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I. Introduction

Despite the considerable empirical suecess of capital asset pricing theory, there remains
a disturbing lack of scientific consensus concerning the validity of the various state of the
art asset pricing models. The Capital Asset Pricing Model (CAPM) has run into several
roadblocks such as Roll’s (1977} suggestion that it is not a testable scientific theory and
a plethora of empirical anomalies which provide empifical evidence that the usual market-
proxies are not mean-variance efficient.! Empirical and theoretical research has proceeded
in several directions, including consideration of the effects of personal taxes and other
market imperfections, the possibility of dynamic effects arising through shifts in the in-
vestment opportimity set (intertemporal asset pricing models), and stronger distributional
assumptions about the wnderlying stracture of seéurity returns. Each of these approaches
has prominent adhercuts and is, at presenf, the subject of considerable theoretical and

empirical attention.

One of the main lines of current empirical research in asset pricing is the Arbitrage
Pricing Theory (APT) of Ross(1976,1977). The basic assumptions of this model are that
security returns are generated by a small number of common factors plus an additional
random component that can be diversified away in large portfolios and that capital markets
are well-functioning in the sense that riskless zero net investment portfolios should earn zero
profits. Since the theory does not require a priorispecification of these sources of systematic
risk. empirical implementation of the APT usually involves the implicit measurement of

the common factors underlying security returns.

As a consequence, empirical studies of the APT have typically constructed basis or
reference portfolios to mimic the factors. These constructed portfolios have been used
for a variety of purposes such as testing the APT mean restriction. testing the signifi-
cance of factor risk premia, evaluating the performance of managed portfolios, comparing
the explanatory power of covariance measures of risk with other risk measures (such as
own standard deviation), and providing the basis for exploratory efforts to determine the

macroeconomic variables underlying asset pricing relations. In theory, these portfolios are

' See, for instance, Cannistraro(1973), Basu(1977). Litzenberger and Ramaswamy(1979),
Banz(1981), Reinganum(1981). The small firm effect in particular has received much at-
tention, inclnding an entire issue in the Journal of Financial Economics.




supposed to be highly correlated with the common factors affecting security returns and to
be relatively free of unsystematic risk. In practice, there is no guarantee that a particular
hasis portfolio construction procedure will mimic the factors sufficiently well. Obviously
basis portfolios which are poorly correlated with the common factors can lead to incorrect
iufcreimes about the validity of the APT or the interpretation of its application to capital
budgeting, performance evaluation, and macroeconomic activity. It is clearly important to
know which basis portfolio construction procedures do a good job of mimicking the factors

and which do not.

There is an embarrassingly large number of ways to construct such basis portfolios.
There are not only several viable methods for forming these portfolios but also there are
different procedures for estimnating the factor models of security returns which underly
these computations. In addition, the perforinance of these strategies might be expected to
vary with the nuunber of securities-included and/or the number of factors being considered.
Most previous empirical studies, for instance, have used Fama-MacBeth type portfolios
coupled with maximun likelihood factor analysis of thirty to sixty securities. However,
for reasons discussed below, the use of such a limited number of securities tight fail to
produce reliable reference portfolios to mimic the factors. Such concerns led Clien(1983) to
use an mstrumental variables procedure to provide inexpensive estimates of factor models
using larger nuinbers of securities and sophisticated mathematical programming procedures
to ensure that the basis portfolios were well-diversified. The less expensive instrumental
variables procedures, which have alsc been advocated by Madansky and Marsh(1985), are
less efficient in a statistical sense than maximnum likelihaod factor analysis and, hence, might
yicld basis portfolios which are not highly correlated with the underlying factors. Similarly,
Chamberlain and Rothschild(1983) and Connor and Karajezyk(1984) have advocated the
use of principal coniponents as an inexpensive alternative to maxintum likelihood factor
analysis. For that matter, randomly selected well-diversified portfolios of large numbers of

securities could, in principle, provide the least expensive potentially acceptable alternative.

Which of these strategies is the best one? This is an empirical question which has
not been addressed in previous work. In this paper we intend to remedy this omission by
providing a comprehensive examination of different basis pertfolio formation strategies. In

particular, we provide a detailed analysis of the performance of variants of all of the portfolio
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formation procedures and estimation methods that have been proposed in the literature,
as well as an examination of the efficiency to be gained from considering portfolios of up
to 750 securities. While it is doubtless possible to find some combination of estimation
method and portfolio formation strategy which we have not considered, this study does
provide a thorough examination of the major contenders.

The paper is organized as follows. The following section provides a brief review of the
APT. The third and fourth sections contain a discussion of the two different steps involved
in basis portfolio construction. The third section delineates the different portfolio formation
procedures consicdered while the fourtl describes the estimation methods used to generate
the inputs for forming the reference portfolios. The comparison of the performance of
alternative basis portfolio construction strategies is not merely a simple technical problem.
Section V provides our solution to the problemn of basis portfolio performance evaluation.
In Section VI. we report on the results we obtained concerning the merits of different
estimation methods, different portfolio formation procedures,.and different numbers of

securities. The final section provides some concluding remarks.

II. The Arbitrage Pricing Theory

The Arbitrage Pricing Theory (APT) of Ross(1976,1977) begins with the assumption
that K common factors are the dominant sources of covariation among security returns
and that other sources of risk impinging on security returns can be removed in large well-
diversified portfolios. Formally, Ross assumed that these common factors affect security

returns in a linear fashion and that securities returns are generated by the model:

K
Ry =E; + Z binbre + €ie (1)
k=1

E[Skt] = E[E:'t|5ke] =0

R;. = Return on security 1 between time t-1 and time t for i=1,...,N
E; = Expected return on security i
dre = Realization of the k** common facior { i.e source of systematic risk } between

time t — 1 and ¢




b;p = sensitivity of the return of security ¢ to the k** common factor { called the factor
loading } and
£, = the idiosyneratic or residual risk of the return on the 1** security between time t—1

and time t. These residual risks are assumed to bave zero mean, finite variance
and to be sufficiently independent across securities for a law of large numbers to
apply.

How should expected returns be determined in a well-functioning capital market if
security returns satisfy these assumptions and there are no taxes, transaction costs, or
constraints on short sales? Ross argued that investors should be compensated only for
bearing the systematic risk inherent in the K common factors since idiosyncratic risk can
be virtually eliminated in large and well-diversified portfolios. Suppose we examine zero
net investment portfolios and, m pa.rticula.:l"; the set of such portfolios which are constructed
to be well-diversified and to contain no systeﬁatic risk. As the number of securities grows
large, these portfolios will contain no risk at all and so should earn zero profits to prevent the
occurrence of riskless arbitrage opportunities. Since, in these circumstances the number of
such arbitrage portfolics tends toward infinity as well, Ross and many others proved that,
in order to insure that these arbitrage portfolios do not earn positive profits, expected

returns must satisfy (approzimately):
E,' 4 4\0 + 6;1,\1 + ...+ b:‘kAk (2)

where:
Ag = the intercept in the pricing relation and
A = the risk premium on the £** common factor, k=1,..., K.

Obviously, for empirical purposes, it is desirable to treat equation {2) as an equality. In
what follows, we assume sufficient regularity in the economy so that expected returns on
the subset of risky securities we study (listed stocks on the New York and American Stock

Exchanges) exactly satisfy the expected return condition (2).2

2 Numerous investigators have examined the circumstances in which equation (2) holds
as an equality in large economies and have provided explicit bounds on the deviations from
(2) in finite economies. For the conditions needed in an infinite economy setting see, for
instance, Chamberlain and Rothschild{1983), Connor{1984) and Shanken(1983). As for
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Finally, it is important to distinguish between riskless rate and zero betu versions of
the APT. As Ingersoll{1984) has emphasized, the distinction between the two does not
involve the availability of riskless borrowing and lending, but rather- depends on whether it
is possible to form riskless (positive investment) portfolios from the subset of risky assets
under consideration {as the number of assets in the subset tends toward inﬁnity); If it is
possible to construct such portfolios, then Ag in (2) is the riskless rate and a well-diversified
portfolio which costs a dollar and contains no systematic risk should earn the riskless rate
of return and should have a zero variance in the limit. If it is not possible to form such a
portfolio, then A¢ should be zero and one of the factors underlying security returns should
correspond to a zero beta portfolio with identical factor loadings for all securities under
appropriate transformation of the factor space.® This distinction will be important for
evaluating the performance of alternative portfolio formation procedures and estimation

methods.

ITI. Basis Portfolio Formation

What is the best way to construct portfolios which reflect the behavior of the common
factors underlying the APT? At first blush, this would seem to be a statistical question
that is best addressed by studying the assumed return generating process (1). Rewritten

in more compact matrix notation, the model is:
R, =E+ B¢, +¢, : (3)

which is obtained by stacking equation (1) for ¢+ = 1,..., N. We assume that the random
factors é', (a K x 1 vector) and the corresponding elements of the factor loading matrix,

B(N x K), have been normalized so that:*

the finite economy results, Grinblatt and Titman(1983), Chen and Ingersoll(1983), and
Dyhvig(1983) provide different settings in which the equilibrium deviations from equation
{2) can be calculated.

