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I. Introduction

Despite the considerable empirical success of capital asset pricing theory, there remains

a disturbing lack of scientific consensus concerning the validity of the various state of the

art asset pricing models. The Capital Asset Pricing Model (CAPM) has run into several

roadblocks such as Roll's (1077) suggestion that it is not a testable scientific theory and

a plethora of empirical anomalies which provide empirical evidence that the usual market

proxies are not mean-variance efficient.' Empirical and theoretical research has proceeded

in several directions, including consideration of the effects of personal taxes and other

market imperfections, the possibility of dynamic effects arising through shifts in the in-

vestment opportunity set (intertemporal asset pricing models), and stronger distributional

assumptions about the underlying structure of security returns. Each of these approaches

has prominent adherents and is, at present, the subject of considerable theoretical and

empiric al attention.

One of the main lines of current empirical research, in asset pricing is the Arbitrage

Pricing Theory (APT) of Ross(1076,1977). The basic assumptions of this model are that

security returns are generated by a small number of common factors plus an additional

randomii component that can he diversified away in large portfolios and that capital markets

are well-functioning in the sense that riskless zero net investment portfolios should earn zero

profits. Since the theory does not require a priori specification of these sources of systematic

risk, empirical implementation of the APT usually involves the implicit measurement of

the common factors underlying security returns.

As a consequence, empirical studies of the APT have typically constructed basis or

reference portfolios to mimic the factors. These constructed portfolios have been used

for a variety of purposes such as testing the APT mean restriction, testing the signifi-

cance of factor risk premia, evaluating the performance of managed portfolios, comparing

the explanatory power of covariance measures of risk with other risk measures (such as

own standard deviation), and providing the basis for exploratory efforts to determine the

macroeconomic variables underlying asset pricing relations. In theory, these portfolios are

See, for instance, Cannistraro(1073), Basu(1077). Litzenberger and Ramaswarny(1970),
Banz(1081), Reinganum(1081). The small firm effect in particular has received much at-
tention. inclnding an entire issue in the Journal of Financial Economics.
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supposed to he highly correlated with the common factors affecting security returns and to

he relatively free of unsystematic risk. In practice, there is no guarantee that a particular

basis portfolio construction procedure will mimic the factors sufficiently well. Obviously

basis portfolios which are poorly correlated with the common factors can lead to incorrect

inferences about the validity of the APT or the interpretation of its application to capital

budgeting, performance evaluation, and macroeconomic activity. It is clearly important to

know which basis portfolio construction procedures do a good job of mimicking the factors

and which do not.

There is an embarrassingly large number of ways to construct such basis portfolios.

There are not only several viable methods for forming these portfolios but also there are

different procedures for estimating the factor models of security returns which underly

these.computations. In addition, the performance of these strategies might be expected to

vary with the number of securities included and/or the number of factors being considered.

Most previous empirical studies, for instance, have used Fama-MacBeth type portfolios

coupled with maximum likelihood factor analysis of thirty to sixty securities. However,

for reasons discussed below, the use of such a limited number of securities might fail to

produce reliable reference portfolios to mimic the factors, Such concerns led Chen(1983) to

use an instrumental variables procedure to provide inexpensive estimates of factor models

using larger numbers of securities and sophisticated mathematical programming procedures

to ensure that the basis portfolios were well-diversified. The less expensive instrumental

variables procedures, which have also been advocated by Madansky and Marsh(19S5), are

less efficient in a statistical sense than maximum likelihood factor analysis and, hence, might

yield basis portfolios which are not highly correlated with the underlying factors. Similarly,

Chamberlain and Rot.hschild(1983) and Connor and Korajczyk(1984) have advocated the

use of principal components as an inexpensive alternative to maximum likelihood factor

analysis. For that matter, randomly selected well-diversified portfolios of large numbers of

securities could, in principle, provide the least expensive potentially acceptable alternative.

Which of these strategies is the best one? This is an empirical question which has

not been addressed in previous work. In this paper we intend to remedy this omission by

providing a comprehensive examination of different basis portfolio formation strategies. In

particular, we provide a detailed analysis of the performance of variants of all of the portfolio
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formation procedures and estimation methods that have been proposed in the literature,

as well as an examination of the efficiency to be gained from considering portfolios of up

to 750 securities. While it is doubtless possible to find some combination of estimation

method and portfolio fonnation strategy which we have not considered, this study does

provide a thorough examination of the major contenders.

The paper is organized as follows. The following section provides a brief review of the

APT. The third and fourth sections contain a discussion of the two different steps involved

in basis portfolio construction. The third section delineates the different portfolio formation

procedures considered while the fourth describes the estimation methods used to generate

the inputs for forming the reference portfolios. The comparison of the performance of

alternative basis portfolio construction strategies is not merely a simple technical problem.

Section V provides our solution to the problem of basis portfolio performance evaluation.

In Section VI. we report on the results we obtained concerning the merits of different

estimation methods, different portfolio formation procedures, and different numbers of

securities. The final section provides some concluding remarks.

II. The Arbitrage Pricing Theory

The Arbitrage Pricing Theory (APT) of Ross(1976,1977) begins with the assumption

that K common factors are the dominant sources of covariation among security returns

and that other sources of risk impinging on security returns can be removed in large well-

diversified portfolios. Formally Ross assumed that these common factors affect security

returns in a linear fashion and that securities returns are generated by the model:

(1)

E[Skt] = = 0

where:

Return on security i between time t-1 and time t for i=1,...,N

Expected return on security i

Realization of the kth common factor { i.e source of systematic risk } between

time t — 1 and t
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sensitivity of the return of security i to the ktL common factor { called the factor

loading } and

the idiosyncratic or residual risk of the return on the 1thsecurity between time t —1

and time t. These residual risks are assumed to have zero mean, finite variance

and to he sufficiently independent across securities for a law of large numbers to

apply.

How should expected returns be determined in a well-functioning capital market if

security returns satisfy these assumptions and there are no taxes, transaction costs, or

constraints on short sales? Ross argued that investors should be compensated only for

bearing the systematic risk inherent in the K common factors since idiosyncratic risk can

be virtually elinnnated in large and well-diversified portfolios. Suppose we examine zero

net investment portfolios and, in particular, the set of such portfolios which are constructed

to he well-diversified and to contain no systematic risk. As the number of securities grows

large. these portfolios will contain no risk at all and so should earn zero profits to prevent the

occurrence of riskless arbitrage opportunities. Since,, in these circumstances the number of

such arbitrage portfolios tends toward infinity as well, Ross and many others proved that,

in order to insure that these arbitrage portfolios do not earn positive profits, expected

returns must satisfy (approximately):

E A0 +b11A1 +...+blkAk (2)

where:

A0 the intercept in the pricing relation and

Ak the risk premium on the ktIz common factor, Ic = 1 . K.

Obviously, for empirical purposes, it is desirable to treat equation (2) as an equality. In

what follows, we assume sufficient regularity in the economy so that expected returns on

the subset of risky securities we study (listed stocks on the New York and American Stock

Exchanges) exactly satisfy the expected return condition (2).2

2 Numerous investigators have examined the circumstances in which equation (2) holds
as an equality in large economies and have provided explicit bounds on the deviations from
(2) in finite economies. For the conditions needed in an infinite economy setting see, for
instance, Chamberlain and Rothschild(1983), Connor(1984) and Shanken(1983). As for
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Finally, it is important to distinguish between riakle38 rate and zero beta versions of

the APT. As Ingersoll(1984) has emphasized, the distinction between the two does not

involve the availability of riskless borrowing and lending, but rather depends on whether it

is possible to form riskless (positive investment) portfolios from the subset of risky assets

under consideration (as the number of assets in the subset tends toward infinity). If it is

possible to construct such portfolios, then Ao in (2) is the riskless rate and a well-diversihed

portfolio which costs a dollar and contains no systematic risk should earn the riskless rate

of return and should have a zero variance in the limit. If it is not possible to form such a

portfolio, then A0 should be zero and one of the factors underlying security returns should

correspond to a zero beta portfolio with identical factor loadings for all securities under

appropriate transformation of the factor space.3 This distinction will be important for

evaluating the performance of alternative portfolio formation procedures and estimation

methods.

IlL Basis Portfolio Formation

What is the best way to construct portfolios which reflect the behavior of the common

factors underlying the APT? At first blush, this would seem to be a statistical question

that is best addressed by studying the assumed return generating process (1). Rewritten

in more compact matrix notation, the model is:

(3)

which is obtained by stacking equation (1) for i = 1,... ,N. We assume that the random

factors 6 (a K x 1 vector) and the corresponding elements of the factor loading matrix,

B(N x K), have been normalized so that:4

the finite economy results. Grinblatt and Titman(1983), Chen and Ingersoll(1983), and
Dyhvig(1083) provide different settings in which the equilibrium deviations from equation
(2) can be calculated.

