) = |2πΣ|−
T
2 exp

{
−1

2
(z − Z1b1)

> (Σ−1 ⊗ IT ) (z − Z1b1)

}
(14)

(see Zellner (1996)).

The likelihood function (14) conditions on the first observation of the predictor variable,

x0. Stambaugh (1999) argues for treating x0 and x1, . . . , xT symmetrically: as random

draws from the data generating process. If the process for xt is stationary and has run

for a substantial period of time, then results in Hamilton (1994, p. 265) imply that x0 is

a draw from a normal distribution with mean µx and standard deviation σx. Combining

the likelihood of the first observation with the likelihood of the remaining T observations

produces

p(D|b1,Σ, H1) = |2πσ2
x|−

1
2 |2πΣ|−

T
2 exp

{
−1

2
(x0 − µx)2 σ−2x

− 1

2
(z − Z1b1)

> (Σ−1 ⊗ IT ) (z − Z1b1)

}
. (15)

Following Box and Tiao (1973), we refer to (14) as the conditional likelihood and (15) as the

exact likelihood.

2.3.2 Likelihood under H0

Under H0, returns and the predictor variable follow the processes given in (2) and (3). Let

Z0 =

 ιT 0T×2

0T×1 X

 ,
where ιT is the T × 1 vector of ones. Then the conditional likelihood can be written as

p(D|b0,Σ, x0, H0) = |2πΣ|−
T
2 exp

{
−1

2
(z − Z0b0)

> (Σ−1 ⊗ IT ) (z − Z0b0)

}
. (16)
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The conditional likelihood takes the same form as in the seemingly unrelated regression

model (see Ando and Zellner (2010)). Using similar reasoning as in the H1 case, the exact

likelihood is given by

p(D|b0,Σ, H0) = |2πσ2
x|−

1
2 |2πΣ|−

T
2 exp

{
−1

2
(x0 − µx)2 σ−2x

− 1

2
(z − Z0b0)

> (Σ−1 ⊗ IT ) (z − Z0b0)

}
. (17)

As above, we refer to (16) as the conditional likelihood and (17) as the exact likelihood.

2.4 Posterior distribution

The investor updates his prior beliefs to form the posterior distribution upon seeing the

data. As we discuss below, this posterior requires the computation of two quantities: the

posterior of the parameters conditional on the absence or presence of return predictability,

and the posterior probability that returns are predictable. Given these two quantities, we

can simulate from the posterior distribution.

To compute the posteriors, we apply Bayes’ rule conditional on the model:

p(bi,Σ|Hi, D) ∝ p(D|bi,Σ, Hi)p(bi,Σ|Hi), i = 0, 1. (18)

Because σx is a nonlinear function of the underlying parameters, the posterior distributions

conditional on H0 and H1 are nonstandard and must by computed numerically. We can sam-

ple from these distributions quickly and accurately using the Metropolis-Hastings algorithm

(see Chib and Greenberg (1995), Johannes and Polson (2006)). See Appendix B for details.

Let q̄ denote the posterior probability that excess returns are predictable. By definition,

q̄ = p(H1|D).

It follows from Bayes’ rule, that

q̄ =
B10q

B10q + (1− q)
, (19)

11



where

B10 =
p(D|H1)

p(D|H0)
(20)

is the Bayes factor for the alternative hypothesis of predictability against the null of no

predictability. The Bayes factor is a likelihood ratio in that it is the likelihood of return

predictability divided by the likelihood of no predictability. However, it differs from the

standard likelihood ratio in that the likelihoods p(D|Hi) are not conditional on the values

of the parameters. These likelihoods are given by

p(D|Hi) =

∫
p(D|bi,Σ, Hi)p(bi,Σ|Hi) dbi dΣ, i = 0, 1. (21)

To form these likelihoods, the likelihoods conditional on parameters (the likelihood functions

generally used in classical statistics) are integrated over the prior distribution of the parame-

ters. Under our distributions, these integrals cannot be computed analytically. However, the

Bayes factor (20) can be computed directly using the generalized Savage-Dickey density ratio

(Dickey (1971), Verdinelli and Wasserman (1995)). Details can be found in Appendix C.

Putting these two pieces together, we draw from the posterior parameter distribution

by drawing from p(b1,Σ|D,H1) with probability q̄ and from p(b0,Σ|D,H0) with probability

1− q̄.

2.5 The exogenous regressor approach

Our likelihood and prior involves not only the process for returns conditional on the lagged

predictor, but the process for the predictor variable itself. A common alternative is to form

a likelihood function from the return equation only. That is, the likelihood function is taken

to be:

p(R |X,α, β, σu, H1) =
(
2πσ2

u

)−T
2 exp

{
−1

2

T−1∑
t=0

(rt+1 − α− βxt)2σ−2u

}
, (22)

for R = [r1, . . . , rT ]>. This is combined with a prior over α, β and σu only.

This approach is appealingly simple, but is it valid? In fact (22) is not a valid likelihood

function under reasonable conditions. The reason is that, unless xt is strictly exogenous,
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conditioning on the entire time series of xt, as in (22), implies a different distribution for

rt+1 than conditioning on xt alone. Namely, conditional on the future values of x, rt+1 is not

normally distributed with mean α + βxt and variance σu:

p(rt+1|xt+1, xt, α, β, σu, H1) 6= p(rt+1|xt, α, β, σu, H1).

The value of xt+1 conveys information about the shock vt+1, which in turn conveys informa-

tion about ut+1 (because they are correlated), and ut+1 conveys information about rt+1.

Is there perhaps some other way to justify using the right hand side of (22) as a likelihood?

The true (conditional) likelihood arises from taking the product of terms

p(D|x0, b1,Σ, H1) =
T−1∏
t=0

p(rt+1, xt+1|rt, xt, b1,Σ, H1).
4

One could separate out the terms in the product as follows

T−1∏
t=0

p(rt+1|xt, α, β, σu)p(xt+1|rt+1, xt, b1,Σ). (23)

However, the second term in (23) depends on α, β and σu. It is not, therefore, a constant

when one applies Bayes rule to inference about these parameters. Using the right hand side

of (22) thus requires either incorrect conditioning on the time path of x, or an incorrect

computation of the posterior.

At the root of the problem is the fact that the similarity between the likelihood in the

linear regression model in the time series setting and under OLS is only apparent. In a

time series setting, it is not valid to condition on the entire time path of the “independent”

variable. The differences ultimately come down to the interpretation of the term ut. In a

standard OLS setting, ut is an error, and is thus uncorrelated with the independent variable

at all leads and lags. In a time series setting, it is not an error, but rather a shock, and this

independence does not hold.5

4Note this likelihood function still conditions on x0, and so is the conditional rather than the exact

likelihood.
5This point is also emphasized by Stambaugh (1999).
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Of course, there is a special case in which it is correct to condition on the time path of

xt. This is when the errors ut and vt are known to be uncorrelated at all leads and lags.

In this case, xt is strictly exogenous. This is an unrealistic assumption in a time series

setting, particularly for the dividend-price ratio (or other scaled measures of market value),

because future returns are by definition likely to be correlated with past prices. Indeed, the

correlation between ut and vt is close to -1. While strict exogeneity could be enforced in

the prior, it is clearly counterfactual. Fortunately it is not necessary: our analysis shows

how inference can proceed without it. In what follows, we will compare our results to what

would happen under this approach, which, for simplicity, we refer to as the non-stochastic

regressor approach.

3 Results

3.1 Data

We use data from the Center for Research on Security Prices (CRSP). We compute excess

stock returns by subtracting the continuously compounded 3-month Treasury bill return

from the continuously compounded return on the value-weighted CRSP index at a quarterly

frequency. Following a large empirical literature on return predictability, we focus on the

dividend-price ratio as the regressor because the present-value relation between prices and

returns suggests that it should capture variables that predict stock returns. The dividend-

price ratio is computed by dividing the dividend payout over the previous 12 months with

the current price of the stock index. The use of 12 months of data accounts for seasonalities

in dividend payments. We use the logarithm of the dividend-price ratio as the predictor

variable. Data are quarterly from 1952 to 2009.6

6We obtain very similar results at an annual and monthly frequency.
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3.2 Bayes factors and posterior means

Table 1 reports Bayes factors for various priors. Four values of ση are considered: 0.051,

0.087, 0.148 and 100. These translate into values of P (R2 > .01|H1) (the prior probability

that the R2 exceeds 0.01) equal to 0.05, 0.25, 0.50 and 0.99 respectively. These R2s should

be interpreted in terms of regressions performed at a quarterly frequency. Bayes factors are

reported for the exact likelihood, and, to evaluate the importance of including the initial

term, the conditional likelihood as well.

Table 1 shows that the Bayes factor is hump-shaped in P (R2 > 0.01|H1). For small

values, the Bayes factor is close to one. For large values, the Bayes factor is close to zero.

Both results can be understood using the formula for the Bayes factor in (20) and for the

likelihoods p(D |Hi) in (21). For low values of this probability, the investor imposes a very

tight prior on the R2. Therefore the hypotheses that returns are predictable and that returns

are unpredictable are nearly the same. It follows from (21) that the likelihoods of the data

under these two scenarios are nearly the same and that the Bayes factor is nearly one. This

is intuitive: when two hypotheses are close, a great deal of data are required to distinguish

one from the other.

The fact that the Bayes factor approaches zero as P (R2 > .01|H1) continues to increase

is less intuitive. The reduction in Bayes factors implies that, as the investor allows a greater

range of values for the R2, the posterior probability that returns are predictable approaches

zero. This effect is known as Bartlett’s paradox, and was first noted by Bartlett (1957) in the

context of distinguishing between uniform distributions. As Kass and Raftery (1995) discuss,

Bartlett’s paradox makes it crucial to formulate an informative prior on the parameters

that differ between H0 and H1. The mathematics leading to Bartlett’s paradox are most

easily seen in a case where Bayes factors can be computed in closed form. However, we

can obtain an understanding of the paradox based on the form of the likelihoods p(D |H1)

and P (D |H0). These likelihoods involve integrating out the parameters using the prior

distribution. If the prior distribution on β is highly uninformative, the prior places a large
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amount of mass in extreme regions of the parameter space. In these regions, the likelihood

of the data conditional on the parameters will be quite small. At the same time, the prior

places a relatively small amount of mass in the regions of the parameter space where the

likelihood of the data is large. Therefore P (D |H1) (the integral of the likelihood under H1)

is small relative to P (D |H0) (the integral of the likelihood under H0).

