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I. INTRODUCTION

The notion of the "learning curve," which was evidently first

formalized about half a century ago, has turned out to be a useful and

widely applicable concept in the analysis of production behavior. The

general acceptance of the learning curve hypothesis reflects a consensus,

as expressed by Kaplan, that "the cost of doing most tasks of a repeti-

tive nature decrease[s] as experience at doing these tasks accumu—

latefs}."1 According to the standard learning curve model, costs decline

with accumulated experience, but at a diminishing rate. In his seminal

article on "learning by doing," Arrow noted that

A ... generalization that can be gleaned from many of the classic
learning experiments is that learning associated with repetition of
essentially the same problem is subject to sharply diminishing
returns. There is an equilibrium response pattern for any given
stimulus, towards which the behavior of the learner tends with

repetition. To have steadily increasing performance, then, implies
that the stimulus situations ust themselves be steady evolving
rather than merely repeating.

The hypothesis that there is a learning curve associated with a

production activity has implications for the (dual) cost and production

functions which characterize that activity, or technology. In particu-

lar, the hypothesis implies that the duration of experience with the

technology is an argument of the cost and production functions, and that

the first and second partial derivatives of cost (output) with respect to

experience are negative (positive) and positive (negative), respectively.

1Kaplan (1982), p. 98.

2
Arrow (1962), pp. 155-156.
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Despite the recognition that experience "matters" in cost functions,

it has, virtually without exception, been ignored in modern econometric

analysis of cost and production. Although most such models include a

"technology" variable as an argument, that variable is supposed to

represent the "level" or "state" of technology (and changes in it the

extent of technical progress) rather than experience with technology.

The primary objective of most econometric studies of cost and

production is to analyze the structure and determinants of factor demand.

Factor demand equations are obtained by partially differentiating the

cost function with respect to factor prices, and setting the derivatives

equal to zero, to satisfy the necessary conditions of producer equilib-

rium. For this reason, whether or not experience is included in the cost

function will affect the specification of factor demand equations only if

experience affects costs "non-neutrally," that is, only if it has other

than a purely first-order effect on costs. By analogy, the levels of

technology and of output, respectively, appear in factor demand equations

only if technological change is "biased" and production is nonhomothetic.

The major hypothesis to be developed and tested in this paper is

that experience does not enter the cost function "neutrally," and thus

(from a geometric perspective), that ceteris paribus increases in experi-

ence do not result in "parallel" shifts in the cost function. Conse-

quently, equilibrium shares of factors in production costs are a function

of the amount of experience with the technology, as well as of the

conventional determinants (e.g., relative factor prices).

More specifically, we postulate that highly-educated workers have a

comparative advantage with respect to learning and implementing new

technologies, and hence that the demand for these workers relative to the
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demand for less-educated workers is a declining function of experience3

We are not the first authors either to propose or to attempt to rigorous-

ly test this hypothesis —- Nelson and Phelps (1966) incorporated a

similar proposition as an assumption in a simple neoclassical model of

economic growth; Nelson, Peck, and Kalachek (1967) provided some inter-

esting anecdotal evidence; in the only empirical study of the subject,

Welch (1970) estimated a model of relative earnings of workers by educa-

tion category on cross-sectional U.S. farm data. His analysis only

refers to agriculture and evidence from other sectors is clearly needed

to determine the validity and applicability of the hypothesis. The

purpose of our paper is to provide such evidence, using what we believe

are superior measures of experience on a technology.

In the next section of the paper the previous literature is re-

viewed. In section III we formulate an econometric model of the demand

for highly-educated workers, derived from a cost function in which

experience enters non-neutrally. The model is estimated on a panel of 61

U.S. manufacturing industries observed in 1960, 1970, and 1980; the

results are given in Section IV. A brief summary and conclusions follow.

3We are agnostic as to the extent to which this advantage derives
from skills conferred by education as opposed to an alternative (selec-
tion) function of education -- in other words, how much school produces
"learning ability," versus how much (exogenously) better learners choose
to attend school.
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II. THEORETICAL PERSPECTIVES AND LITERATURE REVIEW

This section has three main objectives. We begin by attempting to

provide a theoretical justification for the hypothesis that the demand

for educated, relative to uneducated, workers declines with experience on

a technology. We then distinguish this proposition from others concern-

ing the relationship between education and technical change. Finally, we

review existing evidence apposite to our hypothesis.