% This would occur, for instance, if one of the common factors is unanticipated inflation
and inflation is neutral such that all securities returns are equally affected by unexpected
changes in prices. Formally, it ig not possible to form a limiting riskless portfolio of risky
assets when one of the eigenvectors of the covariance matrix of the countably infinite subset
of security returns under consideration contains identical elements.

4 The elements of B are not yet uniquely determined since for all orthogonal matrices T,
any matrix B* = BT will yield the same return generating process. We will assume that
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E(6,]

Il
[en]

E(f,6,]=1
The random variables ¢, are are assumed to satisfy:
=9

. (5)
=0

LD" €

E[¢,|

E[¢,¢|

L.D-'

where (1 is a positive definite symmetric matrix.®

In these circumstances, a statisticlan’s natural method for estimating 8,, given knowl-

edge of B, E. Q, and Et. is to employ the generalized least squares estimator :®

67 = (B'a~'B)~'B'a~ (R, - E )

where the covariance matrix for the factor estimates is given by [B'Q7!B|~!. As is well
known, this estimator has the desirable property of being the minimum variance linear

unbiased estimator of §,. In addition as the number of assets grows large :

2GLS

plim 8, =34, (7a)
N—oo
since:
Jim B 'BI"t=0 (7h)

It is clear from (7) that as the number of securities grows large this estimator will converge
to 4, at a rate detcrmined by the speed with which the largest eigenvalue of (B'Q~'B)~!
converges to zero. This, in turn, hinges on two factors: (a) the magnitudes of the variances
and covariances of ¢, and (b) the degree of dispersion among the responses of individual
security returns to the common factors (e.g. the variances and covariances of the rows of

B). In particular, if securities typically display similar responses to the common factors, we

the necessary K(K — 1)/2 constraints required to ensure that T = I have been imposed
arbitrarily. For example, it is conventional in factor analysis to require B'Q~'B to be a
diagonal matrix.

% When we assume that ( is positive definite, we are implicitly assuming that no asset
in the analysis contains only factor risk.

® The economic interpretation of (6) has been discussed by Ingersoll(1984) and Grinblatt
and Titman(1983b).




would have to include many securities in the cross-section in order to estimate the factors

with precision.

The. importance of both of these factors deserves careful attention. Much of the recent
APT literature has emphasized the ease of forming portfolios which mimic the common
factors with negligible error as the number of securities in these portfolios tends toward
infinity. This observation usually involves the intuition that idiosyncratic risk is likely
to rbe virtually eliminated in portfolios of a moderate umber of securities so long as the

idiosyncratic disturbances are sufficiently independent.

What is seldom appreciated is the importance of factor (b) above—the dispersion of
security responses to common factors. This is a well understood problem in a regression
setting. Precise estimation of the covariance between the dependent and indepenc-lent vari-
ables cannot be obtained if there .is little variation in the independent variables over time.
Similarly, examination of the covariation between individual security returns and their
factor loadings cannot lead to accurate measurements of the underlying common factors
wnless there is sufficient dispersion among the factor loadings. Suppose, for example, that
two of the common factors are unexpected changes in expected inflation and unanticipated
inflation and that most security returns exhibit equal sensitivity to these two common fac-
tors (i.e. inflation has a neutral impact on most security returns). In particular, suppose
that only five percent of the securities under consideration exhibit different responses to
these two common factors. In this case, a much larger cross-section would be necessary to
measure accurately these two common factors than would typically be needed merely to

eliminate idiosyncratic risk.

In practice, the choice among basis portfolio construction methods 1s further compli-
cated since B and, perhaps, {2 must be estimated. This introduces the usual problem of
sampling error in the construction of the estimates and the possibility that alternative pro-
cedures using different portfolib formation techniques and differing numbers of securities
may exhibit differing sensitivity to sampling error. For instance, since the precision of the
estimate of 4, hinges on the estimates of B and (2 that are used, large numbers of securities
may be required to mitigate the effects of sampling error. In addition, there is the problem
introduced by the need to specify constraints on Q in order to proceed with estimation.

Two popular choices are the statistical factor analysis model, which assumes that Q is diag-
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onal, and the principal components model, which assumes that 1 is a diagonal matrix with
equal variances. Different combinations of portfolio formation procedures and estimation

nmethods might yield different resnlts.

In what follows, we will consider four procedﬁres for constructing basis portfolios. Two
of the mmethods involve biased and unbiased versions of the generalized least squares esti-
mator discussed above. We also consider biased estimators of §, since there is no particular
virtue associated with the unbiasedness of the generalized least squares estimator in the
presence of measurement error. Hence, it may be desirable to seek a biased estimator with
potentially lower variance in such circumstances. Such an estimator will be described be-
low. The other two methods utilize a variant of the mathematical programming procedures
employed by Chen{1983), which constrain the reference portfolios to be well-diversified.
These procedures might mitigate some of the harmful effects created by sampling error and
the imposition of constraints on Q.

Before considering alternative portfolio formation procedures, it 18 useful to trans-
late the statistical formulation of the generalized least squares estimator given above into
the language of optimal portfolio construction after the fashion of Litzenberger and Ra-
maswamy(1970) and Rosenberg and Marathe(1979). In this language, the generalized least
squares estimator provides what we usually refer to as Fama-MacBeth portfolios, after
suitable rescaling so that the portfolios have unit net investment.” In our formulation, we

choose the N portfolio- weights w; to mimic the 7t* factor so that they:

nii,l-l QJ-,DQJ- (35‘)
subject to:
wib, =0 Vi#k
o (85)
=1 §=k

where b, is the k** column of the sample factor loading matrix B and D is the diagonal

matrix consisting of the sample variances of the idiosyncratic risk vector ¢,.2 This portfolic

T Of course, Faina and MacBeth(1973) used the ordinary least squares estimator. The
usage in the text i3, however, common.

8 Note that we are now ignoring off-diagonal elements of Q2 such as industry effects. As
a consequence, our procedures actually are better characterized as weighted least squares
or diagonal generalized least squares.




provides the unbiased minimum idiosyncratic risk portfolio which mimics the 7** unob-
servable common factor. We rescale the portfolio weights w; so that they sum to one (i.e.
so that the portfolio costs one dollar) in order to maintain comparability with other basis

portfolio formation procedures.

An alternative method, which produces what we term minimum idiosyncratic risk

portfolios, involves choosing portfolio weights w; so that:

n;ip gj'ng (Da)
subject to:
whh, =0 VAR
d (95)
wii=1

where & is a vector of ones. This procedure should, in priaciple, produce minimum id-
10syneratic risk portfolios whose fluctuations are proportional to the 7** common factor. In
contradistinction to the unbiased GLS estimator, the proportionality factor need not equal
one.? This is easily seen by comparing equations (8b) and (9hb).

It is easy to distinguish these minimum idiosyncratic risk portfolios from the more
familiar Fama-MacBeth portfolios in the one factor case. Assume for simplicity that the
idiosyncratic variances are identical (i.e. D = o2I). In this instance, the Fama-MacBeth

portfolio solves the programming problem:

min w'w (10a)
w
subject to:
w'h=1 (108}
with solution:1°
w=(b'b)""'b (10¢)

? This estimator can be computed as follows. Let B = (b;b,...b,) and suppose we
are interested in mimicking the 7** factor. The minimum idiosyncratic risk estimator is
D"IB*[B*'D'IB*]*IQJ- where B* = (b,b,...4...5;) and ¢ is a vector of omes in the y**
column.

19 Prior to rescaling so that the portfolio weizhts sum to oge.
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where b is the vector of sample factor loadings. Similarly, minimum idiosyncratic risk

portfolios satisfy:

min ' w (1la)
subject to:
wi=1 (118)
with the simple equally weighted solution:
1
w= ok (11c)

Thus Fama-MacBeth portfolio weights are proportional to the sample factor loadings (i.e.
the betas) of the individual securities and, as a consequence, take advantage of the differing
information content of individual securities regarding the fluctuations in the common factor.
Minimum idicsyneratic risk portfolios, however, are merely well diversified and do not take
explicit advantage of such information. Not.e that the factor loading of the minimum
idiosyncratic portfolio is the average beta of the securities (i.e. § = £ ':) while that of the

Fama-MacBeth portfolio iz unity prior to rescaling,

The second thing to note is that the diversification properties of the Fama-MacBeth
portfolios depend on the normalization of the common factors. If the factors are normalized
so that factor loadings are typically close to one,'! the two procedures both will yield
portfolio weights of order 1/N.'?> However when average factor loadings are on the order
of .001 to .0001. as in the case of typical factor loading estimates from daily data when the
factor variance is normalized to unity as in (4), the minimum idiosyncratic risk procedure
still will yield small weights while the Fama-MacBeth method will produce very large
portfolio weights in finite cross-sections. This does not present a problem when the factor
loadings and idiosyncratic variances are measured without error but it is a potentially

gerious source of difficulty when large factor loadings can reflect measurement error as

' Tt is worth noting that no study we are aware of normalizes the factors to ensure that
the typical loading is unity.

12 The scaling of the loadings so that the natural loading is one can be accomplished with
the following transforniation. Transform B so that B’ D~! B is a diagonal matrix and denote
the 1** diagonal element as 7;. Let the vector ¢ = B'D~'y. Then the transformation B* =
BA where A is a diagonal matrix with ¢;/~; along the diagonal yields B*, a normalization
of B so that the typical portfolio loading is one.

