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1 Introduction

Firms spend substantial resources on marketing and selling, with marketing expenditures

recently estimated to make up as much as five percent of GDP (see Arkolakis Forthcoming).

Interpreting this as evidence of frictions in product markets, which require firms to spend

resources on customer acquisition, this paper develops a search theoretic model of firm

dynamics in frictional product markets. Introducing search frictions generates long-term

customer relationships, rendering the customer base a state variable for firms, which is

sluggish to adjust. We use this framework to study the implications of frictional product

markets and customer base concerns for firm dynamics: the level and volatility of firm

investment, sales, profits, value and markups, the timing of firm responses to shocks, as well

as the relationship between investment and Tobin’s q. Moreover, we document support for

these predictions in firm-level data from Compustat, using cross-industry variation in selling

expenses to quantify differences in the degree of product market friction across markets.

Our paper contributes to a newly developing literature – both theoretical and empirical –

emphasizing the role of customer base concerns in a variety of settings,1 by studying the

direct implications for firm dynamics.

To understand the implications of product market frictions for firms, we begin by devel-

oping a tractable search-theoretic general equilibrium model of frictional product markets.

The model builds on the Mortensen-Pissarides matching model, and nests the neoclassical

adjustment cost model of investment. In the model, a continuum of firms produce goods

which are sold through a product market affected by informational frictions concerning prod-

uct characteristics. To overcome these frictions, firms must hire sales people to meet with

potential customers, and consumers spend time searching for suppliers. Search frictions ren-

der customer relationships long-term in nature, and the customer base thus a state variable

for firm decision-making. To allow firms to influence customer acquisition through pricing,

we incorporate directed/competitive search into the model, with firms using optimal pricing

schedules to attract new customers. Equilibrium pricing schedules involve an initial discount

to new customers, with firms charging existing customers a price which leaves them indif-

1We discuss these papers in Section 5.

1



ferent between continuing the customer relationship or not.2 Three features of the model

are important for the results we emphasize: long-term customer relationships, customers

purchasing a fixed quantity per period, and convex costs of customer acquisition.

Product market frictions have a number of implications for firms, which we find non-

trivial in magnitude:

First, they generate a form of intangible capital embodied in the customer base. When

customer relationships are long-term in nature and the costs of customer acquisition paid

up-front, the present value of firm profits from a new customer relationship must make up

for the initial costs of attracting the customer. This turns existing customers into valuable

assets for firms. Frictional product markets thus raise firm value above the value of physical

capital, profit rates above the cost of capital, as well as generating positive markups.3

Second, product market frictions affect firm dynamics. On the one hand, by effectively im-

posing an additional adjustment cost on firm expansion, they work to dampen firm responses

to shocks. On the other, by slowing down expansion in sales, they generate hump-shaped

responses in a number of variables. In the neoclassical adjustment cost model, an increase

in firm productivity leads to an instantaneous increase in firm sales and investment. In a

frictional product market, however, the increase in production capacity leaves the firm short

of customers to sell to, as the convex costs of customer base expansion slow down the increase

in sales in the short run. Investment rises on impact, but continues to rise further as the firm

accumulates customers (and eventually finds itself short of production capacity), generating

a hump-shaped response. These changes in firm dynamics make frictional product markets

promising for understanding the evidence on hump-shaped responses of macro-aggregates –

2Examples of products motivating our model are newspapers subscriptions and cell phone services. News-
papers offer discounts to new customers, subsequently charging a price above the marginal cost of production
for an extended period of time. Similarly, cell phone providers often offer an initial discount in the form of
a free phone. In these industries it appears common to evaluate the value of a firm based on the number of
customers, the customer retention rate, and the margin per customer. We believe the main insights of our
analysis to apply also to markets where contracts are implicit, however.

3The paper is thus related to the literature emphasizing the importance of intangible capital, such as Hall
(2001b), Atkeson and Kehoe (2005), McGrattan and Prescott (2010a, 2010b), Eisfeldt and Papanikolaou
(2009), Ai, Croce, and Li (2010). Relative to this literature, which generally considers a broader notion of
organizational capital, we model and study a particular form of intangible capital more closely. An exception
within the finance literature is Belo, Lin, and Vitorino (2011), who study the relationship between brand
capital and firm riskiness.
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in particular investment – to aggregate shocks.4 The complementarity of customer capital

with physical capital plays a key role in generating hump-shaped responses in investment.

Third, product market frictions affect the widely-studied relationship between investment

and Tobin’s q. A large literature documents that the simple prediction of the neoclassical

adjustment cost model – that Tobin’s q be a sufficient statistic for firm investment – has

little success empirically.5 Frictional product markets offer a potential explanation for this

evidence by breaking the perfect correlation between investment and Tobin’s q implied by the

neoclassical model. Plausibly parameterized, these frictions reduce the coefficient estimate

in an investment-q regression by a factor of four. Moreover, as found in the data, the

model predicts firm profits to have stronger explanatory power for investment than Tobin’s

q: Profits share the hump-shaped response of investment to shocks, while Tobin’s q does not.

To establish the empirical relevance of the model mechanism across a range of markets,

we turn to firm-level data from Compustat. Because product market frictions are likely to

be more important in some markets than others, it is natural to use this cross-sectional

variation to test the predictions of the model. The model associates greater frictions with

greater overall selling expenses within a market. Sorting markets according to selling ex-

penses thus allows us to compare markets characterized by differing degrees of friction. We

document support for each of the main predictions discussed: the levels and volatility of firm

investment, sales, profits, value and markups, the timing of firm responses to shocks, and the

relationship between investment and Tobin’s q – both at the firm, industry, and aggregate

level.

The paper is organized as follows. Section 2 presents our model. Section 3 fleshes out

the implications of the model, which we study empirically in Section 4. Section 5 relates

our paper to recent work emphasizing the role of the customer base in various contexts, and

4See e.g. Cogley and Nason (1995), Christiano, Eichenbaum, and Evans (2005), Basu, Fernald, and
Kimball (2006), Smets and Wouters (2007). Such hump-shapes are generally at odds with the neoclassical
growth model, where variables respond to shocks on impact, and recent literature resorts to non-standard
adjustment cost functions to replicate these patterns within a model (e.g. Christiano, Eichenbaum, and
Evans 2005, Jaimovich and Rebelo 2009).

5Caballero (1999) and Chirinko (1993) survey this literature. A number of alternative explanations have
been proposed for the empirical failure of q-theory (as discussed in Sections 3 and 4). Although all of
these alternatives imply that q-theory not hold exactly, in many models it nevertheless works well as an
approximation (see e.g. Gomes 2001).
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Section 6 concludes.

2 The Model

This section introduces a model designed for analyzing the effects of frictional product mar-

kets on firm investment, sales, profits, value and their dynamic responses to shocks. The

model economy is populated by a representative household and a cross-section of firms facing

idiosyncratic shocks to their productivity. We begin by examining a stationary competitive

equilibrium, together with a corresponding planning problem, but the analysis is straight-

forward to extend to allow aggregate shocks as well.6 We return to discuss our modeling

choices at the end of the section.

Firms Production is carried out by a continuum of measure one firms, each producing a

differentiated good with a Cobb-Douglas production technology y = f(k, lp, z). Firms sell

the goods through a frictional market to the household, which converts them one-for-one

into a homogenous good used for consumption and investment. The homogenous good acts

as both the medium of exchange and the numeraire in the economy.7 Firms accumulate

capital according to the law of motion k′ = (1 − δk)k + i, with existing capital depreciating

at rate δk. New investment entails a cost φ(i, k), which includes both the purchase price

of capital and a standard convex adjustment cost. Firms hire production labor lp from a

frictionless labor market. Finally, productivity z is independent across firms, and follows

a Markovian stochastic process with a bounded support and a continuous and monotone

transition function.

6Appendix C describes the version of the model where we replace the idiosyncratic shocks with aggregate
shocks.

7To fix ideas, one can think of each firm as producing the same good in different colors. Due to idiosyn-
cratic differences in tastes, not all buyers will accept all colors. Once a buyer has accepted to buy a good,
however, for all practical purposes the color becomes irrelevant. Assuming that the goods become perfectly
substitutable ex-post allows capturing the frictions in creating purchasing relationships, while keeping the
model as simple as possible.
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Representative household The representative household consumes the homogenous good

and leisure, with preferences
∞∑
t=0

βtu(ct, 1− lmt − lbt). (1)

Here u is strictly increasing and concave, and satisfies Inada conditions. The household

allocates its time between leisure, market work lmt , and buying activity lbt . The household’s

per-period budget constraint (with the price of the homogenous good normalized to one)

reads

ct ≤ wtl
m
t + wb

t l
b
t +Πt, (2)

for all t ≥ 0.8 The household’s income, on the right, consists of the wages on market work

wtl
m
t and the aggregated dividends Πt. In addition, buying activity also yields a positive

payoff wb
t l

b
t , discussed in detail below. Note that the budget constraint is formulated in

terms of a frictionless market in the homogenous good. The supply of the good to this

market is determined by the frictional product market, discussed next.

Frictional product market The measure lb infinitesimal household members engaged

in buying activity are each aware of all firms producing goods, but due to idiosyncratic

differences in tastes, they are not each willing to buy all firms’ goods. Informational frictions

imply that in order for a household member to determine whether he or she is willing to

buy a particular firm’s good, the household member must meet with the firm’s sales person.

To allow these meetings to take place, firms hire sales people. The sales people are placed

in separate sales locations differing in centrality, starting from the most central toward the

less central. Formally, this idea is captured by assuming that the measure of sales people

generating ls efficiency units of sales people is given by an increasing and convex function

κ(ls).9

We assume household members decide on the sales locations to visit independently, and

8We could include a saving/portfolio-choice decision, allowing the household to choose how much to invest
in each firm. It would not change allocations, however, as in equilibrium the household owns all the firms.
Doing so would make explicit the usual observation that the rate of return on the household portfolio must
equal 1/β − 1 in a stationary equilibrium.

9The assumption that κ is convex is important for the firm dynamics we emphasize later. We discuss
this, and other, modeling choices at the end of the section.
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that sales people have finite capacity to handle potential buyers. Meetings between sales

people and potential buyers are thus subject to coordination frictions: Each period some

sales locations go without any potential buyers arriving, while others get more than the

sales person can handle. We capture this formally with a firm-level matching function. If

a firm hires ls efficiency units of sales people, with lb potential buyers arriving across sales

locations, then the measure of new customer relationships is given bym(lb, ls) = ξ(lb)γ(ls)1−γ ,

where ξ > 0 and γ ∈ (0, 1). This measure is a product of the exogenous probability of a

meeting leading to a new customer relationship, and the measure of meetings taking place.

We use θ = lb/ls to denote the (firm-specific) average queue-length of potential buyers across

a firm’s sales people.10 With this, the probability of matching per sales person, η(θ) = ξθγ,

becomes an increasing function of the queue length. Similarly, the probability of matching

per potential buyer, µ(θ) = ξθγ−1, becomes a decreasing function of the queue length. These

expressions capture the idea that an increase in potential buyers per sales person increases

matches per sales person, but at a diminishing rate because these buyers are more likely to

arrive in locations with sales people occupied.11

For thinking about the payoff to buying activity, it is useful to start from existing cus-

tomer relationships, where one unit of the differentiated good changes hands per period.