Table 1 also shows that there are substantial differences between the Bayes factors result-

ing from the exact versus the conditional likelihood.7 The Bayes factors resulting from the

exact likelihood are larger than those resulting from the conditional likelihood, thus implying

a greater posterior probability of return predictability. This difference reflects the fact that

the posterior mean of β, conditional on H1, is higher for the exact likelihood than for the

conditional likelihood, and the posterior mean is ρ is lower.8

3.3 The long-run equity premium

For the predictability model, the expected excess return on stocks (the equity premium)

varies over time. In the long run, however, the current value of xt becomes irrelevant. Under

our assumptions xt is stationary with mean µx, and therefore rt is also stationary with mean

µr = E[α + βxt + ut+1|b1,Σ] = α + βµx.

As is the case with µx, this is a population value that conditions on the value of the pa-

rameters. For the no-predictability model, µr is simply equal to α. We can think of µr as

the average equity premium; the fact that it is “too high” constitutes the equity premium

7We are not the first to note the importance of the first observation. See, for example, Poirier (1978).
8The source of this negative relation is the negative correlation between shocks to returns and shocks to

the predictor variable. Suppose that a draw of β is below its value predicted by ordinary least squares (OLS).

This implies that the OLS value for β is “too high”, i.e. in the sample shocks to the predictor variable are

followed by shocks to returns of the same sign. Therefore shocks to the predictor variable tend to be followed

by shocks to the predictor variable that are of different signs. Thus the OLS value for ρ is “too low”. This

explains why values of the posterior mean of ρ are higher for low values of P (R2 > 0.01|H1) (and hence low

values of the posterior mean of β) than for high values, and higher than the ordinary least squares estimate.
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puzzle (Mehra and Prescott (1985)), and it is often computed by simply taking the sample

average of excess returns.

The posterior expectation of µr under various specifications is shown in the fifth column

of Table 1. Because differences in the expected return arise from differences in the posterior

mean of the predictor variable x, the table also reports the posterior mean of µx. The differ-

ences in the long-run equity premium are striking. The sample average of the (continuously

compounded) excess return on stocks over this period is 4.49%. However, assuming the

exact likelihood implies produces a range for this excess return between 3.45% and 3.90%

depending on the strength of the prior. Why is the equity premium in these cases as much

as a full percentage point lower?

To answer this question, it is helpful to look at the posterior means of the predictor

variable, reported in the next column of Table 1. For the exact likelihood specification, the

posterior mean of the log dividend yield ranges from -3.25 to -3.40. The sample mean is -3.54.

It follows that the shocks vt over the sample period must be negative on average. Because of

the negative correlation between shocks to the dividend price ratio and to expected returns,

the shocks ut must be positive on average. Therefore the posterior mean lies below the

sample mean.

Continuing with the exact likelihood case, the posterior mean of µx is highest (and

hence furthest from the sample mean) in the no-predictability model, and becomes lower

as the prior becomes less dogmatic. Excess returns follow this pattern in reverse, namely

they are lowest (and furthest from the sample mean) for the no-predictability model and

highest for the predictability model with the least dogmatic prior. This effect may arise

from the persistence ρ. The more dogmatic the prior, the closer the posterior mean of the

persistence is to one. The more persistent the process, the more likely the positive shocks

are to accumulate, and the more the sample mean is likely to deviate from the true posterior

mean.

The results are very different when the conditional likelihood is used, as shown in Panel B.

For the no-predictability model, µr = α is equal to the sample mean. However, as long as
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there is some predictability, estimation of µr depends on µx, which is unstable due to the

presence of 1−ρ in the denominator. It is striking that, in contrast to our main specification,

the conditional likelihood specification has great difficulty in pinning down the mean of

expected excess stock returns.

3.4 The posterior distribution

We now examine the posterior probability that excess returns are predictable. For conve-

nience, we present results for our main specification that uses the exact likelihood. As a first

step, we examine the posterior distribution for the R2.

The posterior distribution of the R2

Figure 2 displays the prior and posterior distribution of the R2. For now we assume that

prior beliefs are given by P (R2 > 1% |H1) = 0.50 and q = 0.5; below we examine robustness

to changes in these values. Panel A shows P (R2 > k) as a function of k for both the prior

and the posterior; this corresponds to 1 minus the cumulative density function of the R2.9

Panel A demonstrates a rightward shift for the posterior for values of k below (roughly) 2%.

While the prior implies P (R2 > 1%) = 0.25, the posterior implies P (R2 > 1%) close to 0.50.

Thus, after observing the data, an investor revises his beliefs on the existence and strength

of predictability substantially upward.

Panel B shows the probability density function of the R2. The prior places the highest

density on low values of the R2. The posterior however places high density in the region

around 2% and has lower density than the prior for R2 values close to zero. The evidence

in favor of predictability, with a moderate R2, is sufficient to overcome the investor’s initial

skepticism.

9This figures shows the unconditional posterior probability that the R2 exceeds k; that is, they do not

condition on the existence of predictability.
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The posterior probability of return predictability

Table 2 shows how various statistics on the posterior distribution vary as the prior distri-

bution changes. Panel A presents the posterior probabilities of predictability as a function

of the investor’s prior about the existence of predictability, q, and the prior belief on the

strength of predictability. The posterior probability is increasing in q and hump-shaped in

the strength of the prior, reflecting the fact that the Bayes factors are hump-shaped in the

strength of the prior. An investor with moderate beliefs about the probability that returns

are predictable revises these beliefs sharply upward. For example, an investor with q = 0.5

and P (R2 > .01|H1) = 0.50 concludes that the posterior likelihood of predictability equals

0.86. This result is robust to a wide range of choices for P (R2 > .01|H1). As the table shows,

P (R2 > .01|H1) = 0.25 implies a posterior probability of 0.87. The posterior probability

falls off dramatically for P (R2 > .01|H1) = 0.99 ; for these very diffuse priors (which imply

what might be considered an economically unreasonable amount of predictability), the Bayes

factors are close to zero.10 Panels B and C show reasonably high means of the β and the

R2, except for the most diffuse prior.

The above analysis evaluates the statistical evidence on predictability. The Bayesian

approach also enables us to study the economic gains from market timing. In particular,

we can evaluate the certainty equivalent loss from failing to time the market under different

priors on the existence and strength of predictability.

Certainty equivalent returns

We now measure the economic significance of the predictability evidence using certainty

equivalent returns. We assume an investor who maximizes

E

[
W 1−γ
T+1

1− γ

∣∣∣∣∣ D
]

10See this discussion in Section 3.2 on Bartlett’s paradox.
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for γ = 5, where WT+1 = WT (werT+1+rf,T + (1 − w)erf,T ), and w is the weight on the risky

asset. The expectation is taken with respect to the predictive distribution

p(rT+1 |D) = q̄p(rT+1 |D,H1) + (1− q̄)p(rT+1 |D,H0),

where

p(rT+1 |D,Hi) =

∫
p(rT+1 |xT , bi,Σ, Hi)p(bi,Σ |D,Hi) dbi dΣ

for i = 0, 1. A draw rT+1 from the distribution p(rT+1 |xT , b1,Σ) is given by (1) with

probability q̄ and (2) with probability 1− q̄.

For any portfolio weight w, we can compute the certainty equivalent return (CER) as

solving

exp {(1− γ)CER}
1− γ

= E

[
(werT+1+rf,T + (1− w)erf,T )1−γ

1− γ

∣∣∣∣ D] . (24)

Following Kandel and Stambaugh (1996), we measure utility loss as the difference between

certainty equivalent returns from following the optimal strategy and from following a sub-

optimal strategy. We define the sub-optimal strategy as the strategy that the investor would

follow if he believes that there is no predictability. Note, however, that the expectation in

(24) is computed with respect to the same distribution for both the optimal and sub-optimal

strategy.

Panel D of Table 2 shows the difference in certainty equivalent returns as described above.

These differences are averaged over the posterior distribution for x to create a difference that

is not conditional on any specific value. The data indicate economically meaningful economic

losses from failing to time the market. Panel D shows that, for example, an investor with a

prior on β such that P (R2 > .01|H1) = 0.50 and a 50% prior belief in the existence of return

predictability would suffer a certainty equivalent loss of 1.72% (in annual terms) from failing

to time the market. Higher values of q imply greater certainty equivalent losses.
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3.5 Evolution of the posterior distribution over time

We next describe the evolution of the posterior distribution over time. This distribution

exhibits surprising behavior over the 2000-2005 period. This behavior is a direct result of

the stochastic properties of the predictor variable xt. Unless stated otherwise, the results

in this section are for the benchmark specification, namely, the priors given in Section 2.2

combined with the exact likelihood. The prior probability that the R2 exceeds 1% and the

prior probability of predictability are assumed to be 0.5.

Starting in 1972, we compute the posterior distribution conditional on having observed

data up to and including that year. We start in 1972 because this allows for twenty years

of data for the first observation. The posterior is computed by simulating 500,000 draws

and dropping the first 100,000. To save on computation time, we update the posterior every

year. For reference, Figure 3 shows the time series of the log dividend-price ratio. As we

will see, much of the behavior of the posterior distribution can be understood based on the

time series of this ratio.

Figure 4 shows the posterior probability of predictability (q̄) in Panel A (assuming a

prior probability of 0.5). The solid line corresponds to our benchmark specification. This

line is above 90% for most of the sample (it is actually at its lowest value at the end of the

sample). In the 2000-2005 period, the probability is not distinguishable from one. This is

surprising: intuition would suggest that the period in which the dividend-price ratio was

falling far below its long-run mean (and during which returns were high regardless) would

correspond to an exceptionally low posterior probability of predictability, not a high one.

Indeed, it is surprising that data could ever lead the investor to a nearly 100% certainty

about the predictability model.

Panel B, which shows log Bayes factors, gives another perspective on this result. Between

2000 and 2005, the Bayes factor in favor of predictability rises to values that dwarf any others

during the sample. The posterior probability takes these Bayes factors and maps them to

the [0, 1] interval, so values as high as those shown in the figure are translated to posterior
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probabilities extremely close to one. Why is it that the Bayes factors rise so high?

An answer is suggested by the time series behavior of β and ρ, shown in Figure 5.

The solid lines show the posterior distributions of β and ρ.11 The dashed line shows OLS

estimates. The posterior for β lies below the OLS estimate for most of the period, while the

posterior for ρ lies above the OLS estimator for most of the period. An exception occurs in

2001, when the positions reverse. The posterior for β lies above the OLS estimate and the

posterior for ρ lies below it. Note that the OLS estimate of β is biased upwards and the

OLS estimate of ρ is biased downwards, so this switch is especially surprising.