This would occur, for instance, if one of the common fa*tors is unanticipated inflation
and inflation is neutral such that all securities returns are equally affected by unexpected
changes in prices. Formally, it is not possible to form a limiting riskless portfolio of risky
assets when one of the eigenvectors of the covariance matrix of the countably infinite subset
of security returns tinder consideration contains identical elements.

The elements of .8 are not yet uniquely determined since for all orthogonal matrices T,
any matrix B = BT will yield the same return generating process. We will assume that
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E[S]=O
(4)

E[SS} = I
The random variables are are assumed to satisfy:

=
- (5)

E[i2ëI1 = U

where U is a positive definite symmetric matrix.5

In these circumstances, a statisticians natural method for estimating 5, given knowl-

edge of B, E. U, and R is to employ the generalized least squares estimator :6

GLS = (B'fr1By'ntr'[ — (6)

where the covariance matrix for the factor estimates is given by [B'fl1B]'. As is well

known, this estimator has the desirable property of being the minimum variance linear

unbiased estimator of S. In addition as the number of assets grows large

ygCLSg (Ta)

since:

lim [B'U1B]' = 0 (Tb)N —
It is clear from (7) that as the number of securities grows large this estimator will converge

to ä at a rate detennined by the speed with which the largest eigenvalue of (B'U'B)'

converges to zero. This, in turn, hinges on two factors: (a) the magnitudes of the variances

and covariances of i and (b) the degree of dispersion among the responses of individual

security returns to the common factors (e.g. the variances and covariances of the rows of

B). In particular, if securities typically display similar responses to the common factors, we

the necessary K(K — 1)72 constraints required to ensure that 7" = I have been imposed
arbitrarily. For example, it is conventional in factor analysis to require B'U'B to be a
diagonal matrix.

When we assume that U is positive definite, we are implicitly assuming that no asset
in the analysis contains only factor risk.

° The economic interpretation of (6) has been discussed by Ingersoll(1084) and Grinblatt
and Titman(1083b).
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would have to include many securities in the cross-section in order to estimate the factors
with precision.

The importance of both of these factors deserves careful attention. Much of the recent
APT literature has emphasized the ease of forming portfolios which mimic the common
factors with negligible error as the number of securities in these portfolios tends toward
infinity. This observation usually involves the intuition that idiosyncratic risk is likely
to be virtually eliminated in portfolios of a moderate number ofsecurities so long as the
idiosyncratic disturbances are sufficiently independent.

What is seldom appreciated is the importance of factor (b) above—the dispersion of
security responses to common factors. This is a well understood problem in a regression
setting. Precise estimation of the covariance between the dependent and independent vari-
ables caimot be obtained if there is little variation in the independent variables over time.
Similarly, examination of the covariation between individual security returns and their
factor loadings cannot lead to accurate measurements of the underlying common factors
unless there is sufficient dispersion among the factor loadings. Suppose, for example, that
two of the common factors are unexpected changes inexpected inflation and unanticipated
inflation and that most security returns exhibit equal sensitivity to these two common fac-
tors (i.e. inflation has a neutral impact on most security returns). In particular, suppose
that only five percent of the securities tinder consideration exhibit different responses to
these two common factors. In this case, a much larger cross-section would be necessary to

measure accurately these two common factors than would typically be needed merely to
eliminate idiosyncratic risk.

In practice, the choice among basis portfolio construction methods is further compli-
cated since B and, perhaps, ii must be estimated. This introduces the usual problem of
sampling error in the construction of the estimates and thepossibility that alternative pro-
cedures using different portfolio formation techniques and differing numbers of securities

may exhibit differing sensitivity to sampling error. For instance, since the precision of the
estimate of 5 hinges on the estimates of .8 and U that are used, large numbers of securities

may be required to mitigate the effects of sampling error. In addition, there is the problem
introduced by the need to specify constraints on U in order to proceed with estimation.
Two popular choices are the statistical factor analysis model, which assumes that U is diag-
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onal, and the principal components model, which assumes that ii is a diagonal matrix with

equal variances. Different combinations of portfolio formation procedures and estimation

methods might yield different results.

In what follows, we will consider four procedures for constructing basis portfolios. Two

of the methods involve biased and unbiased versions of the generalized least squares esti-

mator discussed above. We also consider biased estimators of 8 since there is no particular

virtue associated with the unbiasedness of the generalized least squares estimator in the

presence of measurement error. Hence, it may be desirable to seek a biased estimator with

potentially lower variance in such circumstances. Such an estimator will be described be-

low. The other two methods utilize a variant of the mathematical programming procedures

employed by Chen(1083), which constrain the reference portfolios to be well-diversified.

These procedures might mitigate some of the harmful effects created by sampling error and

the imposition of constraints on IL

Before considering alternative portfolio formation procedures, it is useful to trans-

late the statistical formulation of the generalized least squares estimator given above into

the language of optimal portfolio construction after the fashion of Litzenberger and Ra-

niaswamy(1070) and Rosenberg and Marathe(1979). In this language, the generalized least

squares estimator provides what we usually refer to as Fama.MacBeth portfolios, after

suitable rescaling so that the portfolios have unit net investment.7 In our formulation, we

choose the N portfolio weights w5 to mimic the §t factor so that they:

minw1tDw5 (Sa)

subject to:

!LJk0
(Sb)

=1 j=k
where bk is the kt column of the sample factor loading matrix B and D is the diagonal

matrix consisting of the sample variances of the idiosyncratic risk vector This portfolio

Of course, Fama and Macfleth(1973) used the ordinary least squares estimator. The
usage in the text is, however, common.

Note that we are now ignoring off-diagonal elements of U such as industry effects. As
a consequence, our procedures actually are better characterized as weighted least squares
or diagonal generalized least squares.
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provides the unbiased minimum idiosyncratic risk portfolio which mimics the 5th unob-
servable common factor. We rescale the portfolio weights w5 so that they sum to one (i.e.
so that the portfolio costs one dollar) in order to maintain comparability with other basis

portfolio formation procedures.

An alternative method, which produces what we term minimum idiosyncratic risk
portfolios, involves choosing portfolio weights w1 so that:

minw5tDijj. (Da)

subject to:

Wj!Zk=O
(96)= 1

where t is a vector of ones. This procedure should, in principle, produce minimum id-

iosyncratic risk portfolios whose fluctuations are proportional to the common factor. In
contradistinction to the unbiased OLS estimator, theproportionality factor need not equal
one.9 This is easily seen by comparing equations (8b) and (9b).

It is easy fo distinguish these minimum idiosyncratic risk portfolios from the more
familiar Fama-MacBeth portfolios in the one factor case. Assiune for simplicity that the
idiosyncratic variances are identical (i.e. D = oI). In this instance, the Fama-Macfleth.
portfolio solves the programming problem:

minw'u,
(lcJa)

subject to:

w'b = 1
(106)

with solution:10

to = (b'b)'b (be)

This estimator can be computed as follows. Let B = (12 . .. &) and suppose we
are interested in mimicking the O& factor. The minimum idiosyncratic risk estimator isDB*[fl*ID_lB*1_1gj where B = (b152 . . .t.. .b) and is a vector of ones in the
coluinn.
10 Prior to rescaling so that the portfolio weights sum to one.
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where fr is the vector of sample factor loadings. Similarly, minimum idiosyncratic risk

portfolios satisfy:

Imu (fla)

subject to:

(llb)

with the simple equally weighted solution:

(lie)

Thus Fama-Madfleth portfolio weights are proportional to the sample factor loadings (i.e.

the betas) of the individual securities and, as a consequence, take advantage of the differing

information content of individual securities regarding the fluctuations in the common factor

Minimum idiosyncratic risk portfolios, however, are merely well diversified and do not take

explicit advantage of such information. Note that the factor loading of the minimum

idiosyncratic portfolio is the average beta of the securities (ie. b = +b't) while that of the

Fama-MacBeth portfolio is unity prior to rescaling.

The second thing to note is that the diversification properties of the Fama-MacBeth

portfolios depend on the normalization of the common factors. If the factors are normalized

so that factor loadings are typically close to one,1t the two procedures both will yield

portfolio weights of order i/N.'2 However when average factor loadings are on the order

of .001 to .0001. as in the case of typical factor loading estimates from daily data when the

factor variance is normalized to unity as in (4), the minimum idiosyncratic risk procedure

still will yield small weights while the Fama-Macfleth method will produce very large

portfolio weights in finite cross-sections. This does not present a problem when the factor

loadings and idiosyncratic variances are measured without error but it is a potentially

serious source of difficulty when large factor loadings can reflect measurement error as

It is worth noting that no study we are aware of normalizes the factors to ensure that
the typical loading is unity.