A. Hypotheses Regarding Education and Technology

Two premises -- one about the impact of the introduction of new

technology on the production environment, the second about differences in

the way educated and uneducated workers function in that environment —-

are sufficient to justify our hypothesis about the effect of experience

on a technology on the structure of labor demand. The first premise is

that the degree of uncertainty as to what constitutes effective task

performance declines with experience on a technology. The replacement of

an existing technology by a new one represents a major "shock" to the

production environment, and workers (and perhaps management as well)

initially are very uncertain as to how they should modify their behavior.

The transition from old to new technology results in job tasks and

operating procedures which are not only different but, in the short run

at least, less well-defined. Wells (1972) has argued, in the context of

the "product life-cycle" model, that in its infancy "the manufacturing
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process is not broken down into simple tasks to the extent it will be

later in the product s life. Nelson et al also observe that

the introduction and early operation of new processes [creates] an
environment of uncertainty and imperfect knowledge. But the growth
of understanding about particular processes, and the learning
experiences of early use, ultimately lead to specialization of
function and subdivision of labor. As knowledge progresses, it
results in routiized and mechanized processes capable of being
easily operated.

The second premise underlying our hypothesis is that the productivi-

ty of highly-educated relative to less-educated workers is greater, the

more uncertainty characterizing the production environment Nelson and

Phelps argue that "education enhances one's ability to receive, decode,

and understand information."6 Presumably this is why, according to Welch

"educated persons ... can distinguish more quickly between the systematic

and random elements of productivity responses."7 When a new product or

process has recently been introduced, there is "more (remaining) to be

learned" about the technology, and there is a greater premium on the

superior "signal-extraction" capability of educated labor.

Before considering the existing empirical evidence and our own new

results, it behooves us to contrast the hypothesis developed above to two

other propositions about the relationship between education and the

introduction of new technology, or technical change. These contrasts

4Wells, pp. 8-9.

5
Nelson, et al.

6
Nelson and Phelps, p. cit., p. 69.

7
Welch, p. cit., p. 47.
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involve two distinctions, one between the adoption and the implementation

of new technology, the other between the short-run and long-run impact of

technical change on skill or educational requirements.

There is abundant evidence, from studies of both consumer and

producer (entrepreneur) behavior, that more highly-educated individuals

tend to adopt innovations sooner than less-educated individuals. Wells,

for example, cites evidence from the marketing literature that "early

[consumer] purchasers of a new product ... are generally found to be

more educated. And Nelson and Phelps, citing Rogers work on the

diffusion of innovations in U.S. agriculture, assert that "it is clear

that the farmer with a relatively high level of education has tended to

adopt productive innovations earlier than the farmer with relatively

little education."9 Such evidence motivates Nelson and Phelps to analyze

a theoretical model of the process of technological diffusion and the

role of education predicated on the assumption that "the time lag between

the creation of a new technique and its adoption is a decreasing function

of some index of average educational attainment ... of those in a posi-

tion to innovate" [emphasis added].10

Our hypothesis is that educated workers have a comparative advantage

with respect to the implementation of innovations, which occurs follow-

ing, and conditional on, adoption. (The learning curve depicts the

improvement in performance following adoption of a new technology.)

Under the hypothesis about the relationships between education and

8
Wells, . cit., p. 9.

9Nelson and Phelps, . cit., p. 70.

10
Nelson and Phelps, . cit., p. 72.
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adoption, on the one hand, and education and implementation, on the other

hand, the direction of causality between education and innovation are

opposite. Education "causes't individuals to adopt (earlier); the adop-

tion of an innovation (which requires implementation for full realization

of benefits) "causes" increased relative demand for educated workers. In

our empirical work we analyze the relationship between the education-

structure of labor cost (or employment) and an indicator of the "pres-

ence" of new technologies, and we implicitly assume the latter to be

exogenous. This assumption might appear to be of questionable validity

in view of the preceding discussion. But because our education data

refer to total employment in an industry, and individuals responsible for

making adoption decisions account for a very small fraction of total

employment, we believe we are primarily capturing the effect of (previ-

ous) adoption on educational demand rather than the effect of education

on the propensity to adopt.