Existing relationships end with probability δn each period, for idiosyncratic reasons. Apart

from this exogenous customer depreciation, a customer relationship continues as long as the

customer is willing to continue to buy a unit of the good per period, and the firm to produce

it. Because the customer values the differentiated good at one unit of the homogenous good

(and there is no additional cost of continuing the relationship), that is how much he or she is

willing to pay for it. To maximize profits, the firm charges the highest price it can without

driving the customer away. In principle these payments could be scheduled in different ways

10To be exact, ls, lb are in units of selling and buying time, so θ captures average buying time per unit of
selling time.

11This discussion is based on Stevens (2007), who describes a matching process that generates an approx-
imately Cobb-Douglas matching function: Sales people are situated in separate sales locations and handle
potential buyers at a finite Poisson rate. Potential buyers contact these sales people at a finite Poisson rate,
but cannot coordinate among themselves on which sales people to contact. This means that upon contacting
a sales person, a potential buyer may find them occupied with another buyer. Increasing the number of
potential buyers per sales person increases the number of matches per sales person (as sales people spend
less time idle), but at a diminishing rate (as idle time is limited).
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over time, but because we assume firms cannot commit to future prices, it follows that they

optimally price at exactly one unit of the homogenous good per period.12

To allow firms influence over customer acquisition through their pricing decisions, we

assume firms can commit to an initial discount to new customers. Firms use these discounts

to compete for new customers as follows: Each period each household member engaged in

buying activity optimally chooses a firm based on the discounts ε and queue lengths θ across

firms. The payoff wb must be consistent with this optimization, implying that

wb = max
{(ε,θ)}

µ(θ)ε. (3)

Choosing a firm with discount ε and queue length θ leads to a new customer relationship

forming with probability µ(θ). The present value of the relationship to the household member

is ε: the customer gets one unit of the homogenous good per period,13 and pays back 1− ε

units in the first period, and one unit in later periods.

Note that equation (3) implies that potential buyers can be indifferent between low

discount firms and high discount firms, if the queues in the low discount firms are sufficiently

shorter than in the high discount firms. In equilibrium different firms indeed generally

offer different discounts, depending on their desire to expand sales (with potential buyers

indifferent across firms).

12We assume the firm can refuse attempts by customers to re-bargain prices, as doing so would not be in
the firm’s interests.

13The customer receives one unit of the differentiated good per period, but converts it one-for-one into
the homogenous good.
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Firm problem With this, we can write the firm problem in a stationary equilibrium,

where w and wb are constant, as

v(k, n, z|w,wb) = max
y,i,lp,ls,θ,ε

y − lsη(θ)ε− wlp − wκ(ls)− φ(i, k) + βEzv(k
′, n′, z′|w,wb), (F)

y ≤ n+ lsη(θ), (4)

y ≤ f(k, lp, z), (5)

n′ ≤ (1− δn)y, (6)

k′ ≤ (1− δk)k + i, (7)

wb ≤ µ(θ)ε, (8)

where all choice variables except investment are non-negative. In addition to capital and

productivity, the state variables of the firm now include the size of the customer base. We

use n to denote the measure of existing customers at the beginning of the period. Hiring

κ(ls) units of labor to work in sales (with ls efficiency units resulting), the firm attracts

lsη(θ) new customers this period. Here the queue length θ depends on the choice of discount

ε, as explained below. Equations (4) and (5) state that total units sold y cannot exceed the

size of the customer base, nor production output, respectively. In fact, because producing

excess output cannot be optimal, (5) must hold with equality, determining how much labor

ℓp(k, y, z) is needed to produce y units of output. Equation (6) is the law of motion for the

customer base, which limits next period’s customer base to the fraction of current customers

who remain with the firm. Equation (7) is the law of motion for capital. Finally, as standard

in competitive search, equation (8) imposes rational expectations regarding the queue length

attracted by the firm’s choice of discount ε. The firm takes as given the market-determined

payoff to buying activity wb, and expects a queue which leaves customers indifferent between

choosing this firm versus attaining the market payoff somewhere else.

The firm’s objective is to maximize the present discounted value of dividends. Current

dividends are given by sales revenue y net of discounts to new customers lsη(θ)ε, wages of

production and sales labor, as well as the costs of investment – all in terms of the homogenous
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good.14 Finally, the present value of future dividends is given by βEzv(k
′, n′, z′|w,wb).

Notice that despite constant returns to scale in production, the convex costs of capital

adjustment (as usual) imply that firms face decreasing returns in the short run. As a result,

production will not be taken over by whichever firm has the highest productivity realization

in the current period. Here the convex costs of customer acquisition only serve to reinforce

this. In practice, we will assume that the customer depreciation rate δn is large enough to

guarantee that the firm hires some sales people each period, even when a low productivity

realization causes it to contract overall. This affords us the following first order conditions

for characterizing decision-making.

The firm problem implies that the marginal value of an additional customer is forward-

looking, satisfying the envelope condition

vn(k, n, z|w,w
b) = 1− wℓpy(k, y, z) + β(1− δn)Ezvn(k

′, n′, z′|w,wb). (9)

An additional customer increases today’s sales revenue by one unit, and production costs by

wℓpy(k, y, z). Moreover, with probability 1− δn the customer stays with the firm also into the

following period, delivering the continuation value βEzvn(k
′, n′, z′|w,wb).

The firm hires sales people until the marginal cost of an additional customer equals the

marginal value, as reflected in the first order condition for ls:

w
κ′(ls)

η(θ)
+ ε = vn(k, n, z|w,w

b). (10)

The marginal cost of an additional customer, on the left, consists of both the wages of

additional sales people, as well as the discounts used to attract new customers. These

up-front costs of customer acquisition generally imply that existing customers are valuable

assets the firm (i.e. vn(k, n, z|w,w
b) > 0). Because the value of a customer depends on the

firm’s state – both its production capacity (determined by capital and productivity) and its

existing customer base – so does the measure of sales people the firm hires.

14Note that investment takes the form of the homogenous good, rather than the differentiated good, and
therefore must also be procured through the frictional market. Firms purchase investment goods from the
same frictionless market in consumption goods described in the household problem.
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The firm chooses the discount to minimize the costs of customer acquisition, resolving

a trade-off between the two costs involved. Increasing the discount attracts more potential

buyers per sales person, increasing customer acquisition per sales person, but at the same

time it also reduces the profitability of those customers. The firm raises the discount to a

point where the percentage increase in new customer relationships just compensates for the

percentage drop in profitability per customer, as reflected in the first order condition for ε:

1

vn(k, n, z|w,wb)− ε
=

γ

1− γ

1

ε
. (11)

Here vn(k, n, z|w,w
b)− ε is the value of the marginal relationship to the firm and ε that to

the customer. A marginal increase in the discount increases the value to the customer by

1/ε (in percentage terms), leading to a percentage increase in new customer relationships

of γ/(1 − γ) × 1/ε. The matching function elasticity γ governs the extent to which it is

profitable to offer low prices to attract more customers. A low value of γ implies that sales

people cannot handle more customers per unit of time, so competition does not lead to large

discounts.

Combining equations (8), (10), and (11) yields the following result, which implies that

in equilibrium firms hiring more sales people also offer bigger discounts and attract longer

queues:

PROPOSITION 1. A firm’s queue length and discount are increasing in its sales personnel

ls: θ = γ/(1− γ)× κ′(ls) and ε = wθ1−γ/ξ.

Investment The firm invests according to the familiar rule, implied by the first order

condition for i,

φi(i, k) = βEzvk(k
′, n′, z′|w,wb), (12)

which equates the marginal cost of investment to the discounted value of additional capital

next period, also known as marginal q. Together with a standard quadratic adjustment cost

for investment, this equation implies a linear relationship between the investment rate i/k

and marginal q. If the product market is frictionless, marginal q then equals Tobin’s q (i.e.
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v(k′, n′, z′|w,wb)/k′), which implies a linear relationship between the investment rate and

Tobin’s q.15 Product market frictions break the linear relationship by introducing a time-

varying wedge between marginal q and Tobin’s q, offering a potential explanation for the

weak correlation between these variables in the data. We discuss these changes in dynamics,

and their implications for investment-q regressions, in Section 3.

Aggregation Before defining an equilibrium, we need to define a number of aggregate

variables. To simplify notation, we denote a firm’s state as x = (k, n, z). The cross-sectional

distribution of firms across capital, customers and productivity can then be denoted by

λ(x). The distribution evolves over time according to a law of motion λ′ = T (λ|w,wb),

determined by the productivity process and firm decision rules, but we focus on a sta-

tionary distribution where λ′ = λ. Integrating over the stationary distribution yields

aggregate output Y (λ|w,wb) =
∫
y(x|w,wb)dλ(x), and costs of investment Φ(λ|w,wb) =∫

φ(i(x|w,wb), k)dλ(x). The aggregate demand for labor, used in production and sales, is

Ld(λ|w,wb) =
∫
ℓp(k, y(x|w,wb), z) + κ(ls(x|w,wb))dλ(x). Finally, aggregate dividends are

Π(λ|w,wb) =
∫
π(x|w,wb)dλ(x), where π denotes the firm-level dividend.

DEFINITION 1. A stationary competitive search equilibrium16 specifies: i) household

decision rules C(w,wb,Π), Lm(w,wb,Π), Lb(w,wb,Π), ii) firm decision rules y(x|w,wb),

i(x|w,wb), lp(x|w,wb), ls(x|w,wb), θ(x|w,wb), ε(x|w,wb), and value function v(x|w,wb), iii)

aggregates Y (λ|w,wb), Φ(λ|w,wb), Ld(λ|w,wb), Π(λ|w,wb), iv) wage w, v) payoff to buying

wb, and vi) distribution of firms λ, such that

1. The firm decision rules and value function solve the firm problem (F).

2. The household decision rules maximize (1) subject to (2), and optimal buying behavior

solves problem (3).

3. The goods market clears: C(w,wb,Π(λ|w,wb)) + Φ(λ|w,wb) = Y (λ|w,wb).

4. The labor market clears: Lm(w,wb,Π(λ|w,wb)) = Ld(λ|w,wb).

15Hayashi (1982) shows that with constant returns to scale, marginal and average q are the same.
16We incorporate the competitive search equilibrium of Moen (1997) and Shimer (1996) into a stationary

equilibrium with a cross-section of firms (e.g. Gomes 2001).
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5. Consistency: Lb(w,wb,Π(λ|w,wb)) =
∫
ls(x|w,wb)θ(x|w,wb)dλ(x).

6. Stationarity: The distribution of firms λ is stationary.

Planning problem To understand the allocations in the competitive equilibrium more

concretely, it is useful to spell out a corresponding planning problem, subject to the same

frictions:

V (λ) =max u(c, l) + βEzV (λ′) (P)

c+

∫
φ(i(x), k)dλ(x) ≤

∫
y(x)dλ(x), (13)

l +

∫
[lp(x) + lb(x) + κ(ls(x))]dλ(x) ≤ 1, (14)

y(x) ≤ f(k, lp(x), z), ∀x, (15)

y(x) ≤ n+m(lb(x), ls(x)), ∀x, (16)

n′(x) ≤ (1− δn)y(x), ∀x, (17)

k′(x) ≤ (1− δk)k + i(x), ∀x. (18)

Here the choice variables are c, l and functions y(x), i(x), lb(x), lp(x), ls(x), n′(x), k′(x), for all

x ∈ supp(λ). All choice variables except investment are assumed non-negative. The planner

maximizes the utility of the representative household, allocating goods between consumption

and investment (across production units), and time between leisure, production, selling and

buying (across production units). The planner faces the same frictions in bringing together

customers and producers, requiring keeping track of the customer bases of production units.