12 The scaling of the loadings so that the natural loading is one can be accomplished with
the following transformation. Transform B so that B'D'B is a diagonal matrix and denote
the jth diagonal element as -ye. Let the vector ç = BD'. Then the transformation B =
BA where A is a diagonal matrix with ci/yj along the diagonal yields B, a normalization
of B so that the typical portfolio loading is one.
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well as responsiveness to common factors. We turn now to a more complete discussion of

the effect of measurement error on the performance of basis portfolios constructed from

estimated factor loadings.

The comparative merits of minimum idiosyncratic risk and Fama-MacBeth portfolios

in the presence of measurement error can be investigated more fully by again considering

the one factor model:

(12)

where /9 is the N x 1 vector of true factor loadings and is the vector of idiosyncratic

disturbances which is assumed, for simplicity, to have elements with zero means, common

variances c, and independently distributed of one another.13 Suppose that we measure

the factor loadings fi with error

(13)

where v is an N x 1 vector of the deviations of the true factor loadings from their sample

values, v is independent of R.mt and t Vt. and v satisfies:'4

E[vJ = 0—
(14)

E[vv'l =

We also normalize the estimated factor loadings fr so that = k'k. Under this normal-

ization, the Fama-MacBeth procedure will yield a basis portfolio with a sample loading of

unity and whose weights will sum to one.'5 Finally we assume that the cross-section is

sufficiently large so that [i.e. j Ef, v, 0] to simplify the arithmetic.

This means that we are implicitly ignoring the impact of measurement error in the
disturbance variances D.

14 We assume that our estimates are unbiased for simplicity. The assumption that n is
independent of and Rmg is less innocuous since we typically estimate factor loadings
during the same period that we form returns on the basis portfolios. Accounting for such
problems would complicate the analysis considerably and would not alter the basic insights
gained in the present exercise. For example, if b were estimated from an ordinary least
squares regression, then cov[v,] = which would typically be

trivial in moderately large samples. In addition, cov[v1, Rme] = 0 under the assumption
that and Rmt are independent since cov[R,] = 0.

Note that this implies that b = E11 b1/N will satisfy 0 < b < 1 to ensure that the
sample variance of the bs will be positive.
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In this setting it is easy to evaluate the behavior of the Fama-Macfleth portfolio and

its re!ationship to returns on the common factor. The portfolio returns are:

ErM = ('Y''[flrnt "LI
= (fr'U'[19'/914nt + !L'I3Rmt + (15)

[fl'i3f1m + v'flRmt + + vt]

where the approximation arises from the assumption that 6 fi, implying that N/3 b'b.

The mean and variance of the Fama-MacBeth portfolio as well as its squared correlation

with the common factor are given by:

/9flRm
/3';? —

Var[RrM] E[/?'19(Rntt — im) + v'/9R1 + 9' +
N2/9

(b'b)2
[(/9t/3)2C2 + fl'9(c + + + tr(Ejo] (16)

Corr(PfM, IL2)2 -

on_[(/3II3)2C2 + /3tj(c + ) + fl'/3o + tr(Ej1

+ /3'Ei9(a. + + fl'flc + tr(Ejc

where Pm is the mean return on the common factor and o is its variance. In the special

case where fi is measured without error [i.e. ii = 0], the squared correlation reduces to:

Corr(RfM,Rme)2 = (17)Cm +aj(i3)

It is easier to evaluate the corresponding quantities for the minimum idiosyncratic risk

procedure since the portfolios do not involve the measurement error in the loadings. Hence

the portfolio returns are simply:

kMIRP = 1
E(thRmt + it)

(18)
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where is the cross-sectional mean of the idiosyncratic risks at time t. Similarly, the

corresponding moments of these portfolio returns are:

ERMIR? —

Var[ñ"fl =2c±:JN
(10)

t' ii,MII?P i, flc_— —,/IU + c/N
What are we to make of this tedious arithmetic? Consider first the case where the $

is measured without error. Then the squared correlation of the Fama-MacBeth portfolio

with the commou factor is larger than that of the minimum idiosyncratic risk procedure

since:

(20)N/I
N 2 —2so long as all of the elements of $ are not identical [i.e. $ fi = — fi) + N$ >

Nfl2 unless j9 = fi Vi . The same cannot be said when we consider the impact of

measurement error on the Fama-MacBeth portfolio. The squared correlation of returns

on the minimum idiosyncratic risk portfolio with the common factor is unaffected by the

presence of measurement error in b while that of the Fatima-MacBeth portfolio falls in this

event ijali ty.

For example, consider the special case where & is estimated by ordinary least squares
regression on R.mt. As a consequence, the measurement error covariance matrix will be

(approximately):

—, 'N (21)T(+R)
where T is the sample size, and 'N is an N x N identity matrix, and the approximation arises

because we replaced the sample mean and variance of with their population values in

(21) for ease of exposition. The squared correlation of the Fama-Macfleth portfolio with

the common factor is then:

________ (22)+ Ø'$o + + T (j1.f')
This will be smaller than that of the minimum idiosyncratic risk portfolio when:

0 0, 1 1 N—--<c[-—+ +—----— (23N/f fl'$ T/9'/J ' (cr +

13



which simplifies to:
2 2I I U

—2 —2 (24)
fJ

T

where = k — fl)2 is the sample variance of the true loadings. This inequality

can be easily obtained when the sampling variation in the betas is small or, equivalently

(under the present normalization of the loadings) when is close to one in moderate sized

samples.'6

While both of these procedures will produce well-diversified basis portfolios in the

limit (or in finite cross-sections as in the preceding example), they may not produce such

portfolios with a finite cross-section of securities. This possibility led Chen(1983) to em-

ploy mathematical programming methods to produce portfolios which were well-diversified

and, in principle, highly correlated with only one factor. Large well-diversified portfolios

possess minimal idiosyncratic risk and, perhaps, might suffer only marginally from errors in

estimating the factor loadings and idiosyncratic variances. The actual procedure employed

by Chen( 1083) is not in the public domain, being the proprietary software of Glenn Graves

of UCLA. and hence was not available to us for this study. Instead, we chose a simple and

similar alternative: quadratic programming subject to fixed upper and lower bounds. This

involves:

minw'Dw1 - (25)

subject to:

1!Jk°
(26)

1jwjd1 i=1,...,N
where 1 are the fixed lower bounds we place on the portfolio weights, d1 are the corre-

sponding upper bound constraints, and the remaining variables are as defined above. We

examined two choices for these upper and lower bounds. Following Chen(1083), we pro-

duced portfolios with non-negative weights (i.e. where 1; was equal to zero) which could
16 Tedious manipulation of (24) coupled with some minor approximations yields the result

that (24) will occur when > Tc where o is the sample variance of the sample loadings
although this condition is not necessary. It is suggestive to note that that the sample
variance of betas computed with respect to the usual market proxies is quite small.
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take on a maximum value of one to two per cent. We also studied the properties of portfolios

which were merely constrained to be well-diversified with the portfolio weights taking on
maximum and minimum values of plus and minus one or two per cent. While this procedure
differs from (Then's, which had flexible rather than fixedupper and lower bounds, we felt
that this procedure probably would produce similar results and, hence, would provide reli-
able evidence on the comparative merits of mathematical programming procedures. These
two choices for the upper and lower bound constraints constitute the other two portfolio
fonnation procedures whose performance we examined and report below.'7

Finally, a note is in order concerning the computation of portfolios whose returns
are orthogonal to those associated with the common factors. As noted in the preceding
section, such portfolios should, in principle, have thesame returns as the riskiess portfolio of
risky assets postulated by the riskiesa rate version of the APT. For each reference portfolio
formation method, we constructed minimum idiosyncratic risk portfolios using that method
which had weights orthogonal to Band which cost one dollar. Similarly, the positive net
investment quadratic programming portfolios have orthogonal portfolios with nonnegative
weights which are orthogonal to B that cost one dollar and have minimum idiosyncratic risk
subject to this constraint. Finally, the well-diversified

quadratic programming portfolios
have orthogonal portfolios which have the same properties except that the portfolio weights
are well-diversified instead of nonnegative. These portfolios are used to construct the excess
return basis portfolios analyzed below.