10
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well as responsiveness to common factors. We turn now to a more complete discussion of
the effect of measurement error on the performance of basis portfolios constructed from

estimated factor loadings.

The comparative mierits of minimum idiosyncratic risk and Fama-MacBeth portfolios
in the presence of measurenient error can be investigated more fully by again considering

the one factor model:

R, = fRume + ¢, (12)

where f is the N x 1 vector of true factor loadings and 7, is the vector of idiosyncratic
disturbances which is assumed, for simplicity, to have elements with zero means, common
variances ¢-, and independently distributed of one another.!3 Suppose that we measure

the factor loadings 8 with error:

b=f+v (13)

where v is an N x 1 vector of the deviations of the true factor loadings from their sample

values, v is independent of R,; and €, V¢t and p satisfies:!4

E[v] =0 (140
E[l’i’] = ¥y

We also normalize the estimated factor loadings § so that b'h = §'c. Under this normal-
ization, the Fama-MacBeth procedure will yield a basis portfolio with a sample loading of
unity and whose weights will sum to one.!® Finally we assume that the cross-section is

sufficiently large so that b = 8 [i.e. % va:__l v; &1 0] to simplify the arithmetic.

13 This means that we are implicitly ignoring the impact of measurement error in the
disturbance variances D.

14 We assumie that our estimates are unbiased for simplicity, The assumption that v is
independent of ¢, and R,,, is less innocuous since we typically estimate factor loadings
during the same period that we form returns on the basis portfolios. Accounting for such
problems would complicate the analysis considerably and would not alter the basic insights
gained in the present exercise. For example, if b; were estimated from an ordinary least

. - R,o? R, o? . .
t i = moe s t lly be
squares regression, then cov[v;,¢,] f:rm—g:‘ ) R Ties +71] which would typically

trivial in moderately large samples. In addition, cov[v;, Rppe] = O under the assumption
that ¢, and R, are independent since cov[R2,,,¢,] = 0.

15 Note that this implies that b = Zf;l bi/N will satisfy 0 < b < 1 to ensure that the
sample variance of the bls will be positive.
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In this setting it is easy to evaluate the behavior of the Fama-MacBeth portfolio and

its relationship to returns on the commeon factor. The portfolio returns are:
REM = (B8) 7 W [BRme + &)
= ('8)7 (8" Rme + 0/ fRume + 8'E,] (15)
1 -
=] Nﬂ [ﬂ llngt +v ﬁR‘m.t <+ ﬂ g—t] N
where the approximation arises from the assumption that b a4 g, implying that Ng ~s 8'b.

The mean and variance of the Fama-MacBeth portfolio as well as 1ts squared correlation

with the common factor are given by:

E[pFM 2 i
[ t ]Rd ﬂﬁé
B'8
R _Q'—QRm
Var[RFM) & B8 (Bt — Bom) + 0B Re + B'é, + 08,
N2 T - -
S el 8827 + BT + R + 502 + (B (O
1 1 3y2 4
CO[[(EFM,Rmt)z N —— (NA)? 8 E)_fm
vazsl(B'8)20% + B8 B(0% + R,,) + f'fo? + tx(3,)0?)
. (8'8)%02,

I . - N . - .
where Ry is the mean return on the common factor and o, is its variance. In the special

case where 4 is measured without error [i.e. ¥ = 0], the squared correlation reduces to:

0"'

ok +fr2/ﬂﬂ

Corr(RFM R,.)? = (17)

It is easier to evaluate the corresponding quantities for the minimum idiosyncratic risk
procedure since the portfolios do not involve the measurement error in the loadings. Hence

the portfolic returns are simply:

N
RMIRP _ iz BiBome + £ir) =
N (18)
= AR

t+ €
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where £, is the cross-sectional mean of the idiosyncratic risks at time ¢. Similarly, the

corresponding mouents of these portfolio returns are:

—2

B{ZM177) = FR.
| =B + 2N

Var|RM/RP (19)
a2,
Eza'?n +0%/N

What are we to make of this tedious arithmetic? Consider Arst the case where the B

Corr(fi’f"'m‘p,I.if,,..)2

is measured without error. Then the squared correlation of the Fama-MacBeth portfolio

with the common factor is larger than that of the minimum idiosyncratic risk procedure

since:
2 2
> (20)
NG~ B8

50 long as all of the elements of # are not identical [i.e. ﬁ'é = Eﬁ___l(ﬂ.- -2+ Nﬁz >
Nﬁg unless 8; = § Vi |. The same cannot be said when we consider the impact of
measurelnent error on the Fama-MacBeth portfolic. The squared correlation of returns
on the minimum idiosynecratic risk portfolic with the common factor is unaffected by the
preseice of measurement error in b while that of the Fama-MacBeth portfolio falls in this

eventuality.

For example, consider the special case where b is estimated by ordinary least squares

regression ot Rpy,. As a consequence, the measurement error covariance matrix will be

{approximately):

E., R~ _e—_ZIN (21}
T(e2 + R,,)

where T is the sample size, and Iy is an N x N identity matrix, and the approximation arises
because we replaced the sample mean and variance of Ry, with their population values in
(21) for ease of exposition. The squared correlation of the Fama-MacDBeth portfolio with

the common factor is then:

- . '13)2 42
COI‘I‘(R,FM, Rmt)z . — — (ézé) :‘ﬂ . = —~ (22)
(B8 o + 18802 + B0 + 1 (5550
This will be smaller than that of the minimum idiosyncratic risk portfolio when:
o> P | 1 N ol
Sz <ol + + — | (23)
NGt TBE TEE T (o3 + R, )P




which simplifies to:
Ug 1 1 o’
i - — (24)
T T{eZ +Ru)o3+7)

‘where ¢§ = & Zf\":l(ﬂ; — B)? is the sample variance of the true loadings. This inequality
can be easily obtained when the sampling variation in the betas is small or, equivalently
(under the present normalization of the loadings) when f is close to one in moderate sized
samples.!®

While both of these procedures will produce well-diversified basis portfolios in the
limit {or in finite cross-sections as in the preceding example), they may not produce such
portfolios with a finite cross-section of securities. This possibility led Chen(1983) to em-
ploy mathematical programming methods to produce portfolios which were well-diversified
and, in principle, highly correlated with only one factor. Large well-diversified portfolios
possess minimal idiosyncratic risk and, perhaps, might suffer only marginally from errors in
estimating the factor loadings and idiosyncratic variances. The actual procedure employed
by Chen{1983) is not in the public domain, being the proprietary software of Glenn Graves
of UCLA, and hence was not available to us for this study. Instead, we chose a simple and
similar alternative: quadratic programming subject to fixed upper and lower bounds. This

involves:

min w;'Dw; ] (25)

u,;
suhject to:
Wity =0 Vi Ak
wir=1 (26)
L<wj;<di i=1,...,N
where [; are the fixed lower bounds we place on the portfolio weights, d; are the corre-
sponding upper bound constraints, and the remaining variables are as defined above. We

examined two choices for these upper and lower bounds. Following Chen(1983}, we pro-

duced portfolios with non-negative weights (i.e. where I; was equal to zero) which could

1 Tedious manipulation of (24) coupled with some minor approximations yields the result
that (24) will occur when b > To} where o} is the sample variance of the sample loadings
although this condition is not necessary. It is suggestive to note that that the sample
variance of betas computed with respect to the usual market proxies is quite small.
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take on a maximum value of one to two per cent. We also studied the properties of portfolios
which were merely constrained to be well-diversified with the portfolio weights taking on
maximum and minimum values of plus and minus one or two per cent. While this procedure
differs from Chen’s, which had flexible rather than fixed upper and lower bounds, we felt
that this procedure probably would produce similar results and, hence, would provide reli-
able evidence on the comparative merits of mathematical programming procedures. These
two choices for the upper and lower bound constraints constitute the other two portfolio

formation procedures whose performance we examined and report helow.!7

Finally, a note is in order concerning the computation of portfolios whose returns
are orthogonal to those associated with the common factors. As noted in the preceding
section, such portfolios should, in principle, have the same returns as the riskless portfolio of
risky assets postulated by the riskless rate version of the APT. For each reference portfolio
formation method, we constructed minimum idiosyncratic risk portfolios using that method
which had weights orthogonal to B and which cost one dollar. Sunilarly, the positive net
investment quadratic programming portfolios have orthogonal portfolios with nonnegative
weights which are orthogonal to B that cost one dollar and have minimum idiosyncratic risk
subject to this constraint. Finally, the well-diversified quadratic programming portfalios
have orthogonal portfolios which have the same properties except that the portfolio weights
are well-diversified instead of nonncgative, These portfolios are used to construct the excess
return basiz portfolios analyzed below.

- The differences in the excess return portfolios is again best illustrated in the one factor
case. We will again assume for simplicity that the idiosyncratic variances are identical (i.e.

D = ¢2I). The required orthogonal portfolio solves the programming problem:

: [
minw, v, (27)
subject to:
w8 =0 (28)
.”l:;& =1

7 Additional experimentation was done with weights ranging in absolute value up to five
percent. The results, however, do not materially differ from the ones presented below and
hence are not reported.
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with solution:

1
y.rf - Nﬁ’g‘(‘:'ﬁ]?'

