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1 Introduction

Technological innovation lies at the heart of economic growth, and understanding the dif-

fusion of innovation is a central question in economics. In his work on the diffusion of

hybrid corn technology, Griliches (1957) poses three questions which still resonate today:

What factors influence the timing of adoption of new technologies? What determines their

rates of diffusion? Finally, what factors govern the long-run level of adoption? Griliches,

along with other early empirical and theoretical work such as Mansfield (1961) and Rogers

(1962), answers these questions by explaining differences in diffusion curves as arising from

heterogeneity in user characteristics, such as profitability, cost, and competitive pressure.

Subsequently, Katz and Shapiro (1985) and Farrell and Saloner (1985) highlighted that for

network technologies such as telephones and fax machines, a user’s payoff from the technology

depends on other people also adopting the technology, a phenomenon known as network

effects. In a static setting these have shown to be important empirically for understanding

levels of technology adoption. For example, Ackerberg and Gowrisankaran (2006) show that

in a repeated static game of adoption, network effects matter for the adoption of electronic

payments. In marketing, Nair et al. (2004) showed that in a static context network effects

mattered for PDA adoption. For these types of technologies, variation in equilibrium beliefs

can lead to differences in rates and depth of diffusion even for identical users.

We synthesize these two literatures by constructing a utility-based model of dynamic

technology adoption which allows for observable individual heterogeneity in the adoption

of a network technology. We examine how heterogeneity, as expressed by differences in

adoption costs, network effects, and tastes for a diverse network, influences a network tech-

nology’s diffusion. We apply our forward-looking expectations model to detailed data on the

introduction of a videocalling technology in a multinational bank. This model allows us to

quantify the effects of three dimensions of observable individual heterogeneity on network
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evolution and use, and permits analysis of two common policies for jump-starting network

technology diffusion. Our research strategy consists of three steps.

First, we construct a model of dynamic network technology adoption and the subsequent

sequence of technology usage. The model addresses two interrelated technological questions:

how the installed base of adopters evolves over time, and how agents use the technology after

joining the network. People vary in their net fixed costs of adopting the network technology,

and weigh the expected present value of joining the network today against the opportunity

costs of not adopting. This implies that adoption is an optimal waiting problem. After

someone has adopted the communications technology, they decide how to use it. We model

the sequence of calls as a function of two factors: the direct utility each person receives from

interacting with others, and a desire to interact with different people over a sequence of calls.

Our model allows us to provide a rich description of how diversity in the characteristics of

network subscribers affects their propensity to adopt.

Second, we estimate our model using detailed data on the diffusion and use of a video-

calling technology within a large multinational investment bank. We have detailed data on

all 2,169 potential adopters in the firm, from the time that the technology was first offered

for installation up to the network’s steady state three and half years later. Using data on

463,806 video calls made using this technology, we estimate a model of calling preferences for

64 different types of employees in the firm. The bank deployed the technology in a laissez-

faire manner: employees could install the technology at no cost to themselves, but were not

compelled to adopt. This means that we can focus our attention on understanding how

individual employees within the firm adopted the technology, without having to model the

firm’s adoption policy. We use recently developed techniques for estimating dynamic games

to recover parameters for our model of technology adoption within this firm. Our approach

to identification is novel, because our structural model allows us to identify and measure net-

work benefits through ex post calling behavior, rather than merely inferring network benefits
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from correlations in adoption of network technology. A traditional reduced-form approach

that considers only adoption decisions would require 64 valid instruments (one for each type

of employee in the firm) to use these correlations to measure causal network effects, which

is not feasible.

We find significant heterogeneity in adoption costs and usage benefits: Employees in

the firm have different tastes for making video calls and adoption costs, depending on their

location, job function, and rank. We find that, all else equal, a given function and region

in the firm is more likely to call someone similar in the firm. By contrast, employees are

more likely to communicate up and down the hierarchy, which supports some of the insights

on the literature on the role of hierarchies and communication in firms, such as Garicano

(2000) and Radner (1992). Our sequential calling model gives the additional insight that

this taste for similarity decreases in the number of times a call is made. Employees therefore

have significant positive welfare gains from having access to a diverse network where there

are employees of many types for them to call.

Third, we use our estimates to simulate how two broad classes of different technology

adoption policies focused on initial adoption could affect the evolution and use of the network

over time. These policies represent potential deployment strategies that a firm or network

operator can use to avoid sub-optimal diffusion for their technology. Under the first set

of policies, the firm targets one type of employee as the initial set of technology adopters.

This policy is common in many real-world settings, because firms commonly roll out a

new technology in a specific work group, such as among all IT staff, before allowing wider

adoption throughout the organization. We compare and contrast multiple different targeted

seeding strategies. In the second class of policy, the firm adopts a uniform adoption strategy,

where the technology is spread equally across various types in the initial period. Such a

policy can be more effective when employees value being able to communicate with a wide

variety of other employees. Comparing these two policies to the baseline case of decentralized
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adoption will allow us to evaluate the extent to which heterogeneity in employee behavior

and characteristics must be accounted for in crafting an optimal policy for jump-starting the

diffusion of a network technology.

Reflecting the complex interplay between heterogeneity in network effects among employ-

ees in the firm and heterogeneity in adoption costs, we find that the policy with correct tar-

geted interventions dominates the uniform adoption policy. We compare numerous targeted

policy interventions and find substantial differences in performance: the best performing

seeding enjoys a two-thirds performance boost relative to the worse performing seeding. Our

simulations emphasize that targeting should be used towards a subtype of employee that has

both high adoption costs and large network effects on the adoption of others. By inducing a

high-value subtype to enter early, the policymaker triggers a cascade of additional adoptions.

This leads to slightly more calls per adopter, and significantly higher overall welfare. Our

results show that focusing adoption efforts in a broad area, such as all workers in a region,

can have very large relative benefits to the diffuse seeding policy. Our results reinforce the

notion that the policymaker must carefully balance adoption costs and network benefits

when considering any interventions.

Our paper makes several contributions to the existing literature on technology adoption

and network effects that has largely focused on static models due to several challenges. First,

in technology adoption models with network effects, the researcher must confront the issue of

multiple equilibria that are not necessarily present in other dynamic contexts such as those

studied by Gordon (2009) and Misra and Nair (2009). Both Ackerberg and Gowrisankaran

(2006) and Rysman (2004) tackle this by estimating which equilibrium out of a limited set

is selected. It is also theoretically possible to not limit the set of potential equilibria, and to

model explicitly the equilibrium selection process, as in Bajari et al. (2009). However, this

approach requires the computation of all equilibria to a system, taking a prohibitive amount

of time. The size of the state space is the second difficulty. In the present application, for
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example, the state space is an indicator function for each employee’s adoption status. The

naive number of possible combinations of these variables is 22169, or approximately 10602.

Even reducing the size of the state space by grouping agents into subtypes, which discards

information about which specific agent has adopted, still results to an impossibly large set

of points to compute equilibria over. However, by using the two-step techniques described

by Bajari et al. (2007), we circumvent the problem of multiple equilibria and the curse

of dimensionality which beset estimation of dynamic technology adoption games since this

methodology does not require the researcher to actually calculate equilibria.

The closest paper in approach to our research is Dube et al. (2010) who also use Bajari

et al. (2007)’s methodology to estimate a dynamic model of tipping in the video game

console market. The key difference between our paper and theirs is that we estimate a

rich model of observable consumer heterogeneity and show how this heterogeneity matters

for understanding the diffusion process. By contrast, they use a single time-series for the

US market, and this aggregate approach allows them to solve a dynamic hardware pricing

game. We are also able to use the data on how consumers use the technology to estimate

utility and consequently demand for the product. The methodology we present in this

paper represents a first attempt in the literature to develop a general approach, albeit with

several simplifying assumptions, to estimating demand for network goods in the presence of

unobserved heterogeneity.

We also contribute to a more general literature that uses data on ex-post behavior to infer

the value of a particular action. For example, Reiss and Spiller (1989); Ellickson and Misra

(2010) use ex-post data on revenues to infer fixed costs of entry; Draganska et al. (2009)

use ex-post data on demand/prices to infer fixed costs of product introduction; (Keane and

Wolpin, 1997) use ex-post data on wages conditional on being in a sector to learn about the

value of choosing a job-sector; and Hartmann and Nair (2010) use ex-post data on purchased

of tied-complementary goods to learn of the utility from adopting the primary tying good.
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The contribution of our research is the use of this ex-post data in inferring and measuring

network benefits.

Identifying network effects is problematic.1 Much of the early empirical work focused on

identifying causal network effects, for example Gowrisankaran and Stavins (2004). Tucker

(2008) and Tucker (2009) pursue a reduced-form approach using the same data as this paper.

The crucial difference between this paper and previous approaches is that we directly model

and measure the network benefits through observations on network use after adoption, rather

than relying on exogenous shifters of network adoption as a means of causal measurement

of imputed network benefits from an installed base. This new approach to identification

allows us to disentangle the convoluted effects of heterogeneity in stand-alone use and utility

due to the size and diversity of the network. This approach also allows us to explore a

broader spectrum of heterogeneity than has previously been considered. Furthermore, since

we measure equilibrium network benefits, our structural estimates allow us to set up policy

experiments that illuminate how different seeding policies affect network evolution.

Another potentially convoluting factor in estimating demand with network effects are

correlated unobservables. For example, there may be some external influence that makes

the value of the networking technology exogenously increase in a certain time period. These

shocks will induce correlation in the adoption behavior of agents in that period outside that

predicted by the fundamentals of the model. Our approach also allows us to account for

correlated shocks in adoption behavior. The calling model allows us to recover any network-

wide shocks which lead to higher or lower utility of using the network in a given period.

Utilizing the panel nature of our calling data, we can recover these shocks and account for

their influence in the adoption policy equation.

The paper is organized as follows. Section 2 describes the technology and data used in

1Rose and Joskow (1990) discuss how identification is important in generalized diffusion models when
trying to put a causal interpretation on a variable such as firm size.
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this study. Section 3 lays out a dynamic model of technology adoption choice and subsequent

interaction choice. Section 4 discusses our estimation strategy. Section 5 discusses the results

of our estimation. Section 6 reports results from a policy experiment to test two alternative

technology adoption policies. Section 7 concludes and discusses directions for future work.

2 Technology and Data

We study adoption of a desktop-based videocalling technology within a single multinational

bank. The primary benefit of videocalling is that it can improve the effectiveness of oral

and written communication by adding visual cues. Older videoconferencing systems failed in

part because they were based on expensive and inconvenient videoconferencing rooms. The

videocalling technology studied in this paper was attached to an employee’s workstation.

The end-point technology has three elements: videocalling software, a media compressor,

and a camera fixed on top of the computer’s monitor.

Three institutional details are central to our analysis. First, videocalling could only be

used for internal communication within the firm. This means that we have comprehensive

data on both the set of all potential adopters and how the technology was used after adoption.

Second, the bank pursued an unusually laissez-faire approach to promotion and adoption

of the technology in the firm. After the bank chose this technological standard to conduct

internal videocalling, it invested in the basic network components which would form the

backbone of the network infrastructure. The bank then publicized the availability of the

technology to employees. Each employee independently decided whether and when to order

a videocalling unit from an external sales representative. The firm paid for all costs associated

with the adoption. The videocalling vendor and bank employees have confirmed that there

were no supply constraints which might have restricted adoption. Though such explicitly

decentralized adoption is unusual, it is not uncommon for companies to install software or

IT equipment for employees and then leave it to the employee’s discretion whether or not
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they use it.