The differences in the excess return portfolios is again best illustrated in the one factor
case. We will again assume for simplicity that the idiosyncratic variances are identical (i.e.
D = crI). The required orthogonal portfolio solves the programming problem:

mm
(27)

subject to:

P = 0—

(28)= 1

' Additional
experimentation was done with weights ranging in absolute value up to ave

percent. The results, however, do not materially differ from theones presented below andhence are not reported.
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with solution:

rf = Nfl - ($)2 [(a' - (t') (29)

The minimum idiosyncratic risk excess return portfolio weights can now be obtained by

subtracting these weights from k (the portfolio weights of the minimum idiosyncratic risk

portfolio which mimics the factor) which yields:

1 1
MIRP — Wirf = N —

N9'j3 — (,Ifl)2
RL )L — (& L)iI

(30)
= _,fi—13k1fi'/9-N -

The Fama-MacBeth excess return portfolio solves the programming problem:

ez
nan !4LFM FM

M

subject to:
= 1—

(32)
WFM4 =

with solution:

WFM=WFMrf=
1

(33)-
These tedious manipulations yield one important insight—the minimum idiosyncratic

risk procedure produces weights for excess return portfolios which are proportional to the

corresponding output from the Fama-Madfleth procedure. Not surprisingly, the factor of

proportionality is the average factor loading. Once again, when the average factor loading

is typically much less than one, the portfolio weights produced by tile Fama-Macfleth

procedure wilt take on very large positive and negative values. By contrast, the minimum

idiosyncratic procedure yields a well-diversified excess return portfolio. The same result

arises in the multiple factor case.

IV. Estimation Methods

In this section. we describe four methods for estimating the factor loadings and id-

iosyncratic variances underlying the APT. The choice among estimation methods involves

different tradeoffs than the choice among basis portfolio formation methods. Here, the
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comparison is between statistically efficient but computationally costly methods such as

factor analytic techniques, and less efficient but less costly methods such as instrumental

variables or principal components. It is obviously of greater than academic interestwhether
the comparatively inefficient methods provide performance comparable to that produced by
the coniputationally burdensome efficient estimation methods. This could occur because of
the large cross-sections of security returns that we employor becañse of good small sample

properties of the comparatively inefficient estimation methods.

Recall that the return generating process is:

(34)

where the idiosyncratic risks i have zero means and covariance matrix [2. For convenience,
we will work with returns expressed as deviations from their respective means:

(35)

Under the assumption of joint normality of f and ñ, the sample covariance matrix

3=
(36)

follows a Wishart distribution which serves as the basis of the log likelihood function:

£(EI3) = 1TTln(?,r) -
lnIEI - Eu -)'r1(h -R)

(37)-NT T T=
2

ln(2w) — - InE — j-trace(SE
where:

= ——

(38)= BE' + 12

Unforttmately, it is not possible to proceed with estimation of B and [2 when security
returns possess an approximate factor structure without specifyiug further constraints on
12. One popular choice is the statistical factor analysis model where the residual covariance
matrix 12 is assumed to be a diagonal matrix D. Under this additional assumption, the
model for the return covariance matrix S is:

E=BB'÷D (39)
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It is now conceptually simple and computationally costly to maximize the log likelihood

(37) subject to (39) by setting the derivatives equal to zero:

— s]E'B = 0
(40)

Diag[E1(E — S)E'] = 0

where Diag[X] is a diagonal matrix formed from the diagonal elements of X. The values

of R and D which solve equations (40) are the required maximum likelihood estimates.

When the number of securities under consideration is large, it is impractical to obtain

these estimates by iteratively solving the likelihood equations (40) and so we employed a

significantly cheaper alternative: the EM algorithm of Dempster, Laird, and Rubin(1977).

This procedure. which is described in considerable detail in Lehmann and Modest(1085a),

niaxiniizes (37) subject to the constraints (39) using an iterative multivariate regression

procedure. Its principal virtue is that it is inexpensive, both in storage requirements and

in computational cost.

Maximum likelihood factor analysis provides, in principle, efficient estimates of the fac-

tor loadings and idiosyncratic variances. However, if the APT is true, there is information

in the vector of sample mean security returns concerning the values of the factor loadings.

This is because the APT implies that expected security returns are linear combinations of

the product of their factor loadings and the factor risk premia. Consequently, the sample

mean security returns should on average reflect the magnitudes of the factor loadings. In

order to exploit this information, we also performed maximum likelihood factor analysis

subject to the constraint that expected security returns are spanned by their factor loadings

and the factor risk premia. This involves maximizing the log likelihood function:

£(EIS) =
—NT

ln(2x) — In IE — !trace(SE')
2 2 2

(41)
— 1r— — BA)'r'c —t.A0 — BA)

subject to the constraints:

E=BB'+D (42)

where (41) follows from substituting tAo+BA for .11 in equation (37). Note that this involves

maximizing the original log likelihood function (37) plus an additional term involving the
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weighted average of the deviation of sample mean security returns from the product of the

factor loadings and the corresponding risk premia. It is analogous to the maximum like-

lihood estimation of the zero beta CAPM employed, for example, by Gibhons(1982) and

Stamhaugh(1982) and analyzed in considerabte detail by Shanken(1084). The maximum

likelihood estimates of the relevant parameters may be obtained by setting the derivatives
equal to zero:

t'r1(R— o — BA) = 0

cc B'r'(J — tAo — BA) = 0

r'[s— S — (—tA0 — B)(g— A0 — BA)'1E—1B÷r'(— A0 — BA)A' = 0

cc Diag[E'(E — S — ( — Ao — BA)(k — tA0 — BA)')r'l = 0
(43)

where as above Diag[X] is a diagonal matrix formed from the diagonal elements ofX. It is
even less practical to obtain these estimates by solving equations (43). As aconsequence,
we employ a variant of the EM algorithm in order to obtain these restricted maximum
likelihood estinjates.

For alt of the putative virtues of these theoretically efficient estimation procedures
they do have one significant disadvantage: their cost. In consequence, it seems reasonable

to try less costly procedures and hope for only a small loss in efficiency. Chamberlain

and Rothschild(1983) and Connor and Korajczyk(1984) have recently advocated the use

of principal components as an inexpensive alternative to maximum likelihoodfactor anal-

ysis. Chamberlain and Rothschild(1933) showed that, as the number of securities being
analyzed tends toward infinity, the first K eigenvectors obtained from the spectral decom-

position of the true covariance matrix of security returns converge to the factor loadings

underlying security returns. Connor and Korajczyk(1984) showed that this holds for the

sample covariance matrix as well. The one-time extraction of eigenvalues and eigenvectors

is roughly as costly as maximum likelihood factor analysis using the EM algorithm in daily

data. Since only one principal components run is required to estimate factor models with

different numbers of factors, this is certainly a potentially attractive alternative.

The link between maximum likelihood factor analysis and principal components with
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a finite sample of data is quite simple: principal components is equivalent to maximum

likelihood factor analysis when the idiosyncratic variances are assumed to be identical, i.e.

when:

(44)

This observation highlights the intuitive distinction between factor analysis and principal

componens—factor analysis provides weighted least squares estimates of the factors and

factor loadings (where the weights are the estimated idiosyncratic variances) while principle

components provides the corresponding ordinary least squares estimates. Hence the factor

analysis model will perfonu comparatively better, the greater is the cross-sectional vari-

ability of the idiosyncratic variances since principal components ignores any information

iniheddcd in these variances.18

The estimates of the factor loadings provided by principal components can be obtained

by maximizing the likelihood function (37) subject to the constraints (44) which involves

solving the equations (40) iteratively. Needless to say there is a more cost effective way

to obtain these estimates. Instead, we employ the singular value decomposition algorithm

of the NAG Subroutine Library to obtain the required eigenvalues and eigenvectors. Each

column of the matrix of eigenvectors was multiplied by the square root of the corresponding

eigenvalue in order to scale the factors to have unit variance. Estimates of the idiosyncratic

variances were then obtained by solving equation (39) for the required estimates of D by

substituting the transformed eigenvectors for B and the sample covariance matrix S for E,

Finally, another inexpensive alternative to maximum likelihood factor analysis is the

instnunental variables estimator. Instrumental variables estimators have recently been em-

ployed by Chen(1983) and Madausky and Marsh(19S5). The basic idea of these estimators

is quite simple: substitute consistent estimates of the factors & for the factors themselves

in equation (35) and then estimate the factor loadings B by the ordinary least squares

regression of individual security returns on the estimates of the factors.'° Chen(1983)

18 Under the assumption of an approximate factor structure, principal components pro-
vides consistent estimates of the factors as N — cc and consistent estimates of the factor
loadings as T —. cc even when the returns are not normally distributed. In these circum-
stances, maximum likelihood factor analysis will provide consistent estimates of the factors
and factor loadings as well.

19 The application of instrumental variables methods to factor analysis models typically
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used portfolios formed by mathematical programming based on maximum likelihood fac-

tor analysis of 180 securities as the required consistent estimates of the factors. Following

Madansky(1064) and Hagglund(1982), we employ a simpler instrumental variables proce-

dure that does not require a preliminary maximum likelihood factor analysis.

