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1.  INTRODUCTION 

One side effect of the macroeconomic, financial, and sovereign-debt crises of 2008-2011 

is that economists became more receptive to models of asset pricing and macroeconomic 

dynamics that emphasize macroeconomic disasters.  Theoretical and empirical research suggests 

that rare-disaster models have explanatory power for an array of asset-pricing puzzles.  

Moreover, time-varying disaster probabilities may be an important component of closed- and 

open-economy models of business cycles. 

The probability and size distribution of macroeconomic disasters are difficult to quantify 

empirically because the relevant events are rare and possibly absent in short samples.  Thus, the 

isolation of a substantial number of disasters requires long time series for numerous countries, 

and the data cannot be missing during many key events, such as wars and major financial crises.  

Fortunately, the status of long-term national-accounts data for 40 countries has been upgraded by 

the data effort summarized in Ursúa (2011).  The combination of this panel of national-accounts 

data with expanded long-term information on asset returns facilitates research on rare 

macroeconomic disasters.  We begin with an overview of these data and then review theoretical 

and empirical advances that use these and other data to study the macro-finance of rare disasters. 

Section 2, on measurement issues, emphasizes recent improvements in the long-term 

national-accounts data, including annual series on real per capita consumer expenditure, C (the 

main available proxy for consumption), and GDP.  The long-term data on returns on stocks, bills, 

and bonds are also discussed.  The macroeconomic and financial data can be used to quantify the 

frequency and size distribution of rare macroeconomic disasters and to study the interplay of 

macroeconomic events with asset returns and prices.   
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Statistical analysis of the time series shows that volatilities of annual growth rates of C 

and GDP are similar.  The data on rates of return exhibit a high equity premium (7%), a 

substantial term premium between bonds and bills (1-1/2%), and high volatility of stock returns 

(standard deviation of 32% per year).  We stress the fat tails apparent in annual data on growth 

rates of C and GDP and in the various rates of return. 

Section 3 introduces macro-finance models that incorporate rare disasters as a way to 

explain asset-pricing puzzles.  Section 4 presents a baseline model in which disasters have 

instantaneous and permanent effects on levels of macroeconomic variables.  This model yields 

tractable, closed-form solutions for asset pricing under preference specifications that include the 

Epstein-Zin-Weil recursive form, which separates risk aversion from the intertemporal elasticity 

of substitution (IES) for consumption.  We assess the baseline model empirically when disaster 

frequencies and sizes are gauged from peak-to-trough methods using observed histograms 

(Section 5) or estimated power-law distributions (Section 6).  A key issue is whether the 

coefficient of relative risk aversion required to match the observed average equity premium is 

“reasonable.”   

Section 7 shows that the baseline model does not match the observed volatility of stock 

prices.  This deficiency can be remedied by incorporating shifting long-run growth rates, as in 

the long-run-risks model considered in Section 8.   

An alternative explanation for stock-price volatility, studied in Section 9, allows for shifts 

in disaster probability.  This approach may explain an array of asset-pricing puzzles that extend 

beyond the high equity premium, low risk-free rate, and high stock-price volatility.  A number of 

recent applications allow for time-varying disaster probability in business-cycle models.  In an 

international context, discussed in Section 10, the framework with time-varying disaster 
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probability has been applied to the uncovered-interest-parity (UIP) puzzle, which relates to the 

surprisingly high returns delivered over some periods by carry-trade strategies.   

Section 11 considers richer models of the dynamics of disasters, allowing for stochastic 

transitions between states of normalcy and disaster.  In this setting, disasters arise of varying 

lengths and intensities, and the subsequent recoveries feature abnormally high growth.  The 

allowance for recoveries means that disasters are less permanent than in the baseline model and, 

hence, have smaller effects on the equity premium.  Section 12 discusses the implications of 

these richer models for the full time series of macroeconomic variables and rates of return.  

Section 13 concludes by suggesting promising avenues for future research. 

2.  MEASURING EXTREME MACRO-FINANCIAL EVENTS 

From an empirical perspective, the lack of sufficient data on extreme macroeconomic 

events has been an obstacle.  Because these events occur infrequently, assessments of the impact 

of actual and potential disasters require the pooling of information from many economies and 

years.  Moreover, the estimation of key statistical properties, such as frequency and size 

distribution, requires the sample to be representative of a broader universe of economies.   

Rietz (1988) introduced rare disasters into an asset-pricing model and argued that his 

extension helped to explain the now famous equity-premium puzzle of Mehra and Prescott 

(1985).  The Rietz idea met skepticism concerning the lack of evidence on the low-probability 

depressions required by his theory.  As Mehra and Prescott (1988, p. 135) argued:  “Additional 

historical evidence in support of Rietz’s hypothesis is needed for it to be taken seriously. … The 

point is that to determine how useful this theory is, we must identify the possible small-

probability events and try to measure the magnitudes of their probability over time.” 
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Barro (2006) renewed interest in Rietz’s insight by examining long-term data for many 

countries; thereby including numerous realizations of disaster events.  The initial application 

relied on Maddison’s (2003) data on real per capita GDP.  Unfortunately, these data are 

problematic; partly because of flaws in construction, especially at times of disasters such as 

wars,1 and partly because asset-pricing models typically apply to consumption, not GDP.  Barro 

and Ursúa (2008) extended the data set to include estimates of per capita consumption, C (based 

primarily on personal consumer expenditure) and to improve the measurement of GDP for many 

countries.  The annual data apply over periods extending back before World War I.  These data, 

now available for 40 countries and described in Ursúa (2011), are discussed next, together with a 

review of historical information on asset returns. 

2.1.  Recent Improvements in Data on National-Accounts Variables and Asset Returns 

The typical variables of interest in the macro-finance literature are growth rates of the 

main macroeconomic aggregates, real per capita consumption, C, and GDP, and real rates of 

return on financial assets, notably stocks and government bills.  Gaps in the data hinder analyses 

of rare disasters because of a sample-selection problem, whereby data are most likely missing 

during the worst crises.  Therefore, in a time-series context for a single country, it is important to 

have estimates for the most difficult periods, often wars.  Similarly, in a cross section, it is 

important not to omit countries with the most difficult macroeconomic histories.  Recent 

extensions of the long-term data to include several challenging cases—China, Russia, and 

Turkey—represent major improvements in this regard.  The basic spirit of our empirical 

approach to rare macroeconomic disasters is to pool information from the largest possible 

number of countries and years.  Particularly unsatisfactory in this regard is the tendency of 

                                                           
1Barro and Ursúa (2008, Table A1) provide a detailed analysis of these measurement problems. 
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researchers to rely on data for the United States, a practice that, even with the inclusion of the 

recent Great Recession, puts far too much emphasis on a mostly tranquil macroeconomic history 

aside from the Great Depression of the early 1930s. 

Until recently, the best macroeconomic panel data were the per capita GDP series 

assembled by Angus Maddison.  These series constitute a monumental contribution that has been 

widely used, notably in works on historical macroeconomic and financial crises, such as Bordo, 

Eichengreen, Klingebiel and Martinez-Peria (2001) and Reinhart and Rogoff (2009).  

Shortcomings of Maddison’s data include his tendency to fill in missing observations during 

crisis periods by interpolating between benchmarks or using information from other countries.  

Additional problems include lack of data on consumption and omission of major countries.  

These considerations motivated Barro and Ursúa (2008) to construct the new data set described 

in Ursúa (2011).  The construction of these data was challenging, akin to macroeconomic 

archaeology.  The goal was to improve as much as possible on Maddison’s GDP series and to 

build a comprehensive new panel for C.  The sample-selection criterion was to assemble 

continuous time series since at least before World War I, while retaining high quality standards.  

Various methods were implemented to cover periods originally missing or inadequately covered 

in standard sources. 

The macroeconomic data are publicly available2 and are summarized in Table 1.  The 

information covers 42 countries, falling into five regional groups:  Southeast Asia, Latin 

America, Western Europe, Western Offshoots, and Others.  Country starting dates vary, ranging 

from the early 19th century to 1913.  An asterisk indicates that the series has missing data points.  

The present analysis applies to 40 countries for GDP (21 OECD, 19 non-OECD) and 28 for C 

                                                           
2At www.rbarro.com/data-sets.  See Ursúa (2010, 2011) for discussions. 
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(18 OECD, 10 non-OECD).3  The corresponding number of annual data points for growth rates 

from 1870 to 2009 is 5242 for GDP and 3527 for C.  Figure 1a shows level series for four major 

countries (Germany, Japan, United Kingdom, and United States), and Figure 1b show series for 

four countries with newly available information (China, Egypt, Russia, and Turkey). 

Many applications require corresponding information on asset returns.  For example, 

Barro and Ursúa (2009) and Ursúa (2010) used data on real returns on stocks, bills, and bonds.  