Third, though the firm paid the monetary costs of installing the technology there were

still significant non-monetary fixed costs for the employee which play a central role in our

analysis. In particular, they had to set aside a morning where there computer would be

down, the software installed and they were trained on the device. Interviews with bankers

at the firm confirmed that they viewed having their computer out-of-action for a number of

hours a large costs, given how quickly financial markets move.

We combine two databases: Personnel information for all employees as of March 2004,

and complete records of videocalling adoption and use from the first call in January 2001

through August 2004. There were 2,169 employees who qualified as potential adopters, of

whom slightly over 1,600 eventually adopted the videocalling technology.2 Based on data on

each employee’s job description, rank, and location, we sorted all potential adopters into 64

broad types. These broad types were demarcated by hierarchy (Associates, Vice-Presidents,

Directors, and Managing Directors), function (Administration, Research, Sales, and Trading)

and geographical location (Asia, Britain, Europe, and the US).3

Figure 1 shows the count of employees by type in the firm. Comparing these results to

Figure 2 shows that by contrast the pattern of adoption rates in the firms by August 2004

is highly regular: the higher the employee’s rank in the firm, the higher the adoption rate.

This variation, and the other variation that we observe in adoption rates across regions and

functions, suggests that employees benefit to differing extents from the technology. This

drives us to emphasize heterogeneity in our model.

The call database recorded each of the 1.7 million two-way calls from January 2001 to

August 2004. There were also 752,055 uses of the technology for its alternative use of TV-

watching which we ignore. Of these 1.7 million calls, 1,052,110 actually went through rather

2We exclude from our analysis 300 employees who left the firm during our sample period.
3The Asia region also includes a small number of isolated offices in other locations.
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Figure 1: Distribution of Employees by Type
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Figure 2: Distribution of Adoption Rates by Type
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than being ignored or not answered. For two-way video calls, the database records who made

a call to whom, and the timing and length of the call. Each accepted call lasted on average

5 minutes and 46 seconds.4 We excluded from our data calls which involved an isolated

Finance/Credit Analysis division (17 percent of calls) that focused on retail banking rather

than investment banking; calls with more than two participants (5 percent of calls);5 calls

made by employees who left the firm (17 percent of calls); and calls that ended in error (14

percent of calls). This left us with a data set of 463,806 person-to-person calls.6

Figures 3 explores the relationship between the number of calls and the timing of adop-

tion. The y-axis shows the average number of calls per month, while the x-axis reflects

which month the employee adopted in. It is clear that the relationship is not monotonic.

This supports our notion that, conditioning on a specific subtype of agent, variation in adop-

tion timing is driven by variation in the agent’s fixed cost and not heterogeneity in calling

utility. However, once an individual adopts the technology, we do not see large differences

in how they use it over time. Figure 4 shows the number of individuals an employee who

had installed the technology in the first three months, called over the following 2 years. It

shows that adopters tended to call a relatively stable proportion of users of the network as

the network evolved. This suggests against an alternative ‘learning story’ that might explain

delay, as it was not the case that employees adopted, tried out the technology and then

stopped using it. Therefore, a central component of our model has to be one that explains

the delay in adoption that we observe in the data, but also the relative stability in calling

4We do not model the length of calls; low-intensity long calls can be as useful as high-intensity short calls.
5Fewer than 5 percent of calls involved more than two people.
6Discarding some of the calls may induce bias in our estimated parameters. Removing the Finance/Credit

Analysis division could artificially reduce the number of agents in the network, deflating the estimates of the
network’s worth at any point in time, and as a result will bias the estimates of the fixed costs of adoption
downward. Due to the small number of employees who adopted and the fact that only two employees ever
called another employee in this division which was focused more on retail banking, this effect is probably
small. The same effect is possible with calls from employees who were fired. Though these employees who
left the firm made a similar, though slightly lower number of calls to those who did not leave, we are not
able to trace out their adoption as we do not have details about their title, function and location within the
firm.
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Figure 3: Relationship Between Average Number of Calls and Timing of Adoption
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behavior that we observe over time after adoption.

Besides the heterogeneity across types suggested by Figure 2, there may also be hetero-

geneity within a type. Figure 5 provides further evidence of heterogeneity within our types

by graphing the adoption patterns and number of calls for US researchers across different

ranks. The left panel shows the cumulative adoption levels for each of the four ranks. Cu-

mulative adoption varies across titles, with Managing Directors adopting the technology at

a much higher level than Associates. However, not all employees within each type value

videocalling equally; the adoption graphs are not a single stepwise function where all similar

employees adopt at the same time. Instead, these graphs imply that any model of adoption

in this setting must account for differences in adoption rates both across and within types

of employees.

The right panel of Figure 5 shows the average volume of monthly calls by rank over time

for US Researchers. Call volumes differ across ranks: For example, Vice Presidents make

more calls on average than Directors. Though the data are noisy, call volume appears to

grow each month. This is as expected, given that there are more potential receivers for an
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Figure 4: Stability in Video-messaging Behavior over Time
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employee to call later on. This gives some evidence of a “network effect,” in the sense that

intensity of use of the technology is growing with the number of adopters.

3 Theoretical Model

Our theoretical model uses a utility-based foundation to rationalize variation in adoption

rates and calling patterns across and within types of employees. We characterize the adop-

tion decision as an optimal waiting problem, with each employee joining the videocalling

network when the expected benefits of adoption exceed the opportunity cost of non-adoption.

Our model is dynamic because each employee computes the expected benefit of joining the

network as a sum of utility flows accruing from future network use when making an adoption

decision. This utility flow critically depends on expectations about growth of the installed

base.

There are three basic ingredients to the model: a set of state variables describing whether

each employee has adopted at a given time, payoffs which accrue to each employee as a

function of the state variables and their actions, and the process governing changes in the
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Figure 5: Cumulative Adoption and Call Volume for US Researchers

state space over time.

Before discussing these three components of the model, we note that we restrict the set of

Nash equilibria to be Markov-perfect: that is, the current state and current vector of actions

are sufficient to characterize the dynamics of the model. This approach has become standard

in much of the literature on dynamic games due to the relatively tractable set of implications

that it generates, as compared with the the unboundedly complex set of history-dependent

strategies. This is due to the fact that in Markovian equilibria players best respond to

current actions rather than histories of actions.7 In our setting, the Markovian assumption

implies that adoption behavior is only a function of the current network configuration, which

considerably simplifies our analysis.

7See Maskin and Tirole (1988) for a discussion of Markovian games and further examples. Also see Maskin
and Tirole (2001) for a detailed analysis of Markovian games and justification for focusing on Markovian
strategies.
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3.1 State Space and Timing

The state space s describes which employees have adopted the technology. Each element of

the state space, sit, is an indicator function representing whether each employee i adopts by

month t. Employees face an infinite time horizon and discount their payoffs with the same

discount factor β. In estimate we need to stipulate the value as it is not separately identified

and set β=0.9..

Each employee is endowed with a set of characteristics which describe their role in the

firm, that are both exogenous and time invariant. We denote the vector of characteristics of

employee i by:

xi = {êr, êf , êt}, (1)

where each ê is a 1 × 4 unit vector representing the region, function, and title of each

employee. We order alphabetically: The regions as Asia, Britain, Europe, and the United

States; and the functions as Administration, Research, Sales, and Trading. We order the

titles by importance in the firm: Associate, Vice President, Director, and Managing Director.

For example, a Vice President of Administration in Europe would be represented as xi =

{(0, 0, 1, 0), (1, 0, 0, 0), (0, 1, 0, 0)}.

3.2 Per-Period Payoffs: Communications utility

In each period, an employee who has adopted the technology makes as many video calls as she

desires to any other employees in the network. To capture the benefits of these interactions,

we develop a simple model of a utility-based sequence of interdependent choices. Specifically,

we model the utility employee i obtains from making the k-th call in a calling sequence to

employee j as a function of both caller and receiver characteristics and the set of previous

calls already made in that month.8

8Tucker (2008) explores the differences between modeling calls as one-way or two-way process and presents
evidence that for modeling purposes the directionality of calls is not empirically important.
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In period t, the connection utility of agent i calling agent j as the k-th call in sequence

is:

Uijkt = θ1 + θ′2Γ︸ ︷︷ ︸
δ1

− θ′3ηik + θ4(k − 1)︸ ︷︷ ︸
δ2

+ξt + εijk (2)

This utility function is composed of three parts: a static connection utility, δ1; a composition

component, δ2 that depends on the set of previous calls made in the current period; and a

stochastic shock to utility, ξm + εijk, which is composed of two terms. The first term, ξt,

captures correlated shocks that make the network particularly attractive or unattractive to

use in period t. The second term, εijk, is an idiosyncratic error term which is distributed

Type-I extreme value with unit variance, and represents connection-specific shocks to utility

unobserved by the econometrician.9 The utility of not making a call is normalized to zero.

The static component, δ1, is composed of a constant, θ1, and the Γ function which governs

the potential caller-receiver interactions. The constant θ1 determines a baseline utility that

influences how many calls a given employee will make in any period. Each element of

Γ = (γrij, γ
f
ij, γ

t
ij), γij is a vector defined by the interaction of each characteristic ei of the

caller in Equation 1 with the corresponding characteristic ej of the receiver:

γij = (êi1êj1, . . . , êi4êj1, êi1êj2, . . . , êi4êj2, êi1êj3, . . . , êi4êj3, êi1êj4, . . . , êi4êj4). (3)

Intuitively, the Γ function zeros out all the interaction terms which are not relevant for

the connection between two given employees. In the terminology of Jackson and Wolinsky

(1996), θ′2Γ measures the “link synergy” between two types of employees.

The second component of the utility function, δ2, reflects changes to the utility of a

connection as the employee makes additional calls. The first component, θ′3ηik, reflects the

intuition that employees may get diminishing value from calling the same group of employees

9 Our specification does not explicitly account for intertemporal correlation in calling patterns, as in the
case of two coworkers who work on the same project and who repeatedly call each other.
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repeatedly. We account for the number of previous calls to a characteristic within a sequence

using the function ηik, which is a 12× 1 vector counting the number of times employee i has

made calls to each of the 12 possible employee characteristics in the previous k−1 calls. The

term θ′3ηik captures these effects by allowing the marginal utility of calling employee j to

depend on the number of previous calls to other employees with similar characteristics. The

second component of δ2, θ4(k− 1), shifts the marginal utility of making any calls linearly in

the number of calls previously made in the current month. This captures the idea that the

opportunity cost of using the videocalling technology is increasing due to the need to attend

to other work-related activities.

3.3 Generating a Calling Sequence

Each employee makes a sequence of calls, denoted by Ωt, during calling period t. Indexing

agent calls in increasing order by k starting at k = 0, the agent maximizes utility by either

making a video call to another worker in the network or choosing the outside option, which

gives a utility of zero. The utility of the k-th choice is then:

Uikt = max{0,max
j∈Nt

{Uijkt}}, (4)

where Uijkt is the utility of calling worker j, and Nt denotes the set of agents who have

adopted the technology at time t. The connection utility depends on k is two ways: first,

the connection utility may be shifted by decay parameters due to previous calls to other

workers with similar characteristics as worker j, and second, the error term in the utility of

each connection is drawn anew for each k choice in the sequence.