Suppose that we normalize the factors so that the factor loadings of the first K se-

curities are the identity matrix. Note that this change implies that the new factors are

correlated. In ternis of the original representation (34) and the normalization of the factors

(4), we have rotated the factors so that they have covariance matrix • = BB' where B
is the matrix of factor loadings on the first K securities in the original model. Letting

denote tile returns, expressed as deviations from their respective means, on the first K

securities, we have:

= +, (45)

where is the vector of residual error terms associated with Similarly, letting j3
denote the vector of demeaned returns on the last N — K — 1 securities, we have:

= "3t + i.3, (46)

where r3 is the matrix of factor loadings of these securities and are the corresponding

idiosyncratic error terms. Finally, the equation for the K + l security, 2t is:

= r2s, + 2t (47)

where r2 is the vector of factor loadings of the K + l' security and 2t is its residual term.

Consider the regression of on

= r,r1, + tL2t
(48)= Ff1, + (E2 —

Clearly application of ordinary least squares to this equation will lead to biased and incon-

sistent estimates of r2 since is correlated with its own idiosyncratic disturbance term

involves the assumption that the idiosyncratic disturbances are independent (as in the sta-
tistical factor analysis model). The procedures, however, will provide consistent estimates
even when the idiosyncratic disturbances are correlated so long as the disturbances are
sufficiently independent for a law of large numbers to apply as the number of securities
tends toward infinity.
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If instead we first regress F on

= 1f3 + 3t (40)

and then replace with the fitted values from this regression in equation (48). ordinary

least squares can then be used to estimate r2 consistently. This estimate is consistent

because the errors in estimating the common factors by using the fitted values from the

regression (40) involve only the idiosyncratic disturbances which are uncorrelated with

the idiosyncratic disturbance 2t by assumption. Repeated application of this procedure

replacing 2t with an element of f3 leads to the corresponding estimates of I's. Finally,

solution of the matrix equations:

— — D)I' = 0
(So)

Diag[S — rr' — = 0

produces estimates of the factor covariance matrix and the matrix of idiosyncratic vari-

ances D. The estimate of the factor covariance matrix 'I' can he used to transform the

factor loading estimates so that the factors are again rescaled to be uncorrelated and have

unit variances.

V. Basis Portfolio Comparison

If it were possible to observe the factors underlying security returns, it would be a

simple statistical problem to determine which combination of basis portfolio formation

procedure and estimation method produced the best reference portfolios. Of course, if we

observed the common factors, we would not need to construct basis portfolios to test the

APT or for use in performance evaluation. Since we do not assume that we have sufficient

prescience to identify and measure the factors underlying security returns, the problem of

determining which basis portfolios perform best remains,

One non-rigorous approach to comparing these different basis portfolios is to examine

the behavior of the basis portfolio weights and the sample means and variances of their

returns in order to check whether the results appear to be reasonable. For example, the

constructed reference portfolios ought to be well-diversified if they are to mimic the factors
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with minimal idiosyncratic risk. Although the quadratic programming portfolios are well-

diversified by construction, nothing in the Fama-MacBeth or minimum idiosyncratic risk

procedures guarantees that the resulting portfolios will be well-diversified. Similarly, exam-

ination of the usual summary statistics describing the sample behavior of the constructed

reference portfolios can reveal peculiarities in their performance. For example, we have

examined basis portfolios which had mean returns as high as 120 percent and standard

deviations as great as 450 percent per month. Clearly, such behavior is not likely to reflect

the performance of good reference portfolios.

Unfortunately, searching for reasonable reference portfolios is not likely to eliminate

many candidates and hardly constitutes a scientific testing procedure. Fortunately, it is

possible to make reasonable assumptions which lead to more scientific comparisons. In

particular, suppose that the APT is exactly true, i.e. equation (2) holds exactly. Assume

that the underlying universe of securities under consideration is sufficiently large so that

there exist portfolios whose returns are perfectly correlated with the unobservable

common factors. If the riskless rate version of the APT is true, then security returns

satisfy:

— = B(R_ — dir) + t (51)

where R1 is the retuth on the limiting riskless portfolio of risky assets. If the zero beta

version of the APT is true, then security returns satisfy:

& = BRmt + , (52)

since the zero beta portfolio corresponds to one of the common factors underlying security

returns. -

Consider the behavior of a set of K basis portfolios whose returns are excess

returns over the riskless rate when that version of the APT is appropriate and are the

relevant raw returns in the zero beta case. Similarly, let jj,, also denote excess or raw

returns on the true reference portfolios where appropriate. Then the returns on the basis

portfolios can be compactly expressed as:
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= BPET,Lt + (53)

where B is the matrix of factor loadings of the reference portfolios and 4 is the vector of

their idiosyncratic errors. The vector of sample mean returns of these basis portfolios R

is:

(54)

where Tm is the sample mean return vector of H,, and is the sample mean vector of

Similarly, the sample covariance matrix of the bazis portfolio returns is given by:

= — —

(55)

= BpEmB, + BpEmc, + E6,B, + E

where Em is the sample covariance matrix of the returns on Rmt, Em€p is the matrix of

sample covariances between mj and E, and is the sample covariance matrix of

In this setting, it is possible to contrast the performance of different basis portfolio

construction methods under simple assumptions. Under the assumptions set out above, the

sample covariance matrix will be close to its theoretical value of zero in large samples

(i.e. E B, B, + Similarly, the sample mean vector will be close to zero if the

basis portfolios are large, well-diversified, and constructed such that their weights are not

systematically related to the realizations of (i.e. R BR). Note that we will not
assume that E is close to zero so that we are implicitly recognizing that will converge

to zero faster than for well-diversified portfolios of large numbers of securities.

Now consider the usual x2 statistic for testing the hypothesis that the mean returns

of the basis portfolios are all zero:

f TJB,[BPE,,LB, +

T[Em + B'E€B;'r'R,, (56)

Ti'r,jJR,n — +
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As the analysis in equation (56) indicates, this x2 statistic permits simple comparisons

of the quality of different! basis portfolios in terms of their ability to mimic Rmt.2° For

example, suppose the constructed basis portfolios had negligible idiosyncratic risk (i.e. S

is close to zero). Then the second term in the last line of equation (56) will be close to

zero and tile r statistic will be close to the maximum attainable one, that associated

with the returns Rmt (i.e. the first term in the last line of equation (56)). Any increase

in the idiosyncratic variances of the basis portfolios will reduce the magnitude of the x2

statistic. Similarly, consider the impact of an increase in the factor loadings B of the basis

portfolios holding the residual risk of the portfolios, E, fixed. This will lead to increase

in the percentage of the variation of the basis portfolio returns that is explained by the

true reference portfolios and to a larger x2 statistic that will be closer to that of the true

reference portfolios Rmt. Hence. the usual x2 statistic for testing the hypothesis that

all of the reference portfolio mean returns are zero can rank the performance of different

combinations of portfolio formation procedures and factor loading estimation methods.

It is worth considering an alternative derivation of this performance criterion. As in

the analysis of equation (53) above, let & be the vector of excess returns on individual

securities when the riskless rate version of the APT is true and be the corresponding

raw returns when the zero beta version is appropriate. Consider the fitted inultivariate

regression of on R,, and a constant term:

E
where i is the estimated constant term vector, E is the estimated factor loading matrix,

and ê is the fitted residual vector. If the APT is true, then & should be statistically

insignificantly different from zero. The usual x2 for testing this hypothesis is:

Tà'[r'& = — E)'(r'(k— AT)
(58)=

20 We implicitly assume in (56) that B is invertible. If it is not, then the basis portfolios
are mimicking a linear combination of the factors. It is easy to see that this would

result in a lower x2 statistic for than the corresponding statistic for when the
rank of B1, is less than K.
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where 0 is the sample residual covariance matrix of t• Manipulation of equation (58)

yields:21

T&cr'& = TR'E'R —
(59)

Thus the x2 statistic for testing the statistical significance of & is the difference of two x2

statistics—the x2 statistic for testing the joint significance of the individual security mean

returns and the x2 statistic for testing the joint significance of the mean returns on the

factor portfolios.

By analogy with the analysis leading from (57) to (50), suppose that & is the vector

of intercepts from the regression of B on Rpe and that the corresponding x2 statistic for

testing the statistical significance of is:

T&'IV'à =TR'E'R—TR'E'R, j, p p
(60)= — TR''R] + —

where O is the residual covariance matrix from this regression. As the second line of (60)

indicates, this x2 statistic has two components: the correct x2 statistic (58) for testing the

null hypothesis using the true basis portfolios and a term reflecting the deviation of the

measured reference portfolio returns from mt The analysis in equation (56) suggests
that choosing the basis portfolios with the largest x2 statistic will nunimize this problem.

This points up a potential problem associated with measuring basis portfolio perfor-

niance with its x2 statistic. Clearly if we choose basis portfolios which maximize the x2

statistic (56) then such portfolios minimize the x2 statistic (60) for testing the APT. This

obviously reduces the power of such tests, although the magnitude of such a bias when the

APT is false cannot he aiialyzed without further assumptions. Fortunately, this problem

can he mitigated to a considerable extent by using known empirical anomalies such as those

associated with firm size and dividend yield to increase the power of tests of the APT.