The minimum idiosyncratic risk excess return portfolio weights can nmow be obtained by

[(88) — (v'8)8] (29)

subtracting these weights from }V (the portfolic weights of the minimum idicsyncratic risk

portfolio which mimics the factor) which yields:

1 1 ' .
WriIRP _-wrf = ﬁé‘ Nﬁ'ﬂ"" (E,ﬂ]zl(ﬁé)é— (iﬁ)ﬁ]
- (30)
P 5oy
B8~ NB

The Fama-MacBeth excess return portfolio solves the programming problem:

t{}}i,n i W Fw _ (31)
subject to:
Wrph =1
(32)
E%‘Mé =0
with solution:
1 _
WEN = Wppg — W, p = 7_2[_@_ B (33)
g'8~ Ng

These tedious manipulations yield one important insight—the minimum idiosyncratic
risk procedure produces weights for excess return portfolios which are proportional to the
corresponding output from the Fama-MacBeth procedure. Not surprisingly, the factor of
proportionality is the average factor loading. Once again, when the average factor loading
is typically much less than one, the portfolio weights produced by the Fama-MacBeth
procedure will take on very large positive and negative values. By contrast, the minimum
idiosyncratic procedure yields a well-diversified excess return portfolio. The same resnlt

arises In the multiple factor case.

IV. Estimation Methods

In this section, we describe four methods for estimating the factor loadings and id-
iosyncratic variances underlying the APT. The choice among estimation methods mvolves

different tradeoffs than the choice among basis portfolio formation methods. Here, the
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comparison is between statistically efficient but computationally costly methods such as
factor analytic techniques, and less efficient but less costly methods such as instrumental
variables or principal components. It is obviously of greater than academic interest whether
the comparatively inefficient methods provide performance comparable to that produced by
the computationally burdensome efficient estimation methods. This could occur because of
the large cross-sections of security returns that we employ or because of good small sample
properties of the comparatively inefficient estimation methods.

Recall that the return generating process is:

-

R,=E+B§, +

| ¢

: (34)

where the idiosyncratic risks €, have zero means and covariance matrix 2. For convenience,

we will work with returns expressed as deviations from their respective means:

i, =R, — E = B§, +¢, (35)
Under the assumption of joint normality of 7, and i,, the sample covariance matrix :
Fofo (36)

follows a Wishart distribution which serves as the basis of the log likelihood function:

T
£218) = 2 meer) - Lo - 1Y A - BYe R - B)
2 2
t=1 (37)
_ —NT T T -1
=— In(2x) 5 n|Z| Etrace(SS )
where:
Y = E|f,r
(£efe] (38)
=BB' + (1

Unfortunately, it is not possible to proceed with estimation of B and 2 when security
returns possess an approximate factor structure without specifying further constraints on
f2. One popular choice is the statistical factor analysis model where the residual covariance
matrix {1 is assumed to be a diagonal matrix D. Under this additional assumption, the

model for the return covariance matrix ¥ is:

T=BB'+D (39)
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It is now conceptually simple and computationally costly to maximize the log likelihood

(37) subject to (39) by setting the derivatives equal to zero:

ggazﬂm-sm*3=o

87 (40)
o= Toor —1 E _ -1 -

ap & Diag{Z™ " ( $)7 =0

where Diag{X] is a diagonal matrix formed from the diagonal elements of X. The values
of B and D whicli solve equations (40) are the required maximum likelihood estimates.
When the number of securities under comsideration is large, it is impractical to ohtain
these estimates by iteratively solving the likelihood eguations (40) and so we employed a
significantly cheaper alternative: the EM algorithm of Dempster, Laird, and Rubin(1977).
This procedure, which is described in considerable detail in Lehmann and Modest{1985a),
maximizes (37) subject to the constraints (39} using an iterative multivariate regression
procedure. Its principal virtue is that it is inexpensive, both in storage requirements and
in computational cost.

Maximwun likelihood factor analysis provides, in principle, efficient estimates of the fac-
tor loadings and idiosyncratic variances. However, if the APT is true, there is information
in the vector of sample mean security returns concerning the values of the factor loadings.
This is becange the APT implies that expected security returns are linear combinations of
the product of their factor loadings and the factor risk premia. Consequently, the sample
mean gecutity mtums.should on average reflect the magnitudes of the factor loadings. In
order to exploit this information, we also performed maximum likelithood factor analysis
subject to the constraint that expected security retnrns are spanned by their factor loadings

and the factor risk premia. This involves maximizing the log likelihood function:

L(Z]|S) = _NTln(‘er) — z1n|'ZJ| - 3-jtrace(.S'E_l)
2 2 2 (41)
- E(E — Ao — Bﬁ)'E—I(E —thp — BA)
subject to the constraints:
T=BB+D (42)

where (41) follows from substituting 4Ag+ BA for R in equation (37). Note that this involves

maximizing the original log likelihood function (37) plus an additional term involving the
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weighted average of the deviation of sample mean security returns from the product of the
factor loadings and the corresponding risk premia. It is analogous to the maximum like-
lihood estimation of the zero beta CAPM empioyed, for example, by Gibbons{1982) and
Stambaugh(1982) and analyzed in considerable detail by Shanken{1984). The maximum
likelihood estimates of the relevant parameters may be obtained by setting the derivatives

equal to zero:

aL In—=1/p

_= — - =0
BAOO(EZ (R— tho — B))
%«B'E“(E—QAU—BA)=O
2L

35 X Z B8~ (B- 10— BA)(B-1do - BAY|E' B+ 5 (B - 1o — BAA =0

ST o Ding[S (5 - § — (B - ho — BA(E - 1hg - BAY)E~"] = 0
| (43)
where as above Diag[X] is a diagonal matrix formed from the diagonal elements of X. It is
even [ess practical to obtain these estimates by solving equations (43). As a consequence,
we employ a variant of the EM algorithm in order to obtain these restriéted maximum

likelihood estimates.

For all of the putative virtues of these theoretically efficient estimation procedures,
they do have oue significant disadvantage: their cost. In consequence, it seems reasonable
to try less costly procedures and hope for only a small loss in efficiency. Chamberlain
and Rothschild(1983) and Connor and Korajezyk(1984) have recently advocated the use
of principal components as an inexpensive alternative to maximum likelihood factor anal-
ysis. Chamberlain and Rothschild(1983) showed that, as the number of securities being
analyzed tends toward infinity, the first K eigenvectors obtained from the spectral decom-
position of the true covariance matrix of security returns converge to the factor loadings
underlying security returns. Connor and Korajczyk(1984) showed that this holds for the
sample covariance matrix as well. The one-time extraction of eigenvalues and eigenvectors
is roughly as costly as maximum likelihood factor analysis using the EM algorithm in daily
data. Since only one principal components run is required to estimate factor models with

different numbers of factors, this is certainly a potentially attractive alternative.

The link between maximum likelihood factor analysis and principal components with
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a finite sample of data is quite simple: principal components is equivalent to maximum
likelihood factor analysis when the idiosyncratic variances are assumed to be identical, i.e.

when:

D =o%I ‘ (44)

This observation highlights the intuitive distinction between factor analysis and principal
components—factor analysis provides weighted least squares estimates of the factors and
factor loadings (where the weights are the estimated idiosyncratic variances) while principle
components provides the corresponding ordinary least squares estimates. Hence the factor
analysis model will perform comparatively better, the greater is the cross-sectional vari-
ability of the idiosyncratic variances since principal components ignores any information

imbedded in these variances.!®

The estimates of the factor loadings provided by principal components can be ohtained
by maximizing the likelihood function (37) subject to the constraints {44) which involves
solving the equations (40) iteratively. Needless to say there is a more cost effective way
to obtain these estimates. Instead, we employ the singular value decomposition algorithm
of the NAG Subroutine Library to obtain the required eigenvalues and eigenvectors. Bach
column of the matrix of eigenvectors was multiplied by the square root of the corresponding
eigenvalue in order to scale the factors to have unit variance. Estimates of the idiosyncratic
variances were then obtained by solving eqnation {39) for the required estimates of D by

substituting the transformed eigenvectors for B and the sample covariance matrix § for I.

Finally, another inexpensive alternative to maximum likelihood factor analysis is the
mstrumental variables estimator. Instrumental variables estimators have recently been em-
ployed by Chen(1983) and Madansky and Marsh{1985). The basic idea of these estimators
18 quite simple: substitute consistent estimates of the factors Q', for the factors themselves
in equation (35) and then estimate the factor loadings B by the ordinary least squares

regression of individual security returns on the estimates of the factors.!® Chen(1983)

'8 Under the assumption of an approximate factor structure, principal components pro-
vides consistent estimates of the factors as N — oo and consistent estimates of the factor
loadings as T — oo even when the returns are not normally distributed. In these circum-
stances, maximum likelihood factor analysis will provide consistent estimates of the factors
and factor loadings as well.

19 The application of instrumental variables methods to factor analysis models typically
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used portfolios formed by mathematical programming based on maximum likelihood fac-
tor analysis of 180 securities as the required consistent estimates of the factors. Following
Madansky (1964) and Hagglund(1982), we employ a simpler instrumental variables proce-

dure that does not require a preliminary maximum likelihood factor analysis.