The major source of these data is Global Financial Data (Taylor, 2005), but the coverage was 

expanded with additional sources, including Morningstar and other sources for Argentina, Brazil, 

Japan, and Mexico.  Table 1 describes the long-term data on these asset returns. 

2.2.  Statistical Properties of Macroeconomic Growth Rates and Asset Returns 

Yearly growth rates and rates of returns are the basic units of measurement for studying 

extreme macro-financial events over the long run for up to 40 countries.  Table 2 shows statistics 

for growth rates of real per capita GDP and personal consumer expenditure, C, and real rates of 

return on stocks, bills, and bonds.  The real rates of return are computed arithmetically based on 

total returns and deflation by consumer price indexes.  The table shows the mean, standard 

deviation, and excess kurtosis for each variable for the full sample (starting as early as 1870 and 

ending in 2009) and the post-WWII period (1948-2009).   The statistics apply to countries with 

data, broken down into the “world” (full set of countries), OECD, and non-OECD. 

Average growth rates of per capita C and GDP are around 2% per year for full samples 

and somewhat higher—between 2.5% and 2.8%—in the post-WWII period.  For OECD 

                                                           
3Our term “OECD” excludes Turkey and recent members.  GDP data for Malaysia and Singapore are included in the 
basic data set but excluded from our analysis because of missing data around WWII.  Some of the analysis also 
omits the Philippines for GDP because of a gap in data around WWII.  Greece is included for our GDP analysis 
despite a missing data point for 1944.  We think that 42 countries (21 OECD) come close to those with potentially 
useable long-term national-accounts data.  Possibilities for extension include closing the gaps in GDP data around 
WWII for Greece, Malaysia, Philippines, and Singapore.  A possible 43rd country is Ireland, but we have not yet 
been successful.  Maddison (2003) provides data since 1921, but figures for 1938-1946 come from interpolation. 
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countries, the standard deviations are around 3% in the post-WWII period but higher, nearly 6%, 

in full samples.  The main reason for this difference is that the full samples contain many 

realizations of disasters between 1914 and 1946, a period featuring the two world wars, the Great 

Depression, and the Great Influenza Pandemic.  In contrast to observations for the post-WWII 

United States (such as Campbell and Deaton [1989]), C growth in OECD countries is not 

smoother than GDP growth—the standard deviations for these two variables are similar.   

For non-OECD countries, standard deviations are again higher in the full sample than in 

the post-WWII period.  These standard deviations are also higher in both samples than in the 

OECD.  In the non-OECD, the standard deviation for C growth exceeds that for GDP in both 

samples.  Part of this pattern can reflect poorer measurement for C than for GDP.  However, C 

tends also to decline more than GDP during wartime disasters, in which military spending rises 

substantially. 

Excess kurtosis is positive in both samples for C and GDP growth.  These results indicate 

fat tails; that is, fatter than the normal density.  The pattern of high excess kurtosis applies 

especially to the full sample for OECD countries, likely reflecting the numerous disaster 

realizations between 1914 and 1946.4 

For asset returns, the means for the “world” over the full sample are 8.4% for stocks, 

1.3% for bills, and 3.0% for bonds.  Thus, these data reveal an average equity premium (stocks 

versus bills) of 7.1%.  However, this value reflects leverage in corporate financial structure; an 

adjustment assuming a constant debt-equity ratio of 0.5 implies an average unlevered equity 

premium around 5%.  The average term premium (roughly 10-year bonds versus 3-month bills) 

was 1.7%.  The well-known volatility of stock returns shows up as a high standard deviation, 

                                                           
4Ursúa (2011) shows from bootstrap methods that excess kurtosis is significantly positive for growth rates of C and 
GDP over full samples.  Skewness differs insignificantly from zero. 
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32%, for the world over full samples (25% for OECD, 44% for non-OECD).  There is also 

substantial volatility of bill returns (11% for the world over full samples) and bond returns 

(13%).  The high values of excess kurtosis signal fat tails for all of the rates of return.5 

The new macroeconomic data allowed Ursúa (2011) to use power-law distributions to 

gauge the fatness of the tails for C and GDP growth.  Fat tails were important for negative and 

positive outcomes, with the former representing disasters and the latter (“bonanzas”) reflecting 

mainly recoveries from disasters.  Tail fatness was stronger for OECD countries than for non-

OECD, consistent with the findings on excess kurtosis in Table 2.  This pattern likely arises 

because the biggest disasters associate particularly with WWII in OECD countries. 

 

2.3  Macroeconomic Disaster Events 

 Barro and Ursúa (2008) followed Barro (2006) by using an NBER (National Bureau of 

Economic Research)-style peak-to-trough measurement of the sizes of macroeconomic 

contractions.  Starting from the annual time series, proportionate decreases in C and GDP were 

computed peak to trough over one or more years, and declines by 10% or greater were 

considered.  For the four countries in Figure 1a, the events isolated from this method were:  

Germany 4 disasters each for C and GDP, Japan 2 disasters each for C and GDP, United 

Kingdom 2 disasters each for C and GDP, and United States 2 C disasters and 5 GDP disasters.  

The largest contractions in this group were the decline in Germany’s GDP by 74% with a trough 

in 1946 and in its C by 41% with a trough in 1945, the fall in Japan’s C by 64% with a trough in 

1945 and in its GDP by 50% with a trough in 1944.  The worst U.S. contractions were for GDP 

by 29% with a trough in 1933, for C by 21% with a trough in 1933, and for C by 16% with a 

                                                           
5Ursúa (2011) finds from bootstrap methods that excess kurtosis is significantly positive for the three rates of return 
over full samples.  Skewness is significantly positive for stock returns, significantly negative for bill returns, and 
insignificantly different from zero for bond returns. 
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trough in 1921.  The United Kingdom illustrates a pattern where C falls proportionately more 

than GDP during wartime.  The declines in C are 17% with a trough in 1918 and 17% with a 

trough in 1943, but GDP disasters do not apply to U.K. GDP during the world wars.  

 Table 3 shows results from the peak-to-trough technique applied to the four countries 

with newly assembled macroeconomic data:  China (long-term data for GDP only), Egypt, 

Russia (including Soviet Union), and Turkey (including Ottoman Empire).6  The disasters 

isolated number 5 for China’s GDP, 5 for Egypt’s GDP and 6 for its C, 7 for Russia’s GDP and 6 

for its C, and 8 for Turkey’s GDP and 6 for its C.  Some of these events are among the largest 

depressions ever witnessed:  the declines for Russia’s C and GDP by 71% and 62%, respectively, 

in WWI and the Russian Revolution/Civil War; the fall by 58% in Russian C during WWII; the 

decline in China’s GDP by 50% from 1936 to 1946 (including WWII); the falls by 49% and 45% 

in Turkey’s C and GDP, respectively, during WWI; and the decrease in Russia’s GDP by 48% in 

the transition period 1989-1998. 

 Figure 2 uses histograms to provide an overview of disaster events applying to 28 

countries for C and 40 for GDP.  (These samples end in 2006 and include countries with data 

from before WWI.)  The peak-to-trough method isolates 125 disasters for C and 183 for GDP.  

The average disaster sizes, subject to the threshold of 10%, were similar for the two measures:  

0.216 for C and 0.208 for GDP.  The mean durations were also similar:  3.7 years for C and 3.6 

for GDP.   

 Table 4 relates the macroeconomic crises to major historical events.  World War II is 

prominent, featuring 21 crises for C (average size of 0.33) and 25 for GDP (average of 0.37).  

World War I and the Great Depression also stand out.  The period 1920-22 may reflect the Great 

                                                           
6Border changes were important for Russia and Turkey and also apply to other countries.  See Ursúa (2011) on the 
treatment of border changes—basically, the level series come from smooth pasting of the growth rates from before 
and after each change. 
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Influenza Pandemic.  The post-WWII period is comparatively tranquil, especially for the OECD, 

and still appears this way if we extend the end of the sample from 2006 to 2009.7   

 A listing of disaster events—by country, timing, and size—is in Barro and Ursúa (2008, 

Tables C1 and C2) and can be extended to incorporate Table 3.  Barro and Ursúa (2008, Table 9) 

show that there is no clear pattern on whether C or GDP reaches its trough first during crises; 

59% of the events have the same trough year for C and GDP.  

 Barro and Jin (2011) show that the frequency distribution for C and GDP disaster sizes 

(Figure 2) can be characterized by power laws, thereby fitting with Gabaix’s (2009) discussion 

of the many applications of power-law distributions in finance and other areas.  If b is the 

proportionate disaster size, the power law applies to the transformed variable, z ≡ 1/(1-b), which 

is the ratio of normal to disaster C or GDP.  The power law holds for b above some threshold, 

taken to be 0.095, which translates into a threshold for z of 1.105.  The single power-law density 

is then 

    f(z) = Az-(α+1) ,      (1) 

for z ≥ 1.105, where A>0, α>0.  The lower the exponent, α, the fatter the tail of large disasters.  