This occurs because the basis portfolios will tend to be well-diversified while the anomalies

21 This follows directly from three observations: (1) & = (2) A =
and (3) U = — Eco'((eEw')'WE. Here w denotes the N x K matrix of portfolio weights
of the true basis portfolios, R,,.
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are not. Characteristics such as small market capitalization, zero dividend yield, or high
dividend yield are clearly not distributed unifonuly over securities.

Finally, this analysis can be linked to the extensive literature on mean variance ef-

ficiency tests. Following Ross(1977), Grinblatt and Titman(1983), and Ingersoll(1084),

consider the transformation of the basis portfolios so that only one portfolio has non-zero

expected return. Let the true values of the mean vector and covariance matrix of the trans-

formed factor returns,R , be denoted by and 5 respectively. Now form the K new

basis portfolios:

— CT'E"2R—pt p —pt

where the orthogonal (partitioned) matrix T is chosen so:22

T = [L'E)R T'] (62)

that is, so the last K — 1 of the new basis portfolios are still orthogonal to the first and have

zero expected excess returns, and where C' is a diagonal matrix with the inverse elements

of:

p (63)

along the main diagonal in order to scale the new basis portfolio to have unit investment.

Now only the first basis portfolio has a non-zero risk premium and, in terms of the original

reference portfolios, it is given by:

= (J,E; 1/2t)-.1E'E_1/2n (64)

Consider the squared Sharpe ratio of this portfolio:

Itb'r1/2 \_1&r_1/2b 12
L'.—-p'-'P -?' —'

(CS)
[(flE;1/2)—2ft' s;"2 5,,5— 1/2fl]

which is proportional to the squared t statistic for the hypothesis that its mean return is

zero. Manipulation of (65) yields:

22 See Appendix A, Section 1.17 of Lawley and Maxwell(1971) for an explicit descrip-
tion of one method for constructing this matrix. Note also that is taken to be any
symmetric square root of 5,,.
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(66)

which is precisely the x2 statistic (56) of the original basis portfolios. In consequence,

companson of tins Sharpe ratio with tile sample Sharpe ratio of the sample mean variance

efficient portfolio based on R which has an orthogonal portfolio with zero expected return

yields Jobson and Korkie's(1082) test for the potential performance of this constructed

reference portfolio. Their analysis links this test to the other mean variance efficiency

tests.

VI. Empirical Results

In this section, we provide evidence on the comparative performance of different refer-

ence portfolios. This effort requ res numerous decisions and technical choices. In particular,

we have to choose between daily and monthly data, the time period to be covered, the num-

ber of included securities, and the number of postulated factors.

What is the appropriate frequency of observation for estimating factor models of se-

curity returns? There is certainly substantial freedom of choice since the CRSP monthly

file provides returns on all NYSE stocks from 1926 to the present, the CRSP daily file

contains daily data on all NYSE and AMEX stocks from July 1062 to the present, and

minimal computationally skill stands between us and bidaily, weekly, biweekly, or other

intermediate frequencies. The primary advantage of daily data is, of course, the potential

increase in precision of the estimated variances and covariances, the inputs to the various

estimation methods. There are two main disadvantages of daily data: (1) the persistent

incidence of non-trading and thin trading which bias the estimates of second order mo-

ments and (2) the biases in mean security returns associated with bid-ask spreads that

are well-documented in Blume and Stambaugh(1984) and B.oll(1983). Following Roll and

Ross(1080) and most other investigations of the APT, we opted for the putative virtues of

a large sample and used daily data to estimate the factor loadings and idiosyncratic vari-

ances. hi Lehmann and Modest(1085b), we present evidence on the optimum observation

frequency.

We estimated factor models for four subperiods covered by the CRSP daily returns

file: 1063 through 1967, 1968 through 1072, 1973 through 1977, and 1978 through 1982. In
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each period, we confined our attention to continuously listed firms in order to have the same

number of observations for each security and ignored any potential selection bias associated

with this choice. This yields a sample of 1001securities in the first period, 1350 firms in the

second period. 1346 in the third period, and 1281 in the final period. The number of daily

observations in each of the four subperiods is 1259, 1234, 1263, and 1264, respectively. The

CRSP daily file (with few exceptions) lists securities in alphabetical order by their most

recent name. To guard against any biases induced by the natural progression of letters

(General Dynamcis, General Electric, etc.), we randomly reordered the securities in each

subperiod. The usual sample covariance matrix of these security returns provided the basic

input to our subsequent analysis.

We also made choices as to the number of securities and the number of factors included

in the analysis. In order to study the impact of the number of securities on the sampling

variation of reference portfolios, we estimated factor models for the first 30, 250, and

750 securities in our randomly sampled data files for each period. We have completed

runs involving as many as 1000 securities but this larger number of firms yielded little

improvement over the results for 750 securities and proved to be very expensive as the

number of factors grew large. We restricted our attention to models containing five, ten,

and fifteen factors, although for obvious reasons we did not estimate a fifteen factor model

with only thirty securities. We chose to remain agnostic about the true number of factors

underlying security returns.

We first provide evidence on the diversification properties of alternative combinations

of basis portfolio formation procedures and estimation methods. As noted in Section III,

there is little point in comparing the performance of the quadratic programming portfo-

lios with the Fama-Macfleth and minimum idiosyncratic risk portfolios since the former

are well-diversified by construction. Hence, we linit our attention to Fama-Macfleth and

minimum idiosyncratic risk portfolios. Previous investigators have employed estimates of

factor loadings obtained under the normalization that the covariance matrix of the factors

is the identity matrix and that B'D'B is diagonal. We employed estimates normalized in

this fashion due to their obvious empirical relevance although the diversification properties

of the Fama-Madfleth portfolios are not invariant with respect to normalization.23

23 See, in particular, the discussion on pages 9-11 above.
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There are several ways to quantify the diversification properties of reference portfolio

wdghts. We confine our attention to one simple summary measure: the sum of squared

portfolio weights. In the analysis underlying the APT, a portfolio with weights wk which

is perfectly correlated with the ktk common factor is well-diversified if. as the number of

securities included in the portfolio grows large, the sum of squared portfolio weights WWk

is close to zero. The minimum sum that can be attained with portfolio weights that sum to

one is the inverse of the number of securities. Hence, 03333 is the smallest sum of squared

portfolio weights that can be attained with thirty securities, .004 is the corresponding total

for 250 securities, and .001333 is the minimum attainable with 750 securities.

Table 1 reports the comparative degree of diversification of Fama-MacBeth and mini-

mum idiosyncratic risk portfolios coupled with different estimation methods, numbers of se-

curities, and numbers of factors. For each portfolio formation strategy, estimation method,

number of securities, and number of factors, we report two numbers. The first number is

the average sunt of squared portfolio weights across both factors and sample periods. Un-

der each such mean. we also provide the sample standard deviation of the sum of squared

portfolio weights. These quantities are given by:

T K T K N
1 1 1 2= Ek Wktkt = >i: Et=i k1 t1k111

(67)

Var(i4wk) = — Wkk)
t=l k=I

where k indexes factors, t refers to time periods (where T=4), and i indexes the firms. Obvi-

ously, these quantities represent descriptive measures and are not appropriate for inference

without further assumptions. We have examined the sum of squared portfolio weights for

each basis portfolio individually and determined that the averaging implicit in Table 1

altered none of tile basic conclusions.

The overwhelming conclusion from Table I is that Fama-MacBeth portfolios fonned

under the usual normalization of the factor loadings are extremely poorly diversified com-

pared with minimum idiosyncratic risk portfolios. Moreover, minimum idiosyncratic port-

folios proved to be quite well-diversified with mean sums of squared portfolio weights only

ten to twenty times the minimum attainable ones. The contrast in performance is striking—
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the mean sums of squares associated with Fama-MacBeth portfolios are between 40 and

50, 000 times those associated with minimum idiosyncratic risk portfolios. Examination of

these magnitudes for individual basis portfolios reveals that similar differences occur in the

disaggregated data as well. In fact, in no case is a Fama-MacB eth basis portfolio better di-

versified than the corresponding minimum idiosyncratic risk portfolio. The evidence is less

clear on the comparative performance of different estimation methods. The nunimum id-

iosyncratic risk portfolios formed from principal components estimates appear to be slightly

better diversified than those computed from the other three estimation methods but the

difference is slight and is reversed often when individual basis portfolios arecompared.