Suppose that we normalize the factors so that the factor loadings of the first K se-
curities are the identity matrix. Note that this change implies that the new factors are
correlated. In terms of the original representation (34) and the normalization of the factors
(4), we have rotated the factors so that they have covariance matrix & = B, B{ where B,
is the matrix of factor loadings on the first K securities in the original model. Letting
£y, denote the returns, expressed as deviations from their respective means, on the first K
securities, we have:

fu = ﬁt + ﬁu (45)

where ¢,, 13 the vector of residual error terms associated with F1e- Similarly, letting f,,

denote the vector of demeaned returns on the last N — K ~ 1 securities, we have:

.Ea: = F35¢ +

¢ (46)

L:ha

where T's is the matrix of factor loadings of these securities and ¢,, are the corresponding

idiosyneratic error terms. Finally, the equation for the K + 1 security, rop 1s:
Fae = Tof, + éa (47)

where 'y is the vector of factor loadings of the K + 1t security and €5, is its residual term.

Consider the regression of ¥, on f,,:

- P~
2 = Pg[u T+ gy
_ (48)
= Thf o + (é2 ~ T3E)
Clearly application of ordinary least squares to this equation will lead to biased and incon-

sistent estimates of I's since #,, is correlated with its own idiosyncratic disturbance term

involves the assumption that the idiosyncratic disturbances are independent {as in the sta-
tistical factor analysis model). The procedures, however, will provide consistent estimates
even when the idiosyncratic disturbances are correlated so long as the disturbances are
sufficiently independent for a law of larze numbers to apply as the number of securities
tends toward infinity.
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éy¢. If instead we frst regress r,, on ra,:
rie = Hfg + 15 (49)

and then replace £,, with the fitted values from this regression in equation (48), ordinary
least squafcs can then be used to estimate I consistently. This estimate is consistent
because the errors in estimating the common factors by using the fitted values from the
regression (490) involve only the idiosyncratic disturbances s, which are uncorrelated with
the idiosyncratic disturbance é;¢ by assumption. Repeated application of this procedure
replacing rze with an element of 75, leads to the corresponding estimates of I'a. Finally,
solution of the matrix equations: .
I'(§ = 8" — D)T = 0
(50)
Diag[§ ~T®' - D] =0
produces estimates of the factor covariance matrix ® and the matrix of idiosyncratic vari-
ances D. The estimate of the factor covariance matrix ® can be used to transform the
factor loading estimates so that the factors are again rescaled to be uncorrelated and have

unit variances.

V. Basis Portfolic Comparison

H it were possible to observe the factors underlying security returns, it would be a
simple statistical problem to determine which combination of basis portfolio formation
procedure amnd estimation method produced the best reference portfolios. Of course, if we
observed the common factors, we would not need to construct basis portfolios to test the
APT or for use in performance evaluation. Since we do not assume that we have sufficient
prescience to identify and measure the factors underlying security returns, the problem of
determining which basis portfolios perform best remains.

Oune non-rigorous approach to comparing these different basis portfolios is to examine
the behavior of the basts portfolio weights and the sample means and variances of their
returns in order to check whether the results appear to be reasonable. For example, the

constructed reference portfolios ought to be well-diversified if they are to mimic the factors
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with minimal idiosyncratic risk. Although the quadratic programming portfolios are well-
diversified by construction, nothing in the Fama-MacBeth or minimum idiosyncratic risk
procedures guarantees that the resulting portfolios will be well-diversified. Similarly, exam-
ination of the usual summary statistics describing the sample behavior of the constructed
reference portfolios can reveal peculiarities in their performance. For example, we have
examined basis portfolios which had niean returns as high as 120 percent and standard
deviations as great as 450 percent per month. Clearly, such behavior is not likely to reflect

the performance of good reference portfolios.

Unfortunately, searching for reesonable reference portfolios is not likely to eliminate
many candidates and hardly constitutes a scientific testing procédure. Fortunately, it is
possible to make reasonable assumptions which lead to more scientific comparisons. In
particular, suppose that the APT is exactly true, i.e. equation (2) holds exactly. Assume
that the underlying universe of securities under consideration is sufficiently large so that
there exist portfolios whose returns Emt are perfectly correlated with the unobservable
common factors. I the riskless rate version of the APT is true, then security returns

satisfy:

R, — iRy = B(R,,, — iRp:) + ¢, (51)

where Ry, is the return on the -limiting riskless portfolio of risky assets. If the zero beta

version of the APT is true, then security returns satisfy:

Et = ‘Bgmt + & {52)

since the zero beta portfolio corresponds to one of the common factors underlying security

returns.

Consider the behavior of a set of K basis portfolios whose returns R

o, are excess

returns over the riskless rate when that version of the APT is appropriate and are the

relevant raw returns in the zero beta case. Similarly, let R, also denote excess or raw

~—m#
returns on the true reference portfolios where appropriate. Then the returns on the basis

portfolios can be compactly expressed as:
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Epg = BpEmt + ﬁ.pg (53)

where B, is the matrix of factor loadings of the reference portfolios and ¢, is the vector of

their idiosyneratic errors. The vector of sample mean returns of these basis portfolios Ep

15

Ep = ZEN = BPEm +

=1

|

P (54)

|

where R, is the sample nmean return vector of R, and €, 13 the sample mean vector of

€pe- Similarly, the sample covariance matrix of the basis portfolio returns I, is given by:

] 1 . .
£, _R.)(R,, -

T t=1 (55)
= BySm Bl + BySme, + £, BL+ 5.,

!
[
)

where 5, 1s the sample covariance matrix of the returns on K E,MP is the matrix of

mi

sample covariaiices between R, and €, and I, is the sample covariance matrix of €.

pt

In this setting, it is possible to contrast the performance of different basis portfolio
constrnction methods under sinple assumptions. Under the assumptions set out above, the
sample covariance matrix f)mcp will be close to its theoretical value of zero in .larg-'e samples
(i.e. 2,, A~ BpﬁmB;, + ﬁfp). Similarly, the sample mean vector €, will be close to zero if the
basis portfolios are large, well-diversified, and constructed such that their weights are not
systematically related to the realizations of €, (i.e. Ep ~ ByR,.). Note that we will not

assume that B is close to zero so that we are implicitly recognizing that g, will converge

to zero faster than ﬁép for well-diversified portfolios of large numbers of securities.

Now consider the usual x? statistic for testing the hypothesis that the mean returns

of the basis portfolios are all zero:

B a—15 —t = 2 ~1 -
TR,L,;'R, ¥ TR, B [B,E, B, + L.,| ' B, R,
NTR, [Em + B '8, B, YR, (56)

—t Sl = —t ~ o ~ — e
s Tﬁmzmlﬁm - TB—mEml[B;zeplBP + Em.ll] IEmlEm
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As the analysis in equation (56) indicates, this x? statistic permits simple comparisons
of the quality of different basis portfolios in terms of their ability to mimic R_,.2® For
example, suppose the constructed basis portfolios had negligible idiosyncratic risk (i.e. ﬁlep
is close to zero). Then the second term in the last line of equation (56) will be close to
zero and the x? statistic will be close to the maximum attainable one, that associated
with the returns R, (i.e. the first term in the last line of equation (56)). Any increase
in the idiosyncratic variances of the basis portfolios will reduce the magnitude of the x2
statistic, Similarly, consider the impact of an increase in the factor loadings B, of the basis
portfolios holding the residual risk of the portfolios, )f)cp, fixed. This will lead to increase
in the percentage of the variation of the basis portfolio returns that is explained by the
true refcrence portfolios and to a larger x? statistic that will be closer to that of the true
reference portfolios, Em,. Hence. the usual x? statistic for testing the hypothesis that
all of the reference portfolio mean returns are zero can rank the performance of different
combinations of portfolio formation procedures and factor loading estimation methods.

It is worth cousidering an alternative derivation of this performance criterion. As in
the analysis of equation (53) above, let R, be the vector of excess returns on individual
securities when the riskless rate version of the APT is true and be the corresponding
raw returns when the zero beta version is appropriate. Consider the fitted multivariate

regression of R, on R, and a coustant term:
Et =a+ BEmg + f.:t ' (57)

where G is the estiniated constant term vector, B is the estimated factor loading matrix,
and ¢, is the fitted residual vector. If the APT is true, then & should be statistically

insignificantly different from zero. The usual x? for testing this hypothesis is:

Ta'(t 'a=T(R- BR,)Q (E- BR,,) (58)
8

20 We implicitly assume in (56) that By is invertible. If it is not, then the basis portfolios
R,, are mimicking a linear combination of the factors. It is easy to see that this would

result in a lower y2 statistic for EP, than the corresponding statistic for Em.t when the
rank of B, is less than K.
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where {1 is the sample residual covariance matrix of é,. Manipulation of equation (58)

yields:2?

| ] —

Ta'( la=TRE'R-TRE. 2R

[R:

(59)

Thus the x? statistic for testing the statistical significance of & is the difference of two x2
statistics—the x? statistic for testing the joint significance of the individual security mean
returns and the x? statistic for testing the joint significance of the mean returns on the

factor portfolios.