Barro and Jin (2011, Table I) show that extending to a double power law substantially improves 

the fit and that the upper-tail exponent is the key parameter for asset-pricing results.  The 

estimated exponent is 4.2 (s.e.=0.9) for C and 3.5 (s.e.=1.0) for GDP.  We use these results later 

when discussing the link between tail behavior and the coefficient of relative risk aversion, γ. 

                                                           
7If we extend to 2009 to include the recent Great Recession, we find many contractions but none in our samples that 
reach the 10% threshold.  For GDP, Iceland and Japan have declines by 9%, and Finland and Russia have declines 
by 8%.  For C, Spain has a decline by 9% and Mexico by 8%.  Iceland has a decline in C by 25%, but it is not in our 
28-country sample.  
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3.  RARE DISASTERS AND MACRO-FINANCE MODELS 

 Models in macro-finance with extreme events have emphasized the interplay between 

rare disasters and asset-pricing puzzles. The earliest example is Rietz (1988), who introduced a 

low-probability crash state to explain the equity-premium puzzle of Mehra and Prescott (1985).  

Another example is Naik and Lee (1990), who developed a continuous-time version of Lucas’s 

(1978) endowment-economy model to study the pricing of options when random jumps affect 

the value of the underlying asset.  During the 1990s, the literature focused on non-disaster 

explanations for the equity-premium puzzle, such as the heterogeneous-consumers model of 

Constantinides and Duffie (1996) and the habit-formation paradigm of Abel (1990) and 

Campbell and Cochrane (1999).  Constantinides (2002) reviews advances in these directions. 

 In the mid 2000s, the literature returned to the asset-pricing implications of disasters.  

Longstaff and Piazzesi (2004) stressed the sensitivity of cash flows to large economic shocks and 

presented a calibrated model with substantially higher equity premia than in standard 

frameworks.  Bansal and Yaron (2004), in an approach now known as the long-run-risks model, 

emphasized the persistence of changes in expected growth rates and variances of growth rates as 

determinants of risk premia and the volatility of asset prices.  Barro (2006) focused on rare 

macroeconomic disasters of the short-run type, thereby reviving Rietz’s insight.  This model’s 

tractability and empirical success make it a good platform for understanding how the potential 

for rare disasters may resolve various asset-pricing puzzles. 

 

4.  A BASELINE MODEL OF ASSET PRICING WITH RARE DISASTERS 
 

As developed in Barro (2006, 2009), the baseline model is a variant of Lucas’s (1978) 

representative-agent, fruit-tree economy, with exogenous and stochastic production. The 



12 
 

economy is closed, government consumption is nil, and the number of trees is fixed. These 

assumptions contribute to the model’s tractability but can be relaxed; for example, similar results 

hold for an AK model with stochastic depreciation (destruction of trees) and endogenous 

investment and growth.   

An important assumption in the baseline model is that disasters and other disturbances 

amount to i.i.d. shocks to productivity.  Hence, real per capita C and GDP evolve as random 

walks with drift: 

  log(Ct+1) = log(Ct) + g + ut+1 + vt+1 .   (2) 

The parameter 𝑔 ≥ 0 represents exogenous productivity growth.  The first random term, 𝑢𝑡+1, 

reflects “normal” macroeconomic fluctuations and is assumed to be i.i.d normal with zero mean 

and constant variance, σ2.  The second shock, 𝑣𝑡+1, picks up rare disastersevents in which 

output contracts over a period by a fraction 𝑏, where 0 < 𝑏 < 1.  These events occur with 

constant probability 𝑝 ≥ 0 per period; hence, 

    probability 1 − 𝑝:  𝑣𝑡+1 = 0, 

    probability 𝑝:  𝑣𝑡+1 = log(1 − 𝑏). 

The disaster size, b, is subject to some frequency distribution, such as the power-law density 

discussed before.  In this model, the expected growth rate of C and GDP is 

    g* = g + (1/2)σ2 – p·Eb .    (3) 

The i.i.d. property implies that shocks have permanent effects on level variables.  As 

shown in Barro (2009), this property yields closed-form solutions for asset pricing under two 

familiar specifications of preferences for the representative agent:  power utility and the 

recursive preferences developed by Epstein and Zin (1989) and Weil (1990), henceforth called 

EZW preferences. The advantage of the more general EZW formulation is that it separates the 
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coefficient of relative risk aversion, γ, from the reciprocal of the intertemporal elasticity of 

substitution (IES), θ.8  As stressed by Bansal and Yaron (2004), EZW preferences avoid 

counterintuitive predictions from the power-utility case, γ=θ, in the context of sufficient risk 

aversion (γ>1) for the model possibly to account for the equity premium.  Power utility then 

implies, implausibly, that a rise in the expected growth rate, g* in Eq. (3), lowers the stock price-

dividend ratio, whereas an increase in uncertainty (σ or p or an outward shift in the density for b) 

raises this ratio. 

As mentioned, EZW preferences allow for a separation between γ and θ.  Epstein and Zin 

(1989) and Restoy and Weil (1998, p. 4) show that the first-order optimization condition for the 

representative agent’s choices of consumption over time is9  

  𝛽
(1−𝛾)
(1−𝜃) ∙ 𝐸𝑡 �(

𝐶𝑡+1
𝐶𝑡

)−𝜃(1−𝛾1−𝜃) ∙ 𝑅𝑤,𝑡+1
(𝜃−𝛾)/(1−𝜃) ∙ 𝑅𝑡+1� = 1,   (4) 

where β (0<β<1) is the one-period discount factor, Rw,t+1 is the gross return from t to t+1 on 

overall wealth (corresponding to ownership rights on trees in the Lucas-tree model), and Rt+1 is 

the gross return from t to t+1 on any asset.  (The rate of time preference, ρ, equals [1-β]/β.)  

Power utility corresponds to γ=θ and, therefore, to the familiar consumption-based asset-pricing 

formula: 

    𝛽 ∙ 𝐸𝑡 �(
𝐶𝑡+1
𝐶𝑡

)−𝜃  ∙ 𝑅𝑡+1� = 1 .    (5) 

                                                           
8The formulation of Kreps and Porteus (1978) emphasized attitudes toward early versus late resolution of 
uncertainty, and Epstein and Zin (1989) began with this perspective.  The usual EZW preferences with γ>θ imply 
that people prefer early resolution.  This result is puzzling—why are risk aversion and intertemporal substitution 
closely linked to preferences about early versus late resolution?  The situation is reminiscent of the tight link 
between risk aversion and intertemporal substitution under power utility.  Perhaps an analogous extension can be 
made to the EZW framework to eliminate the constraint that there are only two degrees of freedom among three 
apparently distinct dimensions of preferences—risk aversion, intertemporal substitution, and early versus late 
resolution of uncertainty. 
9This analysis assumes that the representative agent’s relative risk aversion, γ, is constant.  Empirical support for this 
familiar specification appears in Brunnermeier and Nagel (2008) and Chiappori and Paiella (2008). 
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 Let Pt be the price of an unlevered equity claim on a Lucas tree.  This asset is the only 

one in positive aggregate net supply in this model.  The dividend is the fruit, which equals Ct.  

Therefore, the gross return on wealth is 

   𝑅𝑤,𝑡+1 = �𝐶𝑡+1+𝑃𝑡+1
𝑃𝑡

� = �𝐶𝑡+1
𝐶𝑡
� ∙ �1+ 𝑉𝑡+1

V𝑡
�, 

where Vt ≡ Pt/Ct is the price-dividend ratio.  Substitution into Eq. (4) yields: 

   𝛽
(1−𝛾)
(1−𝜃) ∙ 𝐸𝑡 �(

𝐶𝑡+1
𝐶𝑡

)−𝛾 ∙ �1+𝑉𝑡+1
𝑉𝑡

�
(𝜃−𝛾)
(1−𝜃) ∙ 𝑅𝑡+1� = 1.  (6) 

 If the shocks to Ct+1/Ct  (including disasters) are i.i.d., Vt+1 =Vt = V holds in Eq. (6), and 

the condition again takes the usual form: 

    𝛽∗ ∙ 𝐸𝑡 �(
𝐶𝑡+1
𝐶𝑡

)−𝛾  ∙ 𝑅𝑡+1� = 1 ,   (7) 

where β* is a constant that depends on all the underlying parameters.  The two differences from 

Eq. (5) are that the exponent on consumption growth is γ, not θ, and β*≠β.  However, since β* is 

constant, this last difference affects levels of rates of return but not differences between rates, 

such as the equity premium. 