Each employee makes calls until the best marginal call has a negative utility. The length

of the sequence is then determined as:

K = {K ∈ N0 : max
j∈N

UijK > 0}, (5)
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where N0 is the set of non-negative integers.

The error term, εijk, helps rationalize why employees do not make the same number of

calls each period to the same set of receivers, and also helps explain why network benefits in-

crease as the network grows. The addition of a marginal adopter is important to the installed

base for two reasons: first, that new adopter may be of a different type than currently exists

in the network. This means there are new possibilities for connection synergies between

that employee and the installed base. Second, there is also one more draw from the set of

stochastic connection utilities. This extra draw is important because the calling sequence

that results from the optimization problem in Equation 4 is driven by order statistics: the

expected value of the maximum over random utilities is increasing in the number of potential

receivers. Therefore, the more employees there are in a network, the higher the number of

expected calls, even if they all share the same type. We note that this is a generic prop-

erty of random utility models, and is not specific to the distribution of the error term used

here. The marginal increase in the expected maximum also decreases as the network grows,

which we think is also an intuitive implication of network growth with stochastic connection

utilities.10

Our model presumes that the agents are myopic, in that they do not anticipate future

calls when making current calling choices. Ideally, given the intertemporal nature of calling

patterns in the data, one would model the call choice through a dynamic model. However,

we feel two considerations motivate the use of a myopic model. The first is that our calling

model is consistent with a world where agents do not know ahead of time what calls they will

need to make in the future. If agents in the firm make calls to resolve questions regarding

current workloads, it is plausible that they will not know who they may need to call in future

periods for different tasks. More to the point, given the pressures involved in working at an

10Our model is agnostic about the identity of agents from two subtypes who call each other. Our calling
model is consistent with the notion that two different agents repeatedly call each other, but is not as efficient
as an estimator which explicitly accounts for such autocorrelation in the error structure.
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international bank, it seems reasonable to assume that agents do not care about the specifics

of how many calls they will make in the future and to whom—they simply make calls out of

present necessity, without any strategic view of the future. This view of how the technology

is used in each calling period is not incompatible with a dynamic model of adoption—the

adoption model simply says that agents understand that the benefits of using the technology

accrue over time and grow with network size.

The second consideration is that if one wants to model the calling process as a fully

dynamic process, then it is necessary to take a stand on how frequently the error terms

are renewed.11 Our myopic model maintains that calling shocks are drawn anew after each

completed phone call. In a dynamic model, it is necessary to define how frequently these

updates take place to identify when a call could have happened but did not. If we take the

shortest interval in the data as the minimum time between successive calls, this defines an

upper bound on the number of possible calls in a calling period. One could then take this

model to the data by simulating the calling sequence up to the point where the agent no

longer has expected utility above zero of making future calls.

Philosophically, this approach is appealing from the perspective of allowing agents to be

forward-looking in both their technology adoption and use. However, it is significantly more

complex than the simple myopic model presented here, both in terms of modeling and in

ease of estimation. Furthermore, it is unclear how the empirical content of the more complex

model would differ significantly from the myopic model. Since the decay parameters in the

utility function are linear, any re-ordering of the calls in a given sequence obtains the same

overall level of utility, and thus the dynamics of this choice are unimportant. Both models

match the number and order of calls; since the decay parameters are estimated conditional

on making a call and the prior calling history, the decay parameters would be qualitatively

similar across both approaches. The number of calls would mechanically appear to be lower

11In principle, one would also impose a discount factor within the calling period.
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in the dynamic model; however, this would only imply a lower level of the intercept. Given

that the continuation value of making calls in the future contains more draws of the error

term, this adjustment in the intercept would simply counteract that additional utility. The

level of utility in the dynamic model would differ, but this is not critical since the model

only considers relative utility between choices. Therefore, though we recognize that a fully

dynamic model of calling would be preferable and more internally we consistent, we feel

that practically the loss from using a myopic calling model is not great from an economic

perspective.

3.4 Transitions Between States: Technology Adoption

The second component of our model is whether employees who are outside the network

adopt. At the beginning of each period, every employee who has not already adopted the

videocalling technology can do so. Adoption is instantaneous and the employee is able to

make calls immediately. We assume that it is not possible to divest the technology. This

seems reasonable, given that the option value of holding the technology is always positive in

our model, and we did not observe any divestitures in our data.

If an employee adopts, she can expect to use that technology to communicate with others

in the network, both today and in the future. The value function for adopters is:

Vi(st, si,t = 1) = E [U(Ωit) + τi − Fi + βVi(st+1; si,t+1 = 1)] . (6)

We can write the value function for each potential adopter as:

Vi(st, si,t = 0) =

max {E [U(Ωit) + τi − Fi + βVi(st+1; si,t+1 = 1)] , βE [Vi(st+1; si,t+1 = 0)]} , (7)

where expectations are taken with respect to that employee’s beliefs about both how the
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network is going to evolve in all future periods and the associated distribution of future

calling utilities. As in Farrell and Saloner (1985), the benefits of adopting the videocall-

ing technology consist of both the network benefit derived from the stream of expected

discounted calling utilities, E [U(Ωit) + βVi(st+1; si,t+1 = 1)], and the stand-alone benefits

(such as watching television), denoted by τi. Without loss of generality, we set τi = 0, since

the stand-alone benefits and adoption costs are not separately identified in the model.12 If

the employee does not adopt the technology, she receives the expected discounted continua-

tion value. The employee solves an optimal waiting problem, adopting the technology when

the benefits exceed the opportunity cost of adopting in a future period.

The cost of adopting the technology to the employee are the time spent setting it up and

learning how to use it. The firm bears all monetary costs. To reflect this installation cost,

we assume that adopters have to pay a one-time up-front fixed cost of Fi. Fi is drawn from

a distribution that is known to all employees. We assume that Fi is time-invariant and the

realized value is known only to the employee.

The employee has three dynamic considerations when evaluating how the network may

evolve. First, an employee with a large Fi has an incentive to wait for the installed base

st to grow and cover the net fixed costs. Second, employees may anticipate that their

adoption now may spur other employees to adopt in future periods. Farrell and Saloner

(1985) explain how this forward-looking behavior may help reduce the coordination failure.

Forward-looking behavior could just nudge inframarginal non-adopters towards adoption

without visible effect, or it could potentially generate an entire cascade of adoptions. Third,

employees receive option value from postponing adoption. Even though all employees have

12This is true even if τi is time-varying. The reason is that we can write the expected discounted stream of
stand-alone benefits as τ̄ =

∑∞
t=0E[τit]. Note, however, that this results in the same formulation as Equation

7 since the stand-alone benefits are a stochastic stream of benefits that accrue to the agent regardless of the
evolution of the state space or actions by the agent. Therefore, the stream of payoffs can be replaced by the
expected discounted value, and it is clear from Equation 7 that only the difference τi−Fi is identified at the
point that the agent adopts the technology.
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rational expectations about the expected evolution of the network, the presence of private

information in the fixed costs of joining the network implies variance in who actually joins in

any period. The resolution of this uncertainty over time creates the option value of delaying

adoption.13

3.5 Equilibrium and Network Evolution

Adoption in Equation 7 depends critically on each employee’s beliefs about how the network

is going to evolve in all future periods. As discussed above, we assume that players only

condition on the current state vector when making choices, which gives rise to a Markov

perfect Nash equilibrium in network evolution. Equilibrium obtains when all employees

have beliefs which ensure that no employee has an incentive to change their action or beliefs

in response. Without formally deriving any properties of the equilibria of our model, we

note that such models typically involve a large set of admissible equilibrium beliefs. As is

discussed in the next section, we do not need to solve for the equilibria of our model in order

to estimate its underlying structural primitives.

3.6 Heterogeneity in Calling Parameters

We note that we do not allow the coefficients on the utility parameters to vary in an un-

observable fashion across the population of agents. This is a very strong assumption, as

a priori it is reasonable to assume that the usefulness of the videocalling technology varies

within our 64 identifiable groups. The reason for this modeling choice is that this unobserved

heterogeneity produces a significant selection problem in the adoption equation. Agents with

a sufficiently advantageous combination of high calling marginal utilities and low adoption

costs will adopt the technology at any given point. This generates a selected sample, par-

ticularly with early adopters, and as a result the distribution of marginal calling utilities

13We present a two-period, two-agent model in Section A.1 of the appendix to illustrate analytically why
agents may find it optimal to wait as uncertainty is resolved. While our model has many agents and many
time periods, the intuition of the simple model extends to our more complex setting.
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in that sample is not representative of the distribution of calling utilities in the firm as a

whole. Without further assumptions, this implies that we are not able to disentangle the two

distributions when considering the adoption decision of agents. The typical solution to this

problem is to assume exclusion restrictions across the adoption and calling equations. Under

sufficient support conditions, one drives the adoption probabilities of a subgroup to one,

which then reveals the unconditional distribution of marginal utilities in their post-adoption

behavior. However, in our application such excluded variables are not apparent to us, and

as a result we have decided to model the calling utilities as homogenous in the population

of potential adopters. As a result, our results are biased toward overstating the value of the

videocalling to the firm as a whole, as the lowest-utility agents are precisely those that will

not have adopted the technology.

4 Estimation

A simulated method of moments approach, where we search for parameters that match the

simulated moments from the model to their empirical counterparts, is infeasible in our set-

ting. Such an approach requires solving the dynamic model of Section 3 for each iteration

of a nonlinear optimization program. Unfortunately, the computational burden of this ap-

proach is astronomical, as we would have to solve for the fixed point of an extremely large

system of nonlinear equations.

To circumvent this problem, we follow Bajari et al. (2007), who advocate a two-step

approach for estimating dynamic games. The intuition of their approach is that we can

let the employees in the firm solve that dynamic program for us, rather than calculating it

ourselves. Under the assumption that the employees optimize their adoption decision as in

Equation 7, we find parameters such that their observed behavior is optimal. In the first step,

we recover reduced-form policy functions which describe the equilibrium strategies followed

by each employee as a function of the state vector. In the second step, we project these
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functions onto our dynamic model of technology adoption choice and usage. In this manner,

we recover consistent estimates of the underlying parameters which govern the process of

network evolution and utilization.

There are two separate policy functions in the first stage. The first policy function

describes how the network will be used by employees who have adopted the technology.

We develop a “simulated sequence estimator” to estimate the calling utility parameters in

Equation 4 defining how employees use the videocalling technology. The second reduced-

form policy function describes the propensity to join the network, given the number and

composition of current users.

4.1 Comparison to BBL

It is worth comparing and contrasting our approach to the typical two-stage approach in

BBL. Like BBL, in a first stage we estimate reduced-form policy functions that arise from

a complicated dynamic programming problem to circumvent the need to solve for the equi-

librium of the model. In contrast with BBL, our approach does not require us to perturb

these estimated policy functions in a second stage, as all of the important parameters in

our model can be recovered using threshold conditions from the underlying dynamic model.

This difference arises since we do not have “dynamic” parameters in the payoff function, in

the sense of Ryan (2010), who estimates parameters such as investment costs. As a result,

our estimation approach is considerably more direct.