The fact that the posterior ρ rises to meet the OLS ρ, and even exceeds it, indicates

that the model interprets the rise of the dividend-price ratio as occurring because of an

unusual sequence of negative shocks vt. Namely, negative shocks are more likely to occur

after negative shocks during this period. This implies that positive shocks to ut are also

more likely to follow negative shocks vt than they would in population, so OLS will in fact

underestimate the true β (or it will overestimate the true β by less than usual).

This result is similar in spirit to that found in the frequentist analysis of Lewellen (2004)

and Campbell and Yogo (2006) (see also the discussion in the survey, Campbell (2008)). It

is also an example of how information about shocks that are correlated with errors from a

forecasting model can help improve forecasts, as in Faust and Wright (2011). Figure 4 shows

that the consequences of this result for model selection are quite large. This is because

the no-predictability model implies, of course, that β is zero. However, given that OLS

finds a positive β, for the no-predictability model to be true, it must be the case that

negative shocks to the dividend-price ratio were follows by negative shocks to returns. This

is extremely unlikely, given the time series evidence and a stationary predictor variable. Thus

the evidence comes to strongly favor the predictability model.

11For the argument below, it makes the most sense, strictly speaking, to examine the posterior distribution

of β conditional on the predictability model. However, because the posterior probability of this model is so

close to one, this conditional posterior β is nearly indistinguishable from the unconditional posterior β. The

same is true for posterior ρ. Therefore, for simplicity, we focus on the unconditional posterior.
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Comparison with the non-stochastic regressor approach

This chain of inference requires knowledge of the behavior of shocks to the predictor variable.

The non-stochastic regressor approach described in Section 2.5 eliminates such knowledge

and leads to completely different inference over this time period. To fix ideas, we implement

this approach using the standard assumption of a conjugate prior distribution. However, our

findings do not depend on this assumption, as we discuss in Section 3.6.

We assume the following prior distribution on the return parameters:

[α, β]> |σ2
u, H1 ∼ N

(
0, g−1σ2

u(X
>X)−1

)
(25)

σ2
u |H1 ∼ IW (N0 − 2, s0), (26)

where IW denotes the inverse Wishart distribution, and g−1, N0 and s0 are parameters of

the prior distribution.12 Note that prior for β conditional on σu is

β |σ2
u, H1 ∼ N(0, g−1σ2

uT σ̂
−2
x ),

where σ̂2
x denotes the sample variance of x:

σ̂2
x =

1

T

T−1∑
t=0

(
xt −

1

T

T−1∑
s=0

xs

)2

.

This allows us to construct these priors so that they are of comparable informativeness to

our benchmark priors in Section 2.2 by setting

g−1T = σ2
η.

The prior in (25) and (26) is equivalent to the g-prior of Zellner (1986), and is similar

to specifications employed by Fernandez, Ley, and Steel (2001), Chipman, George, and

McCulloch (2001), Avramov (2002), Cremers (2002), Wright (2008) and Stock and Watson

12In fact, because it is scalar the distribution of σ2
u is an inverse Gamma. We express it as a inverse

Wishart for comparability to multivariate results later in the manuscript. We set N0 equal to 40 and s0

equal to the sum of squared errors over the sample, multiplied by N0/T . The results are not sensitive to

these choices. See Appendix E for further interpretation of these prior beliefs.
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(2012). As explained in Section 2.5, the likelihood function in the non-stochastic regressor

case is given by (22).

In our time-series setting, (25) relies on incorrect conditioning: the investor must have

foreknowledge of the entire time path of the predictor variable. Thus, the approach de-

scribed here builds in the assumption of a non-stochastic regressor in two ways. First, the

terms involving the predictor variable do not appear in the likelihood function. Second, it

conditions on the entire time path of xt in forming the prior distribution.13

Appendix E describes the computation of Bayes factors and posterior probabilities in

this case. The dashed line in Figure 4 shows the posterior probabilities and Bayes factors.

Notably, the non-stochastic case does not exhibit the large upward spike in Bayes factors, nor

do the posterior probabilities approach one in the 2000–2005 period. Rather, the posterior

probabilities decline substantially in 1998-2000, and while they increase again after this,

they remain a level lower than the earlier part of the sample. This behavior stems from the

behavior of the OLS predictive coefficients (Figure 5), which follow a similar pattern. The

benchmark case in Figure 4 combines this information with additional information contained

in the shocks vt, and therefore in ut.
14 As explained in the paragraphs above, this information

makes it very unlikely that the no-predictability model holds over the 2000-2005 period.15

13An alternative approach would be to form a conjugate g-prior over a multivariate system that includes

the equation for the state variable. Under this approach, terms involving the predictor variable would

appear in the prior and likelihood function. However, it would still involve incorrect conditioning in that the

entire path of xt would be used in forming the prior. This approach is described in detail in Appendix D.

Comparing the resulting posterior distribution with that from the one-equation conjugate prior case reveals

that they differ up to a degrees of freedom adjustment arising from the need to estimate the correlation

between the two equations.
14For the information in vt to matter, there must be a non-zero correlation between u and v. As Appendix G

shows, in the case of the yield spread, the benchmark and non-stochastic cases look nearly identical in part

because the correlation between shocks to the yield spread and shocks to returns is low in magnitude.
15The effect is most dramatic over the 2000–2005 period, but holds to some extent in other parts of the

sample period as well. This is one of the reasons why Bayes factors for the benchmark case lie above those

for the non-stochastic case throughout the sample.
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3.6 The role of the prior and likelihood in determining Bayes fac-

tors

As Section 3.5 shows, whether one models the predictor variable as stochastic or not has a

large impact on inference. This section delves more deeply into the reasons for this difference.

Clearly there are many differences between the stochastic (benchmark) and non-stochastic

case. Most fundamentally, the benchmark case requires specifying a likelihood function for

the data on the predictor variable. This in turn requires a prior over the parameters of this

likelihood function. By modeling the predictor as non-stochastic, one appears to avoid this

step.

In specifying this prior, we assume that the predictor variable is stationary. Without this

assumption, we could not define a prior over the R2 (because the variance is not well-defined)

nor would we have an exact likelihood function (there would be no well-defined distribution

for x0). As we discuss in Section 2.2, this assumption is standard in the return predictability

literature, though it is not always stated explicitly. Thus in our setting stationarity is a

natural assumption. Here, we seek to understand how it affects our results and why.

We first ask whether it matters if we use the exact or the conditional likelihood. We do

this by comparing our benchmark case with one in which we use the conditional likelihood

and keep all else the same. This is shown in Panel A of Figure 6. Using the conditional

likelihood leads to lower Bayes factors, though the Bayes factors still spike up over the

2000-2005 period. The information from the first observation shifts the distribution of ρ

toward lower values because the mean of the predictor variable is sufficiently close to the

first observation that a high variance of the predictor variable is not necessary to explain the

data (a decrease in ρ decreases the unconditional variance of x). Because the distribution

of ρ is shifted toward lower values, the distribution of β is shifted toward higher values (see

Section 3.2 and Table 1) leading to higher Bayes factors. However, while the exact likelihood

does lead to higher Bayes factors, both sets of likelihood functions imply similar time series

patterns. Thus the use of the exact likelihood function, by itself, is not the main driver of
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the difference between the non-stochastic and benchmark case.

We next consider the effect of a prior on the R2 versus a prior on β. We wish to isolate

the effect of the prior on β as much as possible, so we do not want to simply compare our

benchmark prior with the non-stochastic prior as these differ not only in the prior for β but

along a number of other dimensions as well.

We consider the following assumptions on the prior for β:

p(β|b0,Σ, H1) ∼ N(0, σ̂2
β), (27)

where

σ̂β = σησ̂
−1
x σ̂u. (28)

We compute σ̂u as the standard deviation of the residual from OLS regression of the predictive

regression. We assume a standard uninformative prior for the remaining parameters (Zellner

(1996)):

p(b0,Σ|H1) = p(b0,Σ|H0) ∝ |Σ|−
3
2 , (29)

for ρ ∈ (−1, 1), and zero otherwise. It follows that

p(b1,Σ|H1) ∝
1√

2πσ̂2
β

|Σ|−
3
2 exp

{
−1

2
β2σ̂−2β

}
. (30)

In what follows, we refer to these as empirical Bayes priors. These contrast with the full

Bayes priors that form our benchmark specification.

The empirical Bayes prior has several advantages for the purpose of our comparison.

First, the prior over β implied by (27) and (28) is almost identical to the conjugate-g prior

over β.16 Second, when we do not restrict ρ to be between -1 and 1 and use the conditional

likelihood, the results are nearly identical to the non-stochastic case (results available from

the authors). This is not surprising: the prior over β is nearly the same in both cases, and

the likelihood function is exactly the same.

16The only difference is whether σu is taken from the sample or conditioned on. Because σu is estimated

very precisely, this distinction makes little practical difference.
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Thus the empirical Bayes priors are similar to the priors in the non-stochastic case in

many respects. However, we can impose stationarity on these priors, which we cannot do

in the non-stochastic case. Thus we can make the empirical Bayes case more comparable

to our benchmark case. Panel B shows the results of this exercise: We use the conditional

likelihood, and compare the results of the full Bayes (benchmark) and the empirical Bayes

priors. For the empirical Bayes priors, we assume ρ ∈ (−1, 1). The results in Panel B

show that, while the use of empirical Bayes raises the Bayes factors somewhat, the effect is

relatively small. Replacing full Bayes with empirical Bayes partially cancels out the effect of

replacing the exact likelihood with the conditional likelihood, in this sample at least. Thus

the use of a prior over the R2 rather than a prior over β plays at most a minor role in our

results.

Finally, in the last panel, we consider the empirical Bayes prior and conditional likelihood

with and without stationary. Without stationarity, we are in effect back to the non-stochastic

regressor case. We see that whether ρ is restricted to be less than one makes a large difference

in the results. As explained in the previous section, the model interprets the rise in the

dividend-price ratio as occurring because of an unusual sequence of negative shocks. Because

of the negative correlation between the dividend-price ratio and returns, one would expect

positive shocks to returns to follow negative shocks to the dividend-price ratio. In such a

sample, OLS would be biased downward, not upward. However, the no-predictability model

by definition implies that OLS must be biased upward. Restating somewhat, over this period

there is still a negative relation between the lagged dividend-price ratio and returns. The

fact that this relation is weakened is not so much evidence against predictability but rather

a consequence of an unusual set of shocks. If there truly were no predictability, it would

have had to have weakened much further.