The planner allocates investment, as well as selling and buying time, for each production unit

separately, depending on their productivity, capital stock and customer base. Equation (13)

states that the sum of consumption and investment (across production units) cannot exceed

total output across production units. Equation (14) states that the sum of time allocated to

leisure, production, selling and buying cannot exceed the total time endowment. Equations

(15) and (16) state that the output of a production unit cannot exceed what the production

technology, nor the customer base, of the producer allow. Equations (17) and (18) are laws
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of motion for the customer base and capital stock.

The planning problem is concave, with first order conditions that coincide with those of

the competitive equilibrium.17 Useful for familiar reasons, this implies that not only is a

competitive equilibrium constrained efficient, but that we can use the planning problem to

understand equilibrium outcomes. For a more detailed analysis of the connection between

the two problems we refer the reader to Kaas and Kircher (2011), who analyze a related

environment with frictional labor (rather than product) markets.

Discussion of modeling approach Before proceeding to study the model implications,

we briefly discuss four key elements of our modeling approach. First, the buyers in our model

spend time searching for products because of differences in tastes over product characteristics.

An alternative approach would be to assume identical tastes, with buyers searching for low

prices instead. Although we view both frictions as relevant, it is substantially simpler to begin

with the former. Equilibrium models of price dispersion, such as Burdett and Judd (1983)

or Burdett and Mortensen (1998), typically focus on stationary environments abstracting

from dynamics in production costs. Because we specifically seek to analyze the effects of

product market frictions and long-term customer relationships on firm dynamics, a natural

framework to turn to instead is the Mortensen-Pissarides model.18 While this framework

lends itself well to thinking about search for the right products, determining prices through

bargaining seems less natural in the context of product (than labor) markets. For this reason,

we introduce directed search into the model, allowing firms to optimally choose prices based

on trading off attracting more (new) customers against greater profits per (new) customer.

Second, as recent work using the Mortensen-Pissarides model to analyze firm dynamics

in frictional labor markets (Kaas and Kircher 2011, Garibaldi and Moen 2010), we too have

adopted a convex cost function (κ) to curb firm responses to idiosyncratic shocks. This

convexity is important for the dynamics we emphasize in Section 3, rendering the customer

base a bottleneck for firm expansion. The other central element capturing frictions in the

model – the matching function – turns both selling and buying time into necessary inputs

17See Appendix A.
18See Pissarides (2000).
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for producing matches, but does not limit reallocation in response to firm-level shocks. The

matching function elasticity governs the shares of these two inputs in the production of

matches, as well as the extent to which it is profitable to offer low prices to attract more

customers. A low value of γ implies that: i) sales people cannot handle more customers

per unit of time, so competition does not lead to large discounts, but also that ii) total

equilibrium buying time is low.19

Third, in the Mortensen-Pissarides model, the path of prices within a match is generally

not allocative (beyond its present value). Similarly, although our assumptions determine a

path of prices within each customer relationship, the close connection between the planner’s

allocation and the market equilibrium underlines the fact that this particular path is not

essential for allocations. With this feature of the modeling framework in mind, we have

sought to (whenever possible) emphasize the implications for allocations rather than prices.

Note that the way the path of prices is determined in the model – effectively implementing

two-part pricing – has the advantage of avoiding additional state variables for keeping track

of different price-schedules for different cohorts of customers: All existing customers pay the

same price (which is identical across firms), while new customers get an initial discount,

which depends on the firm’s desire to expand (which varies across firms).

Finally, we explicitly focus on the extensive margin of firm demand, abstracting from the

intensive margin of demand per-customer – the polar opposite of the standard case in the

literature. Abstracting from the intensive margin has the advantage of simplifying the model

substantially, allowing us to highlight the role of the extensive margin for firm dynamics.20

3 Implications of Customer Capital

How do product market frictions affect firm investment, sales, profits, value and their dy-

namic responses to shocks? This section demonstrates the effects, focusing on the idiosyn-

cratic shocks which dominate at the firm-level first, and turning to aggregate shocks at the

19In the limiting case with γ = 0, discounts disappear altogether, but this case also implies that equilibrium
buying time becomes zero.

20As most of the literature, we also abstract from inventories.
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end of the section.

Parametrization To illustrate the impact of frictions, as well as to get a rough idea

of magnitudes, we parameterize and solve the model numerically. Appendix B discusses

our numerical approach in more detail. Parameterizing is straightforward for a number of

the parameters, which are standard in the literature, but requires more thought for the

parameters governing the frictional product market.

We begin with a conventional parametrization of the neoclassical adjustment cost model.21

The annual discount rate is set to β = 0.95. We set the capital depreciation rate to δk = 0.1,

and the capital share in production to α = 0.3. The capital adjustment cost is quadratic,

φ(i, k) = i+ϕk/2×(i/k−δk)
2k, with ϕk = 10. This adjustment cost parameter represents the

middle ground of a wide range of estimates: for example Gilchrist and Himmelberg (1995)

estimate a value around 6, while Erickson and Whited (2000) a value around 20.22 We adopt

the preferences u(c, l) = log c + A log l, where A is set such that market work comes to a

third of total time (Hansen 1985).23 Finally, the AR(1) process for productivity z follows the

estimates of Hennessy and Whited (2005), with an AR(1) coefficient of 0.74 and a standard

deviation of the shock of 0.123.

The remaining parameters pertain to the frictional product market: the customer depre-

ciation rate δn, the matching function parameters ξ and γ, along with the function κ(ls). We

use available evidence to set values for these parameters, returning to examine sensitivity

later.

The customer depreciation rate δn is an important parameter for the impact frictional

markets have. Although firms in some industries regularly announce customer turnover

rates, and such rates play an important role in the marketing literature on customer equity,

systematic evidence on the topic appears scant. Some examples include the following:24 Cell

phone service providers are recently reporting monthly turnover rates of 1 − 2.5 percent,

21The model is solved on a monthly frequency, but we report annual values here.
22By contrast, the direct investment-q regression evidence suggests a parameter around 30.
23The form of preferences is irrelevant for responses to firm-level shocks, but plays an important role for

responses to aggregate shocks.
24See Raice (2010), Ackermann (2010), FMI (1994), FMI (2004).
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translating into annual rates of 11−26 percent. In online banking, the corresponding annual

rates are in the 10−20 percent range. Both are examples of products with contractual long-

term customer relationships, which makes the customer turnover rate a natural statistic

for firms to follow. For an example in a non-contractual setting, survey evidence on the

frequency at which consumers switch their primary super market suggests annual customer

turnover rates of 10− 25 percent. Acknowledging that there exists significant heterogeneity

on this dimension, we adopt an annual customer depreciation rate of δn = 0.15.

Next, the parameters γ and ξ of the matching function m(lb, ls) = ξ(lb)γ(ls)1−γ are

determined based on evidence on total time spent in buying and selling activities at the

aggregate level, corresponding to Lb and
∫
κ(ls)dλ in the model. Our targets for these two

values are 0.53 and 2.13 percent of total time, respectively. (Note that these values are very

small compared to the one third of total time we attribute to market work, as standard in

the literature.) To arrive at these targets we use data on the share of the labor force in

sales-related occupations from the Occupational Employment Statistics (OES) survey, and

the amount of time consumers spend shopping from the American Time Use Survey (ATUS).

According to the OES survey, 11 percent of US workers are employed in sales-related oc-

cupations.25 Examples of such occupations include sales representatives, retail salespersons,

cashiers, real estate brokers, and advertising agents. Because workers in other occupations

are likely to spend a share of their time in selling activities also, we attribute 10 percent of

their time to selling as well. Examples of other occupations with a significant selling compo-

nent are waiters, marketing and sales managers, and advertising and promotions managers.

Overall, this implies that 20 percent of working time is spent in selling activities.26 With

working time making up a third of total time, this yields a share of total time in selling of

6.5 percent. Finally, in reality not all of this time is spent on new customers. To take this

into account, we attribute a third of selling time to new customer acquisition, leading to our

2.13 percent number for selling time.

Turning to our target for buying time, time-use data document that Americans spend on

average 0.4 hours per day shopping. If we again attribute a third of this time to the new-

25Data source: ftp://ftp.bls.gov/pub/special.requests/lf/aat11.txt
2611 percent + 10 percent of 89 percent = 19.9 percent.
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customer margin, our target for buying time becomes 0.53 percent of total time. Finally, we

adopt a quadratic specification for the function κ(ls) = κ0(l
s)2/2, where the value of κ0 can

be normalized to one.27 With this, the targets for buying and selling time determine unique

values for γ and ξ.

Table 1: Parametrization

Discount rate β 0.95
Persistence of productivity ρz 0.74
Standard deviation of productivity σz 0.123
Share of capital α 0.30
Depreciation of capital δk 0.10
Adjustment cost function coefficient ϕk 10
Depreciation of customers δn 0.15
Matching function elasticity γ 0.11
Matching function coefficient ξ 0.096

Notes: The table reports annual values.

Table 1 summarizes our parametrization. Next, we turn to study the effects of product

market frictions on firms.

Level effects Product market frictions affect firms in a number of ways. Most directly,

the greater the frictions, the more firms spend on customer acquisition. The top left panel in

Figure 1 illustrates this by plotting steady-state selling expenses as a function of the matching

function coefficient ξ. In the frictionless limit, shown on the left, the model reduces to the

neoclassical adjustment cost model, where selling expenses are zero. In our benchmark

parametrization (indicated by the vertical line), on the other hand, these expenses make up

as much as five percent of sales revenue.

Product market frictions turn the customer base into a form of intangible capital, which

manifests itself in increased firm value, profits, and markups. In the frictionless limit, Tobin’s

q equals one (as firm value equals the value of physical capital), markups equal zero, and

the profit rate equals the cost of capital, r + δk = 0.15. In a frictional market, competition

for new customers drives the value of the marginal new customer to zero, but firm value

still exceeds the value of physical capital for two reasons. First, the value of the average

27See Appendix B.
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new customer exceeds that of the marginal, due to the convex costs of customer acquisition.

Second, existing customers are valuable assets to the firm because, to make up for the initial

costs of attracting them, the firm charges a positive markup on these customers later. As a

result, Tobin’s q is as high as 1.9 in our benchmark parametrization, with an average markup

of 15 percent. Similarly, averaging across new and existing customers leads to a firm profit

rate which, at 20 percent, exceeds the cost of capital.28 Perhaps surprisingly, these changes

have no effect on the investment rate, however, which continues to equal the depreciation

rate of capital.29

These changes in levels make the testable predictions that ceteris paribus in markets with

greater product market frictions, we should see greater average Tobin’s q, profit rates and

markups, than in markets with lesser frictions. Investment rates, on the other hand, should

remain unaffected. Moreover, the increasing relationship between product market frictions

and selling expenses suggests using data on selling expenses to quantify the degree of friction.