The second hypothesis from which we wish to distinguish our story

might be referred to as the "biased technical change hypothesis." If

technical change is biased or nonneutral, the transition from an old to a

new technology will result in permanent changes in equilibrium factor

shares, holding output and relative factor prices constant.1' In order

to test for the presence of nonneutral technical change, an indicator of

technology -- either a time trend, or an index of diffusion of a new

technology —- is sometimes included in aggregate or industry-level

general framework for analyzing technical change biases was
developed by H. Binswanger (1974).
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econometric cost functions.12 Most studies of biased technical change

have addressed the question of whether technical change is (aggregate-)

labor-saving (non-labor using) -- the answer is generally affirmative --

not whether new technologies are biased towards particular types of

labor. An exception is the study by Denny and Fuss, who found that "the

labor-saving impact [of technical change in the Canadian telecommunica-

tions industry] was felt most severely by the least skilled occupa-

13
tions.

Models incorporating biased technical change abstract from the

process of implementing new technologies (which is precisely our con-

cern); the implicit assumption is that the structure of factor demand

does not vary after adoption. Our hypothesis is that the process of

adjustment to (implementation of) the new technology is educated-labor-

using. We do not venture to speculate as to whether in long-run equilib-

rium, new technologies are more educated-labor using than the techno-

logies which they replace.14 It is an implication of our hypothesis,

however, that sectors or industries characterized by high rates of

innovation, which are, as a result, continuously implementing new

12For example, Levy et al's measure of technology for underground
mining is the fraction of production carried out by what are considered

relatively new methods: continuous, shortwall, and longwall mining,
while Denny and Fuss' index of technology for the Canadian telecommunica-
tions industry is based on the percentage of telephones with access to
direct distance dialing. See Levy et al (1983) and Denny and Fuss
(1983).

13Denny and Fuss, . cit., p. 161.

14We agree with Binswanger (pp. cit., p. 975), however, that
long-run technical change biases may be endogenous, determined by rela-
tive factor prices, although his evidence suggests that "it takes very
substantial changes in factor prices in order to perceptably influence
the biases."
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technologies, will tend to create the most. opportunities (demand) for

highly-educated workers.

B. Previous Work on "Experience on a Technology" and Labor Demand

We turn now to a brief summary of the existing evidence concerning

the relationships between "experience" on a technology and the educa-

tion-structure of labor demand. In the early 1960s, Bright (1961)

studied the effects of automation on job-skill requirements in metal

working, food and chemicals. He observed that the skill requirements of

jobs first increased and then decreased sharply as the degree of mechani-

zation grew. The conclusion of his study was that, in the long run,

automated machinery would require less operator skill.

Nelson et al (1967) provide some anecdotal evidence on the tendency

of the average educational attainment of workers to decline as a technol-

ogy matures:

The early ranks of computer programmers included a high proportion
of Ph.D. mathematicians; today, high school graduates are being
hired. During the early stage of transistors chemical engineers
were required to constantly supervise the vats where crystals were
grown. As processes1ere perfected, they were replaced by workers
with less education.

The effect [of the introduction of new technology on the demand for
education] is not just on the production work force. Technological
advance changes the whole pattern of information that must flow
between economic units.

High remuneration of technically trained sales people in the
electronics industry, for example, relates to their ablity to
communicate new developments to the potential market.

15Nelson et al., p. cit., p. 144-5.