It might seem that the empirical Bayes approach, or indeed the stochastic regressor

approach (these are nearly identical), is more robust, as it does not require an assumption

of stationarity. However, recall that these approaches rely on incorrect conditioning: They

assume not only that the agent can see part of the data but not the rest, but that the agent
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is not allowed to make use of this data for inference. This seems unattractive. Moreover, this

apparent robustness is itself concerning. The non-stochastic regressor approach can be shown

to be equivalent to the use of ordinary least squares (OLS).17 Yet, OLS is known to be biased

in the time series setting, and invalid when the right-hand-side variable is non-stationary.

The fact that OLS (with its known flaws) plays a central role in the non-stochastic case,

combined with the fact that this case relies on incorrect conditioning would seem to make the

non-stochastic case a less than ideal foundation for Bayesian inference in time-series setting.

Rather than relying on the non-stochastic case, one could generalize the prior distribution

that we introduce to allow for a non-stationary distribution for xt. This would of course

admit the possibility that excess returns, too, are non-stationary and the equity premium

undefined. We leave this interesting topic to future work.

3.7 The training sample approach

An alternative approach that (like the non-stochastic case) makes use of the principles of

conjugacy is to form a prior using a training sample.18 Unlike the non-stochastic case de-

scribed in Section 3.5, the training sample approach does not require foreknowledge of the

time series of x.19

In this section, we evaluate this approach in the setting of model uncertainty. Consider

a training sample (an early sub-sample of the data) with T̃ time series observations. Let

X̃ and Ỹ denote the analog to (2.3.1) over this prior sample, b̃1 the regression coefficients

17An apparent alternative would be to allow a flat prior for both β and ρ (thus making the prior over the

R2 unnecessary). As discussed above, this leads to Bayes factors close to zero because of Bartlett’s paradox.

A second alternative would be to create a training sample. We explore this alternative in detail in the next

section.
18See Johannes, Korteweg, and Polson (2012).
19Though it does use the conditional rather than the exact likelihood.
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computed over this sample, and S̃ the sum of squared errors. That is:

B̃1 = (X̃>X̃)−1X̃>Ỹ (31)

b̃1 = vec(B̃1) (32)

S̃ = (Ỹ − X̃B̃1)
>(Ỹ − X̃B̃1). (33)

Prior beliefs are given as follows:

p(b1|Σ, H1) ∝ |Σ|−1 exp

{
−1

2
(b1 − b̃1)>(Σ−1 ⊗X>X)(b1 − b̃1)

}
(34)

p(Σ|H1) ∝ |Σ|−
N+1

2 exp

{
−1

2
trΣ−1S̃

}
, (35)

which implies

b1 ∼ N
(
b̃,Σ⊗ (X̃>X̃)−1

)
(36)

Σ ∼ IW
(
S̃, T̃ − 2

)
. (37)

This prior distribution can be interpreted as the beliefs the investor would have if starting

with a (true) uninformative prior and updated using the conditional likelihood (14) for T̃

observations. The resulting distributions follow from calculations in Zellner (1996, pp. 224-

227).20

Bayes theorem and the results in Zellner (1996) imply that the posterior distribution

takes the same form, but with the training sample quantities replaced by their full-sample

counterparts.21 Let

b̂1 = vec(B̂1)

B̂1 = (X>X)−1X>Y

S = (Y −XB̂1)
>(Y −XB̂1).

20We make the standard assumption that true uninformative prior is flat for b1 and proportional to |Σ|−3/2

for Σ. Equations (31–37) then follow from the calculations in Zellner (1996) for the posterior given data X̃

and Ỹ of sample length T̃ .
21For consistency with earlier sections of the paper, we continue to use T as the length of the full sample.

The full sample is then comprised of the training sample of length T̃ and an additional sample of length

T − T̃ .
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It follows that

p(b1|Σ, H1, D) ∝ |Σ|−1 exp

{
−1

2
(b1 − b̂1)>(Σ−1 ⊗X>X)(b1 − b̂1)

}
(38)

p(Σ|H1, D) ∝ |Σ|−
T+1
2 exp

{
−1

2
trΣ−1S

}
, (39)

which implies

b1 ∼ N
(
b̂1,Σ⊗ (X>X)−1

)
(40)

Σ ∼ IW (S, T − 2) . (41)

Appendix F describes the computation of Bayes factors.

The disadvantage of this approach is that inference is very sensitive to the choice of

the training sample. Figure 7 shows the implied prior distribution for the coefficient β

under different training samples (Panel A) and the corresponding posterior probabilities

of predictability (Panel B). We consider priors of length 8, 16 and 40 quarters (Johannes,

Korteweg, and Polson (2012) use monthly data and a training sample length of 24 months).

All three prior-likelihood combinations use exactly the same data; the only difference is

whether the data is labeled as part of the prior or the likelihood. Nonetheless, the differences

in the economic conclusions are striking. A prior formed using 8 quarters of data yields a

posterior probability of only 10% at the end of the sample, while assigning 16 quarters to

the prior implies a posterior probability of above 50%. Increasing the data in the prior is no

guarantee of stability: the posterior probability formed when the prior is 40 quarters is close

to 30%.

What is the source of this indeterminacy? As we discuss in Section 3.2, Bartlett’s paradox

implies that too diffuse a prior will lead to very low Bayes factors, because the mass of the

prior is far from what the data suggest. Priors based on a small training sample run into

exactly this problem (as can be seen from the prior formed using 8 quarters of data). On the

other hand, using a moderate-sized training sample creates its own problems. For example,

40 quarters of data implies a prior distribution that is no longer diffuse. However, because

this prior is centered at a different value than data from the full sample imply, the posterior
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probability is also lower than for the 16-quarter prior. Indeed, Figure 7 shows that the

shortest training sample implies a prior that is diffuse and has little weight on β = 0 while

the longest training sample implies a prior that is highly informative, but also places little

weight on β = 0. In both cases, the Bayes factors are low.

More intuition can be obtained using the formula for the log Bayes factor that applies in

this instance:

logB10 = log p(β = 0|H1)− log p(β = 0|D,H1) (42)

(see Verdinelli and Wasserman (1995)). By definition, altering the end point of the training

sample has no effect on the posterior probability of β = 0, because the posterior is invariant

to the how the data are divided between the training and the actual sample. However, it

will of course affect the prior probability that β = 0. Equation (42) shows that the log Bayes

factor undergoes a linear shift depending on the training sample. Thus, while the training

sample approach avoids some problems with the conjugate prior, it introduces a new one,

namely: indeterminacy with respect to the choice of the training sample.

3.8 Out-of-sample performance

Goyal and Welch (2008) argue that the out-of-sample performance of predictive regressions,

when implemented using standard techniques, is quite poor. This raises the question of

whether our approach to predictability leads to superior out-of-sample performance.

In this section, we answer this question using the same CRRA utility function used to

evaluate in-sample performance in Section 3.4. As in that section, we consider a one-period

investor who chooses a weight in the risky asset. We first assume that the investor follows

an optimal strategy, that is, he computes expected utility with respect to the predictive

distribution of returns (see Section 3.4), and chooses a portfolio strategy to maximize this

expected utility. We then compute the out-of-sample certainty equivalent return (CER)

associated with this strategy. That is, for each quarter in the sample, we apply the optimal

weights computed using information available at that quarter to the actual returns realized
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over the next quarter. This gives us a time series of quarterly returns; we use this time series

to compute the expectation on the right hand side of (24).

We compare the resulting CER to that resulting from a sub-optimal strategy.22 Motivated

by the findings of Goyal and Welch (2008), we first consider the strategy in which the

investor computes the distribution of returns assuming no predictability and that the mean

and volatility are given by their sample moments.

The results are shown in Panel A of Table 3. We find a positive difference between CERs,

indicating superior out-of-sample performance relative to the sample means, for each of the

prior beliefs we consider. As elsewhere in the paper, we consider a range of prior beliefs on

predictability q and the probability that the R2 exceeds 0.01. The results are largest for

those prior beliefs that lead to a relatively high weight on the predictability model (namely

P (R2 > .01|H1) = 0.50).

Panel A of Table 3 show that strategies implied by our method outperform a simple

strategy based on sample moments. We now assess the statistical significance of this out-

performance. That is, we ask: could this outperformance have occurred in a sample with no

predictability? Note that outperformance in a no-predictability setting need not be spurious.

This is because our strategies not only incorporate evidence on predictability, but allow for

Bayesian updating on all of the parameters. In performing this exercise, we are assessing the

extent to which this outperformance itself constitutes evidence for return predictability.23

To accurately capture non-standard features of the portfolio return series, we simulate

400 samples under the null hypothesis of no predictability.24 For each of these samples, we

calculate out-of-sample performance, repeating the procedure we used to calculate perfor-

22As in Section 3.4 and in Kandel and Stambaugh (1996), we measure utility loss by taking the difference

between the CER of the optimal strategy and the CER of the suboptimal strategy.
23Unlike the rest of the paper, this exercise is purely frequentist in nature. The Bayesian investor would

not require such evidence under our framework.
24In setting the parameters for this Monte Carlo, we take into account the bias in ρ. We choose ρ to

be 0.997, which happens to be its estimate under the no-predictability model. This value of ρ leads to an

average OLS estimate of 0.973, similar to that in the data.
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mance in actual data. We limit the number of samples to 400 due to the heavy computational

requirement of this exercise. Because we have no reason to believe that our method would

perform worse under the alternative hypothesis of predictability than under the null, we

consider a one-tailed test and report, in brackets, the 95 percent critical value from our sim-

ulations. The results show that our out-of-sample values exceed this critical value for 11 out

of the 20 priors that we consider. We conclude therefore that the out-of-sample performance

our strategies exhibit would have been quite unlikely in an setting with no predictability.

Our results based on sample means raise the question of whether our strategies out-

perform those constructed using OLS estimates (which were used for evaluation by Goyal

and Welch (2008)). We repeat the exercise above, but rather than consider a sub-optimal

strategy based on sample means, we consider a sub-optimal strategies constructed using the

OLS estimates. Panel B indicates that the OLS strategies do perform worse, reconciling our

findings with those of Goyal and Welch. For completeness, we also report the 95 percent

critical value, constructed as described above. However, there is no reason to expect that the

difference between our strategies and those based on OLS would be statistically significant,

and indeed they are not.25

Figure 8 shows the portfolio weights corresponding to the optimal strategy, the sample

mean strategy and the OLS-based strategy. Not surprisingly, the sample mean strategy

varies slowly over the period, reflecting changes in the measurement of the mean return.