By analogy with the analysis leading from (57) to (59), suppose that @, is the vector
of intercepts from the regression of R, on B—pt and that the corresponding x? statistic for

testing the statistical siguificance of &, is:

Ta, 0, s, =TR SR - TE,L;'R, 0
=[TEE'R-TR, S;'R, |+ TR, 57'R, - TR $'R,)

where ﬁp is the residual covariance matrix from this regression. As the second line of (60)

indicates, this x? statistic has two components: the eorrect x? statistic (58) for testing the

null hypothesis using the true basis portfolios and a term reflecting the deviation of the

measured reference portfolio returns Ep, from Emt' The analysis in equation (56) suggests

that choosing the basis portfolios with the largest x? statistic will minimize this problem.

This points up a potential problem associated with measuring basis portfolio perfor-
mance with its x? statistic. Clearly if we choose basis portfolios which maximize the x?
statistic (56) then such portfolios minimize the x? statistic (60) for testing the APT. This
obviously rednces the power of such tests, although the magnitude of such a bias when the
APT is false cannot be analyzed without further assumptions. Fortunately, this problem
can be mitigated to a considerable extent by using known empirical anomalies such as those
associated with firm size and dividend yield to increase the power of tests of the APT.

This occurs because the basis portfolios will tend to be well-diversified while the anomalies

21 This follows directly from three observations: 1) a=08~'R; (2) B= Dw(w' Sw)=l;
and (3) Q=2 ~ Bw'(wEw')'_“le. Here w denotes the N x K matrix of portfolio weights
of the true basis portfolios, R, .
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are not. Characteristics such as small market capitalization, zero dividend yield, or Aigh

dividend yield are clearly not distributed uniformly over securities.

Finally, this analysis can be linked to the extensive literature on mean variance ef-
ﬁcieﬁcy tests. Following Ross(1977), Grinblatt and Titman(1983), and Ingersoll{1984),
consider the transformation of the basis portfolios so that only one portfolio has non-zero
expected return. Let the true values of the mean vector and covariance matrix of the trans-
formed factor retums,E;,., be denoted by E; and L7 respectively. Now form the K new

basis portfolios:

R, =C*'T'S; V2R, (61)

where the orthogonal (partitioned) matrix T is chosen so:%?
T=[(RR,)'R, | T*] (62)

that is, so the last K —1 of the new basis portfolios are still orthogonal to the first and have
zero expected excess returns, and where C* is a diagonal matrix with the inverse elements
of:
In—1/2
T'n; 2, (63)

along the main diagonal in order to scale the new basis portfolio to have unit investment.
Now only the first basis portfolio has a non-zero risk premium and, in terms of the original

reference portfolios, it is given by:

Y = (R,5; %) R, 2R, (64)
Consider the squared Sharpe ratio of this portfolio:

—2

R, Bz ") 'R, '°R,)

ot? [(3;2;1/25)_23;2;IIZEPE_UZEP

(65)

which is proportional to the squared t statistic for the hypothesis that its mean return is

zero. Manipulation of (65) yields:

22 See Appendix A, Section 1.17 of Lawley and Maxwell(1971) for an explicit descrip-

tion of one method for constructing this matrix. Note also that 2;/2 is taken to be any
symmetric square root of Z,.
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B _Ry-tk (66)

e
which is precisely the x? statistic (56) of the original basis portfolics. In consequence,
comparison of this Sharpe ratio with the sample Sharpe ratio of the sainple mean variance
efficient portfolio based on E, which has an orthogonal portfolio with zero expected return
yields Jobson and Korkie“s(lOSZ)- test for the potential performance of this constructed

reference portfolio. Their analysis links this test to the other mean variance efficiency

tests.

VI, Empirical Results

In this section, we provide evidence on the comparative performance of different refer-
ence portfolios. This effort requires numerous decisions and technical choices. In particular,
we have to choose between daily and monthly data, the time pefiod to be covered, the num-
ber of included securities, and the number of postulated factors.

What is the appropriate frequency of observation for estimating factor models of se-
curity returns? There is certainly substantial freedom of choice since the CRSP monthly
file provides returns on all NYSE stocks from 1926 to the present, the CRSP daily file
contains daily data en all NYSE and AMEX stocks from July 1962 to the present, and
minimal compntationally skill stands between us and bidaily, weekly, biweekly, or other
intermediate frequencies. The primary advantage of daily data is, of course, the potential
increase in precision of the estimated variances and covariances, the inputs to the various
estimation methods. There are two main disadvantages of daily data: (1) the persistent
incidence of non-trading and thin trading which bias the estimates of second order mo-
ments and (2) the biases in mean security returns associated with bid-ask spreads that
are well-documented in Blume and Stambaugh(1984) and Roll{1983). Following Roll and
Ross(1080} and most other investigations of the APT, we opted for the putative virtues of
a large sample and used daily data to estimate the factor loadings and idiosyncratic vari-
ances. In Lehmann and Modest(1985h), we present evidence on the optimum observation

frequency.
We estimated factor models for four subperiods covered by the CRSP daily returns
file: 1963 through 1967, 1968 through 1972, 1973 through 1977, and 1978 through 1982. In
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each period, we confined our attention to continuously listed firms in order to have the same
nunber of observations for each security and ignored any potential selection bias associated
with this choice. This yields a sample of 1001 securities in the first period, 1352 firms in the
sccond period, 1346 in the third period, and 1281 in the final period. The number of daily
observations in each of the four subperiods is 1259, 1234, 1263, and 1264, respectively. The
CRSP daily file {with few exceptions) lists securities in alphabetical order by their most
recent name. To guard against any biases induced by the natural progression of letters
(General Dyn'(-a.mcis, General Electric, etc.}, we randomly reordered the securities in each
subperiod. The usual sample covariance matrix of these security returns provided the basic
input to our subsequent analysis.

We also made choices as to the number of securities and the number of factors included
in the analysis. Iu order to study the impact of the number of securities on the sampling
variation of reference portfolios, we estimated factor models for the first 30, 250, and
750 securities in our randomly sampled data files for each period. We have completed
runs involving as many as 1000 securities but this larger number of firms yielded little
improvement over the results for 750 securities and proved to be very expensive as the

number of factors grew large. We restricted our attention to models containing five, ten,

- and fifteen factors, although for obvious reasons we did not estimate a fifteen factor model

with only thirty securities. We chose to remain agnostic about the true number of factors
underlying security returns.

We first provide evidence on the diversification properties of alternative combinations
of basis portfolio formation procedures and estimation methods. As noted in Section III,
there is little point in comparing the perforinance of the quadratic programming portfo-
lios with the Fama-MacBeth and minimum idiosyncratic risk portfolios since the former
are well-diversified by construction. -Hence, we lunit our attention to Fama-MacBeth and
minimum idiosyncratic risk portfolios. Previous investigators have employed estimates of
factor loadings obtained under the normalization that the covariance matrix of the factors
is the identity matrix and that B'D~!B is diagonal. We employed estimates normalized in
this fashion due to their obvious empirical relevance although the diversification properties

of the Fama-MacBeth portfolios are not invariant with respect to normalization.??

23 See, in particular, the discussion on pages 9-11 above.
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There are several ways to quantify the diversification properties of reference portfolio
weights. We confine our attention to one simple summary measure:; the suin of squared
portfolio weights. In the analysis underlying the APT, a portfolio with weights w, which
is perfectly correlated with the k** common factor is well-diversified if, as the number of
securities included in the portfolio grows large, the sum of squared portfolio weights whw,
is clese to zero. The minimum sum that can be attained with portfolioc weights that sum to
one is the mnverse of the number of securities. Hence, .03333 is the smallest sum of squared
portfolio weights that can be attained with thirty securities, .004 is the corresponding total

for 250 securities, and .001333 is the minimum attainable with 750 securities,

Tahble 1 reports the comparative degree of diversification of Fama-MacBeth and mini-
mum idiosyneratic risk portfolios coupled with different estimation methods, numbers of se-
curities, and numbers of factors. For each portfolio formation strategy, estimation method,
munber of securities. and number of factors, we report two numbers, The first number is
the average sum of squared portfolio weights-across both factors and sample periods. Un-
der each snch mean. we also provide the sample standard deviation of the sum of squared

portfolio weights. These quantities are given by:

=1 k=1 t=lk=1s=1
| LK (67)
Var(wiw,) = 7 S (whewy, - whwy)
t=1k=1

where k indexes factors, t refers to time periods (where T=4), and i indexes the firms. Obvi-
ously. these quantities represent descriptive measures and are not appropriate for inference
witlout further assumptions. We have examined the sum of squared portfolio weights for
each basis portfolio individually and determined that the averaging implicit in Table 1

altered none of the basic conclusions.