4.2 Simulated Sequence Estimator

Our goal is to estimate the utility calling parameters which govern how employees use the

network once they adopt the videocalling technology. For a given calling sequence, Ω, of

length K, the simulated sequence estimator splits the calling sequence problem into two
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parts by exploiting the following identity:

Pr(Ω, K) = Pr(Ω|K)Pr(K) (8)

lnPr(Ω, K) = lnPr(Ω|K) + lnPr(K). (9)

The simulated sequence estimator first estimates the composition of the call and then es-

timates the parameters which determine the number of calls.14 This separation greatly

simplifies our estimation, as connection utility parameters do not depend on parameters

governing the number of calls an agent makes.

4.2.1 Connection Utility Parameters

The assumption that the error term in Equation 2 is distributed type-I extreme value gen-

erates a logit probability of observing a call from employee i to employee j as the k-th call

of a sequence in period t:

Pr(Ωijkt; st, θ2, θ3) =
exp(Ūijk(θ2, θ3))∑

j′∈st exp(Ūij′k(θ2, θ3))
, (10)

where Ūijk = Uijk − εijk. The outside option does not enter the probability of a call as it

usually does in discrete choice models, as we are conditioning on the length of the sequence.

Computationally, we find parameters to maximize the probability of observing each call in

the sequence in that order. We use the order of calls within the sequence to identify the

parameters governing the taste for diversity δ2, as the conditional probability of each call in

the sequence depends on the calls made before it. Specifically, the relative frequency with

which we observe two calls to the same subtype in a given sequence identifies δ2 for that

subtype. We note that these shifters only enter into the connection utility of other agents

14In earlier versions of this paper, we discussed Monte Carlo evidence that suggested this simulated se-
quence estimator performs well in small samples, and that joint estimation is badly biased in small samples.
These results are available upon request from the authors.
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with those characteristics. For example, if a worker has called Administration once in the

past, this shifts the utility of all other agents with the Administration characteristic by the

relevant shifter while leaving all the other agents with different functions unchanged. We

apply this estimator to all of the video calls made by employees in this firm during the last

three months of our data.

In the first step of our estimator we maximize the following likelihood function:

max
{θ2,θ3}

T∑
t=1

Nt∑
i=1

Kit∑
k=1

lnPr(Ωijkt; st, θ2, θ3), (11)

where t indexes time, Nt is the number of agents in the network, st is the state of network,

Kit is number of calls in sequence Ωit by worker i. We search for the parameters governing

the connection utilities in order to maximize the predicted probabilities of the observed

sequences by each agent in the network at each point in time.

4.2.2 Sequence Length Parameters

The second step in the simulated sequence estimator recovers the parameters which govern

the length of the sequences. To solve for these parameters, we use a simulated method

of moments approach. We use the calling parameters we found in step one to generate U

independent calling sequences by repeatedly simulating the process defined in Equation 4

for each employee in each month for the installed base at any time. We then compute the

expected sequence length by averaging over these simulated sequences:

K̂it(st; θ1, θ4, ξt) =
1

U

U∑
u=1

|Ωitu(st; θ1, θ4, ξt)| , (12)
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where |Ωitu(st; θ1, θ4, ξt)| is the length of the u-th simulated calling sequence for employee i

in period t. We then perform the following minimization program:

min
{θ1,θ4,ξ}

T∑
t=1

Nt∑
i=1

(
K̂it(st; θ1, θ4, ξt)− |Ωit|

)
. (13)

We search for parameters such that we match the length of observed calling sequences against

the sequence lengths predicted by the process in Equation 4.

4.2.3 Correlated Unobservables

We note that our approach allows for the estimation of correlated unobservables in usage

utility through the ξt shocks. These shocks can be consistently recovered from panel variation

in the average number of calls made by the network in different periods, controlling for the

observable characteristics of the network. Our baseline specification allows for time-specific

shocks, although we also consider more disaggregated shocks which shift the overall level of

calling utility by function, region, and title. We use the estimates of these shocks to control

for correlated unobservables in the adoption equation, which we in the next section.

However, it is important to also mention that there are other potential ways of accounted

for correlated shocks and unobserved heterogeneity. For example, the more tractable nature

of their setting means that Keane and Wolpin (1997); Ellickson and Misra (2010); Hartmann

and Nair (2010) control directly for unobserved heterogeneity is in the error term of agent

usage decisions which may be correlated with the normally distributed unobserved fixed cost

component.

4.3 Adoption Policy and the Evolution of the Network

The second policy function that we estimate governs the choice of videocalling technology

adoption. We focus our attention on estimating the proportion of each subtype that adopts

the technology in each period, as this is sufficient for characterizing both the evolution of
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the network and the probability of any given agent adopting in a given period. In general,

this policy is a function of the current state of the network, the lagged state of the network,

and the time-specific unobserved shock to the network utility. The current state influences

adoption as the utility of the technology depends on the size and composition of the current

network. Lagged adoption controls for the selected sample of potential adopters after the

first period, since our model implies that agents who have not adopted previously will have

higher fixed costs of adoption than those who have. Combined with the fact that the value

of adopting the network is always increasing in our model, the value of the network in the

last period is greater than any periods previous to that. Therefore, in order to account for

the selection in the distribution of fixed adoption costs, it is sufficient to only keep track

of how valuable the network was in the last period. The reduced form adoption policy is

also a function of the shock to the network utility, as agents are more likely to adopt the

technology when the utility of adoption is particularly favorable. Ideally, one would estimate

the policy function using a nonparametric estimator of those three variables. However, due

to data constraints we restrict our policy functions to belong to a parametric family. We

estimate the proportion of adopters of employee type m as a function of current and lagged

state variables:

Proportion(adoptm = 1; st, st−1, λ) = λ′1xm + λ′2(xm ⊗ νt) + λ′3(xm ⊗ νt−1) + λ4ξt, (14)

where xm is defined in Equation 1, νt is a 12× 1 vector enumerating the counts of employee

characteristics currently present in the installed base, the operator ⊗ represents element-wise

multiplication, and λ4ξt captures the effect of the correlated unobservable in period t calling

utility described above.

The functional form of this policy function is guided by our model of adoption. First, λ1

allows for the possibility that different employee groups in the firm have different propensities
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to join the network. Second, we have assumed that the fixed cost of adoption is employee-

specific private information that is time-invariant. Since expected calling utility is weakly

increasing in the size of the network, this assumption implies that the proportion of people

within an employee type who adopt is nondecreasing in the size of the network. Therefore,

we restrict the coefficients on these state variables, λ2, to be positive. Another way of stating

this restriction is that the probability of adoption by a given worker should not decrease if

there is an exogenous expansion of the network’s installed base.

4.4 Selection in the Adoption Policy Function

We include lagged state variables to correct for the fact that the distribution of adoption costs

changes over time due to selection. The technology adoption process described in Equation

7 produces a selected sample of potential adopters after the first period. The reason is that

lowest-cost adopters choose the technology in the first period, removing the lower left tail

of the distribution of adoption costs. Furthermore, since the value of the network is non-

decreasing over time, due to the positive benefits of more users combined with the assumption

that no one can ever discard the technology, the threshold value at which users adopt the

technology is also non-decreasing in time. This implies that the threshold for adoption in

the last period is a sufficient statistic for capturing the degree of truncation in the current

period’s distribution of fixed costs. In the reduced form, we capture this effect by including

one-month lagged state variables and restricting the coefficients on these state variables, λ3,

to be negative.15

The inclusion of λ4ξt captures the role of correlated shocks in network utility in the

15To illustrate this point further, suppose we exogenously placed two observably identical agents each into
one of two networks, where one network has an initially larger installed base than the other. Suppose that
neither agent adopts the technology in the first period, and that both networks grow to the same size in the
second period. The probability of seeing the agent in the initially smaller network adopt is now higher than
the agent who did not adopt in the initially larger network, as the adoption benefits in that network were
larger, and therefore the agent has revealed themselves to be of at least as high a type as the agent who
did not adopt in the small network. This intuition translates into our restriction on the sign of λ3 in the
reduced-form adoption policy function.

29



adoption policy function. In principle, one could consistently recover this function nonpara-

metrically; however, limited data concerns lead us to estimate a simple level shifter.16

4.5 Estimating Net Fixed Costs of Adoption

Once we have estimated the policy functions governing adoption and use of the videocalling

technology, it is possible to estimate the net fixed costs of adoption. Rearranging Equation

7, the necessary and sufficient condition for adoption at time t is:

Fi ≤ E [U(Ωit) + β (Vi(st+1; si,t+1 = 1)− Vi(st+1; si,t+1 = 0))] = F̄t, (15)

where F̄t denotes the threshold at which a worker is indifferent to adopting the technology at

time t. We assume that Fi is normally distributed with mean µ and variance σ2, with associ-

ated cumulative distribution function Φ(x;µ, σ2). Therefore, the probability that employee

has a draw of Fi low enough to induce adoption is:

Pr(adoptit) = Φ
(
E [U(Ωit) + β (Vi(st+1; si,t+1 = 1)− Vi(st+1; si,t+1 = 0))] |Fi ≥ F̄t−1;µ, σ

2
)
.

(16)

With exception of the mean and variance parameters of Φ(·), the terms in Equation 16 are

either known or computable. We can calculate Pr(adoptit), the empirical probability of

adoption, from Equation 14. The first set of policy functions gives an estimate of U(Ωit),

the expected calling utility, for any configuration of the network. The second set of policy

functions describe how that network evolves over time as a function of current and lagged

state variables. In combination, these policy functions allow us to simulate the evolution of

the network and compute EVi(st+1; si,t+1 = 1), the expected present discounted utility of

joining the network in this period.

16We have experimented with several different specifications, including ones where the shock and lagged
adoption variables are interacted. Unfortunately, data limitations preclude the use of more complex functions
of the shock and the state variable. In all specifications we tested, the estimated coefficient on the shock
was statistically insignificant.
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Computing the expected value of not joining the network in this period is a little more

involved. In principle, one needs to solve out an infinite series of nested dynamic program-

ming problems, starting at a time infinitely far in the future and working backward, solving

Equation 7 at each point in time. However, suppose there is a month T at which the network

has stopped growing. We can compute EVi(sT ) because adoption depends on whether or

not the expected benefits of joining the network exceed Fi. When the network does not grow

then employees have no reason to delay adoption until a future period; an employee either

adopts now or never adopts. This terminal value then allows us to solve the value function

backwards to the current time period, approximating EVi(st). This seems reasonable be-

cause most uncertainty about the evolution of the system has been resolved by period 10;

we use this time horizon in computing the continuation value of not joining in the current

period.

For t > 0, the population of potential adopters has a distribution of adoption costs that

is truncated below by the F̄t−1. To emphasize this, we write the probability in Equation

16 as being conditional on the fixed cost draw for worker i being at least as large as the

threshold in the previous period, F̄t−1. As discussed above, this is the reason why we estimate

the reduced-form adoption policy function as a function of both current and lagged state

variables.

To recover the parameters underlying the distributions of net fixed costs, we estimate

Equation 16 by forming the following moment:

min
{µ,σ2}

∑
M

∑
T

∑
i

(Pr(adoptitm; st, st−1)− Φ
(
·;µm, σ2

m

)
), (17)

where Φ(·) is the conditional probability defined in Equation 16. This is the probability that

a given agent of subtype m adopts the technology at time t, given the state of the network in

this period and last. We have written the adoption probability as a function of current and
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lagged state variables to emphasize the fact that the distribution of fixed costs is truncated

after the first period. We also index µm and σ2
m by m to highlight that we estimate the fixed

cost distributions separately for each type of employee in the firm.