 Barro (2009) used Eq. (7), along with the process for Ct in Eq. (2), to generate a formula 

for the unlevered equity premium that applies when the period length approaches zero: 

    re - rf = γσ2 + p·E{b·[(1-b)-γ-1]} ,   (8) 

where all terms are measured per unit of time (say per year), re is the expected rate of return on 

unlevered equity, and rf is the risk-free rate.  The first term on the right-hand side is the standard 

one for normal business fluctuations, as in Mehra and Prescott (1985).  As in their analysis, this 

term is negligible for reasonable values of γ and σ.  The second term involves rare disasters and 
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enters multiplicatively with p, the disaster probability.10  This disaster term ends up doing almost 

all the work in explaining the equity premium.   

 The expression in curly brackets in Eq. (8) has a straightforward interpretation under 

power utility, γ=θ.  Then this term is the product of the proportionate decline in equity value 

during a disaster, b, and the excess of marginal utility of consumption in a disaster state over that 

in a normal state, (1-b)-γ-1.  Note that, in the present (i.i.d.) setting, the proportionate fall in 

equity value during a disaster, b, equals the proportionate fall in C and GDP during the disaster.  

Equation (8) can be rewritten as 

   re - rf = γσ2 + p·[E(1-b)-γ – E(1-b)1-γ – Eb].   (9) 

Hence, the key properties of the distribution of b are the expectations of the variable 1/(1-b) 

taken to the powers γ and γ-1.  (The Eb term has a minor impact.) 

 Equation (9) is best viewed as applying to short periods, approximating continuous time.  

In the limit, disasters arise as downward jumps at an instant of time, and the disaster size, b, has 

no time units.  In contrast, the underlying data on C and GDP are annual flows.  In relating the 

data to the theory, there is no reason to identify disaster sizes, b, with large contractions in C or 

GDP observed particularly from one year to the next.  In fact, Figure 2 and Table 4 demonstrate 

that the major disaster events—exemplified by the world wars and the Great Depression—

feature cumulative declines over several years, with durations of varying length.  In Barro and 

Ursúa (2008), the disaster jump sizes, b, in the continuous-time model were approximated 

empirically by the peak-to-trough measures of cumulative, proportionate decline.  We first 

                                                           
10The identification of the risk-free rate, rf, with the real return on government bills is an approximation, particularly 
if governments sometimes default formally or through surprise inflation.  If defaults occur only during disasters, for 
which the probability of default is q and the default fraction is b, then p in Eq. (8) is replaced by p·(1-q). Therefore, a 
higher q reduces the equity premium measured as the difference between stock and bill returns. 
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consider the explanatory power of this approach and then explore ways to improve on the peak-

to-trough measurement. 

 

5.  USING HISTOGRAMS FOR PEAK-TO-TROUGH DISASTERS 

 Barro and Ursúa (2008) gauged the moments involving disaster sizes, b, in Eq. (9) by 

histograms as in Figure 2, applying to disasters of size 10% or larger and using alternative values 

of γ.  The disaster probability, p, was estimated from the empirical frequency of entry into 

disaster states as 3.6% per year for C and 3.7% for GDP.  This methodology assumes that the 

same process for generating macroeconomic disasters applies within countries over time and 

across countries.  Given this assumption—which provides enough disaster realizations to pin 

down the relevant parameters with high precision—it is reasonable to use a rational-expectations 

approach to estimate p and the size distribution of disasters.  That is, agents’ expectations are 

assumed to correspond to those generated by the true process (as estimated).  We discuss later 

models in which the disaster probability varies over time. 

 A principal conclusion from Barro and Ursúa (2008, Tables 10 and 11) was that an 

unlevered equity premium around 5% accorded with the data for C and GDP if γ was around 3.5.  

Hence, the required risk aversion was substantial but not astronomical.  The results were similar 

for C and GDP, did not change greatly when only OECD data were used, and did not depend 

much on whether the threshold for declaring a disaster was the assumed 10% value or something 

higher, such as 15%.  However, the results depended on the inclusion of the largest disaster 

events, many of which associated with wars. 

 The model’s equity premium in Eq. (9) does not depend on some parameters, such as the 

expected growth rate g* in Eq. (3) and the rate of time preference, ρ (which equals [1-β]/β]).  
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However, levels of rates of return, including the risk-free rate, depend on these parameters.  In 

the calibration of the model, ρ was chosen—given the other parameter values—to accord with a 

risk-free rate of 1%.11  Therefore, while the fitted model is consistent with this low risk-free rate, 

this fit does not constitute a test of the model. 

 

6.  USING POWER LAWS FOR DISASTER SIZES 

 Barro and Jin (2011, Table 1) used the same underlying information on disaster events 

but estimated the moments involving disaster sizes, b, from the estimated power-law distribution 

discussed before, rather than histograms.  The key parameter for the equity premium in this 

parametric form is the exponent, α, applicable to the upper tail of the power-law density.  The 

form of Eq. (9) implies that the equity premium involves a race between γ—where a higher value 

implies a larger equity premium—and the fatness of the upper tail for large disasters—where a 

higher α implies a thinner tail and, therefore, a smaller equity premium.   The equity premium is 

finite only if γ<α.12  Therefore, with a finite observed unlevered equity premium (about 5%) and 

an estimated α around 4, the estimated γ (the value required to match the equity premium) has to 

be below 4.  The results implied an estimated γ of 3.0 (s.e.=0.5) from the C data and 2.8 

(s.e.=0.6) from the GDP data. 

 The likely reason that the parametric approach to gauging disaster sizes (based on power-

law distributions) produces smaller estimates of γ than the histogram approach is that the latter 

method is especially sensitive to a selection bias that screens out the worst disasters from the 

sample.  This selection seems inevitable since economies that are nearly totally destroyed are 
                                                           
11In Barro and Ursúa (2008, Tables 10 and 11), the required ρ was 0.045 with the C data and 0.052 with GDP.  The 
corresponding effective rates of time preference, ρ*, corresponding to β* in Eq. (7), were 0.029 and 0.037, 
respectively. 
12Similarly, Weitzman (2007) shows that the equity premium can be infinite when the underlying shocks are log-
normally distributed with an unknown variance.  In this context, the frequency distribution for asset pricing is the 
t-distribution, for which the tails can be sufficiently fat to generate an infinite equity premium.   
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unlikely to have data.  However, Ursúa’s (2011) recent extension to cases that had been 

challenging in terms of data and that also feature large disaster events (Russia, Turkey, and 

China) has lessened the extent of this selection bias. 

 

7.  STOCK-PRICE VOLATILITY 

 One shortcoming of the baseline model is its failure to match the observed high volatility 

of stock returns.  The model’s standard deviation of unlevered stock returns equals that for 

growth rates of C and GDP, but Table 2 shows for the world over the full sample that the 

standard deviations were 6.4% for C growth, 6.0% for GDP growth, and 31.7% for stock returns.  

Allowing for leverage in corporate financial structure explains only part of this discrepancy.  The 

basic problem is that the model implies a constant stock price-dividend ratio, V, whereas this 

ratio is volatile in the data. 

 In the baseline model, corresponding to Eqs. (2) and (7), the formula for the (constant) 

dividend-price ratio, 1/V, is, as in Barro (2009): 

 1
𝑉

= 𝜌 + (𝜃 − 1) ∙ 𝑔 ∗ − �1
2
� ∙ 𝛾 ∙ (𝜃 − 1) ∙ 𝜎2 − 𝑝 ∙ �𝜃−1

𝛾−1
� ∙ [𝐸(1 − 𝑏)1−𝛾 − 1 − (𝛾 − 1) ∙ 𝐸𝑏] , (10) 

where ρ is the rate of time preference (equal to [1-β]/β) and g* = g + (1/2)σ2 – p·Eb is the 

expected growth rate from Eq. (3).  Thus, as in Bansal and Yaron (2004), with EZW preferences, 

the model has “reasonable” properties for effects of one-time changes in the expected growth 

rate and uncertainty only if θ<1; that is, if the IES > 1.  In this case, the price-dividend ratio, V, 

rises with an increase in g* and falls with an increase in uncertainty (σ, p, or an outward shift in 

the distribution of b).   

 Equation (10) suggests that volatility in V—and, hence, in stock returns—can be 

generated by variations in g* (the long-run risks model of Bansal and Yaron [2004]) or by 
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variations in parameters, such as the disaster probability, p, that govern uncertainty (as in Gabaix 

[2010], Gourio [2008, 2010], and Wachter [2011]).  What is less clear is whether these fixes with 

regard to volatility have much implication for asset returns, including the equity premium.  We 

consider this issue in the next three sections. 

 

8.  SHIFTING LONG-RUN GROWTH RATES 

 Suppose that shifts to the expected growth rate, g*, occur independently of the other 

shocks in Eq. (2)—the assumption made by Bansal and Yaron (2004), henceforth BY.  With the 

IES>1, an increase in g* raises the price-dividend ratio, V, as in Eq. (7), and leads, thereby, to a 

high stock return.  Therefore, variability in g* can generate volatility in stock returns.  However, 

since the realization of Ct+1 is independent of the shock to g* that occurs at t+1, the movements 

in g* do not create non-zero covariance between stock returns and contemporaneous 

consumption growth.13   If preferences for consumption were time separable, this lack of 

covariance implies that the variability of g* would not influence the equity premium. 