The overwhelming conclusion from Table 1 is that Fama-MacBeth portfolios formed
under the usual normalization of the factor loadings are extremely poorly diversified com-
pared with minimum idiosyncratic risk portfolios. Moreover, minimum idiosyncratic port-
folios proved to be quite well-diversified with mean sums of squared portfolio weights only

ten to twenty times the minimum attainable ones. The contrast in performance is striking—
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the mean sums of squares associated with Fama-MacBeth portfolios are between 40 and
50,000 times those associated with minimum idiosyncratic risk portfolios. Examination of
these magnitudes for individual basis portfolios reveals that similar differences oceur in the
disaggregated data as well. In fact, in no case is a Fama-MacBeth basis portfolio better di-
versified than the corresponding minimum idiosyncratic risk portfolio. The evidence is less
clear on the comparative performance of different estimation methods. The minimum id-
iosyncratic risk portfolios fornied from principal components estimates appear to be slightly
better di‘;ersiﬁcd than those computed from the other three estimation methods but the
diffcrence is sliglht and is reversed often when individual basis portfolios are compared.
What accounts for the sharp contrast in the diversification behavior of the Fama-
MacBeth and minimum idiosyneratic risk portfolios? The answer lies in the scaling of
the two portfolios as discussed in Section III. Fama-MacBeth portfolios are the minimum
idiosyncratic risk portfolios which have a loading of one on one factor and loadings of
zero on the other factors prior to rescaling to unit net investment. Since, under the usual
normalization, factor loading estimates are typically much smaller than one (on the order
of .001 to .0001 in daily data), some of the weights have to be very large and positive to
insure that the portfolio has a loading of one on the factor being mimicked. By the same
token, some of the weights will have to be large and negative in order to have loadings of
zero on the other factors. As pointed out in Section III, this problem does not arise in
the CAPM context since it is natural to require the loading on the proxy for the market
portfolio to equal one. By contrast, minimum idiosyncratic risk portfolios need not have
any particular loading on the factor being mimicked. Hence, the resultinglportfolios need
only have small positive and negative weights to insure orthogonality to the other factors.
The remainder of this section is devoted to the evaluation of the comparative merits of
alternative methods using the x? statistic (56). Tables 2 through 10 contain aggregate x2
statistics summed over the four sample periods. This is possible because the data contained
in the tables are independent by assumption, and sums of independent x2 statistics are
distributed as x2 as well. Tables 11 through 43, which are contained in the Appendix,?4
provide the corresponding information from the individual sample periods to illuminate

any divergences in performance that are obscured by averaging.

4 The appendix is available from the authors on request.
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Table 2 provides the fitted x? statistics for selected combinations of portfolio formation
p.rocedures, estimation methods, and numbers of securities assuming a five factor model
of security returns is appropriate. Tables 3 and 4 present the corresponding x? statistics
assuming there are ten and fifteen common factors respectively. These statistics were
computed using daily returns on individual securities from the same period used to estimate
the factor models. One possible source of bias in these tables involves the use of daily returns
to calculate Ep due to the bid-ask spread bias problem alluded to above. As a consequence,
Tables 5 through 7 provide the same statistics presented in Tables 2 through 4 computed
using weekly returns to calculate Ep in order to mitigate this problem.?® Finally, another
potential source of bias in these tables is overfitting that might arise since the security
returns used to compute the x? statistics are from the same period used to estimate the
factor models. We guarded against this possibility in Tables 8 through 10 which provide
the same statistics as Tables 2 through 4 computed using daily returns from the subsequent
five year period. The aggregate ¥2 statistics reported in these tables are smaller than those
reported in the other tables in part because they are based on three sample periods due
to the unavailability (as yet} of data covering 1983 throﬁgh 1987. In addition, each x?
statistic was based on a smaller number of securities since not all securities which were
continuously listed during the estimation period were also countinuously listed during the
subsequent five year period.

Each table contains a p-lenitude of information. The four columns listed at the top of
each table correspond to the four portfolio formation methods under consideration: min-
imum idiosyncratic risk, Fama-MacBeth, positive net investment quadratic programming,
and well-diversified quadratic programming. Eight combinations of estimation methods
and numbers of securities comprise the rows of each table. These combinations are max-
imum likelihood and restricted maximum likelihood factor analysis with 30, 250, and 750
securities and principal components and instrumental variables with 750 securities. Four
numbers are reported for each portfolio formation method, estimation method, and num-
ber of securities. The first quantity is the y2 statistic for the raw returns on the K basis

portfolios. This x” statistic is appropriate when the zero beta version of the APT is true.

25 In this paper, we do not address the temporal aggregation bias issues investigated in
Lehmann and Modest{1985¢) involving the optimal periodicity for estimation of the factor
model.
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The number in parentheses underneath is the marginal significance level associated with
the hypothesia that the means of these portfolios are jointly insignificantly different from
zero over all of the sample periods. The number next to the y?2 statistic for the raw return
portfolio is the x? statistic for the excess returns on the K basis portfolios. This statistic is
relevaut when the riskless rate version of the APT is appropriate. As discussed in Section
III. these excess returns are the difference between the raw returns on the reference portfo-
lios and the returns on the minimum idiosyncratic risk portfolio which is orthogonal to all of
the factars. Note that the x? statistics for the excess returns of the minimum idiosyncrati-c
risk and Fama-MacBeth portfolios are identical for the reasons given in Section III on pp.
15-16.%® The nunber in parentheses underneath is the corresponding marginal significance

level for the x? statistic of the excess return portfolios.

There are three dimensions along which contrasts in performance might be expected:
(1) the munber of securities; (2) the estimation method; and (3) the portfolio formation
procedure. The first two categories are of particular interest due to the large differences
in compntatienal cost between factor analysis on 250 securitivs and on 750 securities and
between factor analysis. instrumental variables, and principal components. Differential
performance across portfolio formation methods might occur if minimum idiosyncratic risk
and Fama-MacBeth portfolios prove to be poorly diversified compared with quadratic pro-
gramming portfolios. We shall also be concerned with the consistency of the results across

time periods. in and out of sample, and the number of factors.

The results strongly suggest the importance of examining large cross-sections of se-

curities when constructing basis portfolios.?” The 750 security basis portfolios always

¢ In terms of the one factor example in Section II1, the portfolio weights of the Fama-
MacBeth excess return portfolio are proportional to those of the minimum idiosyncratic
rigk excess return portfolio where the factor of proportionality is the mnverse of the average
factor loading. Since the average loading is typically much smaller than one, we would
expect the Fama-MacBeth portfolic weights to be much larger. However, this distinction
would not affect the x? statistic since the proportionality factor cancels out in its formation.

27 1t is not possible to test whether the differences in chi-squared statistics are significant
since the statistics are dependent. We therefore present these results as being suggestive
rather than as a formal definitive test. However, in conjunction with the evidence pre-
sented in Lehmann and Modest(1985b) it seems safe to conclude that the differences in
chi-squared statistics are significant since alternative basis portfolio construction methods
lead to sharply dissimilar conclusions about the absolute and relative performance of mutual
funds.
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outperformed the corresponding 250 security portfolios which, in turn, always dominated
30 security portfolios. These rankings hold across estimation methods, portfolio formnation
procedures, time periods, and observation intervals with both raw return and excess return
portfolics. The differences in performance increase with the number of factors extracted
sample in the daily data, although this finding does not persist in the weekly data or ont of
sample. Note that this need not have occurred—we have examined randomly selected well-
diversified portfolios and found that, quite often, the x? statistics for 250 security portfolios
exceeded those for 750 securities. The typical x? statistics for 250 securities were twice as
larze as those for 30 securities and were roughly three times as large for 750 securities.
For example assuming the ten factor riskless rate version of the APT was appropriate, the
chi-squared statistics for the significance of the mean returns on the basis portfolios using
the unrestricted maximum likelihood estimation method in conjunction with the minimum
idiosyneratic risk portfolio formation procedure were 35.20 using 30 securities, 81.14 using
950 securities and 116.88 using 750 securities. These differences are also apparent in the
individual period results reported in the Appendix. Thirty security raw return basis port-
folios were msignificant at the ten per cent level for two out of four time periods in daily
data while the corresponding excess returns portfolios were msignificant in three out of four
periods. By contrast, the 250 and 750 security raw return portfolios were highly significant
in all time periods while the excess return portfolios were highly significant in daily data

for all but the five factor model in the third time period.

The four estimation methods exhibited similarly striking contrasts. Restricted maxi-
mum likelihood factor analysis systematically outperformed conventional maximum likeli-
lood factor analysis in the daily and weckly data but this dominance did not persist out
of sample, where they achieved almost identical performance. Both maximum likelihood
and restricted maximum likelihood factor analysis consistently outperformed the less effi-
cient instrumental variables and principal components techniques for both raw and excess
return portfolios in both daily data {in and out of sample) and weekly data. For instance,
the unrestricted maximum likelihood estimation method in conjunction with the minimum
idiosyncratic risk portfolio formation procedure yielded an aggregate in-sample chi-squared
statistic of 116.88 using daily data under the assumption that the ten factor riskless rate

version of the APT was appropriate. This is substantially larger than the aggregate chi-
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squared statistics of 97.88 and 82.94 that were obtained using the principal components
and instrumental variables estimation methods.?® The superiority of the relatively efficient
maximum likelihood procedures also persisted out of sample. Out of sample the three es-
timation methods generated chi-squared statistics of 53.50, 37.13 and 39.07 respectively.
Moreover, these discrepancies do not appear to merely reflect peculiarities of daily data as
the differences did not disappear when weekly returns were used to perform the compar-
isons - using weekly data the corresponding chi-squared statistics were 73.83, 53.08, and
02.48.