4.6 Multiple Equilibria

A central challenge for the network effects literature is dealing with multiple equilibria. One

advantage of our empirical approach is that we recover the equilibrium actually played in

the data. Furthermore since employees make choices within a single network, it follows that

only one equilibrium is being played. To our knowledge, this is unique among applications

of the BBL framework, as we do not have to confront the possibility of multiple equilibria

across markets, as in Ryan (2010).

4.7 Identification

We have two sets of parameters to identify in the model: calling utilities and the distributions

of adoption fixed costs. The calling utility parameters in Equation 10 are identified in the

cross-section of calls made by agents in a single calling period. These parameters do not

depend on the fixed costs of adopting the technology, and can be considered separately. A

necessary and sufficient condition for the identification of the connection utilities in Equation

11 is that we observe connections between all different types during a sample period. The

corresponding condition for the decay parameters in Equation 13 is that we observe all

possible two-call sequences in the data. Both of these conditions are satisfied in our data,

as we have a fully saturated call network in the later months of the sample.

Identification of the distributions of fixed cost parameters in Equation 16 follows directly

from timing assumptions in the model. We assume that agents pay a setup cost to adopt

the technology and then receive a stand-alone use from the technology in perpetuity. As

discussed above, these two parameters may be combined into a single net adoption cost

parameter at the time of adoption. Given the adoption policy function and calling utilities,
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we can calculate the expected value of joining the network in any period. A necessary and

sufficient condition for identifying the mean and variance of the normally-distributed fixed

costs of adoption is that for each subtype the econometrician observes the proportion of

agents who adopt for two different states of the network. This condition is satisfied in our

sample by the first two periods.

5 Results

This section reports estimates for parameters for the utility from making calls and the

distribution of the net fixed costs of adoption that govern the transition between states. We

first discuss the fits of the adoption policy function.

5.1 Adoption Policy Function

Table 7 reports statistics for the fit of our first stage regressions for the adoption policy

function. Column (1) reports the fit statistics and specification of the regression where we

assume that agents behave identically. In this specification there are only four parameters:

the total size of the network, the total lagged size of the network and respective squared

terms. Recall that we restrict the coefficients on the current state variables to be positive

and the coefficients on the lagged variables to be negative, as discussed in Section 4.4 above.

This model fits the data fairly poorly, with an R-squared of 0.16. Column (2) reports the fit

statistics and specification when we allow adoption patterns to vary across subtypes. This

specification results in a dramatically improved fit, with an R-squared of over 0.98.17

For robustness purposes, we also examined several specifications of the adoption policy

function where we allowed for the network-wide time-specific aggregate utility shock to in-

fluence adoption behavior. In the simplest specification, we added xit as a level shifter to

17We do not report standard errors, as the asymptotic distribution for inequality-constrained estimators
with many parameters on the boundary is a frontier area of research. We note that this will bias the standard
errors on the distributions of adoption costs downward, as they are functions of the adoption policy function.
See Andrews and Guggenberger (2009) for a discussion of possible solutions in the case of one parameter on
the boundary, and why intuitive solutions such as the bootstrap are inconsistent.
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the second specification. The estimated coefficient was -0.0041, with a standard error of

0.0030, which rendered the estimated coefficient statistically insignificant from zero at the

five percent level. We also experimented with more complex specifications, such as allowing

the shock to interact with lagged adoption variables in order to allow the effect of the shock

to vary with the size of the extant network, but these models did not give statistically signif-

icant results. We also estimated the policy function with time-specific dummies directly. An

F-test on the resulting coefficients failed to reject the hypothesis that the coefficients were

jointly zero. In sum, the empirical evidence suggests that correlated unobservables had a

weak effect on the adoption behavior of agents. Economically, this also makes sense, as the

adoption of a durable good is a long-run decision and the period-to-period variance in the

usage of the technology is relatively small.

We conclude that our model does a good job of fitting the evolution of adopters over time,

and that accounting for heterogeneity across subtypes results in a much improved fit over a

homogenous adoption model. In order to disentangle whether this is driven by heterogeneity

in usage benefit or adoption cost, we next turn to the results of our calling model.

5.2 Call Utilities

We use observations on 463,806 calls from February 2001 to August 2004 to estimate the

calling utility parameters in Equation 2. Tables 8 through 11 display the results.

Table 8 illustrates that generally employees prefer to call other employees within their

region. The only exception is UK-based employees, who prefer to call other employees from

Europe. Given that this within-region propensity is larger for employees in the US and Asia,

we speculate that the propensity to call within regions could be influenced by time zones.

Employees’ work hours in the US and Asia barely overlap, but the work hours of British and

European employees do.

Table 9 illustrates that employees prefer to call employees in similar functions to them-
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selves. Connections with administration are also valued relatively highly. It is interesting

to note that the lowest connection utility is between trading and research, which may re-

flect institutional boundaries between these two components of the bank due to potential

for conflicts of interest. The highest connection utility is between sales to sales, followed by

sales to adminstration. Trading tends to value the network the lowest, and the other groups

also tend to value traders on the lower end of connection utilities. This may be due to the

special nature of the trading desk, and its orientation towards external markets rather than

other operations within the bank.

Most of the theoretical literature on hierarchies and firm organization pose abstract

models of why the need to process information may lead a firm to organize itself into a

hierarchy. See for example Radner (1992), Radner (1993), Van Zandt (1999) and Garicano

(2000). These theories predict that communication in a firm will be predominantly directed

up and down a hierarchy. By contrast, our results on calling preferences across the hierarchy

in Section 10 suggest a more nuanced pattern of communication. Managing Directors are

most likely to call each other and less likely to call employees further down the ladder of

command. Other employees appear to have similar preferences for calling other employees in

similar positions in the hierarchy or one above them (two steps above them in the case of VPs

and managing directors). However, they are less likely to call employees either lower in the

hierarchy than they are or in most cases step removed above them in the hierarchy. These

results augur against the technology being used successfully for monitoring, but instead

suggest that it is being used to exchange information about tasks assigned to one layer

of the hierarchy or occasionally gathering information from a superior one rung up in the

hierarchy. Across groups, Vice Presidents have the lowest average utility from using the

network, followed by Managers. The lowest and highest tiers of the organization both have

higher average utility from using the network than the tiers in the middle.

One of the auxiliary aims of this paper is to provide some empirical evidence on com-
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munication patterns within a firm. Lack of data has meant that most of the literature on

hierarchies and firm organization is theoretical. The estimates presented in tables 10 through

11 have an advantage over existing empirical research on the organization of firms such as

Garicano and Hubbard (2007) and Rajan and Wulf (2006), namely that we study and model

actual communication flows. This means that we are able to provide evidence on whether

hierarchies are fulfilling the communications role assigned to them by theory. The obvious

caveat is that to get this level of detail in data (like Baker et al. (1994)), we must study the

internal communications using one technology in one firm.

The results for the parameter θ̂3, which captures the role of the dynamic decay rates, are

displayed in Table 11. The taste for diversity is strong.18 The decay rates are large enough to

have a significant effect at the margin of calling the same group twice in a row, especially with

respect to employees at the associate level, employees in research, and employees in Asia.

We speculate that this reflects the fact that these employees are more on the periphery of

the firm and that their roles are more to provide one-time information than engaging in

consistent exchange of information.

To assess the overall fit of our model, we have tabulated the predicted number of calls

under our estimated model against their empirical counterparts in Table 12. In the interest

of clarity, instead of tabulating all possible call proportions for each subtype we break down

the calls by region, function, and title. As the table shows, our model does an exceptionally

good job of matching the average number of calls between aggregated types. Standard

errors on the predictions were calculated using a bootstrap and are generally tight. The

uncertainty of the predicted fits is small, and for all groups the difference in the two quantities

is not statistically significant. We also ran a likelihood ratio test for the hypothesis that all

parameters are jointly equal to zero, and found that it was overwhelmingly rejected at the

18The likelihood ratio test for the hypothesis that the decay rates are all jointly zero is overwhelming
rejected at the 0.001 level.
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0.001 level.

5.3 Net Fixed Costs of Adoption

Tables 13 through 16 display our fixed costs estimates. The costs of adoption vary a great

deal across the hierarchy and function in the four regions. Generally, fixed costs decline the

higher an employee is in the hierarchy. However, in Europe managing directors actually had

the highest net fixed costs of adoption. This may be because the managing directors with

the greatest operational responsibilities tended to be located in Europe and as a result the

value of their time was high. Generally, employees in sales, trading and research in the US

and Asia had the highest net fixed costs of adoption. Administrators had lower net costs

of adoption. This may be because such administrators were in peripheral positions and

therefore had lower time costs.

Comparing these results with the results for calling choices in Tables 8 through 10, shows

that it is not the case that the employees whom most employees preferred to call had the

lowest net fixed costs of adoption. Instead, in the case of Managing Directors of Research

in Europe, callers received high utilities from calling them, but they also had some of the

relatively highest fixed adoption costs.19

The scale of the fixed costs is relatively small for most users. In Table 11, we compute

the net present value for adopters under the actual diffusion policy used by the firm. We

find that the first quartile had a net value of 25, which includes the fixed cost component,

compared to average fixed costs which ranged from 0 to 2.5 for most subtypes. Therefore,

the fixed costs reduced the level of utility associated with the network by roughly ten to

fifteen percent for users at the first quartile of utility. However, for many users, the draw on

fixed cost is negative, implying that they would have adopted the technology even without

any other users in order to utilize its stand-alone benefits.

19These results on decay rates rely on the assumption that the appropriate calling period is a calendar
month. We have contrasted the results obtained from using a calendar month with the results of using
quarters, weeks, or individual days. We found no evidence that our choice of period influenced our results.
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The standard errors on the fixed costs of adoption understate the variance of these

estimates. These estimates depend on the adoption policy function, and therefore are less

precisely estimated than indicated here. However, for the reasons discussed above, we treat

the adoption policy function as perfectly known, and do not correct the second-stage errors.

5.4 Sensitivity of Results to the Discount Factor

To test the sensitivity of our results with respect to our choice of the discount factor, we

estimated the model with the discount factor ranging from 0 to 0.992 (roughly corresponding

to a yearly discount factor of 0.9). The results for one subtype is given in Table 1. Upon

first review, the results are surprising: for most of the range of the discount factor, the net

effect on the estimated fixed costs is minimal. This is due to two countervailing forces in

the model. The first is that, holding the optimal period of adoption constant for a given

draw of Fi, increasing the discount factor increases the value of adoption. This effect pushes

the distribution of fixed costs upward, since the adoption rate holds steady as the value of

adoption rises, which implies that the fixed costs must be increasing, as well. On the other

hand, increasing the value function increases the value of waiting until the future—this is

most easily seen in the case where β = 0, where there is no value in waiting for the future.

This has the effect of increasing the opportunity cost of adopting now, which reduces the

expected value of current adoption. This results in a decrease in the distribution of fixed

costs. The results in Table 1 show that these two forces roughly counterbalance each other

over a wide the range of the discount factor, up to 0.8 or so.