This strategy makes no use of the predictability of stock returns, which, when applied in

our Bayesian setting, do turn out to lead to superior out of sample performance. However,

the weights implied by the strategy with a 50% prior belief in predictability are notably less

volatile than an OLS-based strategy. In fact, the OLS strategy spends much of the time

at either 0% or 100% in equities (the discrete-time CRRA investor would never choose to

25In a previous study (Wachter and Warusawitharana (2009)) we found extremely poor performance for

an OLS investor. In that study, we assumed mean-variance weights, which allowed for positions of unlimited

size. In this study, we assume a CRRA investor, whose weight in the risky asset always falls between 0 and

1. This makes a difference for the OLS strategy, given the extreme nature of the implied beliefs.
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short equities or to invest more than 100% in equities because of the non-zero probability

of negative wealth). It is likely that the Bayesian strategy would outperform by an even

greater extent if one were to restrict the return distribution to allow for optimal strategies

outside of these bounds. These results show how economically motivated prior beliefs can

improve investment performance out-of-sample, as well as in-sample.

3.9 Allowing for time-varying volatilities

Stochastic volatility is a well-established property of financial returns. Here, we discuss how

our approach would generalize to allow for this property.

A critical aspect to our approach is the presence of an informative prior over the predictive

coefficient β. This informative prior is what allows us to calculate Bayes factors, and posterior

probabilities over models. If this prior were flat, Bartlett’s paradox would lead to Bayes

factors close to zero. The flat prior is in a sense informative because the predictive coefficient

can become very large, leading to implied priors on the R2 that are unreasonable on economic

grounds. The Bayes factors in this case are low, not because predictability is absent, but

because the supposedly uninformative prior places too much weight on unreasonable areas

of the parameter space. Our approach allows the investor to place an informative prior on

the predictive coefficient in a natural and intuitive way.

This insight can be readily generalized to a setting that allows for time-varying volatility.

Here, we outline one such approach. Consider a data generating process as in Section 2.1,

except allow the volatility of the shocks, and potentially the predictive coefficient, to change

over time. That is, we compare the predictive model

rt+1 = α + βtxt + ut+1

to one without predictability (2), where xt is given by (3), and the shocks ut+1 and vt+1 are

governed by  ut+1

vt+1

 | rt, . . . , r1, xt, . . . , x0 ∼ N (0,Σt) ,
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with

Σt =

 σ2
u,t σuv,t

σuv,t σ2
v,t

 .
We assume that Σt follows a multivariate stochastic process such that it is positive definite

with probability one.26 Rather than prior beliefs over Σ itself, the investor would have a

prior over the hyperparameters of this process. Because second moments (as opposed to first

moments) can generally be accurately measured, the precise form of these priors might not

turn out to be important for the conclusions.27

As discussed above, the aspect of our approach that one would wish to preserve in

this setting is the informative prior on β and its link to the R2 statistic. The simplest

generalization would keep η as a constant parameter with the distribution

η|H1 ∼ N(0, σ2
η). (43)

The relation

βt = σ−1x,tσu,tη

then gives the prior distribution over βt. This definition assumes that time-varying parame-

ters are part of the agent’s information set at time t, for the purpose of the R2 calculation.28

Regardless of time-variation in σu,t and σv,t, this would insure that the amount of predictabil-

ity remains economically reasonable. Note that the posterior means for βt could, and most

likely would, vary over time.

This system could be generalized still further by allowing η itself to vary over time,

replacing (43) with priors on the hyperparameters on the process for η. This prior would

allow investor to have the view that predictability could vary over time in a way that is

unrelated to the variance of the predictor variable or of returns.

26The difficulties in modeling Σt are not unique to our setting, but arise in any multivariate setting with

stochastic volatility.
27See Johannes, Korteweg, and Polson (2012) for a recent Bayesian analysis of stochastic volatility in a

return predictability setting.
28In this, it is analogous to our current calculation for the R2, which conditions on the true parameters.

Note that this only matters for the interpretation of the priors, not for the calculation of the priors themselves.
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The advantage of either of these approaches is that they would allow the investor to

consider both time-varying first and second moments in her investment decision. Given the

evidence that second moments vary, this would be useful in improving out of sample perfor-

mance. However, the qualitative findings of the importance of predictability reported earlier

in the manuscript do not rely on homoskedasticity but rather on the negative correlation be-

tween shocks to the dividend-price ratio and returns. Thus, while introducing time-varying

second moments would be interesting, we expect that our main results would be unaffected.

4 Conclusion

This study takes a Bayesian approach to the question of whether the equity premium varies

over time. We consider investors who face uncertainty both over whether predictability

exists, and over the strength of predictability if it does exist. We find substantial evidence in

favor of predictability when the dividend-price ratio is used to predict returns. Moreover, we

find large certainty equivalent losses from failing to time the market, even for investors who

have strong prior beliefs in a constant equity premium. Our strategies exhibit improved out-

of-sample performance when compared with no-predictability strategies and when compared

with OLS.

We depart from previous studies in that we model the regressor as stochastic rather than

fixed. We show that this raises the probability of predictability in general, and particularly

during the 2000-2005 period. Thus the way in which the regressor is modeled can signif-

icantly affect Bayesian inference, often in non-obvious ways. In this study, we model the

predictive variable as following a stationary process, and the predictor variable and returns

as homoskedastic. Exploring alternative distributional assumptions and their consequences

for inference on returns is an interesting topic for further work.
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Appendix

A Jeffreys prior under H0

Our derivation for the limiting Jeffreys prior on b0,Σ generalizes that of Stambaugh (1999).

Zellner (1996, pp. 216-220) derives a limiting Jeffreys prior by applying (A.1) to the likelihood

(17) and retaining terms of the highest order in T . Stambaugh shows that Zellner’s approach

is equivalent to applying (A.1) to the conditional likelihood (16), and taking the expectation

in (A.1) assuming that x0 is multivariate normal with mean (6) and variance (7). We adopt

this approach.

Given a set of parameters µ, data D, and a log-likelihood l(µ;D), the limiting Jeffreys

prior satisfies

p(µ) ∝
∣∣∣∣−E ( ∂2l

∂µ∂µ>

)∣∣∣∣1/2 . (A.1)

We derive the prior density for p(b0,Σ
−1) and then transform this into the density for p(b0,Σ)

using the Jacobian. Let

l0(b0,Σ;D) = log p(D|b0,Σ, H0, x0). (A.2)

denote the natural log of the conditional likelihood. Let ζ = [σ(11) σ(12) σ(22)]>, where σ(ij)

denotes element (i, j) of Σ−1. Applying (A.1) implies

p(b0,Σ
−1|H0) ∝

∣∣∣∣∣∣−E
 ∂2l0

∂b0∂b>0

∂2l0
∂b0∂ζ>

∂2l0
∂ζ∂b>0

∂2l0
∂ζ∂ζ>

∣∣∣∣∣∣
1/2

. (A.3)

The form of the conditional likelihood implies that

l0(b0,Σ;D) = −T
2

log |2πΣ| − 1

2
(z − Z0b0)

> (Σ−1 ⊗ IT ) (z − Z0b0) . (A.4)

It follows from (A.4) that

∂l0
∂b0

=
1

2
Z>0
(
Σ−1 ⊗ IT

)
(z − Z0b0) ,
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and

∂2l0
∂b0∂b>0

= −1

2
Z>0
(
Σ−1 ⊗ IT

)
Z0

= −1

2

 ι>T 0

0 X>

(Σ−1 ⊗ IT )
 ιT 0

0 X


= −1

2

 σ(11)T σ(12)ι>X

σ(12)X>ι σ(22)X>X

 . (A.5)

Taking the expectation conditional on b0 and Σ implies

E

[
∂2l0

∂b0∂b>0

]
= −T

2


σ(11) σ(12)[1 µx]

σ(12)

 1

µx

 σ(22)

 1 µx

µx σ2
x + µ2

x


 (A.6)

Using arguments in Stambaugh (1999), it can be shown that

E

[
∂2l0

∂b0∂ζ>

]
= 0.

Moreover,

−
∣∣∣∣E ( ∂2l0

∂ζ∂ζ>

)∣∣∣∣ =

∣∣∣∣∂2 log |Σ|
∂ζ∂ζ>

∣∣∣∣ = |Σ|3

(see Box and Tiao (1973, pp. 474-475)). Therefore

p(b0,Σ
−1|H0) ∝ |Φ|

1
2 |Σ|

3
2 (A.7)

where

Φ =

 Σ−1 µx

 σ(12)

σ(22)


µx
[
σ(12) σ(22)

]
(σ2

x + µ2
x)σ

(22)

 .
This matrix Φ has the same determinant as −E

[
∂2l0

∂b0∂b>0

]
because 2 columns and 2 rows have

been reversed.

From the formula for the determinant of a partitioned matrix, it follows that

|Φ| =
∣∣Σ−1∣∣

∣∣∣∣∣∣(σ2
x + µ2

x

)
σ(22) − µ2

x

[
σ(12) σ(22)

]
Σ

 σ(12)

σ(22)

∣∣∣∣∣∣ .
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Because

Σ

 σ(12)

σ(22)

 =

 0

1

 ,
it follows that

|Φ| =
∣∣Σ−1∣∣ ∣∣(σ2

x + µ2
x

)
σ(22) − µ2

xσ
(22)
∣∣

= |Σ|−1σ2
xσ

(22).

The determinant of Σ equals

|Σ| = σ2
u

(
σ2
v − σ2

uvσ
−2
u

)
,

while σ(22) = (σ2
v − σ2

uvσ
−2
u )
−1

. Therefore,

|Φ| = |Σ|−2σ2
uσ

2
x.

Substituting into (A.7),

p(b0,Σ
−1|H0) ∝ |Σ|

1
2σuσx.

The Jacobian of the transformation from Σ−1 to Σ is |Σ|−3. Therefore,

p(b0,Σ|H0) = |Σ|−
5
2σuσx.

B Sampling from Posterior Distributions

This section describes how to sample from the posterior distributions for our benchmark

and related models. In all cases, the sampling procedure for the posteriors under H1 and

H0 involve the Metropolis-Hastings algorithm. Below we describe the case of the exact

likelihood and full Bayes prior in detail. The procedures for the conditional likelihood and

for the empirical Bayes prior are similar.