What accounts for the sharp contrast in the diversification behavior of the Fama-

MacBeth and minimum idiosyncratic risk portfolios? The answer lies in the scaling of

the two portfolios as discussed in Section III. Fama-MacBeth portfolios are the minimum

idiosyncratic risk portfolios which have a loading of one on one factor and loadings of

zero on the other factors prior to rescaling to unit net investment. Since, under the usual

normalization, factor loading estimates are typically much smaller than one (on the order

of .001 to .0001 in daily data), some of the weights have to be very large and positive to
insure that the portfolio has a loading of one on the factor being mimicked. By thesame

token, some of the weights will have to be large and negative in order to have loadings of

zero on the other factors. As pointed out in Section III, this problem does not arise in

the CAPM context since it is natural to require the loading on the proxy for the market

portfolio to equal one. By contrast, minimum idiosyncratic risk portfolios need not have

any particular loading on the factor being mimicked. Hence, the resulting portfolios need

only have small positive and negative weights to insure orthogonality to the other factors.

The remainder of this section is devoted to the evaluation of the comparative merits of

alternative methods i.ising the x2 statistic (56). Tables 2 through 10 contain aggregate x2
statistics summed over the four sample periods. This is possible because the data contained

in the tables are independent by assumption, and sums of independent x2 statistics are

distributed as as well. Tables 11 through 43, which are contained in the Appendix,24

provide the corresponding information from the individual sample periods to illuminate

any divergences in performance that are obscured by averaging.

24 The appendix is available from the authors on request.
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Table 2 provides the fitted x2 statistics for selected combinations of portfolio formation

procedures, estimation methods, and numbers of securities assuming a five factor model

of security returns is appropriate. Tables 3 and 4 present the corresponding x2 statistics

assuming there are ten and fifteen common factors respectively. These statistics were

computed using daily returns on individual securities from the same period used to estimate

the factor models. One possible source of bias in these tables involves the use of daily returns

to calculate due to the bid-ask spread bias problem alluded to above. As a consequence,

Tables 5 through 7 provide the same statistics presented in Tables 2 through 4 computed

using weekly returns to calculate in order to mitigate this problem.25 Finally, another

potential source of bias in these tables is overfitting that might arise since the security

returns used to compute the x2 statistics are from the same period used to estimate the

factor models. We guarded against this possibility in Tables 8 through 10 which provide

the same statistics as Tables 2 through 4 computed using daily returns from the subsequent

five year period: The aggregate x2 statistics reported in these tables are smaller than those

reported in the other tables in part because they are based on three sample periods due

to the unavailability (as yet.) of data covering 1983 through 1C87. In addition, each x2

statistic was based on a smaller number of securities since not all securities which were

continuously listed during the estimation period were also continuously listed during the

subsequent five year period.

Each table contains a plenitude of information. The four columns listed at the top of

each table correspond to the four portfolio formation methods under consideration: min-

imum idiosyncratic risk, Fama-MacBeth, positive net investment quadratic programming,

and well-diversified quadratic programming. Eight combinations of estimation methods

and numbers of securities comprise the rows of each table. These combinations are max-

ilnum likelihood and restricted maximum likelihood factor analysis with 30, 250, and 750

securities and principal components and instrumental variables with 750 securities. Four

numbers are reported for each portfolio formation method, estimation method, and num-

ber of securities. The first quantity is the x2 statistic for the raw returns on the K basis

portfolios. This x2 statistic is appropriate when the zero beta version of the APT is true.

25 In this paper, we do not address the temporal aggregation bias issues investigated in
Lehmann and Modest(1985c) involving the optimal periodicit.y for estimation of the factor
model.
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The nt.tmber in parentheses underneath is the marginal significance level associated with

the hypothesis that the means of these portfolios are jointly insignificantly different from

zero over all of the sample periods. The number next to the x2 statistic for the raw return

portfolio is tile X2 statistic for the excess returns on the K basis portfolios. This statistic is

relevant, when the riskiess rate version of the APT is appropriate. As discussed in Section

HI. these excess returns are the difference between the raw returns on the referenceportfo-
lios and the returns on the minimum idiosyncratic risk portfolio which isorthogonal to all of
the factors. Note that the x2 statistics for the excess returns of the minimum idiosyncratic

risk and Fama-MacBeth portfolios are identical for the reasons given in Section IIIon pp.
1516.26 The number in parentheses underneath is the corresponding marginal significance

level for the x2 statistic of the excess return portfolios.

There are three dimensions along which contrasts in performance might be expected:
(1) the nunber of securities; (2) the estimation method; and (3) the portfolio formation

procedure. The first two categories are of particular interest due to the large differences

in computational cost between factor analysis on 250 securities and on 750 securities and

between factor analysis. instrumental variables, and principal components. Differential
performance across portfolio formation methods might occur if minimum idiosyncratic risk

and Fama-MacBeth portfolios prove to be poorly diversified compared with quadratic pro-
gramming portfolios. We shall also be concerned with the consistency of the results across

time periods, in and out of sample, and the number of factors.

The results strongly suggest the importance of examining large cross-sections of se-

curities when constructing basis portfolios.27 The 750 security basis portfolios always

26 In terms of the one factor example in Section UI, the portfolio weights of the Fama-
MacBeth excess return portfolio are proportional to those of the minimum idiosyncratic
risk excess return portfolio where the factor of proportionality is the inverse of the average
factor loading. Since the average loading is typically much smaller than one, we would
expect the Fama-MacBeth portfolio weights to be much larger. However, this distinction
would not affect the x2 statistic since the proportionality factor cancels out in its formation.

27 It is not possible to test whether the differences in chi-squared statistics are significant
since the statistics are dependent. We therefore present these results as being suggestive
rather than as a formal definitive test. However, in conjunction with the evidence pre-
sented in Lehmann and Modest(1985b) it seems safe to conclude that the differences in
chi-squared statistics are significant since alternative basis portfolio construction methods
lead to sharply dissimilar conclusions about the absolute and relativeperformance of mutual
funds.
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outperformed the corresponding 250 security portfolios which, in turn, always dominated

30 security portfolios- These rankings hold across estimation methods, portfolio formation

procedures, time periods, and observation intervals with both raw return and excess return

portfolios. The differences in performance increase with the number of factors extracted in

sample in the daily data, although this finding does not persist in the weekly data or out of

sample. Note that this need not have occurred—we have examined randomly selected well-

diversified portfolios and found that, quite often, the x2 statistics for 250 security portfolios

exceeded those for 750 securities- The typical x2 statistics for 250 securities were twice as

large as those for 30 securities and were roughly three times as large for 750 securities.

For example assuming the ten factor riskless rate version of the APT was appropriate, the

chi-squared statistics for the significance of the mean returns on the basis portfolios using

the unrestricted maximum likelihood estimation method in conjunction with the minimum

idiosyucratic risk portfolio formation procedure were 35.20 using 30 securities, 81.14 using

250 securities and 116.88 using 750 securities. These differences are also apparent in the

individual period results reported in the Appendix. Thirty security raw return basis port-

folios were insignificant at the ten per cent level for two out of four time periods in daily

data while the corresponding excess returns portfolios were insignificant in three out of four

periods. By contrast, the 250 and 750 security raw return portfolios were highly significant

in all time periods while the excess return portfolios were highly significant in daily data

for all but the five factor model in the third time period.

The fotu estimation methods exhibited similarly striking contrasts. Restricted maxi-

mum likelihood factor analysis systematically outperformed conventional maximum likeli-

hood factor analysis in the daily and weekly data but this dominance did not persist out

of sample, where they achieved almost identical performance. Both maximum likelihood

and restricted maximum likelihood factor analysis consistently outperformed the less effi-

cient instnuuental variables and principal components techniques for both raw and excess

return portfolios in both daily data (in and out of sample) and weekly data. For instance,

the unrestricted maximum likelihood estimation method in conjunction with the minimum

idiosyncratic risk portfolio formation procedure yielded an aggregate in-sample chi-squared

statistic of 116.88 using daily data under the assumption that the ten factor riskiess rate

version of the APT was appropriate. This is substantially larger than the aggregate chi-
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squared statistics of 97.88 and 82.94 that were obtained using the principal components

and instrumental variables estimation methods.28 The superiority of the relatively efficient

maximum likelihood procedures also persisted out of sample. Out of sample the three es-

timation methods generated chi-squared statistics of 53.50, 37.13 and 39.07 respectively.

Moreover, these discrepancies do not appear to merely reflect peculiarities of daily data as

the differences did not disappear when weekly returns were used to perform the coinpar-
isons — using weekly data the corresponding chi-squared statistics were 73.83, 53.08. and
62.48.