 However, in an EZW world, preferences over consumption are not time separable.  

Rather, if γ>θ and θ<1, as already assumed, EZW preferences imply complementarity between 

Ct+1 and anticipated later values of C.  Because of this complementarity, an increase in g* at date 

t+1 reduces the value of the pricing kernel (through the term containing Vt+1 in Eq. [6]) in the 

way that normally follows from a rise in Ct+1/Ct.  Therefore, the covariance pattern is that 

marginal utility of consumption is low when stock returns are high.  This channel explains why 

shifting long-run mean growth rates contribute to the equity premium in the BY model. 

                                                           
13With endogenous investment, shocks to g* can generate covariance between stock returns and consumption 
growth.  However, with the IES>1, a rise in g* tends to reduce contemporaneous consumption, implying that stock 
returns covary positively with the marginal utility of consumption.  Therefore, in this setting, the variability of g* 
tends to reduce the equity premium. 
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 The BY model also contains a time-varying variance of the long-run growth rate.  An 

increase in this variance amounts to a rise in uncertainty.  With the assumed configuration of 

preference parameters in the EZW setting, a rise in uncertainty at date t+1 lowers the price-

dividend ratio,  Vt+1—this result holds in Eq. (7) for analogous effects from shifts in the 

uncertainty parameters σ and p.  Therefore, shifting uncertainty helps to explain volatility of 

stock prices.  Effects on the equity premium depend again on the lack of time separability of 

consumption under EZW preferences.  Specifically, Eq. (6) implies that the negative effect of a 

rise in uncertainty on Vt+1 raises the value of the pricing kernel, thereby creating a covariance 

pattern where marginal utility of consumption is high when stock returns are low.  Hence, time-

varying uncertainty reinforces the effect on the equity premium from a time-varying mean 

growth rate.  

 Bansal and Yaron (2004) find by calibrating their model with U.S. data that matching the 

observed average equity premium depends on high risk aversion; the required γ is around 10.14  

Nakamura, Sergeyev, and Steinsson (2011) get similar results in an extended version of the BY 

model fit to long-run data on consumer expenditure for 16 OECD countries.  The reliance on 

very high risk aversion is not surprising because the effects of long-run risks on the equity 

premium depend on complementarity between present and future consumption.  Although this 

channel exists with EZW preferences, the linkage turns out to be too weak to explain much of the 

equity premium when γ takes on “reasonable” values.  Therefore, our conclusion is that variation 

in long-run mean growth rates and in variances of these growth rates may usefully supplement 

                                                           
14Bansal and Yaron (2004, p. 1492) justify a γ as high as 10 by saying:  “Mehra and Prescott (1985) argue that a 
reasonable upper bound for risk aversion is around 10.”  However, Mehra and Prescott were actually arguing that, in 
the context of power utility, a γ of 10 was at the outer bound of what was conceivable.  Nakamura, Sergeyev, and 
Steinsson (2011, p.3) observe that an agent with a γ of 10 would turn down a 50-50 gamble that raised consumption 
by a factor of 1 million or lowered it by 1%. 
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analyses that include disaster risk but probably cannot be the main basis for explaining the equity 

premium and related asset-pricing puzzles explored by Gabaix (2010). 

 

9.  SHIFTING DISASTER PROBABILITIES 

Gabaix (2010) allows for time-varying probability and severity of disasters; as already 

noted, these features can generate volatility of price-dividend ratios.  Aside from the high equity 

premium, low risk-free rate, and volatility of stock returns, Gabaix shows that the framework can 

account for a number of other asset-pricing puzzles.  These puzzles include the predictability of 

stock returns based on price-dividend ratios, the typically upward-sloping nominal yield curve 

for bonds, the high price of deep out-of-the-money puts on stock-price indexes, and the high 

corporate-Treasury yield spread (compared with the underlying probability of corporate default).  

For the last result, the key point is that corporate bonds, especially the highest-rated issues, have 

their defaults concentrated into the worst of economic times when the marginal utility of 

consumption is high.  The same point explains high prices of deep out-of-the-money puts on 

stock-price indexes. 

 Gourio (2010) introduces an exogenous, persistent, time-varying disaster probability into 

a closed-economy real business-cycle model.  Realizations of this shock affect macroeconomic 

variables, partly through direct influences on productivity and partly through effects on capital 

accumulation.  The shock also influences asset prices.  In his preferred calibration, which 

features an IES>1, a rise in disaster probability leads to a decline of output, investment, stock 

prices, and the risk-free interest rate and to a rise in the expected rate of return on stocks.  

Therefore, time-varying disaster probabilities create a counter-cyclical pattern for the equity 

premium and a procyclical pattern for the risk-free rate.   
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 Gourio (2011) extends the model to include firms’ choices of financial structure, equity 

versus debt.  An expansion of debt has tax advantages but also raises expected bankruptcy costs, 

and a rise in disaster probability makes the latter consideration more important.  Therefore, an 

increase in disaster probability raises the cost of capital, featuring a rise in the spread between 

the corporate yield and the risk-free rate.  Moreover, as in Gabaix (2010), this spread expands 

relative to the objective probability of corporate default—because of the larger risk weight 

associated with disaster-related default.  The responses to a higher disaster probability include a 

reduction in corporate leverage and a greater cutback in investment than in the original model.  

To put things in reverse, a fall in perceived disaster probability up to 2006 would have raised 

corporate leverage and led, thereby, to greater vulnerability to a financial shock of the sort 

experienced in 2007-2009. 

 

10.  GAUGING TIME-VARYING DISASTER PROBABILITIES 

 The models considered in the previous section rely on time-varying disaster probabilities.  

However, it is a serious empirical challenge to measure these probabilities, as assessed 

contemporaneously by agents.  Even when the disaster probability, p, is constant across countries 

and over time and is computed based on rational expectations, the empirical estimation of p is 

difficult because disaster events are infrequent and may be absent in small samples, such as the 

post-WWII period for the United States and other OECD countries.15  Therefore, reliable 

estimation required our long-term panel of national-accounts variables, which included several 

thousand annual data points that generated 125 rare-disaster realizations for C and 183 for GDP 

(Figure 2).  The estimation problem is compounded if p is allowed to vary across countries or 

over time within countries, although our estimation procedure would still work if the allowable 
                                                           
15See n.7 on the impact of inclusion of observations on the Great Recession up to 2009. 
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variations in p were limited (for example, to distinguish OECD from non-OECD or to allow for 

occasional breaks over time for the world). 

 An alternative approach uses stock-price-index options to infer the disaster probability, 

pt, that agents perceive.  Suppose, to begin, that agents have power utility and there is a fixed 

size distribution of disasters.  In this case, put-option prices on a stock-price index of given 

maturity depend on pt, the strike price, and the coefficient of relative risk aversion, γ.  At any 

point in time, the model implies a relationship of option price to strike price (related to “smile” 

curves), and the conformity of the data with this prediction could be checked.  Variations in pt 

shift the option-price/strike-price graph, and such shifts could be used to infer changes in pt.  

However, the analysis is more complicated under EZW preferences. 

 Bollerslev and Todorov (2011), henceforth BT, use options prices on the S&P 500 from 

1996 to 2008 to back out jump (disaster) risk in the underlying stock-price index as priced by 

investors.  The estimation uses close-to-maturity deep out-of-the-money options, thereby relying 

on claims that are worthless without disaster risk.  Their procedure generates “risk-neutral 

probabilities”16 for jumps of various sizes (BT, Table 1, column 2).  BT then back out equity 

premia by comparing these measures with objective jump probabilities derived from futures 

contracts on the S&P 500 (BT, Table 1, column 3).17  A key conclusion (BT, p.22, n. 33) is that 

the median of the estimated risk premium due to rare events is 5.6% per year, a large portion of 

the average premium of around 7%.  Hence, BT’s results support our analysis in which the bulk 

of the explained equity premium came from disaster risk.  BT’s estimates (Figure 2, upper panel) 

                                                           
16Probabilities adjusted for risk pricing associated with each state.  Risk-neutral probability is not the greatest 
terminology.  It brings to mind the discussion in Shakespeare’s unpublished play on financial markets:  “Q. When is 
a probability not a probability?  A. When it is a risk-neutral probability.” 
17Bollerslev and Todorov (2011, Table 1) show that, for objective probabilities, large jumps are rare but reasonably 
symmetric for positive and negative outcomes.  However, for risk-neutral probabilities, the main action reflects 
negative jumps; bonanzas play a minor role, consistent with our neglect of these episodes in our analysis of asset 
pricing. 
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also reveal substantial time variation in the equity risk premium associated with rare events.  

These results may be interpretable in terms of time-varying disaster probability. 