B.1 Posterior distribution under H0

Substituting (8) and (17) into (18) implies that

p(b0,Σ|H0, D) ∝ σu|Σ|−
T+5
2 exp

{
−1

2
σ−2x (x0 − µx)2 −

1

2
(z − Z0b0)

> (Σ−1 ⊗ IT ) (z − Z0b0)

}
.
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This posterior does not take the form of a standard density function because of the term in

the likelihood involving x0 (note that σ2
x is a nonlinear function of ρ and σv). However, we

can sample from the posterior using the Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm is implemented “block-at-a-time”, by repeatedly sam-

pling from p(Σ|b0, H0, D) and from p(b0|Σ, H0D). To calculate a proposal density for Σ, note

that

(z − Z0b0)
> (Σ−1 ⊗ IT ) (z − Z0b0) = tr

[
(Y −XB0)

>(Y −XB0)Σ
−1] ,

where

B0 =

 α θ

0 ρ

 .
The proposal density for the conditional probability of Σ is the inverted Wishart with T + 2

degrees of freedom and scale factor of (Y −XB0)
>(Y −XB0). The target is therefore

p(Σ|b0, H0, D) ∝ σu exp

{
−1

2
(x0 − µx)2σ−2x

}
× proposal.

Let

V0 =
(
Z>0
(
Σ−1 ⊗ IT

)
Z0

)−1
Let

b̂0 = V0Z
>
0

(
Σ−1 ⊗ IT

)
z

It follows from completing the square that

(z − Z0b0)
> (Σ−1 ⊗ IT ) (z − Z0b0) = (b0 − b̂0)>V −10 (b0 − b̂0) + terms independent of b0.

The proposal density for b0 is therefore multivariate normal with mean b̂0 and variance-

covariance matrix V0. The accept-reject algorithm of Chib and Greenberg (1995, Section 5)

is used to sample from the target density, which is equal to

p(b0|Σ, H0, D) ∝ exp

{
−1

2
(x0 − µx)2 σ−2x

}
× proposal.

Note that σu and Σ are in the constant of proportionality. Drawing successively from the

conditional posteriors for Σ and b0 produces a density that converges to the full posterior

conditional on H0.
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B.2 Posterior distribution under H1

Substituting (12) and (15) into (18) implies that

p(b1,Σ|H1, D) ∝ σx|Σ|−
T+5
2 exp

{
−1

2
β2
(
σ2
ησ
−2
x σ2

u

)−2 − 1

2
σ−2x (x0 − µx)2

}
exp

{
−1

2
(z − Z1b1)

> (Σ−1 ⊗ IT ) (z − Z1b1)

}
.

The sampling procedure is similar to that described in Appendix B.1. Details can be found

in Wachter and Warusawitharana (2009). To summarize, we first draw from the posterior

p(Σ | b1, H1, D). The proposal density is an inverted Wishart with T + 2 degrees of freedom

and scale factor (Y −XB1)
>(Y −XB1), where

B1 =

 α θ

β ρ

 . (B.1)

We then draw from p(θ, ρ |α, β,Σ, H1, D). The proposal density is multivariate normal with

mean and variance determined by the conditional normal distribution. Finally, we draw from

p(α, β | θ, ρ,Σ, H1, D). In this case, the target and the proposal are the same, and are also

multivariate normal.

C Computing the Bayes factor

This section describes computation of Bayes factors for the benchmark and related models.

Verdinelli and Wasserman (1995) show

B−110 = p(β = 0|H1, D)E

[
p(b0,Σ|H0)

p(β = 0, b0,Σ|H1)

∣∣∣∣ β = 0, H1, D

]
. (C.1)

To compute p(β = 0 |H1, D), note that

p(β = 0 |H1, D) =

∫
p(β = 0 | b0,Σ, H1, D)p(b0,Σ |H1, D) db0 dΣ. (C.2)

As discussed in Appendix B.2, the posterior distribution of α and β conditional on the

remaining parameters is normal. We can therefore compute p(β = 0 | b0,Σ, H1, D) in
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closed form by using the properties of the conditional normal distribution. Consider N

draws from the full posterior: ((b
(1)
1 ,Σ(1)), . . . , (b

(N)
1 ,Σ(N))), where we can write (b

(i)
1 ,Σ

(i)) as

(β(i), b
(i)
0 ,Σ

(i)). We use these draws to integrate out over b0 and Σ. It follows from (C.2) that

p(β = 0|H1, D) ≈ 1

N

N∑
i=1

p(β = 0|b(i)0 ,Σ
(i), H1, D),

where the approximation is accurate for large N .

To compute the second term in (C.1), we observe that

p(b0,Σ |H0)

p(β = 0, b0,Σ |H1)
=

p(b0,Σ |H0)

p(β = 0|b0,Σ, H1)p(b0,Σ |H1)
=
√

2πσβ,

because p(b0,Σ |H0) = p(b0,Σ |H1). Note that σβ = σησ
−1
x σu. We require the expectation

taken with respect to the posterior distribution conditional on the existence of predictability

and the realization β = 0. To calculate this expectation, we draw ((b
(1)
0 ,Σ(1)), . . . , (b

(N)
0 ,Σ(N)))

from p(b0,Σ | β = 0, H1, D). This involves modifying the procedure for drawing from the pos-

terior for b1,Σ given H1 (see Appendix B.2). We sample from p(Σ |α, β = 0, θ, ρ,H1, D),

then from p(ρ, θ |α, β = 0,Σ, H1, D) and finally from p(α | β = 0,Σ, θ, ρ,H1, D), and re-

peat until the desired number of draws are obtained. All steps except the last are identical

to those described in Appendix B.2 (the value of β is identically zero rather than the value

from the previous draw). For the last step we derive p(α | β = 0,Σ, θ, ρ,H1, D) from the joint

distribution p(α, β |Σ, θ, ρ,H1, D), making use of the properties of the conditional normal

distribution.

Given these draws from the posterior distribution, the second term equals

E

[
p(b0,Σ|H0)

p(β = 0, b0,Σ|H1)

∣∣∣∣ β = 0, H1, D

]
≈ 1

N

N∑
i=1

√
2πση(σ

(i)
x )−1σ(i)

u . (C.3)

D The posterior distribution and Bayes factor for the

conjugate g-prior and conditional likelihood

This section generalizes results in Zellner (1996) to the case of a multivariate regression sys-

tem with an informative conjugate prior. We assume a multivariate version of the conjugate
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g-prior as follows:

b1|Σ, H1 ∼ N(0, g−1
(
Σ⊗ (X>X)−1

)
), (D.4)

Σ|H1 ∼ IW (S0, N0 − 2), (D.5)

where g−1 is a scale parameter that determines the degree of precision of the prior, IW

denotes the inverse-Wishart distribution, and N0 and S0 can be interpreted as the length of

a hypothetical no-predictability prior sample and the sum of squared errors of this sample,

respectively.29

It is convenient to define

B1 =

 α θ

β ρ

 ,
and to write the prior (D.4) as

Given B1 defined as in (B.1), it follows from Zellner (1996, Eq. 8.14) that

p(B1|Σ, H1) ∝ |Σ|−1 exp

{
−1

2
tr
(
gB>1 (X>X)B1Σ

−1)} . (D.6)

Note that the variance of b1 equals Σ⊗ (X>X)−1, and that

|Σ⊗ (X>X)−1|−
1
2 ∝ |Σ|−1

because X>X can be regarded as a constant when calculating the distribution of B1. Further,

the density for the inverse Wishart distribution (D.5) equals

p(Σ|H1) ∝ |Σ|−(N0+1)/2 exp

{
−1

2
tr(Σ−1S0)

}
. (D.7)

Therefore the joint prior is given by

p(B1,Σ|H1) = |2πΣ|−
N0+3

2 exp

{
−1

2
tr
(
gB>1 (X>X)B1Σ

−1 + S0Σ
−1)} . (D.8)

29This interpretation is consistent with having a standard uninformative “prior” before viewing this no-

predictability “prior sample” of p(b1) ∝ constant and p(Σ) ∝ |Σ|−3/2. See Zellner (1996, Chapter 8.1). A

prior sample of length greater than 2 is necessary for a well-defined posterior distribution, since the data

also need to be sufficient to identify b1.
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Note that this prior imposes a particular structure on the covariance matrix of the parameters

that mimics the likelihood specification. It is this structure that is responsible for this

specification’s tractability. Note also that the data enter into the prior through the term

(X>X)−1, so that this prior requires incorrect conditioning. The entire time path of the

state variable must be known when prior beliefs are formulated.

We combine this prior with the conditional likelihood function.30 Let

B̂1 = (X>X)−1X>Y (D.9)

S = (Y −XB̂1)
>(Y −XB̂) (D.10)

Given this notation, we can rewrite (14) as follows:

p(D|B1,Σ, H1) ∝ |Σ|−
T
2 exp

{
−1

2
tr
(

(B1 − B̂1)
>X>X(B1 − B̂1)Σ

−1 + SΣ−1
)}

, (D.11)

where ∝ in (D.11) should be taken to mean that we have eliminated multiplicative terms

that do not depend on B1 and Σ. For more detail, see Zellner (1996, Chapter 8.1).

Define sufficient statistics for the posterior as follows

B̄1 =
(
X>X(1 + g)

)−1
(X>Y )

S̄ = S0 + Y >Y − (Y >X)(X>X(1 + g))−1(X>Y )

Note that S̄ can be rewritten as

S̄ = S0 + S + B̂>1 X
>XB̂1 − B̄>1 (X>X)(1 + g)B̄1. (D.12)

Bayes rule implies that the posterior is given by

p(B1,Σ|D,H1) ∝ p(D|B1,Σ, H1)p(B1,Σ|H1)

where the first and second terms on the right hand side are given by (D.11) and (D.8)

respectively. Completing the square and using (D.12) implies that the posterior density

30We cannot use the exact likelihood function because the prior does not lead to a well-defined distribution

for the predictor variable.
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equals

p(B1,Σ|D,H1) =

|Σ|−
T+N0+3

2 exp

{
−1

2
tr
(
(B1 − B̄1)

>(X>X(1 + g))(B1 − B̄1)Σ
−1 + S̄Σ−1

)}
. (D.13)

We now factor the joint posterior (D.13) into a posterior for B1 conditional on Σ and the

marginal posterior for Σ. This is an important step in computing the Bayes factor, as will

be apparent in what follows. By definition,

p(B1,Σ|D,H1) = p(B1|Σ, D,H1)p(Σ|D,H1). (D.14)

Define

b̄1 = vec(B̄1).