After that point, the agents are all sufficiently patient that there are significant opportu-

nity costs to adopting right away. In this range, for this subtype, high adoption rates imply

that the average fixed costs are negative; that is, agents highly value the use of the network

for its stand-alone uses. It could be also that these agents are just enthusiastic about the

idea of having a new technology at their disposal. In any case, increasing the discount factor
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Table 1: Fixed Costs by Discount Rate

Discount Factor (β) Fixed Cost Mean Fixed Cost Variance

0.0 -403.57 7.16E7
0.1 -415.98 7.10E7
0.2 -381.76 7.16E7
0.3 -395.81 7.02E7
0.4 -393.44 7.15E7
0.5 -372.47 7.03E7
0.6 -355.19 6.67E7
0.7 -340.30 6.17E7
0.8 -206.02 3.47E7
0.9 -516.36 5.33E7
0.992 -2102.11 6.24E7

towards one increases that opportunity cost, which means the agents must be taking draws

from an increasingly favorable (negative) cost distribution.

Economically, it is hard to say what the right discount factor should be. However, it is

worth noting that the policy functions for adoption are estimated directly from the data;

irrespective of the discount factor we impose on the model, the counterfactual distributions of

network evolutions under different seeding policies will remain the same. This is one benefit

of using perturbations to the state space, as opposed to counterfactuals where one had to

re-solve the model. Therefore, the primary role of the discount factor is to weigh the relative

size of adoption costs against the usage utilities. Part of the fundamental identification

problem of the discount factor comes into play here—it is impossible to distinguish agents

with high fixed costs and discount factors close to one from agents with low fixed costs

and low discount factors. Given that our results in the counterfactual are denominated in

utility terms, we have no economic criterion to judge the discount factor against in order to

determine if it is reasonable. For these reasons, we conclude that our primary findings are

not sensitive to the discount factor, in the sense that our results do not depend on it in a

direct fashion.
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6 Policy Experiments

6.1 Motivation

Carr (2003) documents that the typical company spends 3.7 percent of its revenues on IT. A

challenge for managers is to ensure that their employees actually use the firm’s technology

investment to its full advantage. Therefore, a practical use of any model of IT technology

adoption when simulating counterfactuals is examining different policies a firm or policy-

maker might employ to encourage the spread and use of the new IT technology.

One noted limitation of our approach is that any policy experiments are limited to per-

turbations of the state space. This means that we cannot study policies or counterfactuals

that change the underlying primitives of the model and thus require re-solving for the equi-

librium policy functions. The reason is that we cannot solve for even one of the potential

equilibria that agents might play in counterfactual policy regimes, such as would result from

giving workers direct subsidies to alleviate their adoption costs. However, it is possible to

conduct counterfactual exercises that only affect the state space, as our policy functions are

consistent descriptions of equilibrium behavior for all possible states of the network. The

key assumption that we make in the simulations below is that the same equilibrium is played

in these counterfactuals as was played in the original network evolution. Fortunately, our

setting is well-suited to the limitations of a BBL approach, in that perturbations of the initial

state space are of crucial interest to firms and policy-makers who want to seed a network

optimally.

As discussed by Liebowitz and Margolis (1994), network owners can prevent coordination

failure if they induce enough initial participation. In the presence of network effects which

are heterogeneous in interactions, however, the question of which participants should be

induced to adopt the technology initially is more complex. It is not clear whether a network

operator should focus inducements on users who are unlikely to adopt the network and whose
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adoption therefore may most shift expectations of its evolution, or whether the network

operator should target users who have the largest network benefits for others. It is also not

clear whether the network operator should strive to have diversity amongst its initial users

or whether it should target a specific group.

Therefore, we evaluate several permutations of two possible “rule of thumb” technology

management policies: a targeted policy where agents with some characteristics in common

are seeded into the network, and a uniform policy where a few employees from every subtype

join the network. These policies assume that the firm will install the physical hardware

and provide whatever training is necessary to overcome the net fixed costs of adoption for a

selected set of employees under each policy.

The first policy we consider is where the firm picks one subtype to adopt/test the technol-

ogy first. This resembles the way that many firms roll out new IT technologies. IT managers

usually pick this initial seed from employees who are similar by virtue of their function and

location. Therefore we conduct a policy experiment where the starting network is seeded

with all 112 research associates located in the US. This group constitutes the single largest

subtype within the firm, and may be considered a natural place to seed the network, as

employees in the US generally have high adoption costs.

The second policy takes a diffuse approach to adoption. Here the firm spreads 112

installations across the entire set of subtypes. The idea here is that diversity increases the

value of the network, and that seeding the initial network with a broad range of types may

most efficiently jump-start the growth of the network. Given there are 64 subtypes for 112

installations, there will be 16 groups which start with only one employee. We choose these

groups to be the ones located in the US. Since adoption was decentralized in our context, we

interpret “adoption” in our data as the equivalent of the more general idea of “activation,”

the active usage of a new technology by an employee.

We should note though, that while the counterfactuals are of managerial interest they
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do involve perturbations of the state space to states that were not visited in the data.

Consequently, when assuming the policy functions apply in these previously unvisited states

we are relying heavily on the parametric assumptions implied in our estimating equations.

6.2 Implementation

In each counterfactual simulation, we start by seeding the initial network in accordance

with the desired policy. Starting at time zero, the network is then simulated forward for

thirty-six months. This amount of time is sufficient to allow the network to achieve a steady

state where it is no longer growing. Also, the discounted present value of utility of months

more than 36 periods from the first period is very small for the discount rate of 0.9 that we

use. To simulate the evolution of the network, we draw uniform random variables for each

potential adopter, and check these against each employee’s corresponding subtype-specific

policy function. If the policy function indicates that the employee will join the network, we

draw a sunk entry cost from the associated truncated normal distribution in Equation 16.

After determining the evolution of the network in that period, we then calculate the sum of

expected utilities for all employees in the network. This calculation is simplified by the fact

that it is possible to do this on a subtype basis, rather than employee by employee. The

results of the two policy experiments and a baseline comparison against the empty starting

network are shown in Table 17. Figures 6, 7 and 8 contrast the results graphically for the

total adoption, calls and average utility. We compute standard errors by simulating the

outcomes for each counterfactual 100 times.20

Figure 6 plots the size of the network over time. Adoption is initially very rapid before

tapering off. The plot reveals that the targeted policy results in a significantly larger long-run

network size, with a slightly smaller network under the uniform policy and a much smaller

network under the baseline case. The difference between the uniform and the targeted

20As noted above, we do not account for statistical error in the adoption policy function. The standard
errors capture variation in outcomes due to statistical error the estimated calling parameters and structural
errors in the calling functions.
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Figure 6: Counterfactual Adoption
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Figure 7: Counterfactual Calls
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Figure 8: Counterfactual Utility
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policy is interesting because they both show rapid initial gains, but the targeted policy

has significantly higher adoption in the few periods after the initial seeding, and that this

difference persists in the long run. Both the targeted and uniform policy show a slight S-

shape in the adoption rate. This is the classical shape of diffusion, as initial adopters cause a

cascade of secondary adoption in later periods. Over time, the remaining potential adopters

are increasingly a selected sample, and the adoption rate eventually tails off to zero after the

fifth month in both policies. This is contrast to the uncoordinated policy, which has much

slower growth that continues until the tenth month. This graphical evidence suggests that

a uniform policy may not be as beneficial as the firm would hope for.

A similar pattern is reflected in Figure 7, which shows the number of calls per period

in the three simulations. The dashed lines indicate the 90 percent confidence intervals for

each series. While the targeted and uniform policies look similar in the first few periods, the

targeted policy dominates the uniform policy, driven by the higher adoption rates. The plot
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of per-period utilities, shown in Figure 8, also illustrates this general pattern.

The first line of Table 17 compares the average number of monthly phone calls per user

across the three policies. Across each specification, the undiscounted average number of calls

in each month is roughly similar, with slightly higher amounts in the baseline and targeted

policy than in the uniform policy. As a check on the model, it is reassuring that the average

number of calls in the baseline case (7.14) compares favorably to the true monthly average

in the data (7.00).

The next line compares the maximal size of the network across the three policies. The

baseline case is very close to the actual number of adopters used in our analysis (1,300).

The maximum number of adopters is considerably higher in the targeted case than in the

baseline or uniform cases. This occurs because other employees find it valuable when this

group adopts, but the group’s high net fixed costs of adoption prevent them from adopting

in the baseline case. Consequently, targeting this group has a large effect on employees’

adoption both directly and because it changes expectations about how the network will

evolve. The results for the uniform policy suggest that a broad-based adoption process may

be inefficient, since it does not target employees with high net fixed costs of adoption and

consequently does not alter expectations of how the network will evolve.

We calculate the expected discounted monthly utility for each subtype across the three

policies. Both the targeted and uniform policies result in higher levels of utility across various

quartiles of the distribution of utilities than the baseline case. This is due to the fact that

there are more adopters in both of these networks, and therefore there are more opportunities

for positive utility network interactions. The utility for employees which results from the

targeted policy is higher than the baseline case, and moderately higher than the uniform

case. Targeting increases present discounted utility by over 11% (discounted at β = 0.9)

for the median type relative to the baseline. This increase is also reflected across the other

quartiles of the utility distribution. If the objectives of the firm are positively correlated
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with the utility of the employees, then this policy results in a significantly positive effect

from the firm’s perspective. In addition the utility gains appear to shift the utilities equally

across subtypes in the firm, even in the targeted case. This illustrates that in this setting,

the utility benefits of changing the number of people in the network by targeting those with

high net fixed costs outweigh trying to encourage diversity in the network.

Figure 8 shows an interesting feature of our model. Initially, the per-period utility is high,

as the earliest adopters of the network have a combination of the highest connection utilities

and low adoption costs. This large amount of surplus decreases in subsequent periods,

particularly in the targeted policy, as more marginal adopters pay fixed costs to join the

network. The combination of these two factors leads to the marginal per-period utility

decreasing over a short time frame in the early stages of the network.

The last two panels in the table illustrate inter-temporal differences in adoption rates

and network usage. We assume that, everything else being equal, the firm would prefer to

have a given number of phone calls or employees in the network sooner rather than later.

We report the discounted sums of users who have adopted the network in a month and the

number of calls they have made, using two contrasting potential monthly discount rates for

the firm. The differences are quite stark: the uniform policy makes marginal improvements

over the baseline case, while the targeted policy dominates along both dimensions. When

β = 0.9, user counts in the targeted policy increased by 65 percent and calls increased by

more than 79 percent over the baseline case. These gains are significant even compared to

the uniform policy; the targeted policy had 11 percent more adopters and 13.7 percent more

calls. The differences are similar under the discount rate of β = 0.99.

In an investment bank where the opportunity cost of time is high, these results suggest

that there are significant gains to be made from targeting the right group of agents in the early

stages of a network technology diffusion. Our results also highlight that the policymaker has

to carefully weigh the tradeoffs between adoption costs and network benefits, as our uniform
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policy results demonstrate that the overall network utility could be lower than the baseline

case when non-discriminatory policies are used. We have assumed throughout this discussion

that it is costless to the firm, although not the employee, to place employees in the installed

base in the first period, and that such policies can be accomplished by fiat without any

compensation towards the employees concerned. If employees had to be compensated, the

targeted policy might prove more expensive to the firm relative to more diffuse policies

merely because of the higher net fixed costs involved in the targeted policy.

These results suggest several other policy experiments. One natural question to ask is

the extend to which the specific subtype influences long-run network evolution and use. To

answer this, we ran several counterfactuals where we seeded different groups systematically.