 Backus, Chernov, and Martin (2011), henceforth BCM, also use options prices for 

contracts on the S&P 500, in this case from 1987 to 2003.  In contrast to the macroeconomic 

disasters in Figure 2—which exhibit low probability of occurrence (3.7% per year for C) and 

large average size (22%)— BCM (Table 3, column 4) find frequent jumps (1.4 per year) of small 

average size (below 1%).  These jumps may reflect changing parameters that the BCM model 

treats as fixed—notably the perceived disaster probability—rather than realized consumption 

disasters.  Also, the coefficient of relative risk aversion needed to match BCM’s target equity 

premium of 4% is high, roughly 9.  A useful research effort would reconcile the findings of 

BCM with those of Bollerslev and Todorov (2011). 

 Instead of looking at asset prices, such as stock-options prices, Berkman, Jacobsen, and 

Lee (2011), henceforth BJL, gauge time-varying disaster probability by considering the number 

and severity of international political crises.  These political variables directly influence the 

likelihood of disasters, particularly wars.  BJL show that time variations in their political-crisis 

variable measured at the world level relate to financial variables—stock returns, stock-price 

volatility, earnings-price ratios, and dividend yields—in ways that would be anticipated for 

variations in disaster probability.  Hence, their world political variable might be a satisfactory 

proxy for time-varying world disaster probability. 

 

11.  DISASTER RISK IN OPEN-ECONOMY MODELS 

Another line of research extends the rare-disasters model with time-varying disaster 

probability to international macroeconomics and finance.  Part of this literature adds disaster risk 
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to the international real-business-cycle modeling that started with Backus, Kehoe, and Kydland 

(1992).  One target of this research is the uncovered-interest-parity (UIP) puzzle, which relates to 

the carry trade and refers to the disconnect between interest-rate differentials and subsequent 

changes in exchange rates across countries.  Early applications of this idea include Guo (2011); 

Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011); Jurek (2009); and Farhi, Fraiberger, 

Gabaix, Ranciere, and Verdelhan (2009).  The main ideas are well explained by Farhi and 

Gabaix (2011).    

In the Farhi-Gabaix (2011) model, agents in each country value consumption of tradables 

and non-tradables in a separable way.  Since there is perfect risk sharing in tradables, the pricing 

kernel for assets depends only on the quantity of world tradables.  The realization of a global 

disaster implies a small quantity of world tradables; hence, high marginal utility; hence, a high 

value of the pricing kernel.   

There are also country-specific shocks, which affect a country’s productivity in 

converting non-traded into traded goods.  These shocks occur at times of world disasters, but 

countries differ in their sensitivity to the global shock.  Comparatively safe countries 

(Switzerland, Japan, United States?) are relatively immune to world disasters.  In the model, the 

degree of safety is described by a country’s “resilience,” which is subject to world and local 

shocks but tends to revert over time toward a value that may be country specific.  If a disaster 

occurs, the real exchange rates of low-resilience countries depreciate sharply compared with 

high-resilience countries. 
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When a country is risky (resilience is low), its real interest rate is high and its real 

exchange rate is depreciated.18  If the world disaster probability, pt, rises, risky countries see an 

increase in their real interest rates and a depreciation of their real exchange rates when compared 

to safer countries.  At any point in time, the high interest rate in a risky country is compensation 

for risk—in the form of greater exposure to world disasters and, hence, to sharp currency 

depreciation should a disaster materialize.  Therefore, the carry-trade strategy of borrowing in 

low interest-rate countries and lending in high interest-rate countries does not “beat the market” 

once one factors in the frequency of future disasters.  The high average return—present even in 

samples that include the representative number of disasters—is compensation for disaster risk. 

To address the UIP puzzle, Farhi and Gabaix (2011) assume that low-resilience countries 

tend to get more resilient over time and vice versa.  This property holds for sure if all countries 

tend to revert toward a common resilience.  In this case, a high-risk country with a high interest 

rate tends to get less risky over time and tends, therefore, to experience appreciation of its real 

exchange rate compared to a low-risk country.19  Therefore, in a sample with no realizations of 

world disasters, Fama (1984)-style regressions of future exchange rate appreciation on current 

interest-rate differentials for pairs of countries tend to yield coefficients with the “wrong” sign—

counter to the standard UIP theory but consistent with much empirical evidence.  In contrast, the 

sign of the coefficient is ambiguous in samples that include the representative number of 

disasters.  If agents are risk neutral, this coefficient equals unity, as in the standard UIP theory.  

                                                           
18In the model, a country’s real exchange rate and terms of trade depend not just on current productivity but also on 
the path of expected future productivity.  Therefore, a fall in resilience leads immediately to a depreciation of the 
real exchange rate, even though no disaster has yet occurred. 
19This analysis can be extended to allow for dynamics from the evolution of the world disaster probability, pt.  These 
shifts generate negative co-movement across countries between exchange-rate appreciation and changes in interest 
rates (compared to the world average).  However, this force may not have much influence on Fama-style 
regressions. 
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More realistically, when agents are risk averse and potential disasters are nonzero, the coefficient 

is less than unity and may be negative. 

Jurek (2009) looks empirically at disaster-based explanations of the UIP puzzle; 

specifically, he examines whether the high average return on carry-trade strategies can be 

explained by disaster risk.  For equal-weighted portfolios involving carry trades between nine 

OECD currencies and the U.S. dollar, the average rate of return from 1999 to 2007 was positive 

and statistically significant:  4.7% per year with a t-statistic of 3.2 (Jurek [2009, Table IIb, 

Panel B]).  When the portfolio is hedged for currency-crash risk by using exchange-rate options 

(at the 0.25δ level20), the average rate of return falls to 3.1% with a t-statistic of 2.5 (Table VII, 

Panel A).  This result suggests that about one-third of the return to the carry trade from 1999 to 

2007 represented a premium for exposure to currency-crash risk.  However, when the sample is 

extended to 2008—the crisis year in which carry-trade portfolios experienced losses of around 

20%—the average return to the carry trade from 1999 to 2008 when hedged for currency-crash 

risk was no longer statistically significantly different from zero:  1.7% with a t-statistic of 1.3 

(Table IX, Panel A).  Thus, in a sample with a disaster realization, the carry trade no longer 

delivers returns that significantly exceed the premium for currency-crash risk. 

 

12.  THE DYNAMICS OF DISASTERS 

The baseline rare-disasters model involves unrealistic assumptions that go beyond the 

assumed constancy of long-run growth rates and disaster probabilities.  First, macroeconomic 

contractions occur over a single period—a jump at an instant of time when the length of the 

period approaches zero—instead of unfolding over multiple years.  Second, disasters have 

                                                           
20The δ is the sensitivity of a stock-option price to the price of the underlying asset.  For calls, δ is positive, near 1 if 
the option is very far in the money (strike price far below current asset price), close to 0.5 if the option is at the 
money, and close to 0 if the option is very far out of the money. 
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permanent level effects, but, as stressed by Gourio (2008), real-world disasters are usually 

followed by strong recoveries.  Third, the model neglects correlation in the timing of disasters 

across countries.  These shortcomings are addressed in the study by Nakamura, Steinsson, Barro, 

and Ursúa (2011), henceforth NSBU.21 

The NSBU model divides consumption, C, into three components—“potential” 

consumption, a “disaster gap,” and a transitory shock.  The disaster gap, which tends to dissipate 

over time through a first-order Markov process, is the amount by which current C deviates from 

potential C because of current or past disasters.  Potential consumption evolves during disasters 

and determines the level to which consumption tends to return once a disaster ends.  Starting 

from a “normal” state, entry into a disaster state occurs with a transition probability (equal across 

time and countries), where the specification allows for correlation across countries in the starts of 

disasters.  As long as the disaster state persists, C growth tends to be substantially negative but 

with a much larger standard deviation than in normal times.  With another probability (equal 

across time and countries), the economy moves from the disaster state to normalcy.  This 

specification generates disasters of varying cumulative sizes and durations, akin to the 

histograms shown in Figure 2. 

NSBU’s numerical estimation of the model’s parameters uses all the annual observations 

on real per capita personal consumer expenditure, C, for 24 countries with continuous data from 

before 1914 to 2006.  The estimates imply that the typical disaster reaches its trough after 6 

years, with a cumulative drop in C by 30%.  However, only about half the decline in C is 

permanent; that is, post-crisis recoveries make up about half the level of C lost during a disaster. 

                                                           
21These extensions address criticisms of the baseline model offered by Constantinides (2008) and Julliard and Ghosh 
(2008). 
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 The main implications of the estimated model for the equity premium concern the 

recoveries.  Since, on average, only half the decline in consumption during a disaster is 

permanent, the model’s predicted equity premium falls short of the value in Eq. (9).  The other 

extensions have less influence on the equity premium, although the stochastic duration of 

disasters matters because of effects on the correlation between consumption growth and stock 

returns during disasters.  The use of EZW preferences is important here because C growth 

deviates substantially from an i.i.d. process, especially during disasters but also in recoveries.  