Firm dynamics For thinking about the effects of product market frictions on firm dy-

namics, it is useful to start from the frictionless limit i.e. the neoclassical adjustment cost

model. In a frictionless product market, an increase in firm productivity leads to an in-

stantaneous increase in firm sales and profits. Investment increases because the marginal

product, and shadow value, of capital increases, but the capital adjustment costs smooth

this investment response over time. As illustrated in Figure 2 (dashed line), investment rises

on impact, decaying with productivity. In this frictionless product market, the responses

of investment and Tobin’s q are identical, because Tobin’s q is proportional to the shadow

value of capital.30

Introducing product market frictions has two main effects on these firm dynamics. First,

by effectively imposing an additional adjustment cost on firm expansion, they work to

dampen firm responses to the shock. Second, by slowing down the expansion in sales, they

28Recall that even if the present value of future profits the firm makes off of a customer just makes up for
the up-front costs of getting that customer, discounting implies that average profits across new and existing
customers must be positive.

29The markups do translate into an increase in sales revenue per unit of capital, however, a statistic we
consider in our empirical work.

30As shown by Hayashi (1982).
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Figure 1: Impact of Friction on Steady State
Notes: The figure plots the steady state as a function of the matching function parameter ξ. The frictionless
limit is on the left, and the vertical line indicates our baseline parametrization. Selling expenses refer to
wκ(ls), sales to (1 − lsη(θ)ε)y, profit to sales net of labor costs of production and selling, and the markup
to sales per unit sold 1− lsη(θ)ε/y over the marginal cost wlp/y × 1/(1− α).

generate hump-shaped responses in a number of variables. Figure 2 illustrates these changes

by plotting our benchmark parametrization (solid line) side-by-side with the frictionless limit

(dashed line).

In a frictional product market, the increase in productivity increases the firm’s production

capacity, but leaves the firm short of customers to sell to. This shortage of customers curbs

the increase in sales, as well as investment, in the short run. The first order of business

following the shock is an increase in selling expenses to expand the customer base, smoothed

over time by the convex costs of customer base expansion.31 Investment rises on impact,

but continues to rise further as the firm accumulates customers (and eventually finds itself

short of production capacity), generating a hump-shaped response.32 The response of firm

31The convexity of κ(ls) is important for this smoothing when studying responses to firm level shocks, as
otherwise firms would expand the customer base on impact. To see this, note that the reduced form of the
left hand side of the first order condition (10) for ls is γ−γ(1 − γ)γ−1wκ′(ls)1−γ/ξ.

32The main role of the convex capital adjustment cost here is to prevent instantaneous adjustments in
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Figure 2: Impulse Responses to Firm-Level Productivity Shock
Notes: The responses are in percentage deviations from steady state. Selling expenses refer to wκ(ls), sales
to (1 − lsη(θ)ε)y, profit to sales net of labor costs of production and selling, and the markup to sales per
unit sold 1− lsη(θ)ε/y over the marginal cost wlp/y × 1/(1− α).

profits is also hump-shaped: Despite the increase in selling expenses, profits rise on impact as

production costs fall, but they also continue to rise as the surge in selling expenses subsides

and the customer base grows. Finally, product market frictions introduce a time-varying

wedge between the shadow value of capital and Tobin’s q, explaining the differing responses

of investment and Tobin’s q in the figure. The response of Tobin’s q reflects the response of

the shadow value of capital, but also the appreciation of the firm’s customer base in the face

of falling costs of production.

Overall, these changes in dynamics make the testable predictions that ceteris paribus in

markets with greater product market frictions, we should see: i) dampened firm responses to

the firm’s capital stock in response to shocks, a seemingly implausible feature. Without convex capital
adjustment costs, the short run response to a positive productivity shock would be to abruptly disinvest,
leading to a drop in capital, until the customer base expands sufficiently. The expansion in sales and profits
would continue to be hump-shaped, however, with Tobin’s q rising on impact.
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shocks, and ii) investment, profits and sales lag Tobin’s q and selling expenses more strongly.

Investment regressions These dynamics suggest that product market frictions may be

useful for understanding the investment-q regression evidence, which appears at odds with

the neoclassical adjustment cost model: A large literature documents that firm investment

is only weakly correlated with Tobin’s q, appearing more correlated with firm cash flow

instead. These findings have sometimes been interpreted as evidence of firms facing financial

constraints, leading to capital misallocation.33

To study the predictions of the model for investment-q regressions, we run the following

regressions on simulated data from the model:

ijt/kjt = a0 + a1qjt + εjt, and (19)

ijt/kjt = a0 + a1qjt + a2πjt/kjt + εjt, (20)

where qjt = βEtvjt+1/kjt+1 is Tobin’s q and the profit rate reflects firm cash flow. Figure 3

shows how the results of the first regression depend on the degree of friction in the product

market. In the frictionless limit (on the left) the model generates the results expected for the

neoclassical adjustment cost model: the coefficient on Tobin’s q coincides with the inverse of

the adjustment cost parameter, 1/ϕk = 0.1, and the R2 equals one. But as frictions increase,

both the slope coefficient and R2 fall, taking significantly lower values at our benchmark

parametrization (depicted by the vertical line). While the lower R2 reflects the weaker

correlation of investment with Tobin’s q (as illustrated by the impulse responses), the slope

coefficient is attenuated further by the reduced volatility of investment relative to Tobin’s

q.34

Figure 4 shows how the results change when we include firm cash flow in the regression.

In the frictionless limit cash flow is irrelevant, and investment perfectly explained by Tobin’s

q. But as frictions increase, the coefficient on Tobin’s q falls, while the coefficient on cash

flow quickly becomes significant. This reflects the similar responses of investment and profits

33Caballero (1999) and Chirinko (1993) survey this literature.
34Recall that the coefficient on Tobin’s q is a product of the correlation between investment and Tobin’s

q and the standard deviation of investment relative to Tobin’s q.
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Figure 3: Impact of Friction on Investment-q Regression
Notes: The figure plots the results from regression (19) on model simulated data, as a function of the
matching function parameter ξ. The frictionless limit is on the left, and the vertical line indicates our
baseline parametrization.

to shocks (illustrated by the impulse responses), relative to that of Tobin’s q. The model

would thus seem to predict non-trivial cash flow effects even for small frictions. As the

figure shows, the degree of friction has relatively little effect on the R2 from this regression,

however, because the two right-hand-side variables together explain investment well in the

model.

The coefficient estimates from these regressions are sometimes used to infer the magnitude

of capital adjustment costs – an approach which leads to the conclusion that these costs are

very high. Following the reasoning of Gilchrist and Himmelberg (1995) or Hall (2001a): A

typical coefficient on Tobin’s q of 0.025 in an annual regression suggests adjustment costs

high enough for it to take a firm 1/0.025 = 40 years to double its capital stock. Figures 3 and

4 illustrate that this approach can lead to substantial overestimates for firms in frictional

product markets. Our benchmark parametrization yields a similar coefficient on Tobin’s q

with substantially smaller capital adjustment costs, roughly implying 1/0.1 = 10 years for a
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Figure 4: Impact of Friction on Investment-q Regression with Cash Flow
Notes: The figure plots the results from regression (20) on model simulated data, as a function of the
matching function parameter ξ. The frictionless limit is on the left, and the vertical line indicates our
baseline parametrization.

firm to double its capital stock.35

Our theory makes the testable predictions that ceteris paribus in markets with greater

product market frictions, we should see regressions of investment on Tobin’s q yield: i) lower

coefficient estimates on Tobin’s q and ii) lower R2’s.

The mechanism: long-term customer relationships In the model product market

frictions lead to long-term customer relationships, as long as δn < 1. But one could also con-

sider frictional markets without long-term relationships, by setting δn = 1. To highlight that

35The aspect of the empirical evidence that the model will necessarily have difficulty replicating are the
very low R2’s in both panel and time series regressions. This is natural given that the model abstracts from
many other factors likely to influence the empirical results, including measurement error. With a simple
mechanism, the model generates quite low R2’s in the single regression of investment on Tobin’s q, but this
is much harder to accomplish in the multiple regression with cash flow included. In this sense, our results are
complementary with the literature emphasizing the importance of measurement error in Tobin’s q (Erickson
and Whited 2000, Eberly, Rebelo, and Vincent 2009), and finding more empirical success when other proxies
than stock prices are used to measure q (Abel and Blanchard 1986, Gilchrist and Himmelberg 1995, Cummins,
Hassett, and Oliner 2006, Philippon 2009).
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such relationships play an important role for our results, Figure 5 compares firm responses in

frictional product markets with long-term customer relationships (solid line), to those in fric-

tional product markets without long-term customer relationships (dashed line). Introducing

frictions dampens firm responses to shocks in both cases but, as the figure shows, long-term

customer relationships are essential for the hump-shaped responses emphasized. Table 2

confirms that this feature of the model is important also for our investment-q regression

results. By attenuating the relationship between investment and Tobin’s q, it significantly

reduces both the slope coefficient and R2 in these regressions.36
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Figure 5: Impulse Responses to Firm-Level Productivity Shock with δn = 1
Notes: The responses are in percentage deviations from steady state. The model with δn = 1 is parameterized
to match the same targets for buying and selling time as the benchmark model. Selling expenses refer to
wκ(ls), sales to (1 − lsη(θ)ε)y, profit to sales net of labor costs of production and selling, and the markup
to sales per unit sold 1− lsη(θ)ε/y over the marginal cost wlp/y × 1/(1− α).

36It is this role of long-term customer relationships that differentiates ours from the decreasing-returns, or
monopolistic-competition, based explanations of the investment-q evidence pursued by Cooper and Ejarque
(2003) and Abel and Eberly (2009).
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Table 2: Impact of Long-Term Relationships on Investment-q Regressions

Frictionless Benchmark Frictional with δn = 1

Coefficient a1 0.099 0.024 0.098
Regression R2 1.000 0.758 0.973

Notes: The table reports results from regression (19) on simulated data. The model with δn = 1 is parame-
terized to match the same targets for buying and selling time as the benchmark model.

Sensitivity Finally, although the effects illustrated in the figures appear non-trivial in

magnitude, will they remain so if we change the parametrization to a plausible degree? To

examine this issue, Appendix B considers the sensitivity of our results to lower targets for

buying and selling time, as well as higher customer depreciation rates. We find that our

results are not strongly sensitive to the specifics of the parametrization used.

Aggregate shocks These changes in dynamics make frictional product markets promising

also for understanding the hump-shaped responses of macro-aggregates to aggregate shocks,

documented in a number of studies.37 Such hump-shaped responses are generally at odds

with the neoclassical growth model, where variables respond to shocks on impact. In the case

of investment in particular, recent literature has turned to non-standard capital adjustment

costs to generate hump-shaped responses to shocks.38 But are the model’s hump-shaped

responses preserved in the face of aggregate, instead of idiosyncratic, shocks?

There is a straightforward way to adapt the model for analyzing aggregate dynamics,

by assuming firms are identical in productivity – and consequently also in their capital and

customer base. The main changes involve: i) assuming firms are identical, ii) introducing

stochastic discount factors that capture aggregate variation in marginal utility, and iii) al-

lowing variables such as wages, queue lengths, and discounts to vary over time.39 In this

case, the model implies that in times when firms hire more sales labor, both queue lengths

and discounts are greater.