The factorization in (D.14) is accomplished as follows:

p(B1|Σ, D,H1) ∝ |Σ|−1 exp

{
−1

2
tr
(
(B1 − B̄1)

>(X>X(1 + g))(B1 − B̄1)Σ
−1)} ,

= |Σ|−1 exp

{
−1

2
(b1 − b̄1)>

(
Σ−1 ⊗X>X(1 + g)

)
(b1 − b̄1)

}
(D.15)

and

p(Σ|D,H1) ∝ |Σ|−
T+N0+1

2 exp

{
−1

2
tr
(
S̄Σ−1

)}
(D.16)

The distribution (D.15) represents a multivariate normal distribution.31

Our ultimate goal is to calculate the marginal posterior for β, which is the second element

of b1. Let β̄ be the second element of b̄1 and define

ν̄x =
[
(X>X)−1

]
22
,

namely the second diagonal element of (X>X)−1.32 It follows from (D.15) and properties of

the multivariate normal distribution that

p(β|Σ, D,H1) ∝
1

σu
exp

{
−1

2
σ−2u (1 + g)ν̄x(β − β̄)2

}
, (D.17)

31As in (D.6), for (D.15) to be multivariate normal, |Σ| must be raised to the power -1.
32Note that this element is also equal to T σ̂2

x, namely T (the number of time series observations on the

return variable) multiplied by the sample variance of the predictor taken from time 0 to time T − 1.
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where we have used the fact that (Σ−1 ⊗ (X>X))−1 = Σ⊗ (X>X)−1,

Further, note that (D.17) depends only on σu. Therefore, to calculate the marginal prior

for β, we only need to integrate out σu. It follows from (D.16) and properties of the inverse

Wishart distribution that

p(σ2
u|D,H1) ∝

1

σT+N0−1
u

exp

{
− S̄11

2σ2
u

}
, (D.18)

where S̄11 is the first diagonal element of S̄ (see Zellner (1996, p. 227-228)). It follows that

p(β|D,H1) =

∫ ∞
0

p(β|σ2
u, D,H1)p(σ

2
u|D,H1) dσ

2
u

∝
∫ ∞
0

1

σT+N0
u

exp

{
− 1

2σ2
u

(
(1 + g)ν̄x(β − β̄)2 + S̄11

)}
dσ2

u

∝
(
(1 + g)ν̄x(β − β̄)2 + S̄11

)−T+N0−2
2 (D.19)

∝
(

1 +
1

T +N0 − 3

(
(1 + g)ν̄x(T +N0 − 3)

S̄11

)
(β − β̄)2

)−T+N0−2
2

(D.20)

Therefore, β has a t-distribution with location parameter β̄, scale parameter

((1 + g)T ν̄x(T +N0 − 3))−1/2 S̄
1/2
11 ,

and T +N0 − 3 degrees of freedom.

Under the condition

p(b0,Σ|H0) = p(b0,Σ|β = 0, H1), (D.21)

the Bayes factor can be computed using the marginal prior and posterior distributions for

β:

B10 =
p(β = 0|H1)

p(β = 0|D,H1)
(D.22)

(see Verdinelli and Wasserman (1995)). The value of p(β = 0|D,H1) can be computed based

on (D.20) using the formula for the density of a t-distribution. We can perform the analogous

calculation for the prior distribution to find

p(β|H1) ∝
(

1 +
1

N0 − 3

(
gν̄x(N0 − 3)

S0,11

)
β2

)−N0−2
2

,
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where S0,11 is the first diagonal element of S0. This is a central t distribution with scale

parameter

(gν̄x(N0 − 3))−1/2 S
1/2
0,11,

and N0 − 3 degrees of freedom.

E The posterior distribution and Bayes factor for the

conjugate g-prior when the regressor is strictly ex-

ogenous

When the regressor is strictly exogenous, it is correct to use only the return equation. With

some abuse of notation, let b = [α, β]>. The prior distribution takes the form

p(b|σu, H1) ∝
1

σ2
u

exp

{
− 1

2σ2
u

b>(gX>X)b

}
(E.23)

p(σ2
u|H1) ∝

1

σN0
u

exp

{
−1

2
σ−2u s0

}
(E.24)

where s0 and N0 are constants. We can rewrite this system in terms of familiar distributions:

b|σu, H1 ∼ N
(
0, g−1σ2

u(X
>X)−1

)
, (E.25)

σ2
u|H1 ∼ IW (s0, N0 − 2), (E.26)

As in the previous section, it is as if we have a “true” uninformative prior of p(σ2
u) ∝ σ−2u and

p(b) ∝ constant before seeing a “prior sample” with N0 observations. Because σ2
u is scalar

in this case, its distribution can also be characterized as an inverse-Gamma.

Define

b̂ = (X>X)−1X>R (E.27)

s = (R−Xb̂)>(R−Xb̂). (E.28)

Note that s = S11 in the previous section. The likelihood function is

p(R|X, b, σ2
u) ∝ σ−Tu exp

{
− 1

2σ2
u

(
(b− b̂)>X>X(b− b̂) + sσ−2u

)}
47



where, as in the previous section ∝ should be taken to mean that we have eliminated mul-

tiplicative terms that do not depend on b and σu.

Analogously to the previous section, define

b̄ =
(
X>X(1 + g)

)−1
(X>R)

and

s̄ = s0 +R>R− (Y >X)(X>X(1 + g))−1(X>R)

= s0 + s+ b̂>X>Xb̂− b̄>(X>X)(1 + g)b̄. (E.29)

Note that if g is the same, b̄ will equal the first column of B̄1, and s̄ will equal S̄11 (assuming

that s0 = S0,11. Completing the square and using (E.29) implies

p(b, σ2
u|R,X,H1) ∝ σ−(T+N0+2)

u exp

{
− 1

2σ2
u

(
(b− b̄)>(X>X(1 + g))(b− b̄) + s̄

)}
. (E.30)

The posterior for b conditional on σu is multivariate normal:

p(b|σu, R,X,H1) ∝
1

σ2
u

exp

{
− 1

2σ2
u

(b− b̄)>X>X(1 + g)(b− b̄)
}

(E.31)

while the marginal distribution for σ2
u is inverse-Wishart (or, in this case, inverse-Gamma):

p(σ2
u|R,X,H1) ∝ σ−(T+N0)

u exp

{
− 1

2σ2
u

s̄

}
It follows from (E.31) and properties of the multivariate normal distribution that the

distribution for β (the second element of b) is given by

p(β|σ2
u, R,X,H1) ∝ σ−1u exp

{
− 1

2σ2
u

(1 + g)ν̄x(β − β̄)2
}
, (E.32)

where β̄ is the second element of b̄. Finally, we compute

p(β|R,X,H1) ∝
∫ ∞
0

p(β|σ2
u, R,X,H1)p(σ

2
u|R,X,H1) dσ

2
u

∝
∫ ∞
0

1

σT+N0+1
u

exp

{
− 1

2σ2
u

(
(1 + g)ν̄x(β − β̄)2 + s̄

)}
dσ2

u

∝
(
(1 + g)ν̄x(β − β̄)2 + s̄

)−T+N0−1
2
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Arguing by analogy with (D.20), we see that β has a t-distribution with location parameter

β̄, scale parameter

((1 + g)ν̄x(T +N0 − 2))−1/2 s̄1/2,

and T +N0−2 degrees of freedom. The prior distribution for β will be a central t with scale

parameter

(gν̄x(N0 − 2))−1/2 s
1/2
0 ,

and N0−2 degrees of freedom. Bayes factors can then be computed using (D.21) and (D.22).

It is instructive to compare these results with those of Appendix D. The marginal prior

and posterior for β is nearly the same in the one-equation setting as in the two-equation

setting, except for the degrees of freedom in the t-distribution. There is an additional degree

of freedom in the one-equation setting, corresponding to a t-distribution that is somewhat less

fat-tailed. As Zellner (1996, Chapter 8.1) discusses, this change in the degrees of freedom

arises because of the need to estimate an additional parameter in the two-equation case,

namely the correlation between shocks to u and shocks to v. Because, in effect, the same

data needs to work harder in the two-equation case, the distributions are more diffuse.

Mathematically, the difference arises from the fact that the marginal distribution of σ2
u in

(D.18) is not the same as the marginal distribution of σ2
u in the single-equation case. However,

if the regressor is strictly exogenous, namely if u and v are assumed to be independent, the

one-equation case and the two-equation case will yield identical Bayes factors, a manifestation

of the general principle discussed in Section 2.5.

F Bayes factors for the training sample approach

Bayes factors for the training sample approach (described in Section 3.7) can be computed

as a special case of those in Appendix D. Define

ν̃x =
[
(X̃>X̃)−1

]
22
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where we use the notation of Section 3.7, namely variables with a tilde on top correspond

to quantities computed over the training sample. Then the prior distribution for β can

be computed using results for the posterior distribution calculated in Appendix D, for a

uninformative prior (g = 0, N0 = 0), and with full-sample quantities replaced by their

training sample counterparts. That is, (D.19) becomes

p(β|H1) ∝
(
ν̃x(β − β̃)2 + S̃11

)− T̃−2
2
, (F.33)

where β̃ is the second element of b̃1 and S̃11 is the first diagonal element of S̃. Similarly, the

posterior can be calculated in the same way (again, g = 0 and N0 = 0), keeping in mind

that the full-sample quantities in this case are as in OLS regression. That is (D.19) becomes

p(β|D,H1) ∝
(
ν̄x(β − β̂)2 + S11

)−T−2
2
. (F.34)

The calculation of the Bayes factor of course requires the true prior and posterior densities

of β at zero, not just these values up to a constant that does not depend on β. These

densities can be calculated by observing, as in Appendix D, that (F.33) and (F.34) imply

t-distributions, with known density functions.