For example, in the early stages of a disaster, such as a war, stock prices typically have already 

fallen a lot, whereas C has fallen only modestly.  However, there is a strong belief that future C 

will decline much more but by a highly uncertain amount before the eventual end of the disaster 

tends to generate a recovery.  These expectations bring in effects involving the lack of time 

separability in consumption under EZW preferences. 

 Overall, the estimated model generates a sizable equity premium from disaster risk but 

one that is smaller than in the baseline model, in which disasters are permanent and 

instantaneous.  To accord with an average unlevered equity premium of 5%, the NSBU model 

requires a coefficient of relative risk aversion, γ, of 6.4, compared with the value around 3.5 in 

Barro and Ursúa (2008, Tables 10 and 11) and around 3.0 in Barro and Jin (2011, Table 1).22   

 To put the results another way, since a γ of 6 seems implausibly high, the NSBU model 

requires the addition of other features that raise the equity premium in order to get the estimated 

γ down to a plausible range.  One promising extension is to allow for shocks to the mean and 

variance of the long-run growth rate; that is, to bring together the long-run risks model of Bansal 

and Yaron (2004), considered in part 8, with the dynamics of disasters considered in NSBU.  

                                                           
22Nakamura, Steinsson, Barro and Ursúa (2011, Table VII) show that the required γ falls to 4.4 if disasters are 
permanent; that is, when there are no recoveries.  The required γ declines further, to 3.0, if the disaster shocks are 
also instantaneous, rather than applying over periods of finite and random length. 
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Another idea is to incorporate time-varying disaster probabilities, considered in Section 9, into 

the NSBU setting. 

 

13.  INCORPORATING THE FULL TIME SERIES OF RATES OF RETURN 

 The empirical exercises described thus far seek to fit particular properties of asset returns, 

such as a high average equity premium, low average risk-free rate, and high volatility of stock 

returns.  However, additional tests of the model can be carried out with the full time series on 

rates of return. 

 In the studies described before, Barro and Ursúa (2008) and Barro and Jin (2011) 

followed the spirit of Mehra and Prescott (1985) and Rietz (1988) by examining whether the 

unlevered equity premium generated from Eq. (8) matched the target of around 5%, given that 

stock returns behave in ways hypothesized by the model particularly during disasters.  

Specifically, in the term b·[(1-b)-γ-1] in Eq. (8), the first b represents the proportionate fall in 

stock prices during a disaster, whereas the second represents the proportionate fall in 

consumption, C.  However, in the data, stock returns during disasters are not as correlated with C 

growth as the model assumes. 

 Barro and Ursúa (2009) looked directly at the first-order condition that applies, as in 

Eq. (8), when the underlying shocks are i.i.d.  The key term is the cross-product,  

𝐸𝑡 �(
𝐶𝑡+1
𝐶𝑡

)−𝛾  ∙ 𝑅𝑡+1� , where R is the gross real return on stocks.  For a panel of countries with 

data on C and R, the sample average for this term depends particularly on how stock returns 

behave during disasters.  One finding in Barro and Ursúa (2009) is that the correlation between 

stock returns and C growth (measured over a fixed period length, which could be one or more 

years) is not nearly high enough during disasters for this approach to accord with the average real 
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rate of return on stocks observed over the full sample.  Another finding is that, when the timing 

of stock-market crashes and depressions is interpreted “flexibly,” the co-movement between C 

growth and stock returns during disasters is strong enough to be consistent with the observed 

average return on stocks.  However, to be convincing, this approach requires a disciplined model 

in which the timing between low C growth and low stock returns is not coincident during 

disasters. 

 As noted before, when preferences are of the EZW type and shocks are not i.i.d., the 

model does not require stock returns to co-move precisely with C growth during disasters.  The 

key term from Eq. (6) is the cross product, 𝐸𝑡[(𝐶𝑡+1
𝐶𝑡

)−𝛾 ∙ �1+𝑉𝑡+1
𝑉𝑡

�
(𝜃−𝛾)
(1−𝜃) ∙ 𝑅𝑡+1], where V is the ratio 

of wealth to consumption, corresponding in a simple model to the ratio of stock prices to 

dividends.23  It is an open question whether an analysis extended to allow for this influence from 

stock-price changes will perform satisfactorily when implemented with the full panel of data on 

C growth, price-dividend ratios, and stock returns.24  A serious empirical challenge for this 

implementation is that data on real stock returns tend systematically to be missing during the 

worst disasters, particularly due to closed markets during wartime.25  Moreover, even when 

                                                           
23Note that EZW preferences imply a particular form of time non-separability for consumption.  It would be possible 
to modify the form of this non-separability by including, for example, the habit-formation idea of Abel (1990) and 
Campbell and Cochrane (1999) into a model with EZW preferences. 
24Nakamura, Steinsson, Barro and Ursúa (2011, p. 20) incorporate these effects from stock-price changes during 
disasters without using the full time series of stock prices and returns:  “When the news arrives that a disaster has 
struck, the stock market crashes.  This crash … coincides with a sizable drop in consumption.  The fact that stocks 
pay off poorly at the onset of disasters, when consumption is low and the marginal utility of consumption is high, 
implies that stocks must yield a considerable return-premium over bills in normal times. … [However,] the 
consumption decline in any given year of a disaster is substantially smaller than the peak-to-trough declines used to 
calibrate simpler disaster models … How, then do our estimates generate a sizable disaster premium?  The key point 
is that the current short-run decline in consumption is paired with news about future declines in consumption and a 
large increase in uncertainty about future consumption, … [which] contribute … to the premium households are 
willing to pay for assets that insure against disaster events.” 
25Examples are Belgium 1914-1918 and 1944-1946, France 1940-1941, Greece 1941-1952, Mexico 1915-1918 
(revolution and civil war), Netherlands 1944-1946, Portugal 1974-1977 (“Carnation Revolution”), Spain 1936-1940 
(Spanish Civil War), and Switzerland 1914-1916.  The data in these cases do allow for reasonable measurement of 
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financial markets remained open, the data on real stock prices and real stock returns were often 

substantially mis-measured during wartime because of controls on prices, sometimes extended to 

prices of financial assets.26 

 

14.  CONCLUDING THOUGHTS AND FUTURE RESEARCH 

 The rare-disasters perspective provides an important bridge between macroeconomics 

and finance and helps to explain an array of asset-pricing puzzles, including the high equity 

premium.  From the perspective of macroeconomic fluctuations, shocks to the perceived 

probability of disaster provide a potentially important supplement to existing closed- and open-

economy real business-cycle models. 

 We conclude with a list of promising extensions of research on rare disasters. 

 1.  Rare disasters of uncertain timing and magnitude can be incorporated into models of 

long-run economic growth. 

 2.  In the environmental-economics literature related to climate change (Nordhaus [2007], 

Weitzman [2009]), a key issue is the appropriate discount rate for highly uncertain flows that 

arise in the distant future.  This uncertainty applies to effects of climate change on the economy, 

effects of policies on climate change, and future real GDP.  The standard, deterministic 

neoclassical growth model used in parts of the existing literature is not helpful for this kind of 

analysis.  An appropriate treatment requires an explicit modeling of uncertainty, along the lines 

of the disaster models that we discussed. 
                                                                                                                                                                                           
real stock returns over periods long enough to bridge the period of missing data; for example, from 1914 to 1919 for 
Mexico. 
26An extreme example is Germany during WWII, where controls—which held down reported consumer prices 
starting in 1936 and propped up reported stock prices starting in 1943—lapsed only in 1948.  During the war and 
through 1947, the underestimation of true inflation and the propping up of reported stock prices led to a substantial 
overstatement of real stock returns.  Then the measured real stock return of –0.89 when controls were lifted in 1948 
is misleadingly low.  However, the data in this and other cases allow for reasonable measurement of real stock 
returns over periods long enough to bridge the interval of controls; for example, from 1935 to 1948 in Germany. 
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 3.  The framework developed by Nakamura, Steinsson, Barro and Ursúa (2011) can be 

extended to incorporate the long-run risk ideas of Bansal and Yaron (2004). 