Figure 14 in Appendix C illustrates model dynamics in response to an aggregate produc-

37See e.g. Cogley and Nason (1995), Christiano, Eichenbaum, and Evans (2005), Basu, Fernald, and
Kimball (2006), Smets and Wouters (2007).

38For example, Christiano, Eichenbaum, and Evans (2005) and Jaimovich and Rebelo (2009) impose
adjustment costs directly penalizing the rate of change in investment.

39See Appendix C for details.
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tivity shock, under frictional, as well as frictionless, product markets. The figure confirms

that the main predictions regarding volatility and hump-shaped responses of investment and

sales continue to hold also in the face of aggregate shocks. The main difference would seem

to be a weaker hump-shape in profits, likely due to the smaller increase in sales labor at

the aggregate, as well as a change in the shape of the response of Tobin’s q, likely due to

differences in discounting.

4 Evidence of Customer Capital

The model makes a number of predictions about the effects of product market frictions on

firm investment, sales, profits, value and their dynamic responses to shocks, which appear

promising for understanding documented patterns in the data. But is there any evidence

linking product market frictions to these patterns? In this section we turn to firm-level data

to document the evidence, using the model to make the link to product market frictions.

Seeking to establish relevance from a macroeconomic point of view, we consider a broad

range of industries.40

Data Our primary data source is Compustat, which provides annual accounting data on

publicly listed US firms. It is the standard data source for studying firm-level investment,

sales, profits and Tobin’s q. We restrict our analysis within Compustat to a balanced panel

of 648 firms from 1983 to 1999. Balancing simplifies the analysis of firm-level dynamics

significantly, but the results are largely robust to extending the sample to the full unbalanced

Compustat data (where possible). We exclude foreign firms, utilities and financial firms,

as commonly done in the investment literature, as well as mergers and observations with

extreme values. Appendix D describes the sample construction more closely.

Measuring frictions Because product market frictions are likely to be more important

in some markets than others, it is natural to use this cross-sectional variation to test the

40A complementary approach, more in the spirit of industrial organization, would be to focus on a particular
industry, tailoring the model to fit the specifics of that market.
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predictions of the model. The non-trivial challenge in doing so is finding a way to measure the

degree of friction across markets with available data. The theory suggests a simple approach

to this measurement problem, however, by predicting that in markets with greater frictions,

firms spend more on selling. Among the accounting variables reported in Compustat is

“selling, general and administrative” (SGA) expenses, which we use as a proxy for selling

expenses. Interpreting a market as a two-digit SIC industry, we compute a time-series

average of total industry SGA expenses over total industry sales, and sort industries into

two groups based on this measure: above and below median. We can then compare the two

subsamples on the various predictions of the model discussed in Section 3.

Our sorting variable, SGA expenses, includes selling expenses such as sales people’s

salaries, commissions and travel expenses, advertising and marketing expenses, shipping

expenses, depreciation of sales buildings and equipment, etc, but also general and admin-

istrative expenses such as executives’ salaries, legal and professional fees, insurance, office

rents, office supplies, etc. To gauge the extent to which variation in SGA expenses is driven

by selling expenses, we make use of the advertising expense data which is available separately

for a subset of firms. The two are relatively strongly correlated for firm-level data: For the

subset of firms reporting both, the cross-sectional correlation between firm-level advertising

and SGA expenses is 0.35, while the firm-level time-series correlation between the two is

0.41. The industries falling into our high and low SGA expense samples are given in Tables

11 and 12 in Appendix D. Consistent with intuition, commodities, for which product market

frictions are likely to play a smaller role, fall into the lower selling expense group, while

tobacco products and clothing retailers are examples of high selling expense markets. With

these considerations in mind, from this point on we refer to SGA expenses as selling expenses

(SE).

Table 3 provides summary statistics for our data, comparing the two subsamples we

study. Note that the firms in the sample are quite large overall, and although a large share

of firms are in manufacturing, a substantial share are not. The high selling expense sample

is slightly smaller, both in terms of numbers of firms, and share of total sales or assets.

Perhaps surprisingly, it is also more manufacturing intensive. The main message of the table
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Table 3: Summary Statistics

Medians Low SE High SE

Selling Expenses/Sales 0.160 0.268
(0.007) (0.010)

Advertising/Sales 0.017 0.031
(0.002) (0.003)

Sales 503.9 652.5
(55.2) (70.2)

Equity 267.9 454.9
(42.4) (63.1)

Assets 385.1 467.8
(39.6) (56.6)

Growth rate of assets 4.694 5.055
(0.210) (0.234)

Debt/Assets 0.179 0.157
(0.007) (0.008)

Dividends/Assets 0.013 0.017
(0.001) (0.001)

Number of firms 391 257
Share of manufacturing firms 52% 48%
Share of total sales 60% 40%
Share of total assets 57% 43%

Notes: Sales, assets and equity value reported in millions of 2005 dollars. Bootstrapped standard errors –
computed over 200 replications – are reported in parenthesis.

is that the two subsamples are relatively similar in firm attributes like size and growth rate,

although the high selling expense firms are perhaps slightly larger and faster-growing. There

are substantial differences in selling expenses across samples, with high selling expense firms

spending significantly more on advertising.41

Next, we turn to study the predictions of the model in this data. We examine, in turn,

the relationship between the level of selling expenses and: i) the levels and ii) volatility of

investment, sales, Tobin’s q, profits, and markups, iii) the lead-lag patterns, and iv) the

investment-q regressions.42

41The advertising figure is calculated for the subset of firms with separate data on advertising.
42Note that the experiment we conduct in the model differs somewhat from the one in the data: The

empirical experiment considers an economy with a number of goods, each demanded separately, where the
degree of friction in each particular good’s market varies across goods. The model, on the other hand,
abstracts from this heterogeneity for the sake of tractability. The implications of product market frictions
we have emphasized do not hinge on this simplification, however.
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Levels The model predicts a positive relationship between the degree of product market

friction and the levels of Tobin’s q, profits, sales, and markups. To study this prediction, we

first compute, for each firm, time-series medians of Tobin’s q, profits/capital, sales/capital,

and markups.43 We then compute, for each subsample, medians across firms of these time-

series medians. Table 4 reports the results, revealing a significant increase in each of these

variables from the low to the high selling expense sample, as the model would predict. Also

consistent with the model, the investment rate remains similar across the subsamples.

Table 4: Medians

Low SE High SE

Investment/Capital 0.103 0.112
(0.002) (0.002)

Profit/Capital 0.210 0.302
(0.008) (0.010)

Sales/Capital 1.954 2.531
(0.078) (0.101)

Markup 1.376 1.605
(0.017) (0.023)

Tobin’s q 1.014 1.648
(0.046) (0.062)

Notes: The table reports, for each subsample, medians across firms of the time-series medians of firm invest-
ment/capital, profit/capital, sales/capital, sales/cost of goods sold, and Tobin’s q. Bootstrapped standard
errors – computed over 200 replications – are reported in parenthesis. The differences across samples are
significant at the one percent level for each variable.

Sorting industries into two groups has the advantage of leaving two relatively large sam-

ples to study. But it is useful to examine the evidence on an industry-by-industry basis as

well, even if sample sizes diminish in doing so. To this end, we compute medians across firms

of the above time-series medians also for each industry separately. The top panels in Figure

6 illustrate the results by plotting these measures of industry Tobin’s q and profits against

industry selling expenses. The figure reveals a clear positive relationship in both cases, as

well as significant variation across industries.

43Note that our empirical measure of markup is a rather crude one, revenue over the production cost of
goods sold. The absolute levels of the sales/capital ratio are also significantly higher in the data than in the
model. The model abstracts from intermediate inputs, which raise the overall level of the sales/capital ratio
in the data.
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Figure 6: Industry Selling Expenses vs Firm-Level Evidence: Levels, Volatilities, Regressions
Notes: Each circle corresponds to a 2-digit SIC industry with ten or more firms. The horizontal axis is
the time-series average of industry selling expenses relative to industry sales. The top two panels plot,
for each industry, medians across firms of time-series medians of firm Tobin’s q and profit/capital. The
middle two panels plot, for each industry, medians across firms of time-series standard deviations of firm
investment/capital and sales/capital. The bottom two panels plot, for each industry, the slope coefficient
and R2 from regression (21) (with both time and fixed effects). We include a fitted line for reference.
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Volatility The model predicts a negative relationship between the degree of product mar-

ket friction and firm-level volatility. To study this prediction, we first compute, for each firm,

time-series standard deviations of investment/capital, sales/capital, profits/capital, Tobin’s

q and markups. We then compute, for each subsample, medians across firms of these time-

series standard deviations. The left column of Table 5 reports the results, revealing, instead

of a decrease, a modest to large increase in firm volatility from the low to the high selling

expense sample.

Table 5: Firm-Level Time-Series Standard Deviations

Absolute Relative to Tobin’s q

Low SE High SE Low SE High SE

Investment/Capital 0.065 0.062 0.149 0.082
(0.002) (0.003) (0.008) (0.010)

Profit/Capital 0.085 0.114 0.192 0.141
(0.011) (0.011) (0.008) (0.010)

Sales/Capital 0.440 0.552 0.932 0.696
(0.086) (0.116) (0.038) (0.061)

Markup 0.062 0.094 0.142 0.115
(0.020) (0.026) (0.008) (0.008)

Tobin’s q 0.492 0.847 - -
(0.054) (0.064) - -

Notes: The table reports, for each subsample separately, medians across firms of the time-series standard
deviations of firm investment/capital, profit/capital, sales/capital, sales/cost of goods sold, and Tobin’s q.
Bootstrapped standard errors – computed over 200 replications – are reported in parenthesis. Relative to
Tobin’s q, the differences across samples are significant at the one percent level for each variable.

The intensity of idiosyncratic shocks varies across industries, however. One way to control

for this is to scale these measures of volatility by the volatility of idiosyncratic shocks.

While identifying these idiosyncratic shocks poses a non-trivial problem in itself, the model

dynamics suggest a simple approach: using Tobin’s q as a proxy for the shock. On the one

hand, Tobin’s q responds to shocks on impact, independent of the degree of friction. On the

other, it is relatively straightforward to measure given our data.44 We use Tobin’s q to study

changes in firm volatility as follows. For example in the case of investment we compute,

for each firm, the ratio of the time-series standard deviation of the investment rate to the

44Moreover, Vuolteenaho (2002) argues that cross-sectional variation in Tobin’s q is largely driven by
variation in expected future cash flow. Firm-level variation in q should thus largely reflect variation in
fundamentals.
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time-series standard deviation of Tobin’s q. We then compute, for each subsample, medians

across firms of these ratios.

The right columns of Table 5 report the results for firm volatility, revealing a significant

drop in the volatility of investment, sales as well as profits from the low to the high selling

expense sample, as the model would predict. For reference, Figure 10 in Appendix B plots

these relationships in the model.45 What is not consistent with the model is the observed

drop in the volatility of markups.

Finally, to examine the evidence on an industry-by-industry basis, we compute medians

across firms of the above ratios for each industry separately. The middle panels in Figure

6 illustrate the results by plotting these measures of firm-level volatility in investment and

sales against industry selling expenses. The figure reveals a clear negative relationship in

both cases.