We took all subtypes with 20 or more workers and seeded 20 of that type in the initial

network. The results of this experiment are reported in Table 2. For clarity, we focus on

network utility as the outcome of interest. As the results show, the highest network utility

is achieved by seeding 20 Director-level workers in Sales in the US. The difference across

seeding subtypes is substantial; the best utility is a little under two-thirds better than the

worst possible seeding. Interestingly, Sales Directors in the US are high value adoptees to

the rest of the network, as evidenced by the high connection utilities for calling a Director,

yet these agents have relative low fixed costs. The key is that this subtype induces large

amounts of adoption relative to other subtypes, and this drives their high utility values.

A second interesting topic to explore is the role the number of agents seeded into the

network has on long-run network growth. First, we varied the number of initial adopters

from zero to 100, uniformly distributing the seeded workers throughout the firm. The utilities

of the resulting networks are presented in Table 3. Overall network utility grows with the

number of workers initially seeded into the network, but the growth is rather low. At 65

initial adopters every subtype has at least one seeded adopter, which results in an increase

in utility over the baseline of over 100,000 utils, or over 40 percent. This is a significant
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Table 2: Network Utilities One Year After Seeding 20 Workers
Region Title Function Network Utility

Asia Vice President Administration 266,849.80
Asia Vice President Research 257,080.72
Asia Vice President Sales 253,001.53
Asia Director Administration 309,967.69
Asia Director Research 298,555.90
Asia Director Sales 299,426.68
Asia Managing Director Administration 273,550.49
Asia Managing Director Research 252,785.45
Asia Managing Director Sales 254,716.33
United Kingdom Associate Research 260,160.79
United Kingdom Vice President Administration 254,416.56
United Kingdom Vice President Research 250,206.44
United Kingdom Vice President Sales 250,113.94
United Kingdom Vice President Trading 275,821.72
United Kingdom Director Administration 309,138.89
United Kingdom Director Research 343,376.38
United Kingdom Director Sales 340,110.65
United Kingdom Director Trading 321,198.94
United Kingdom Managing Director Administration 253,721.39
United Kingdom Managing Director Research 250,060.15
United Kingdom Managing Director Sales 250,212.80
United Kingdom Managing Director Trading 275,887.08
Europe Vice President Research 250,191.21
Europe Director Administration 299,534.88
Europe Director Research 299,965.80
Europe Director Sales 299,618.54
Europe Managing Director Administration 253,847.37
Europe Managing Director Research 249,561.62
USA Associate Administration 345,669.57
USA Associate Research 344,246.34
USA Associate Sales 341,537.41
USA Associate Trading 351,176.05
USA Vice President Administration 345,530.20
USA Vice President Research 334,717.58
USA Vice President Sales 348,860.19
USA Director Administration 366,138.38
USA Director Research 370,563.93
USA Director Sales 399,592.45
USA Managing Director Administration 333,723.75
USA Managing Director Research 339,190.16
USA Managing Director Sales 347,054.78
USA Managing Director Trading 346,596.58
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increase, although one would suspect that targeting a particular group may increase that

gain due to the fact that some subtypes are inherently more valuable to potential adopters

than others.

To evaluate this hypothesis, we ran a second seeding experiment where we put increasing

numbers of the most valuable subtype, Directors of Sales in the US, in the network, as seen in

Table 4. The results are dramatically larger—the utility achieved with a uniform seeding of

100 agents is surpassed by the targeted policy with less than 20 workers of the this subtype.

The utilities also show a pronounced nonlinearity: initially, the first five workers in the

network have a large effect, increasing utility by approximately 44,000 utils. However, the

second five increases utility by even more, raising marginal utility by approximately 49,000

utils. After that inflection point, utility increases at a decreasing rate, finally tailing off to

a marginal increase of 5,000 utils between 50 and 55. These results illustrate both that the

firm must be careful not to seed the network with too few agents at the beginning in order to

achieve optimal network growth, and that choosing the right group to start the technology

off with can have a profound effect on the value of the network.

One drawback to the analysis above is that the central planner may not know the ex-ante

benefits across different subtypes in the firm. In lieu of knowing ex-ante which subtype would

the most valuable to enabling the growth of the network, the firm may have to rely on less

nuanced guesses about the best groups to seed the initial network with. For example, the

firm may put all the workers of a certain region in the network initially. Regional seeding

makes sense in that workers will all roughly be working at similar times, and thus is a natural

place to start. In this vein, we ran seeding experiments where we seeded the network with

all agents in a given region of the firm. We report the results for the US in Tables 5 and

6. To compare with the above results, we first seeded the network with 0 to 55 workers

from the US in increments of 5 workers. We then repeated the experiment by seeding the

network with 0 to 669 (the total number of workers in the US) in increments of 100 workers

49



Table 3: Network Utilities by Number of Uniformly Seeded Adopters
Initial Number Network Utility

0 248,292.04
5 267,612.69
10 291,207.33
15 309,452.59
20 314,628.03
25 321,564.61
30 322,039.49
35 322,277.12
40 330,762.62
45 331,969.05
50 332,662.52
55 341,864.82
60 343,698.41
65 350,379.03
70 368,178.25
75 379,340.18
80 388,578.02
85 390,850.76
90 392,701.73
95 394,559.95
100 396,919.76

Table 4: Network Utilities by Seeded Number of Directors of Sales in the US
Initial Number Network Utility

0 248,292.04
5 292,422.14
10 341,151.65
15 382,536.97
20 415,631.26
25 440,257.31
30 461,321.33
35 477,435.77
40 491,312.54
45 503,497.68
50 515,638.63
55 520,548.49
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Table 5: Network Utilities by Seeded US Workers
Initial Number Network Utility

0 248,292.05
5 267,612.69
10 291,207.34
15 309,452.60
20 326,928.05
25 348,192.93
30 360,276.44
35 370,568.54
40 385,642.11
45 394,318.59
50 401,622.94
55 411,227.65

to examine larger-scale effects.

Comparing the results from the first 55 workers to the Directors of Sales in the US suggest

that the uniform adoption policy has a substantially lower overall level of network utility.

There is an 9.2 percent difference even at 5 workers, which increases to 26 percent by 55

workers. However, the policy still does well compared to the global case. Note that the

results between the firm-wide uniform seeding and the US-only uniform seeding are identical

up through the first 15 workers, since the uniform seeding case starts with the US workers

first when filling out the network. Once the two networks diverge, the gains from a US-only

policy are significant: the gains are more than 20 percent by the 50th worker (which is only

the 34th different worker in the two networks). While the gap narrows by the 100th worker,

the difference is still over 9 percent.

In sum, these results suggest that concentrating resources even at a larger aggregate

level can still have significant gains on diffuse adoption policies. While we have emphasized

differences across seeding policies, we also note that all of the policies that we have considered

lead to much higher network utilities than the laissez-faire policy that the firm actually

followed. Even small network seedings lead to substantial increases in network adoption and

use. Our results suggest that the firm missed a significant opportunity to encourage growth
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Table 6: Network Utilities by Seeded US Workers
Initial Number Network Utility

0 248,292.05
100 435,267.83
200 459,552.95
300 476,613.84
400 490,796.13
500 503,783.75
600 512,795.48
669 516,573.11

and use of its videocalling network by following a hands-off approach.

7 Conclusion

This paper synthesizes an older literature that explained diffusion patterns by user hetero-

geneity, and a newer literature on network effects that emphasizes the interdependence of

technology adoption. We estimate a model of forward-looking technology adoption and the

subsequent sequence of usage that explicitly models heterogeneity over adoption costs, net-

work effects and usage behavior. We estimate this model using data on 463,806 calls made

after the introduction of a videocalling technology in a large investment bank. We quantify

how different types of heterogeneity affect network evolution and use, and analyze several

variants of two common policies which are used to jump-start network technology diffusion.

Our results strongly favor a policy of targeted seeding, especially if the firm can identify a

subgroup in the firm that has high network benefits to other potential adopters, even if they

do not have high fixed costs of adoption. The effects of properly-targeted seeding are large:

seeding the network by just five people in the beginning can have as large as a 17 percent

increase in overall network utility compared to a policy of hands-off diffusion. However, there

is large heterogeneity in the effectiveness of different targeted seeding campaigns: The best

performing targeted campaign outperforms the worse performing campaign by two-thirds.

This suggests that an optimal strategy for a firm in such an environment may be to expend

resources identifying which groups in the firm are high value adopters, as the long-run payoff
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to such investments can be large.
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Table 7: First Stage Policy Function Specification and Fit
Homogeneity
Specification

Heterogeneity
Specification

Lagged installed base variables Yes Yes
Group Dummies No Yes
Installed base squared terms Yes Yes
Separate Installed Base terms for each group No Yes
Observations 2709 2709
R-Squared 0.164 0.986
Adjusted R-Squared 0.163 0.986

We restricted the signs to be positive on current installed base and negative on lagged installed base;
74 of the 96 coefficients had binding constraints.

Table 8: Static Interactions of Caller and Receiver Regions on Calling Choice

Variable Mean StdDev

Asia to UK -0.8459 0.0462
Asia to Europe -0.5961 0.0472
Asia to USA -1.4801 0.0525

UK to Asia -0.7401 0.0517
UK to UK 0.2476 0.0147
UK to Europe 0.7176 0.0202
UK to USA -0.3558 0.0269

Europe to Asia -1.6014 0.0544
Europe to UK -0.1944 0.0155
Europe to Europe 0.3768 0.0159
Europe to USA -1.9384 0.0408

USA to Asia -3.4672 0.0542
USA to UK -2.7070 0.0358
USA to Europe -3.3635 0.0602
USA to USA -2.2053 0.0389
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Table 9: Static Interactions of Caller and Receiver Functions on Calling Choice

Variable Mean StdDev

Administration to Research -1.7410 0.0435
Administration to Sales -1.1825 0.0242
Administration to Trading -1.4164 0.0400

Research to Administration -0.4711 0.0853
Research to Research -0.0308 0.0584
Research to Sales -0.6255 0.0686
Research to Trading -1.2338 0.0811

Sales to Administration 0.5644 0.0289
Sales to Research -0.2044 0.0350
Sales to Sales 0.5580 0.0236
Sales to Trading -0.0444 0.0378

Trading to Administration -0.9153 0.0485
Trading to Research -2.0034 0.0724
Trading to Sales -1.1906 0.0526
Trading to Trading -0.0858 0.0558

Table 10: Static Interactions of Caller and Receiver Titles on Calling Choice

Variable Mean StdDev

Associate to VP 0.2185 0.0602
Associate to Director 0.1600 0.0492
Associate to Managing Director 0.1445 0.0519

Vice President to Associate -2.3617 0.1029
Vice President to VP -2.1242 0.0999
Vice President to Director -2.1704 0.1035
Vice President to Managing Director -1.9089 0.0982

Director to Associate -1.2756 0.0444
Director to VP -1.1918 0.0246
Director to Director -0.7578 0.0180
Director to Managing Director -0.3251 0.0179

Managing Director to Associate -0.6432 0.0501
Managing Director to VP -0.2667 0.0381
Managing Director to Director 0.5131 0.0296
Managing Director to Managing Director 1.4038 0.0234
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Table 11: Decay Rates by Receiver Characteristic

Variable Mean StdDev

Intercept 0.3936 0.0254
N -0.9043 0.0048

decay Asia -0.2393 0.0049
decay UK -0.0549 0.0016
decay Europe -0.0641 0.0010
decay USA -0.1111 0.0003
decay Admin -0.1211 0.0036
decay Research -0.1220 0.0025
decay Sales -0.0663 0.0014
decay Trading -0.0814 0.0004
decay Associate -0.2559 0.0070
decay Vice President -0.0884 0.0015
decay Director -0.0473 0.0004
decay Managing Director -0.0509 0.0005
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Table 12: Actual and Predicted Calling Patterns

Sender Receiver Actual Predicted Std.Dev.