An examination of the subperiod results supports the basic conclusion that the efficient
estimation methods typically outperform the inefficient methods and shows some interest-
ing intertemporal variation in performance. In the in-sample results, principal components
performed well only in the first five year period, achieving performance comparable to
the 250 security basis pofffolins in the subsequent three periods. Instrumental variables
provided more consistent performance but was consistently inferior to the more efficient
estimation procedures in sample. The out-of-sample results were broadly consistent with
these findings with some idiosyncrasies in the individual subperiods. In five factor models,
the efficient methods proved superior in the second subperiod while all methods yielded
similar performance in the first and third subperiods. In ten factor models, all methods
provided similar performance in the first and second subperiods except for the superior
performance of instruinental variables in the first and its inferior performance in the sec-
ond. The efficient methods outperformed the inefﬁcilent methods by a wide margin in the
final out-of-sample period. Similar inconsistencies emerged in the fifteen factor runs. The
methods provided similar performance in the first out-of-sample period except for the infe-
rior results provided by principal components. In the second subperiod, only instrumental
variables provided inferior results to the similar performance of the other three metlhods.
Again. the efficient methods outperformed the inefficient methods in the final subperiod.

The final set of comparisons is between the four portfolio formation methods, The min-
imun idiosyncratic risk portfolios provided almost identical performance to well-diversified

quadratic programmniing portfolios using 750 securities and provided consistently superior

8 A perusal of the tables indicates that the differences in chi-squared statistics between
the estimation methods is typically much larger for the ten and fifteen factor models than
for the five factor model.
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performance with 250 securities. Other observations depend on the estimation method
and choice of raw or excess returns. For the effictent estimation methods and raw returns,
minimnm idiosyneratic risk portfolios consistently dominated Fama-MacBeth portfolios®?
in-sample both with daily and weekly data which, in turn, typically ontperformed the
positive net investment guadratic programming portfolios. For instance under the assump-
tion that a five factor model is appropriate, the chi-squared statistics for the minimum
idiosyncratic risk and Fama-MacBeth raw return portfolios are 131.96 and 92.28 respec-
tively for the daily in-sample results using the unrestricted maximum likelthood estimation
procedure. The corresponding mumbers under the assumption that there are ten com-
mon factors are 201.21 and 144.94, and under the assumption of fifteen common factors
297.77 and 168.24. The Fama-MacBeth portfolios, however, performed slightly better than
the minimum idiosyncratic risk portfolios out-of-sample while both continued to dominate
the positive met investment quadratic programming portfoliocs. Out of sample the cor-
responding chi-squared statistics for the minimum idiosyncratié risk and Fama-MacBeth
raw return portfolios are 60.20 and 63.32 for the five factor model, 80.67 and 85.09 for
the ten factor meodel, and 101.63 and 95.86 for the fifteen factor model. For the efficient
estimation methods and excess return portfolios, the picture about the relative merits of
the minimum idiesyncratic risk and Fama-MacBeth basis portfolios versus the quadratic
programiming portfoliog i3 virtually identical. The only difference is that the positive net
investimient quadratic programming portfolios provided superior performance for five factor

models In-sample, an improvement which did not persist out-of-sample.

The final guestion considered here is whether less efficient estimation methods or
smaller numbers of securities coupled with guadratic programming procedures provides
a zood substitute for the more computationally expensive alternatives. With two excep-
tions, no combination of inefficient estimation methods or smaller numbers of securities

with quadratic programming procedures improves on the results obtained by effictent es-

29 As noted above, the minimum idiosyncratic risk and Fama-MacBeth portfolio for-
mation procedures produce identical chi-squared statistics for the excess return reference
portfolios when excess returns {over the riskless rate) are computed using constructed risk-
less rates. However, if excess returns were computed using an exogenously specified riskless
rate such as the Treasury bill rate then the differing performance of the two portfolio for-
mation procedures, as indicated by the differences in the x? statistics of the raw return
basis portfolios, would be relevant.
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timation and minimum idiosyncratic risk portfolio formation with 750 securities. Both
exceptions involve the five factor models in-sample using the daily data. The first excep-
tion 15 the combination of positive net investment quadratic programming portfolios and
mstrumental variables estimation for excess returns which yielded a chi-squared statistic of
77.64 compared to the chi-squared statistic of 64.49 that arose from the unrestricted max-
mum likelihood estimation method coupled with the minimum idiosyncrafic risk portfolio
formation procedure. The other aberration is the superior performance of basis portfo-
lios constructed using 250 securities, quadratic programming and the efficient estimation
procedures over those basis portfolios consisting of 750 securities that were constructed
using the minimum idiosyncratic risk procedure. Again, this combination provided inferior

performance out-of-sample.

Why do the minimum idiosyncratic risk portfolios perform better in-sample than those
produced by the Fama-MacBeth procedure? We suspect that the answer lies in the delete-
rious impact of measurement error on the Fama-MacBeth portfolios. For example, consider
the one factor case discussed extensively in Section III. From the analysis in equations (16)
it is apparent that the x2 statistic for the Fama-MacBeth portfolio in the single factor case

should be (approximately):

(8'8)°R,,
X%M ~ T[ tava ' , | o2 tn = 2 (68)
(B'8)%02 + 'Euflod + R, )+ f'Bo? + tr(T,)o?
while that of the minimum idiosyncratic risk portfolio should be {approximately):
—2_2
AR,
Xirmp ~ T = (69)

Bon+ai/N

where 8 is the vector of (true) loadings of the N securities, 3 is their sample mean, R,
is the mean of the true unobserved basis portfolio, @?, is its variance, o7 is the common
variance of the idiosyncratic disturbances, and B, is the covariance matrix of the errors in
the estimated factor loadings. The approximation arises from replacing sample moments
with population mowents in the x* expressions. When measurement error in the sample
loadings is negligible, the chi-squared statistic of the Fama-MacBeth portfolio will typically
exceed that associated with the minimum idiosyncratic risk procedure. In contradistinction,

this ordering can easily be reversed in the presence of measurement error. As the analysis
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in (23) and (24) suggests, this is a likely occurrence when the number of securities is large

relative to the number of time series observations.

VII. Conclusion

This paper has provided a comprehensive examination of the merits of different basis
portfolio formation strategies. In so doing, the analysis involved the four main estimation
methods that have been proposed in the literature and the principal portfolic formation
procedures that have been employed as well as some that have not previously been con-
sidered. In addition, this study provided a detailed evaluation of the impact of increases
in the number of securities underlying the analysis, including the application of maximum
likelihood methods to far larger cross-sections than in prior work. The result is a detailed
set of data measuring the performance of excess return and raw return basis portfolios both

in and out of sample aver a variety of time periods and observation frequencies.

Thwree conclusions emerge from the examination of the more than 2300 statistics re-
ported i this document. First, increasing the number of securities included in the analysis
dramatically improves basis portfalio performance. Our results indicate that factor models
involving 750 securities provide markedly superior performance to those involving 30 or
250 securities. Second. comparatively eflicient estimation procedures such as maxinmuum
likeliliood and restricted maximumn likelihood factor analysis significantly outperform the
less efficient instrumental variables and principal components procedures that have heen
proposed in the literature. In particular, the less efficient estimation procedures typi-
cally provided performance comparable to maximum likelihood factor analysis with 250
securities, Third, the minimum idiesyncratic risk portfolio formation procedure proposed
in the third section outperformed both the Fama-MacBeth and positive unet investment
auadratic programming portfolios and proved equal to or better than the more expensive
well-diversified gqnadratic programming procedure. The Fama-MacBeth procedure, which
has dominated empirical research on the APT, yielded poorly diversified portfolios which
providedriuferior performance in this context. In sum, if an investigator had to choose
one basis portfolio construction strategy from the formidable list considered here, the clear

winner 15 minimum idiosyncratic risk portfolios coupled with maximum likelihood factor

analysis of 750 securities,




We think that these conclusions should have a profound influence on empirical research
volving the APT. These results suggest that the inconclusiveness of the bulk of existing
research, which involves maximum likelihood factor analysis of groups of thirty to sixty
securities, may reflect the inability of small groups of securities to capture the empirical
content of the APT —the ability to measure the sources of systemnatic risk underlying secu-
rity returns. Moreover, the analysis suggests that refuge cannot be found in the employment
of less efficient but less expensive estimation procedures applied to large cross-sections. In-
stead, subsequent empirical investigations of issues pertaining to the validity of the APT
should probably incur the costs associated with expensive efficient estimation procedures
in the interest of providing more scientific inferences.

Of course, we have left open numerous issues associated with basis portfolic com-
parisons. In particular, our results may have little bearing on the comparative merits of
different procedures in producing portfolios that mimic factors at weekly or monthly ob-
servation frequencies. In addition, we have provided little evidence on the quantitative
itmpact of the use of comparatively ineffective portfolio formation procedures on inferences
in particular applications such as thie evaluation of managed portfolios. We are currently
engaged in research along both of these lines (Lehmann and Modest [1085b,1985¢]). The
evidence presented in Lehmann and Modest(1985b) suggests that statistical differences in
basis portfolio performance documented in this paper have an economically and quantita-

tively significant impact on the evaluation of the performance of mutual funds.
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