Timing of responses We have emphasized that frictional product markets turn invest-

ment into a lagging variable. To study this prediction we compute, for each firm, time-series

correlations of investment with lags and leads of Tobin’s q, as well as selling expenses. We

then compute, for each subsample, medians across firms of these correlations. The top panels

in Figure 7 plot the results.

To help compare model and data, the bottom panels in Figure 7 plot the same correlations

in model-simulated data for versions of the model without frictions (dash-dotted line), with

frictions (solid line), as well as slightly lower frictions than our benchmark parametrization

(dashed line). As the figure shows, the model without frictions predicts a contemporaneous

relationship between investment and Tobin’s q, and no relationship between investment and

selling expenses. In the model with frictions, on the other hand, a lag pattern emerges:

investment becomes positively correlated with past values of Tobin’s q and selling expenses,

and much less so with future values.

The model with frictions clearly outperforms the model without frictions, by capturing

45As frictions increase, the volatility of investment/capital, sales/capital and profits/capital fall, in absolute
terms as well as relative to the volatility of Tobin’s q. The volatility of markups, on the other hand, increases
independent of the measure.
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Figure 7: Firm-Level Cross-Correlations of Investment with Tobin’s q and Selling Expenses
Notes: The top left panel plots, for each subsample separately, medians across firms of the time-series
cross-correlation of firm investment/capital with lags and leads of firm Tobin’s q. The top right panel plots
the same for investment/capital and selling expenses/capital. The bottom panels plot the same moments
for model-generated data for the fictionless model, the model with frictions, and the model with frictions
parameterized with slightly lower frictions than our benchmark. Tables 13 and 14 in Appendix D report the
numbers, including standard errors.

the lag-patterns in the data. Investment is, in both subsamples, positively correlated with

past values of Tobin’s q and selling expenses, and much less so with future values. These

lag-patterns are also somewhat stronger in the high selling expense sample, as the model

would predict, but the standard errors are too large to allow distinguishing the samples

statistically.46

46Tables 13 and 14 in Appendix D report bootstrapped standard errors. As an alternative story, time-to-
build also generates lead-lag patterns, but renders investment dependent future Tobin’s q rather than past,
as investment decisions reflect the future value of capital. Time-to-plan has the opposite effect, offering
an alternative explanation for the overall lag pattern. It is not clear that time-to-plan would have any
implications for selling expenses, however.
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Investment regressions Finally, turning to the predictions for investment-q regressions,

we run the panel regression

ij,t/kj,t−1 = a0 + a1qj,t−1 + dt + fj + εj,t, (21)

in both subsamples.47 Here dt controls for time effects and fj firm fixed effects. Table

6 reports the results, replicating the low slope coefficients and R2’s documented in the

literature. Comparing the two subsamples reveals that the results line up with our theory:

both the estimated slope coefficient and R2 fall significantly from the low to high selling

expense sample, independent of the specification.48 Running these panel regressions for

each industry separately only confirms this negative relationship between industry selling

expenses and both coefficient estimates and R2’s. The bottom panels of Figure 6 plot these

industry-by-industry results.

To relate our results to the literature emphasizing cash flow effects, we also run the

cash-flow augmented panel regression

ij,t/kj,t−1 = a0 + a1qj,t−1 + a2πj,t−1/kj,t−1 + fj + dt + εj,t, (22)

in both subsamples. The results, reported in Table 7, line up with our theory also here.

Comparing the two subsamples, the slope coefficient on Tobin’s q drops significantly from the

low to high selling expense sample. Cash flow is clearly significant across the board, but not

necessarily increasing in selling expenses. Lastly, the differences in R2 across subsamples are

relatively small. These patterns are consistent with the predictions of the model, illustrated

in Figure 4.

Many studies of firm investment focus on manufacturing industries. Our sample, in

contrast, includes a substantial share of non-manufacturing firms as well, because we view

the model as well-suited for analyzing a broader set of industries than manufacturing alone.

47We follow the standard timing of investment regressions in the empirical literature, by using lagged
values of Tobin’s q. The model regressions were instead run with the timing which is correct in the model.

48In addition to being robust to including time and/or fixed effects in the regression, these results appear
to also be robust to changes in the definition of Tobin’s q, as well as changes in the timing and specification
of the regressions (levels versus logs).
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Table 6: Firm-Level Regression of Investment on Tobin’s q

Simple regression Time effects Fixed effects Both effects

Low SE High SE Low SE High SE Low SE High SE Low SE High SE

a1 0.032 0.017 0.032 0.019 0.044 0.023 0.045 0.026
(0.004) (0.002) (0.004) (0.002) (0.004) (0.003) (0.004) (0.003)

R2 0.085 0.058 0.085 0.058 0.072 0.052 0.071 0.044

Notes: The table reports results from panel regression (21) in each subsample, with and without firm
fixed effects and time effects. Robust standard errors are reported in parenthesis. The differences in slope
coefficient a1 across samples are significant at the one percent level.

Table 7: Firm-Level Regression of Investment on Tobin’s q and Cash Flow

Simple regression Time effects Fixed effects Both effects

Low SE High SE Low SE High SE Low SE High SE Low SE High SE

a1 0.022 0.005 0.024 0.008 0.031 0.012 0.034 0.018
(0.004) (0.003) (0.004) (0.003) (0.004) (0.003) (0.004) (0.003)

a2 0.087 0.132 0.067 0.108 0.139 0.133 0.109 0.092
(0.025) (0.023) (0.024) (0.022) (0.027) (0.023) (0.025) (0.022)

R2 0.096 0.100 0.096 0.099 0.072 0.091 0.076 0.081

Notes: The table reports results from panel regression (22) in each subsample, with and without firm
fixed effects and time effects. Robust standard errors are reported in parenthesis. The differences in slope
coefficient a1 across samples are significant at the one percent level.

To relate our findings to studies focusing on manufacturing, Tables 15 and 16 in Appendix D

report the results restricting the sample to manufacturing firms only. The main conclusions

continue to hold in this subsample.

Alternative theories A number of alternative theories have been proposed for the investment-

q regression evidence. The main ones relax key assumptions of the neoclassical model, by in-

troducing financing constraints (Gomes 2001, Lorenzoni and Walentin 2007, DeMarzo, Fish-

man, He, and Wang Forthcoming), market power (or decreasing returns to scale) (Cooper

and Ejarque 2003, Abel and Eberly 2009), or non-convex capital adjustment costs (Abel and

Eberly 1994, Caballero and Leahy 1996, Dixit and Pindyck 1994). The results of this cross-

industry comparison – showing that investment-q regressions work less well in industries

with higher selling expenses – are particularly valuable in distinguishing our theory from

these alternatives. The concern that remains, however, is the possibility of a systematic
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Figure 8: Industry Selling Expenses vs Dividend Payout, Industry Concentration
Notes: Each circle corresponds to a 2-digit SIC industry with ten or more firms. The hori-
zontal axis is the time-series average of industry selling expenses relative to industry sales. The
left panel plots, for each industry, the median across firms of time-series medians of firm divi-
dends/assets. The right panel plots the Herfindahl index of industry concentration, available from
http://www.census.gov/epcd/www/concentration.html. We include a fitted line for reference.

relationship between these alternative theories and selling expenses, which could explain the

results.

First, it seems quite plausible that firms in more frictional product markets might be

more affected by financing constraints, due to a larger share of firm value deriving from

intangible capital (arguably less likely to work as collateral). To assess the role of financing

constraints for our results, we examine the relationship between selling expenses and both

debt level and dividend payout. We find that firms in the high selling expense sample indeed

have slightly less debt (see Table 3), but because they also pay somewhat greater dividends,

it seems unlikely that financing constraints account for our results. The left panel of Figure

8 illustrates this relationship on an industry-by-industry basis. Second, to assess the role

of market power for our results, we examine the relationship between selling expenses and

industry concentration, as measured by the Herfindahl index.49 As the right panel of Figure

8 illustrates, this relationship is relatively weak and generally negative. Market power is thus

unlikely to account for our results. Finally, fixed costs are unlikely to play an important role

here because the firms in our sample are quite large.

49The Herfindahl index is available at http://www.census.gov/epcd/www/concentration.html, along
with some alternatives. These alternative concentration indexes yield similar results.
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Table 8: Aggregate-Level Time-Series Standard Deviations

Absolute Relative to Tobin’s q

Low SE High SE Low SE High SE

Investment/Capital 0.122 0.087 1.569 0.855
(0.011) (0.007) (0.180) (0.087)

Profit/Capital 0.128 0.062 1.650 0.614
(0.023) (0.005) (0.176) (0.062)

Sales/Capital 0.082 0.042 1.059 0.415
(0.011) (0.004) (0.100) (0.042)

Markup 0.020 0.021 0.252 0.205
(0.002) (0.002) (0.024) (0.016)

Tobin’s q 0.078 0.101 - -
(0.009) (0.008) - -

Notes: The table reports the aggregate-level time-series standard deviations of investment/capital,
profit/capital, sales/capital, sales/cost of goods sold, and tobin’s q. Standard errors – computed using
Newey-West and the delta method – are reported in parenthesis. The differences across samples are signif-
icant at the one percent level for each variable, except the markup, both in absolute terms and relative to
Tobin’s q. For the markup, the difference is significant at the five percent level relative to Tobin’s q.

Aggregate shocks In addition to firm-level shocks, we can use the same data to study

responses to more aggregate-level shocks as well. The empirical variation we measure when

aggregating is, of course, very different from that at the firm level, offering an almost orthog-

onal test of the model predictions. To that end we compute, for each subsample, aggregate

time series of investment, sales, profits, and our other variables of interest by adding up the

firm-level observations at each point in time. Because the aggregate time series are relatively

short, we move to the quarterly data in Compustat for this exercise. As standard with ag-

gregate data, we begin by taking logs, seasonally adjusting,50 and HP (1600)-filtering before

computing moments.51

We first return to examine the effects of product market frictions on volatility, now in

response to more aggregate-level shocks. To this end we compute, for each subsample, time-

series standard deviations of our aggregate time series. Table 8 reports the results, revealing

a significant drop in volatility from the low to high selling expense sample for investment,

50The seasonal adjustment is done by regressing variables on quarter dummies and removing this seasonal
component.

51Note that we follow convention in analyzing firm-level data in levels and aggregate data in logs. While
aggregate data are typically analyzed in logs, taking logs becomes problematic with firm-level data due to
negative observations (e.g. in profits).
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sales and profits. Tobin’s q, on the other hand, is again significantly more volatile in the

high selling expense sample. As a result, if we again examined changes in volatility relative

to that of Tobin’s q, the drop in the volatility of investment, sales and profits would only

become more striking.52

We then return to examine the effect of product market frictions on investment-q regres-

sion results. We run, in each subsample, time-series regressions of aggregate investment on

Tobin’s q and cash flow. The results, reported in Table 9, are qualitatively similar to those at

the firm-level: Both the slope coefficient and R2 fall as we move from the low to high selling

expense sample, and cash flow is significant throughout. In this case the samples are harder

to distinguish statistically, however, because the number of observations in these time-series

regressions is small.53

Table 9: Time-Series Regression of Investment on Tobin’s q and Cash Flow

Low SE High SE Low SE High SE

a1 0.449 0.218 0.136 0.107
(0.176) (0.136) (0.110) (0.137)

a2 - - 0.489 0.521
- - (0.101) (0.155)

R2 0.082 0.065 0.307 0.188

Notes: The table reports results from time-series regressions of investment on Tobin’s q and cash flow in
quarterly data. Standard errors – computed using Newey-West – are reported in parenthesis. The P-values
for a decrease in the slope coefficient a1 moving from the low to the high selling expense sample are 0.15
and 0.45, respectively.