 4.  Stock-price index options, available for the United States and possibly other countries, 

can be used to gauge shifting disaster probabilities, pt.  These results would be important for 

asset-pricing research and for assessing time-varying disaster probabilities as an input into 

business-cycle models.  Exchange-rate options can be used in a similar way to measure changes 

in country “resiliences,” which appear in international business-cycle models and in studies of 

the uncovered interest-parity condition. 
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TABLES AND FIGURES 
 

 
Table 1  Available Macroeconomic Growth and  

Financial-Returns Data by Regional Group 

 

 Southeast Asia Latin America Western Europe Western Offshoots Other 

  China Argentina r p Austria °r p Italy °r t b p Australia °r t b p Egypt p 
GDP: 1890 1875 1870 1861 1820 1894 
C: 1952 1875 1913* 1861 1901 1894 
  Japan °r t b p Brazil r p Belgium °r t b p Netherlands °r t b p Canada °r b p India r t b p 
GDP: 1870 1850 1846 1807 1870 1872 
C: 1874 1901 1913 1814 1871 1919 
  Indonesia r Chile r t p Denmark °r t b p Norway °r t b p New Zealand °r t b p Russia 
GDP: 1880 1860 1818 1830 1860 1860 
C: 1960 1900 1844 1830 1878 1885 
  Malaysia Colombia r p Finland °r t p Portugal °r United States °r t b p South Africa r b p 
GDP: 1900* 1905 1860 1865 1790 1911 
C: 1900* 1925 1860 1910 1834 1946 
  Philippines Mexico r p France °r t b p Spain °r t p   Sri Lanka 
GDP: 1902* 1895 1820 1850   1870 
C: 1946 1900 1824 1850   1960 
  Singapore Peru r p Germany °r t b p Sweden °r t b p   Turkey p 
GDP: 1900* 1896 1851 1800   1875 
C: 1900* 1896 1851 1800   1875 
  South Korea Uruguay p Greece °r t p Switzerland °r t b p     
GDP: 1911 1870 1833* 1851     
C: 1911 1960 1938 1851     
  Taiwan p Venezuela r p Iceland °p United Kingdom °r t b p     
GDP: 1901 1883 1870 1830     
C: 1901 1923 1945 1830     

 
 
 
Note:  Starting dates are in first rows for GDP and second rows for C.  Symbol * means that series has missing 
years:  for GDP, these are Greece (1944), Malaysia (1943-46), Singapore (1940-49), and Philippines (1941-45); for 
C, these are Austria (1919-23), Malaysia (1940-46), and Singapore (1940-47).   Italics for starting year means that 
series lacks continuous data since at least 1913.  End year in all cases is 2009.  Superscript ° indicates inclusion in 
"OECD" sample.  Subscripts [r t b p] indicate that country has long-term information on stock returns, bill returns 
(usually 3-month government bills), bond returns (usually 10-year government bonds), and consumer price inflation, 
respectively. 
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Table 2 
Sample Moments for Growth Rates and Rates of Return 

 Mean Standard Deviation Excess Kurtosis 
 full 

sample 
post-

WWII 
full 

sample 
post-

WWII 
full 

sample 
post-

WWII 
World:       
  GDP growth 0.020 0.028 0.060 0.039 13.7 4.1 
  C growth 0.018 0.026 0.064 0.041 9.8 5.7 
  Stock return 0.084 0.108 0.317 0.380 41.8 33.5 
  Bill return 0.013 0.011 0.106 0.071 35.0 50.5 
  Bond return 0.030 0.025 0.126 0.103 11.8 9.8 
OECD:       
  GDP growth 0.019 0.027 0.057 0.031 22.5 5.4 
  C growth 0.017 0.025 0.057 0.029 12.8 2.2 
  Stock return 0.077 0.094 0.254 0.283 8.1 5.5 
  Bill return 0.013 0.013 0.103 0.051 41.1 108.1 
  Bond return 0.031 0.028 0.127 0.103 12.5 11.1 
non-OECD:       
  GDP growth 0.021 0.028 0.063 0.047 4.4 2.6 
  C growth 0.022 0.028 0.077 0.056 5.7 3.2 
  Stock return 0.102 0.139 0.438 0.530 36.7 24.9 
  Bill return 0.014 -0.010 0.129 0.159 8.6 6.6 
  Bond return 0.022 0.007 0.114 0.101 2.5 0.5 

 
 
 
Note:  Data run as far back as 1870 to 2009 (see Table 1).  World samples have 39 countries (21 
OECD) for GDP (not including Malaysia, Philippines, and Singapore because of breaks in data 
during WWII), 28 countries (18 OECD) for C, 30 countries (20 OECD) for stock returns, 19 
countries (17 OECD) for bill returns, and 17 countries (15 OECD) for bond returns. 
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Table 3  Macroeconomic Disasters for Four Countries Added to Data Set 

(China, Egypt, Russia, Turkey) 
Country GDP Disaster C Disaster Comment 
China C data start 1952  

 1892-1895:  -0.25  Sino-Japanese War I, 1894-1895 
 1929-1934:  -0.11  Japanese invasion, 1931-1932 
 1936-1946:  -0.50  Sino-Japanese War II, WWII, 1937-1945 
 1958-1962:  -0.25 1958-1962:  -0.19 Great Leap Forward, 1958-1960 
 1966-1968:  -0.14 1966-1968:  -0.14 Cultural Revolution, militant phase, 1966-1968 
Egypt Data start 1894  

 1899-1908:  -0.12 1899-1908:  -0.13  
 1912-1918:  -0.13 1912-1918:  -0.10 WWI, Egypt separated from Ottoman Empire 
 1919-1921:  -0.17 1919-1921:  -0.23 1919 revolution, 1922 independent kingdom 
 1922-1926:  -0.11 1922-1926:  -0.14  
 1938-1943:  -0.18 1939-1941:  -0.20 WWII, U.K. used as base 
  1951-1953:  -0.17 Revolution, 1952-1953 

Russia C data start 1885  
 1878-1880:  -0.13  Russo-Turkish War, 1877-1878 
 1882-1886:  -0.12   
 1887-1891:  -0.18 1887-1891:  -0.16  
 1904-1907:  -0.19 1904-1906:  -0.13 Russo-Japanese War, 1904-1905 
 1913-1921:  -0.62 1913-1921:  -0.71 WWI, Revolution/Civil War, 1913-1921 
  1929-1932:  -0.16 Great Depression 

 1939-1942:  -0.30 1937-1943:  -0.58 WWII 
 1989-1998:  -0.48 1990-1996:  -0.16 Transition economy 
Turkey Data start 1875  
 1876-1880:  -0.40 1876-1880:  -0.38 Russo-Turkish War, 1877-1878 
 1885-1888:  -0.20 1885-1888:  -0.18  
 1892-1895:  -0.10   
 1913-1920:  -0.45 1913-1919:  -0.49 WWI, breakup of Ottoman Empire 
 1926-1927:  -0.14   
 1931-1932:  -0.12 1929-1932:  -0.12 Great Depression 
 1939-1945:  -0.40 1938-1946:  -0.30 WWII neutrality 
 1999-2001:  -0.10 1997-2001:  -0.12  

 
 
Note:  Underlying data on real per capita personal consumer expenditure, C, and GDP for these 
countries are graphed in Figure 1.  The proportionate declines in GDP or C are those of 0.095 or 
greater when computed from a peak-to-trough approach over multiple years. 
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Table 4  Breakdown of Macroeconomic Crises, 1870-2006 
 C (28 countries) GDP (40 countries) 
Episode/Period Number of Events Mean Fall Number of Events Mean Fall 
Pre-1914 31 0.16 51 0.17 
World War I 20 0.24 31 0.21 
Early 1920s (Flu?) 10 0.24 8 0.22 
Great Depression 14 0.20 23 0.20 
World War II 21 0.33 25 0.37 
Post-World War II 24 0.18 35 0.17 
   OECD 6 0.12 6 0.13 
   Non-OECD 18 0.19 29 0.17 
Other 5 0.19 10 0.15 
Overall 125 0.22 183 0.21 

 
 
 
Note:  These results update Barro and Ursúa (2008, Table 7) to include the four countries with 
newly constructed data as shown in Table 3.  (China is not included for C.  New Zealand is 
included for C but was not in Barro and Ursúa [2008].)  Declines in real per capita personal 
consumer expenditure, C, and GDP are those of 0.095 or greater when computed from a peak-to-
trough approach over multiple years.  
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Figure 1a:  C and GDP for Four Major Countries 

 
Germany Japan 

  
United Kingdom United States 

  
 
 
 
Note:  The data, ending in 2009, are for real per capita personal consumer expenditure, C , and real per capita GDP.  
Levels of series were anchored at 2005 values of series on PPP-adjusted, constant-dollar aggregates from World 
Development Indicators.  Scales are in natural logs.   
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Figure 1b:  C and GDP for Four Countries with Newly Available Macroeconomic Data 

 
China Egypt 

  
Russia Turkey 

  
 
 
 
Note:  See note to Figure 1a. 
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Figure 2 
 

Disaster Sizes and Durations 
 

 
Note:  This sample of disaster events extends Barro and Ursúa (2008, Figures 1 and 2) to include 
the four countries with newly constructed data as shown in Table 3.  (China is not included for C.  
New Zealand is included for C but was not in Barro and Ursúa [2008].)  Proportionate declines 
in real per capita personal consumer expenditure, C, and GDP are those of 0.095 or greater when 
computed from a peak-to-trough approach over multiple years.  Duration is the number of years 
from peak to trough.  Samples have 28 countries for C and 40 for GDP. 
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