Asia Asia 806 799.39 (19.59)
Asia UK 749 742.88 (20.40)
Asia Europe 378 375.59 (17.05)
Asia USA 277 292.14 (15.58)
UK Asia 650 636.87 (26.05)
UK UK 6783 6841.66 (55.16)
UK Europe 5757 5753.12 (49.56)
UK USA 2564 2522.35 (40.92)
Europe Asia 367 344.76 (16.17)
Europe UK 6923 6938.76 (49.79)
Europe Europe 5967 5981.19 (51.07)
Europe USA 476 468.29 (19.04)
USA Asia 259 249.14 (16.58)
USA UK 2128 2117.50 (36.68)
USA Europe 405 427.36 (19.62)
USA USA 4149 4147 (37.43)

Admin Admin 3836 3813.96 (37.55)
Admin Research 672 661.90 (19.65)
Admin Sales 1735 1758.11 (33.96)
Admin Trading 1026 1035.03 (28.10)
Research Admin 712 729.95 (25.50)
Research Research 3512 3508.63 (40.72)
Research Sales 1617 1619.55 (34.82)
Research Trading 610 592.86 (18.94)
Sales Admin 1752 1728.76 (36.06)
Sales Research 2096 2085.94 (39.32)
Sales Sales 7278 7299.37 (50.07)
Sales Trading 2334 2345.93 (40.16)
Trading Admin 732 734.26 (23.92)
Trading Research 714 694.28 (23.07)
Trading Sales 1781 1852.29 (39.63)
Trading Trading 8231 8177.18 (44.56)

Associate Associate 304 315.25 (15.30)
Associate Vice President 958 953.96 (23.95)
Associate Director 725 716.83 (22.48)
Associate Managing Director 395 395.96 (17.82)
Vice President Associate 785 807.74 (30.06)
Vice President Vice President 3439 3442.31 (43.58)
Vice President Director 3490 3467.91 (46.41)
Vice President Managing Director 1837 1833.04 (38.66)
Director Associate 708 723.07 (25.50)
Director Vice President 2575 2546.50 (41.69)
Director Director 4320 4281 (56.37)
Director Managing Director 4426 4478.43 (50.24)
Managing Director Associate 419 399.97 (17.72)
Managing Director Vice President 1940 1949.13 (37.57)
Managing Director Director 4853 4816.82 (53.49)
Managing Director Managing Director 7464 7510.08 (53.70)60



Table 13: Fixed Costs by Function and Title for Asia

Subtype Mean StdDev Variance StdDev

Administration
Associate 0.310 0.043 1.255 0.002
Vice President -0.677 0.044 0.970 0.023
Director 0.693 0.038 1.074 0.009
Managing Director -0.006 0.042 1.218 0.011

Research
Associate 2.221 0.017 0.535 0.021
Vice President 2.193 0.016 0.558 0.020
Director 1.576 0.024 1.072 0.016
Managing Director 0.727 0.015 1.061 0.003

Sales
Associate 1.868 0.021 0.873 0.017
Vice President 1.737 0.019 0.964 0.014
Director 0.963 0.016 1.009 0.004
Managing Director 0.190 0.017 1.248 0.003

Trading
Associate 2.079 0.019 0.680 0.020
Vice President 1.533 0.019 1.098 0.010
Director 1.188 0.018 0.967 0.003
Managing Director 0.550 0.014 1.132 0.049
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Table 14: Fixed Costs by Function and Title for United Kingdom

Subtype Mean StdDev Variance StdDev

Administration
Associate 1.306 0.054 0.953 0.024
Vice President 0.629 0.041 1.093 0.024
Director 0.739 0.038 1.062 0.009
Managing Director -0.400 0.046 1.094 0.021

Research
Associate 1.772 0.020 0.945 0.016
Vice President 0.699 0.013 1.070 0.003
Director 0.387 0.017 1.248 0.002
Managing Director -0.003 0.017 1.203 0.007

Sales
Associate 1.332 0.015 0.943 0.003
Vice President 0.208 0.016 1.250 0.003
Director 0.530 0.016 1.191 0.057
Managing Director 0.151 0.015 1.245 0.004

Trading
Associate 1.221 0.016 0.963 0.003
Vice President 0.585 0.013 1.100 0.004
Director 0.537 0.018 1.171 0.061
Managing Director -0.137 0.017 1.176 0.007
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Table 15: Fixed Costs by Function and Title for Europe

Subtype Mean StdDev Variance StdDev

Administration
Associate 0.810 0.036 1.043 0.008
Vice President 0.862 0.042 1.032 0.010
Director 0.480 0.047 1.226 0.041
Managing Director 2.540 0.007 0.128 0.001

Research
Associate 1.543 0.020 1.092 0.012
Vice President 1.113 0.019 0.980 0.003
Director 0.459 0.021 1.239 0.003
Managing Director 0.242 0.019 1.243 0.004

Sales
Associate 1.824 0.023 0.901 0.018
Vice President 1.080 0.015 0.984 0.003
Director 0.591 0.015 1.097 0.003
Managing Director -0.031 0.017 1.205 0.007

Trading
Associate 1.612 0.020 1.047 0.014
Vice President 1.119 0.018 0.978 0.003
Director 0.959 0.016 1.010 0.004
Managing Director -0.088 0.019 1.194 0.008
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Table 16: Fixed Costs by Function and Title for USA

Subtype Mean StdDev Variance StdDev

Administration
Associate 1.376 0.056 0.964 0.055
Vice President 0.969 0.034 1.007 0.008
Director 0.692 0.033 1.074 0.008
Managing Director -0.042 0.037 1.208 0.011

Research
Associate 2.348 0.014 0.394 0.017
Vice President 1.270 0.011 0.958 0.002
Director 0.648 0.011 1.084 0.003
Managing Director 0.169 0.012 1.237 0.003

Sales
Associate 1.724 0.011 0.975 0.008
Vice President 1.334 0.009 0.944 0.002
Director 1.014 0.011 0.997 0.002
Managing Director 0.693 0.007 1.072 0.002

Trading
Associate 2.191 0.013 0.553 0.017
Vice President 2.002 0.015 0.759 0.015
Director 1.708 0.016 0.984 0.011
Managing Director 0.853 0.009 1.033 0.002
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Table 17: Policy Experiment Results

Variable Baseline Targeted Uniform
Average Number of Calls 6.97 7.59 7.46

(0.0317) (0.0368) (0.0319)
Maximum number of Adopters 1,246 1,823 1,718

Present Discounted Value utility (mean over all subtypes) 25.31 28.46 27.39
(0.140) (0.169) (0.149)

Present Discounted Value utility (median subtype) 24.95 27.75 27.09
(0.196) (0.173) (0.175)

Present Discounted Value utility (25% subtype) 16.23 18.57 18.07
(0.136) (0.181) (0.191)

Present Discounted Value utility (75% subtype) 34.47 38.67 36.70
(0.516) (0.291) (0.189)

Discounted Value to Firm with β = 0.9
Present Discounted Monthly Users 8,877 14,664 13,164
Present Discounted Calls 61,441 110,225 96,917

(275) (538) (391)

Discounted Value to Firm with β = 0.99
Present Discounted Monthly Users 33,985 51,987 48,185
Present Discounted Calls 236,914 394,866 359,519

(1,078) (1,917) (1,523)

The final number of adopters is the data is 1,300, while the average number of actual calls per month is 7.00.
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A Appendix

A.1 Simple Model of Technology Adoption

Consider the following simple model of technology adoption. There are two periods, t =

{1, 2}. Suppose that there are two agents, each of whom receives a draw of adoption costs

from a common distribution, F . If both agents have joined the network, they call each other

and obtain utility U per period. At the beginning of each period, each agent can join the

network and make a call to the other agent if they are also in the network. Assume there is

no discounting. Let si = 1 if agent i has adopted the technology and zero otherwise. Denote

the probability that agent i joins at time t by Pit.

In the second period, there are three possible configurations of agent adoption carried

over from the first period: neither has adopted, one has adopted, and both have adopted.

If both have adopted, then the agents call each other and obtain a payoff of U each. If one

has adopted, consider the choice problem facing the other agent:

max {U − Fi, 0}

The probability that the agent will adopt in the second period conditional on the other agent

adopting in the first period is given by Pi2(sj = 1). The distribution that agent i projects

over the agent j’s fixed costs associated with this probability is different than F , since the

agent j already revealed information about their draw on F by not adopting in the first

period.

If neither agent has adopted in the first period, the choice problem facing each agent is:

max {Pj2U − Fi, 0} .

The probability that agent i adopts in the second period conditional on the other agent
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adopting in the first period is given by Pi2(sj = 0). The distribution associated with this

probability is also different than F for the same reason as above.

In the first period, each agent must decide whether to adopt or wait. If the agent adopts,

the expected payoff is given by:

A = Pj12U + (1− Pj1)Pj2(si = 1)U − Fi.

The first term is the value accruing to the agent from the possibility of the other agent

adopting early, and receiving 2U as a result. The second term is the possibility that the

other adopts j only in the second period, with a payout of U .

If the agent waits, the payoff is given by:

B = Pj1 max {U − Fi, 0}+ (1− Pj1) max {Pj2(si = 0)U − Fi, 0} .

Given these two payoffs in the first period, the agent makes an optimal choice of whether

to adopt or not:

max {A,B} .

Clearly the agent will never adopt if Fi ≥ 2U . For the case where Fi ≤ U , we have the

following comparison:

max {Pj12U + (1− Pj1)Pj2(si = 1)U − Fi, Pj1(U − Fi) + (1− Pj1)Pj2(si = 0)(U − Fi)} .

The agent will adopt in the first period if and only if:

Fi ≤
Pj12U + (1− Pj1)Pj2(si = 1)U − Pj1U − (1− Pj1)Pj2(si = 0)U

1− Pj1 − (1− Pj1)Pj2(si = 0)
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Factoring common terms, this simplifies to:

Fi ≤
Pj1 + (1− Pj1)(Pj2(si = 1)− Pj2(si = 0))

1− Pj1 − (1− Pj1)Pj2(si = 0)
· U = F̄ ,

where we denote the threshold value at which the agent is indifferent to adoption as F̄ . The

associated conditional probabilities of adoption in the second period are:

Pi2(sj = 1) = Pr(Fi ≤ U |Fi ≥ F̄ ),

and

Pi2(sj = 0) = Pr(FiPj2(si = 0) ≤ U |Fi ≥ F̄ ).

Therefore, the potential for revelations about the distribution of F generates “learning” or

“cascading” adoption behavior, where agents find it advantageous to wait to adopt until

after seeing how their colleagues behave. In the model, we estimate that the fact that each

of the 64 sub-types of agents have a different F increases the aggregate uncertainty within

the network beyond that suggested in this simplified model.
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