Industry shocks Finally, we also consider responses to industry-level shocks. We first

compute, for each 2-digit SIC industry, aggregate time series of our variables of interest

by adding up the firm-level observations at each point in time. We then compute, for

each industry, time-series standard deviations, as well as running time-series investment-q

regressions. Figure 9 illustrates the results: a negative relationship between industry selling

expenses and volatility (top panels), as well as industry selling expenses and investment-q

52It may seem surprising that these numbers are larger than the standard deviations for firm-level shocks
in Table 5. Recall, however, that these numbers represent percentage variation (the data is logged first),
while the firm-level numbers represent absolute variation.

53Note that the coefficient estimates are not directly comparable to those of the panel regressions, both
because the frequency is different, and because these regressions are in logs rather than levels.
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Figure 9: Industry Selling Expenses vs Industry-Level Evidence: Volatility, Regressions
Notes: Each circle corresponds to a 2-digit SIC industry with ten or more firms. The horizontal axis shows
the time-series average of industry selling expenses relative to sales. The top two panels plot the time-series
standard deviations of industry investment and industry sales, and the bottom two results from the time-
series regression of industry investment on industry Tobin’s q. We include a fitted line for reference. For
expositional reasons, the axis scaling leaves two industries with low selling expenses and particularly high
investment volatility outside the top-left panel.

regression results (bottom panels).

Summing up The model makes a number of predictions which depend on the degree of

friction in the product market. The goal of this section has been to document the evidence on

these predictions, across a broad range of markets and levels of aggregation. Our measure of

selling expenses plays an important role in this by providing a way of quantifying the degree

of friction in a market, in order to link product market frictions to the various predictions we

examine. We find support for a broad range of these predictions, although the evidence is

arguably stronger for some predictions than others. The differences across samples are clearly
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significant for the level effects, the relative volatilities, and regressions of investment on

Tobin’s q. Where the samples are harder to distinguish are the cross-correlations measuring

lagged responses, where the standard errors are larger.

5 Related Literature

The notion of a customer base has a history in macroeconomics dating back at least to

the seminal contribution of Phelps and Winter (1970). Well-know applications include Bils

(1989) and Rotemberg and Woodford (1991), who study the cyclical behavior of markups.

Work in this area has been somewhat limited, however, likely due to the complexity of

modeling these ideas in a general equilibrium setting, leading researchers to turn to the

Dixit and Stiglitz (1977) framework of monopolistic competition instead.

Recently, there has been a resurgence of interest in modeling the customer base in var-

ious contexts, however. Building on Fishman and Rob (2003), Dinlersoz and Yorukoglu

(Forthcoming) develop a model of informative advertising and industry equilibrium and use

it to analyze the effects of a long-run decline in the costs of information dissemination on

market structure. Their framework is similar to ours in incorporating the customer base

as a state variable for firm decision-making, but unlike us, they abstract from firm invest-

ment decisions, focusing on entry and exit instead.54 Their empirical evidence is based on

time-series variation in advertising costs, whereas we focus on cross-industry variation in a

broader measure of selling costs. Recent empirical work by Foster, Haltiwanger, and Syver-

son (2009) emphasizes the role of customer base concerns for firm/establishment expansion

in US manufacturing, showing that new establishments face a demand gap relative to exist-

ing ones which closes only slowly over time. Entry and exit are central also in the work of

Arkolakis (Forthcoming, 2010), who argues that the marketing costs of penetrating foreign

markets play an important role in firms’ export decisions. While Arkolakis abstracts from

long-term trade relationships, on-going work by Eaton, Eslava, Kugler, Krizan, and Tybout

54Note that while search models of frictional product markets are common in the literature, appearing for
example in the seminal work of Kiyotaki and Wright (1989), models with long-term customer relationships
are not.
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(2010) explicitly focuses on the dynamics of such relationships. Also in the international

setting, Drozd and Nosal (Forthcoming) develop a quantitative theory of export and import

prices, explicitly modeling the dynamic accumulation of market share in foreign markets.

While they emphasize the importance of product market frictions for understanding the dy-

namics of prices (with quantities more or less unaffected), our goal has instead been to argue

that frictions are important for understanding the dynamics of quantities. Finally, Ravn,

Schmitt-Grohe, and Uribe (2006) study models where goods-level habit preferences lead to

persistence in demand, generating counter-cyclical markups, but their model abstracts from

the costs of selling and long-term customer relationships which are central in ours.55

6 Concluding Remarks

This paper studies, both theoretically and empirically, the implications of frictional prod-

uct markets and long-term customer relationships for firm dynamics. To understand their

implications for firms, we first develop a tractable model framework, which builds on recent

developments in the search literature. The model makes a number of predictions which

appear promising for understanding documented patterns in the data. To establish the

empirical relevance of the model mechanism, we then use firm-level data to study these pre-

dictions, documenting broad support across a range of markets and degrees of aggregation.

In addition to developing our understanding of the demand-side determinants of firm dynam-

ics, the findings are likely to have important implications for macroeconomic measurement

and policy, calling for further work.

55Nakamura and Steinsson (Forthcoming) relax their assumption that habits are external, and show that
this can create an incentive for rigid prices when firms cannot commit. Another recent paper studying
pricing decisions in a model where the customer base is explicitly a state variable for firms is Kleshchelski
and Vincent (2009), who study cost pass-through in the face of industry-level shocks. Within the search
framework, Menzio (2007) and Shi (2011) study price dynamics in models of directed search in the product
market with long-term customer relationships.
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Appendix

A Planning Problem

This section shows that the optimality conditions of the planning problem in Section 3

coincide with those of the market equilibrium. We focus on the first order conditions, due

to the strict concavity of the planning problem.

The envelope conditions of the planning problem read, for a given x = (k, n, z),

Vn(λ) = uc(c, l)− ul(c, l)ℓ
p
y(k, y(x), z) + β(1− δn)EzVn(λ

′), (23)

Vk(λ) = −uc(c, l)φk(i(x), k)− ul(c, l)ℓ
p
k(k, y(x), z) + β(1− δk)EzVk(λ

′). (24)

The FOC for ls(x) reads

κ′(ls(x)) = ms(l
b(x), ls(x))

Vn(λ)

ul(c, l)
, (25)

the FOC for lb(x)

1 = mb(l
b(x), ls(x))

Vn(λ)

ul(c, l)
, (26)

and the FOC for i(x)

φi(i(x), k) = βEz

Vk(λ
′)

uc(c, l)
. (27)

Defining w := ul(c, l)/uc(c, l), vn(λ) := Vn(λ)/uc(c, l) and vk(λ) := Vk(λ)/uc(c, l), the
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envelope conditions can be written as

vn(λ) = 1− wℓpy(k, y(x), z) + β(1− δn)Ez

uc(c
′, l′)

uc(c, l)
vn(λ

′), (28)

vk(λ) = −φk(i(x), k)− wℓpk(k, y(x), z) + β(1− δk)Ez

uc(c
′, l′)

uc(c, l)
vk(λ

′). (29)

Restricting attention to a stationary environment implies that consumption and leisure re-

main constant, so uc(c
′, l′)/uc(c, l) = 1. The envelope conditions thus reduce to those of the

market equilibrium. Similarly, equation (27) reduces to the market condition (12).

Combining equations (25) and (26) implies: θ(x) = γ/(1 − γ) × κ′(ls(x)) i.e. equation

(3) characterizing market equilibrium. Moreover, equation (25) implies that

w
κ′(ls(x))

η(θ(x))
+

θ(x)η′(θ(x))

η(θ(x))
vn(λ) = vn(λ). (30)

If we define ε(x) := θ(x)η′(θ(x))/η(θ(x)) × vn(λ), this equation reduces to equation (10)

characterizing the market equilibrium, with ε(x) playing the role of the discount. Defining

the discount in this way also implies that the market condition (11) holds. Finally, equation

(26) reduces to w = η′(θ(x))vn(λ), or w = µ(θ(x))ε(x). This implies equation (4).

B Parametrization, Solution Method and Sensitivity

Solution method We solve the model numerically, using a log-linear approximation around

the non-stochastic steady state. More precisely, we first solve for the non-stochastic steady

state, and then log-linearize the model around this steady state. This solution method has

the advantage that, by abstracting from non-linearities in firm dynamics, it underlines the

fact that the key mechanism in our model does not rely on non-linearities. The system of

equations is available in an online appendix.56 We use the same approach also for the model

aggregate shocks.

56See: http://people.bu.edu/rudanko/papers/customer_capital_onlineapp.pdf
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Parametrization of γ and ξ These parameters are determined by targets for total buying

and selling time. In the non-stochastic steady state of the model, integrating over measure

one identical firms gives total buying time lb, and total selling time κ(ls). Given our targets

for lb and κ(ls), and the assumption that κ(ls) = (ls)2/2, Proposition 1 directly implies that

γ = lb/(lb+(ls)2). The value of γ is thus determined by the relative shares of time in buying

and selling activities. Given these shares, the overall scale of buying and selling time is

increasing in the degree of friction, and thus the targets for buying and selling time also pin

down ξ.

Moments in the model As illustrated by Figure 10, the model predicts a dampening in

firm investment, sales, profits and Tobin’s q as frictions increase. Observing higher volatility

in the high selling expense subsample thus suggests that firms in that sample may face a

more variable shock process. This means that testing for the reduction in volatility due to

product market frictions requires controlling for the shock process. To this end, we scale

the standard deviations of investment, sales and profits by that of Tobin’s q. As the figure

confirms, the model predicts that also these scaled moments decrease in the friction.