G Results for the yield spread

In Figure 9, we report results in which the predictor variable is the difference between

the continuously-compounded 5-year zero-coupon bond yield and the yield on the 3-month

Treasury Bill. Panel A shows that, while the yield spread had significant predictive power

for returns in the early part of the sample, its power has been steadily declining. At the end

of the sample, the posterior probability of predictability with the yield spread is about 50%,

close to the prior. The yield spread has a lower autocorrelation than the dividend yield, and

innovations to the yield spread have low correlation with innovations to returns. Both of

these facts suggest that the non-stochastic and benchmark analyses would imply very similar

results, which indeed they do.
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Table 1: Bayes factors and conditional posterior means

Posterior Means

P (R2 > 0.01|H1) Bayes factor β ρ µr µx

Panel A: Exact likelihood

0 Undefined 0 0.997 3.45 -3.25

0.05 4.13 1.07 0.989 3.77 -3.35

0.25 6.48 1.65 0.985 3.85 -3.38

0.50 6.13 1.91 0.983 3.88 -3.39

0.99 0.01 2.06 0.982 3.90 -3.40

Panel B: Conditional likelihood

0 Undefined 0 0.998 4.48 -6.83

0.05 2.00 0.74 0.993 3.70 -5.28

0.25 2.71 1.36 0.988 3.39 -4.79

0.50 2.56 1.66 0.985 3.11 -4.78

0.99 0.01 1.80 0.984 2.15 -5.03

Panel C: Ordinary least squares

2.97 0.973 4.49 -3.54

Notes: The Bayes factor equals the probability of the data D given the predictability

model H1 divided by the probability of the data given the no-predictability model H0:

p(D|H1)/p(D|H0). Bayes factors are reported for various priors on the strength of pre-

dictability under H1, indexed by P (R2 > 0.01|H1) (namely, the prior probability that the

population R2 exceeds 0.01, assuming H1). Posterior means are conditional on H1 and are

computed for the predictability coefficient β, the persistence of the dividend-price ratio ρ,

the mean of the continuously compounded excess return µr, and the mean of the predic-

tor variable µx. In Panel C, µr and µx equal the sample means. Data are quarterly from

7/1/1952 to 3/31/2009.

55



Table 2: Posterior statistics

P (R2 > 0.01|H1) Prior probability of return predictability q

0.20 0.50 0.80 0.99

Panel A: Posterior probability of predictability q̄

0.05 0.51 0.80 0.94 1.00

0.25 0.62 0.87 0.96 1.00

0.50 0.61 0.86 0.96 1.00

0.99 0.00 0.01 0.05 0.54

Panel B: Posterior mean of predictive coefficient β

0.05 0.55 0.86 1.01 1.07

0.25 1.02 1.43 1.59 1.65

0.50 1.16 1.64 1.84 1.91

0.99 0.01 0.02 0.09 1.12

Panel C: Posterior mean of R2 (in percentages)

0.05 0.30 0.48 0.56 0.59

0.25 0.59 0.83 0.92 0.95

0.50 0.68 0.97 1.08 1.12

0.99 0.00 0.01 0.06 0.68

Panel D: Difference in CER between optimal and no-predictability strategies

0.05 0.38 0.84 1.10 1.20

0.25 0.85 1.45 1.71 1.81

0.50 1.00 1.72 2.03 2.15

0.99 0.00 0.00 0.02 1.67

Notes: The table reports statistics of the posterior distribution averaged over the models H1

(predictability) and H0 (no predictability). The parameter q denotes the prior probability

of H1. Statistics are reported for various value of q and for priors on the strength of pre-

dictability under H1, indexed by P (R2 > 0.01|H1) (namely, the prior probability that the

population R2 exceeds 0.01, assuming H1). CER stands for certainty equivalent return and

is annualized by multiplying by four. Data are quarterly from 7/1/1952 to 3/31/2009.
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Table 3: Out of sample certainty equivalent returns (CERs)

Prior prob. of return predictability q

P (R2 > 0.01|H1) 0.01 0.20 0.50 0.80 0.99

Panel A: Comparison with sample mean

0.05 1.11∗ 1.08∗ 1.06∗ 1.07∗ 1.07∗

[0.98] [1.02] [1.03] [1.05] [1.04]

0.25 1.05 0.91 1.02∗ 1.08∗ 1.10∗

[1.07] [0.98] [0.99] [0.99] [1.00]

0.50 0.85 1.09∗ 1.20∗ 1.24 1.25

[1.08] [1.08] [1.20] [1.32] [1.35]

0.99 1.17∗ 1.04∗ 0.96 0.79 1.12

[0.99] [0.99] [1.01] [1.05] [1.13]

Panel B: Comparison with OLS estimates

0.05 1.06 1.03 1.02 1.02 1.03

[1.86] [1.85] [1.86] [1.83] [1.83]

0.25 1.00 0.86 0.98 1.03 1.05

[1.78] [1.87] [1.86] [1.81] [1.87]

0.50 0.81 1.04 1.15 1.19 1.20

[1.91] [1.83] [1.79] [1.80] [1.77]

0.99 1.12 0.99 0.92 0.74 1.07

[1.87] [1.87] [1.87] [1.86] [1.85]
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Notes to Table 3: For each year beginning in 1972, the predictive distribution for returns

is computed using all data up to that year. Optimal portfolios are computed quarterly to

maximize the utility of an agent with constant relative risk aversion equal to 5; these are

combined with the actual returns over the following quarter to create out-of-sample returns

on the investment strategy. The CER is the riskfree rate of return that generates the same

average utility as this series of returns. Panel A reports the CER for the optimal Bayes

strategy using the benchmark approach (the benchmark CER) minus the CER for portfolio

weights assuming there is no predictability and that the mean and volatility of returns are

equal to their sample counterparts. Panel B reports the benchmark CER minus the CER

for portfolio weights computed assuming the process for returns is as estimated using OLS.

Statistics are reported for various value of q and for priors on the strength of predictability

under H1 (predictability model), indexed by P (R2 > 0.01|H1) (the prior probability that

the population R2 exceeds 0.01, assuming H1) CERs are annualized by multiplying by four.

Numbers in brackets report 95 percent critical values, generated using Monte Carlo assuming

no return predictability. Starred values are significant at the five percent level using a one-

tailed test.
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Figure 1: Prior Distribution of the R2

Panel A: Probability of predictability q = 1.
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Panel B: Probability of predictability q = 0.5.
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Notes: The figure shows the prior probability that the R2 is greater than k for various k.

This equals one minus the cumulative density function for the prior distribution on the R2.

Panel A shows the distribution conditional on predictability and Panel B shows the full

distribution assuming that the prior probability of predictability is q = 0.5. The parameter

ση determines the prior standard deviation of β according to the formula σβ = σησ
−1
x σu,

where σx is the standard deviation of the predictor variable and σu is the standard deviation

of the shock to returns.
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Figure 2: Posterior Distribution of the R2

Panel A Panel B
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Notes: Panel A shows the prior and posterior probabilities that the R2 will be greater

than k for various k. Panel B shows the prior and posterior density functions of the R2.

Priors are such that P (R2 > 0.01|H1) (the probability that the R2 exceeds 1% conditional

on predictability) equals 0.5 and q (the prior probability of predictability) also equals 0.5.

Data are quarterly from 7/1/1952 to 3/31/2009.
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Figure 3: The log dividend-price ratio
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Notes: The figure shows quarterly observations on the log of the dividend-price ratio, com-

puted by dividing the dividend payout over the previous 12 months by the current price.

Prices and dividends are for the CRSP value-weighted index.
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Figure 4: The Bayes factor and posterior probability of return predictability

Panel A: Posterior probability of predictability, q̄
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Panel B: Log Bayes factor
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Notes: Panel A shows the posterior probability of H1 (the predictability model), assuming

a prior probability of 0.5. Panel B shows the log Bayes factor, equal to the log probability

of the data given the predictability model H1 minus the log probability of the data given

the no-predictability model H0. Both panels assume P (R2 > 0.01|H1) (namely, the prior

probability that the population R2 exceeds 0.01, given H1) equals 0.5. The Bayes factor

and the posterior probability are computed using quarterly data beginning in 7/1/1952 and

ending at the time shown on the x-axis. The solid line shows results for the benchmark

specification. The dashed line shows results for the case of a non-stochastic regressor.
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Figure 5: Posterior means of β and ρ over time.

Panel A: Posterior mean of predictive coefficient β
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Panel B: Posterior mean of autoregressive coefficient ρ
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Notes: Panel A shows the posterior mean of β under the benchmark specification (solid line)

and the OLS estimate of β (dashed line) using data beginning in 7/1/1952 and ending at the

time shown on the x-axis. Panel B shows analogous results for ρ, the autoregressive coefficient

on the dividend-price ratio. The posterior distributions are computed assuming q (the prior

probability that returns are predictable) equal to 0.50, and assuming P (R2 > 0.01|H1) (the

prior probability that the population R2 exceeds 0.01, given H1) also equal to 0.5.
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Figure 6: Posterior probabilities implied by different methods

Panel A: Benchmark prior with the exact and conditional likelihoods
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Benchmark prior with conditional likelihood

Panel B: Benchmark and empirical Bayes priors with conditional likelihood
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Empirical Bayes prior with stationarity

Panel C: Empirical Bayes priors with and without stationarity
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The figures show the posterior probability of return predictability (see Figure 4 for more

details). Panel A compares our benchmark specification “Exact likelihood”, with a specifi-

cation that uses the conditional likelihood but keeps the prior the same. Panel B compares

this latter specification with one that uses the empirical Bayes prior but keeps everything

else the same; note both specifications use the conditional likelihood. Panel C compares

results from the conditional likelihood and empirical Bayes prior assuming stationarity with

results from this same specification without assuming stationarity.
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Figure 7: The conjugate prior and posterior with training samples of varying lengths

Panel A: Prior distributions for β
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Panel B: Posterior probabilities of predictability
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Notes: Panel A shows the prior distribution for β assuming training samples of different

lengths. Panel B shows the posterior probabilities of predictability. The training samples

begin in 7/1/1952 and last for the number of quarters given in the legend. The posterior

probabilities are computed using the remaining data, ending at the time shown on the x

axis.
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Figure 8: Portfolio weights for the benchmark approach and implied by sample moments
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Notes: The figure shows the time series of weights in the risky asset using the benchmark

approach and assuming q = 0.50 and P (R2 > 0.01|H1) = 0.50. The figure also shows the

time series of weights assuming that parameters estimated by OLS are known with certainty,

as well as the time series of weights computed assuming that returns are not predictable, but

that the resulting moments are known with certainty (sample moments). Data are quarterly

beginning in 7/1/1952 and ending at the time shown on the x-axis.
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Figure 9: The Bayes factor and posterior probability of return predictability for the yield

spread

Panel A: Posterior probability of predictability, q̄
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Panel B: Log Bayes Factor
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Notes: Panel A assumes the posterior probability of predictability and Panel B shows the log

Bayes factor, assuming the predictive variable is the yield spread, namely the continuously-

compounded yield on the five-year zero coupon bond less the continuously-compounded yield

on the 3-month Treasury bill. The solid line shows results for the benchmark specification.

The dashed line shows results assuming a non-stochastic regressor.

67