An exanunation of the subperiod results supports the basic conclusion that the efficient

estimation methods typically outperform the inefficient methods and shows some interest-

ing intertemporal variation in performance. In the in-sample results, principal components

performed well only in the first five year period, achieving performance comparable to

the 250 security basis portfolios in the subsequent three periods. Instrumental variables

provided more consistent perfonnance but was consistently inferior to the more efficient

estimation procedures in sample. The out-of-sample results were broadly consistent with

these findings with some idiosyncrasies in the individual subperiods. In five factor models,

the efficient methods proved superior in the second subperiod while all methodsyielded
sinular performance in the first and third subperiods. In ten factor models, all methods

provided similar performance in the first and second subperiods except for the superior

perfonnance of instrumental variables in the first and its inferior performance in the sec-

ond. The efficient methods outperformed the inefficient methods by a wide margin in the

final out-of-sample period. Similar inconsistencies emerged in the fifteen factor runs. The

methods provided similar performance in the first out-of-sample periodexcept for the infe-

rior results provided by principal components. In the second subperiod, only instrumental

variables provided inferior results to the similar performance of the other three methods.

Again, the efficient. methods outperformed the inefficient methods in the final subperiod.

The final set of comparisons is between the four portfolio formation methods. The nun-

imuin idiosyncratic risk portfolios provided almost identical performance to well-diversified

quadratic programming portfolios using 750 securities and provided consistently superior
2S A perusal of the tables indicates that the differences in chi-squared statistics between

the estimation methods is typically much larger for the ten and fifteen factor models than
for the five factor model.
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performance with 250 securities. Other observations depend on the estimation method

and choice of raw or excess returns. For the efficient estimation methods and raw returns,

minimum idiosyncratic risk portfolios consistently dominated Fama-MacBeth portfolios29

in-sample both with daily and weekly data which, in turn, typically outperformed the

positive net investment quadratic programming portfolios. For instance under the assump-

tion that a five factor model is appropriate, the chi-squared statistics for the minimum

idiosyncratic risk and Fama-MacBeth raw return portfolios are 131.96 and 92.28 respec-

tively for tile daily in-sample results using the unrestricted maximum likelihood estimation

procedure. The corresponding numbers under the assumption that there are ten com-

mon factors are 201.21 and 144.94, and under the assumption of fifteen common factors

227.77 and 168.24. The Fama-MacBeth portfolios, however, performed slightly better than

the minimum idiosyncratic risk portfolios out-of-sample while both continued to dominate

the positive net investment quadratic programming portfolios. Out of sample the cor-

responding chi-squared statistics for the minimum idiosyncratic risk and Fama-MacBeth

raw return portfolios are 60.29 and 63.32 for the five factor model, 80.67 and 85.09 for

the ten factor model, and 101.63 and 99.86 for the fifteen factor model. For the efficient

estimation methods and excess return portfolios, the picture about the relative merits of

the minimiun idiosyncratic risk and Farna-MacBeth basis portfolios versus the quadratic

programming portfolios is virtually identical. The only difference is that the positive net

investment quadratic programming portfolios provided superior performance for five factor

models in-sample, an improvement which did not persist out-of-sample.

The final question considered here is whether less efficient estimation methods or

smaller numbers of securities coupled with quadratic programming procedures provides

a good substitute for the more computationally expensive alternatives. With two excep-

tions, no combination of inefficient estimation methods or smaller numbers of securities

with quadratic programming procedures improves on the results obtained by efficient es-

29 As noted above, the minimum idiosyncratic risk and Fama-MacBeth portfolio for-
mation procedures produce identical chi-squared statistics for the excess return reference
portfolios when excess returns (over the riskiess rate) are computed using constructed risk-
less rates. However, if excess returns were computed using an exogenously specified riskless
rate such as the Treasury bill rate then the differing performance of the two portfolio for-
mation procedures, as indicated by the differences in the x2 statistics of the raw return
basis portfolios, would be relevant.
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timation and minimum idiosyncratic risk portfolio formation with 750 securities. Both

exceptions involve the five factor models in-sample using the daily data. The first excep-

tion is the combination of positive net investment quadratic programming portfolios and

instrumental variables estimation for excess returns which yielded a cu-squared statistic of

77.64 compared to the chi-squared statistic of 64.40 that arose from the unrestricted max-

imum likelihood estimation method coupled with the minimum idiosyncratic risk portfolio

formation procedure. The other aberration is the superior perfonnance of basis portfo-

lios constructed using 250 securities, quadratic programming and the efficient estimation

procedures over those basis portfolios consisting of 750 securities that were constructed

using the minimum idiosyncratic risk procedure. Again, this combination provided inferior

performance out-of-sample.

Why do the minimum idiosyncratic risk portfolios perform better in-sample than those

produced by the Fama-Macfleth procedure? We suspect that the answer lies in the delete-

rious impact of measurement error on the Fama-MacBeth portfolios. For example, consider

the one factor case discussed extensively in Section III. From the analysis in equations (16)

it is apparent that the x2 statistic for the Fama-Macfleth portfolio in the single factor case

should be (appr.oximately):

______ (fjt$)2k2
—-1 (68)

(flh/fl2c2 +fl'Ej9(a +j+fl'flg + tr(E4o
while that of the minimum idiosyncratic risk portfolio should be (approximately):

Xicnp ] (69)flc±o/N
where ft is the vector of (true) loadings of the N securities, 9 is their sample mean,

is the mean of the true unobserved basis portfolio, c is its variance, c2 is the common

variance of tile idiosyncratic disturbances, and E is the covariance matrix of the errors in

the estimated factor loadings. The approximation arises from replacing sample moments

with population moments in the x2 expressions. When measurement error in the sample

loadings is negligible, the chi-squared statistic of the Fama-MacBeth portfolio will typically

exceed that associated with the minimum idiosyncratic risk procedure. hi contradistinction,

this ordering can easily be reversed in the presence of measurement error. As the analysis
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in (23) and (24) suggests, this is a likely occurrence when the number of securities is large

relative to the number of time series observations.

VII. Conclusion

This paper has provided a comprehensive examination of the merits of different basis

portfolio formation strategies. In so doing, the analysis involved the four main estimation

methods that have been proposed in the literature and the principal portfolio formation

procedures that have been employed as well as some that have not previously been con-

sidered- In addition, this study provided a detailed evaluation of the impact of increases

in the number of securities underlying the analysis, including the application of maximum

likelihood methods to far larger cross-sections than in prior work. The result is a detailed

set of data measuring the performance of excess return and raw return basis portfolios both

in and out of sample over a variety of time periods and observation frequencies.

Three conclusions emerge from the examination of the more than 2300 statistics re-

ported in tins document. First, increasing the number of securities included in the analysis

dramatically improves basis portfolio performance. Our results indicate that factor models

involving 750 securities provide markedly superior performance to those involving 30 or

250 securities. Second. comparatively efficient estimation procedures such as maximum

likelihood and restricted maximum likelihood factor analysis significantly outperform the

less efficient instrumental variables and principal con ponents procedures that have been

proposed in the literature. In particular, the less efficient estimation procedures typi-

cally provided performance comparable to maximum likelihood factor analysis with 250

securities. Third, the minimum idiosyncratic risk portfolio formation procedure proposed

in the third section outperformed both the Fama-MacBeth and positive net investment

quadratic programming portfolios and proved equal to or better than the more expensive

well-diversified quadratic programming procedure. The Fama-MacBeth procedure, which

has dominated empirical research on the APT, yielded poorly diversified portfolios which

provided inferior performance in this context. In sum, if an investigator had to choose

one basis portfolio construction strategy from the formidable list considered here, the clear

wimier is minimum idiosyncratic risk portfolios coupled with maximum likelihood factor

analysis of 750 securities.
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We think that these conclusions should have a profound influence on empirical research

involving the APT. These results suggest that the inconclusiveness of the bulk of existing

research, which involves maximum likelihood factor analysis of groups of thirty to sixty
securities, may reflect the inability of small groups of securities to capture the empirical

content of the APT—the ability to measure the sources of systematic risk underlying secu-

rity returns, Moreover, the analysis suggests that refuge cannot be found in the employment

of less efficient but less expensive estimation procedures applied to large cross-sections. In-

stead, subsequent empirical investigations of issues pertaining to the validity of the APT

should probably incur the costs associated with expensive efficient estimation procedures
in tile interest of providing more scientific inferences,

Of course, we have left open numerous issues associated with basis portfolio com-

parisons. In particular, our results may have little bearing on the comparative merits of

different procedures in producing portfolios that mimic factors at weekly or monthly ob-
servation frequencies. In addition, we have provided little evidence on the quantitative

impact of the use of comparatively ineffective portfolio formation procedures on inferences

in particular applications such as the evaluation of managed portfolios. We are currently
engaged in research along both of these lines (Lehniann and Modest [1085b,1985c1). The

evidence presented in Lehmann and Modest(1985b) suggests that statistical differences in
basis portfolio performance documented in this paper have an economically and quantita-

tively significant impact on the evaluation of the performance of mutual funds.
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