Sensitivity To assess the sensitivity of our results to the parametrization, we vary the

targets for buying time, selling time, and customer depreciation. Figure 11 shows how the

dynamics change when steady-state buying time is reduced by 50 percent to 0.265, Figure

12 when steady-state selling time is reduced by 50 percent to 1.15, and Figure 13 when the

customer depreciation rate is increased by 50 percent to 22.5. Table 10 shows how these

changes affect the various simulated moments of the model.
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Figure 10: Impact of Friction on Volatility
Notes: The figure plots standard deviations of model variables both in absolute terms and relative to the
standard deviation of Tobin’s q. The moments are based on simulated data from the model. Note that these
moments measure absolute variation – consistent with our empirical work – while the impulse responses in
Figure 2 are in percentage terms. The differences are explained by the effect of frictions on the means.
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Table 10: Sensitivity of Model Moments

Frictionless Benchmark Low lb Low κ(ls) High δn

Median
Selling expenses/Sales 0.000 0.047 0.047 0.024 0.047
Profit/Capital 0.151 0.198 0.197 0.175 0.191
Sales/Capital 0.505 0.579 0.577 0.541 0.572
Markup 0.000 0.147 0.144 0.073 0.133
Tobin’s q 1.000 1.910 1.881 1.458 1.773

Standard deviation
Investment/Capital 0.031 0.008 0.008 0.015 0.012
Profit/Capital 0.158 0.058 0.059 0.075 0.061
Sales/Capital 0.526 0.095 0.093 0.139 0.140
Markup 0.000 0.289 0.297 0.233 0.252
Tobin’s q 0.314 0.284 0.279 0.304 0.276

Standard deviation relative to q
Investment/Capital 0.099 0.028 0.028 0.048 0.042
Profit/Capital 0.502 0.203 0.211 0.246 0.222
Sales/Capital 1.674 0.333 0.333 0.458 0.507
Markup 0.000 1.017 1.065 0.765 0.914

Regression (19): investment on q

a1 0.099 0.024 0.023 0.046 0.041
R2 1.000 0.758 0.732 0.931 0.942

Regression (20): investment on q and cash flow

a1 0.100 -0.007 -0.013 0.016 0.026
a2 -0.002 0.178 0.196 0.147 0.087
R2 1.000 0.964 0.952 0.989 0.996

Notes: The table reports moments based on model simulated data. The first column is the frictionless limit,
the second our benchmark parametrization, the third a parametrization with 50% lower buying time, the
fourth with 50% lower selling time, and the fifth with 50% higher customer depreciation.
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Figure 11: Impulse Responses: Benchmark versus Low Buying Time
Notes: The responses are in percentage deviations from steady state.
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Figure 12: Impulse Responses: Benchmark versus Low Selling Time
Notes: The responses are in percentage deviations from steady state.
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Figure 13: Impulse Responses: Benchmark versus High Depreciation
Notes: The responses are in percentage deviations from steady state.
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C Model with Aggregate Shocks

This section adapts the model to a setting with aggregate fluctuations in productivity. Sup-

pose we alter the economy such that all firms have the same productivity each period, which

fluctuates over time according to a Markov process. In those circumstances all firms will

(eventually) be identical in size, but the size will fluctuate over time response to aggregate

shocks. Aggregate shocks lead to fluctuations in the price of consumption, which must be

taken into account in discounting firm profits, as well as evaluating the returns to search.

The household problem now reads

maxE0

∞∑
t=0

βtu(ct, 1− lmt − lbt )

s.t. ct ≤ wtl
m
t + wb

t l
b
t +Πt, ∀t ≥ 0.

This problem differs from the previous household problem because here the wage wt, return

to search wb
t and dividends Πt fluctuate over time in response to aggregate shocks. The

household now maximizes expected utility over this uncertainty about the future. As before,

the return to search satisfies wb
t = µ(θt)εt, with wt = wb

t for all t in any equilibrium where

the household spends time in both market work and search.

Firms choose output yt, investment it, production labor lpt , sales labor l
s
t , queues θt, and

discounts εt, for all t, conditional on the realization of the aggregate shock history up to time

t, to

maxE0

∞∑
t=0

β̃t[yt − lstη(θt)εt − wtl
p
t − wtκ(l

s
t )− φ(it, kt)]

s.t. yt ≤ nt + lstη(θt),

yt ≤ f(kt, l
p
t , zt),

nt+1 ≤ (1− δn)yt,

kt+1 ≤ (1− δk)kt + it,

wb
t = µ(θt)εt.
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This firm problem differs from the previous one in three ways: i) all firms face the same

productivity realization, ii) the wage (and return to search) fluctuate over time, and iii) firms

discount future profits with the probability-normalized prices β̃t instead of βt. Starting all

firms with the same initial conditions implies that they remain identical forever. Aggregate

variables are thus just a multiples of firm level variables and the measure of firms, one. The

firm optimality conditions now imply that: i) all firms offer the same discount and have

identical queues, and ii) in times when firms hire more sales people, queues are longer and

discounts (relative to wages) higher:

PROPOSITION 2. Queues and discounts are increasing in the choice of sales personnel

lst : θt = γ/(1− γ)× κ′(lst ) and εt = wtθ
1−γ
t /ξ.

The definition of equilibrium extends with straightforward changes from the text.
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Figure 14: Impulse Responses to Aggregate Productivity Shock
Notes: The responses are in percentage deviations from steady state. Selling expenses refer to wκ(ls), sales
to (1− lsη(θ)ε)y, profit to sales net of labor costs of production and sales, and the markup to sales per unit
sold 1− lsη(θ)ε/y over the marginal cost wlp/y × 1/(1− α).
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D Data

For comparability with existing literature, we use the Compustat industrial annual data from

1983 to 1999, with the following standard exclusions: First, we drop firms with primary SIC

classification between 6000 and 6999 and between 4900 and 4999, representing utilities and

financial firms. We also drop foreign firms. Second, we drop firms with negative or zero

book value of capital (Items 7 and 8), sales (Item 12), assets (Item 6), selling, general and

administrative expenses (Item 189), cost of goods sold (Item 41). We also drop firms with

negative advertising (Item 45) or R&D (Item 46). Observations with a merger flag in year t

are dropped from the sample in years t− 1, t and t+ 1. To minimize the impact of extreme

observations, we drop as outliers firms which have in a given year a profit rate above 10 or

less than −4, an investment rate above 3, or Tobin’s q above 10.

Investment is measured as Item 30, but netting out capital sales (Item 107) would not

affect the results significantly. Earnings are measured as operating income (Item 13). The in-

vestment rate is measured as (Item 30)/(Item 7 lagged) and the profit rate as (Item 13)/(Item

7 lagged). Debt is measured as Item 9, dividends as Item 21+Item 19.

Finally, we balance the panel, keeping only firms with observations for all of the above

variables between 1983 and 1999. This leaves 648 firms, with 11, 016 firm-year observations.

Balancing facilitates studying time-series dynamics at the firm level, which requires repeated

observations for each firm over time. Our Stata code is available on request.
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Table 11: High SGA Industries

Division A: Agriculture, forestry, and fishing
07: Agricultural services

Division D: Manufacturing
20: Food and kindred products
21: Tobacco products
23: Apparel and other finished products from fabrics
27: Printing, publishing, and allied industries
28: Chemicals and allied products
31: Leather and leather products
35: Industrial and commercial machinery and computer equipment
38: Measuring, analyzing, and controlling instruments
39: Miscellaneous manufacturing industries

Division G: Retail trade
56: Apparel and accessory stores
57: Home furniture, furnishings, and equipment stores
59: Miscellaneous retail

Division I: Services
73: Business services
75: Automotive repair, services, and parking
76: Miscellaneous repair services
81: Legal services
82: Educational services
84: Museums, art galleries, and gardens
86: Membership organizations
89: Miscellaneous services

57



Table 12: Low SGA Industries
Division A: Agriculture, forestry, and fishing

01: Agricultural production crops
02: Agriculture production livestock and animal specialties
08: Forestry
09: Fishing, hunting, and trapping

Division B: Mining
10: Metal mining
12: Coal mining
13: Oil and gas extraction
14: Mining and quarrying of nonmetallic minerals

Division C: Construction
15: Building construction: general contractors and operative builders
16: Heavy construction: other than building construction contractors
17: Construction: special trade contractors

Division D: Manufacturing
22: Textile mill products
24: Lumber and wood products, except furniture
25: Furniture and fixtures
26: Paper and allied products
29: Petroleum refining and related
30: Rubber and miscellaneous plastics products
32: Stone, clay, glass, and concrete products
33: Primary metal industries
34: Fabricated metal products, except machinery and transportation equipment
36: Electronic and other electrical equipment and components, except computer equipment
37: Transportation equipment

Division E: Transportation, communications, electric, gas, and sanitary services
40: Railroad transportation
41: Local and suburban transit and interurban highway passenger transportation
42: Motor freight transportation and warehousing
44: Water transportation
45: Transportation by air
46: Pipelines, except natural gas
47: Transportation services
48: Communications

Division F: Wholesale trade
50: Wholesale trade: durable goods
51: Wholesale trade: non-durable goods

Division G: Retail trade
52: Building materials, hardware, garden supply, and mobile home dealers
53: General merchandise stores
54: Food stores
55: Automotive dealers and gasoline service stations
58: Eating and drinking places

Division I: Services
70: Hotels, rooming houses, camps, and other lodging
72: Personal services
78: Motion pictures
79: Amusement and recreation services
80: Health services
83: Social services
87: Engineering, accounting, research, management, and related services

Division J: Public administration
99: Non-classifiable establishments
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Table 13: Firm-Level Cross-Correlations of it/kt with qt+j

j -3 -2 -1 0 1 2 3

High SE 0.126 0.211 0.301 0.124 0.042 -0.026 -0.041
(0.031) (0.034) (0.031) (0.033) (0.026) (0.024) (0.033)

Low SE 0.072 0.190 0.372 0.248 0.085 0.009 -0.035
(0.024) (0.029) (0.024) (0.026) (0.024) (0.024) (0.027)

Notes: The table reports medians across firms of the time-series cross-correlations of the firm-level invest-
ment rate with lags and leads of firm-level Tobin’s q. Bootstrapped standard errors – computed over 200
replications – are reported in parenthesis.

Table 14: Firm-Level Cross-Correlations of it/kt with SEt+j/kt+j

j -3 -2 -1 0 1 2 3

High SE 0.161 0.252 0.366 0.521 0.195 0.049 -0.042
(0.031) (0.038) (0.031) (0.024) (0.036) (0.036) (0.035)

Low SE 0.098 0.184 0.315 0.466 0.149 0.003 -0.012
(0.026) (0.027) (0.024) (0.019) (0.027) (0.032) (0.028)

Notes: The table reports medians across firms of the time-series cross-correlations of the firm-level investment
rate with lags and leads of firm-level SE. Bootstrapped standard errors – computed over 200 replications –
are reported in parenthesis.

Table 15: Firm-Level Regression of Investment on Tobin’s q in Manufacturing

Simple regression Time effects Fixed effects Both effects

Low SE High SE Low SE High SE Low SE High SE Low SE High SE

a1 0.032 0.016 0.032 0.017 0.040 0.021 0.042 0.025
(0.004) (0.002) (0.004) (0.002) (0.004) (0.003) (0.004) (0.003)

R2 0.087 0.053 0.087 0.053 0.080 0.047 0.078 0.036

Notes: The table reports results from panel regression (21) on the subset of industries in manufacturing,
with and without firm fixed effects and time effects. Robust standard errors are reported in parenthesis.

Table 16: Firm-Level Regression of Investment on Tobin’s q and Cash Flow in Manufacturing

Simple regression Time effects Fixed effects Both effects

Low SE High SE Low SE High SE Low SE High SE Low SE High SE

a1 0.012 0.006 0.016 0.009 0.024 0.011 0.029 0.017
(0.005) (0.003) (0.005) (0.003) (0.005) (0.003) (0.005) (0.003)

a2 0.171 0.110 0.141 0.087 0.171 0.123 0.130 0.085
(0.034) (0.020) (0.033) (0.020) (0.029) (0.026) (0.026) (0.024)

R2 0.127 0.084 0.126 0.082 0.115 0.075 0.112 0.064

Notes: The table reports results from panel regression (22) on the subset of industries in manufacturing,
with and without firm fixed effects and time effects. Robust standard errors are reported in parenthesis.
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