16
Nelson et al., . cit., p. 16.
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Welch (1970) investigated the relationship between the demand for

labor by education category and an indicator of experience (actually, an

indicator of the "newness" of inputs, or of the lack of experience) using

1959 cross-sectional (state) farm data. Welch implicitly assumed that

workers (at least in some educational categories) were immobile across

states, so that wages were not equalized across states. In his model

relative wages by education class are endogeneous, determined by

(exogeneous) quantities of labor by education class, nonlabor inputs, and

the "newness" indicator, in addition to other variables. The measure

that he uses to proxy the rate of flow of new inputs (hence the degree of

inexperience with the technology) is a weighted average of expenditures

per farm for research over the past nine years. Welch found that the

wage rate of college graduates relative to that of "laborers with conven-

tional skill" was positively and significantly related to research

expenditures. But because, as he argues, "agriculture is probably

atypical inasmuch as a larger share of the productive value of education

may refer to allocative ability than in most industries,"7 evidence from

other sectors (and perhaps based on different assumptions and methodolo-

gy) is needed to determine the validity and applicability of the

hypothesis.

III. ECONOMETRIC SPECIFICATION

In this section we specify a cost function in which the age of the

technology enters non-neutrally with respect to labor input classified by

17
Welch, . cit., p. 47.
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education, and derive from it a labor demand equation to be estimated

below.

In view of the issues we wish to explore, it is convenient and, we

think, reasonable to specify a model of total labor cost rather than a

model of total cost of production (the sum of labor, capital, and materi-

als Costs). Abstracting from materials cost is acceptable if raw materi-

als are separable from primary inputs in the total-cost function.

Although there is evidence against such separability, the failure of this

assumption to hold is unlikely to affect our estimates or hypothesis

tests regarding the effect of "age" on the structure of labor demand. If

one hypothesizes that capital is a "quasifixed" input that producers

cannot adjust freely in response to relative price changes, it is appro-

priate to specify a restricted variable cost function, according to which

minimum variable-input cost is determined by variable input prices, the

stock of capital, output, and perhaps other variables.18 Since we are

excluding materials inputs from consideration, total variable cost

reduces to total labor cost.

To keep the model as simple as possible, we postulate there to be

only two categories of labor ("highly educated" and "less educated"), and

specify the following general form for the restricted variable or total

labor cost function:

TLC f(W1, W2, AGE, K, Q, T) (1)

where TLC = total labor cost

W1 = wage rate of highly-educated workers -

8See Hohnen et al. (1984) for a detailed discussion of restricted
variable cost functions.
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W2 = wage rate of less-educated workers

AGE = age of the technology

-K = stock of quasi-fixed capital (plant and equipment)

Q = real output

T = index of the state of technology

The minimum total labor cost of producing a level of output Q using a

capital stock K and a technology of state T and age AGE, given wage rates

W1 and W2, Is determined by eq. (1). It is convenient to define a

four-element (row) vector Z, where

Z1 = AGE

in K

in Q

Z4 = T,

so that we can rewrite (1) as

TLC =
f(W1, W2, Z) (2)

We assume that eq. (2) can be approximated by the translog function

in TLC = + in W1 + a2 in W2 + [a11(in W1)2 + a12 (in W1)(ln W2)

4
+ &21(in W2)(in W1) + a22(in W2)2] + [.Z. + 1.(ln W1)(Z.)

j=1

+ 2j (in W2)(Z)] (3)

(We suppress quadratic and interaction terms among the Z. which would

vanish in the first—order conditions.) Shephard's lemma implies the

following necessary condition for cost-minimization:

alnTLC (1=1,2) (4)
ainW. 1

1
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where S. = share of cost of highly-educated labor in total labor cost.

Differentiating eq. (3) with respect to in W1, imposing the usual

symmetry and homogeneity restrictions, and using the equilibrium condi-

tion (4), we obtain

S1 = a1
+ a ln(W1/W2) + (5)

Eq. (5) implies that, in general, the equilibrium share of educated—

labor's cost in TLC is determined by relative wages and by AGE, K, Q, and

T. The central hypothesis we wish to test is that < 0, i.e., that

increases in experience with, or in the age of, the technology lead to

reductions in S1. We allow for nonzero (j = 2,3,4) because it is

plausible that K, Q and T also determine S1 and because (as we discuss in

detail below) these variables are potentially correlated with AGE.

According to the "capital-skill complementarity" hypothesis, for example,

12 > 0, and if the TLC function is nonhomothetic and characterized by

nonneutral technical change, 13 and 14 will also be nonzero.

Factor-share equations are conventionally estimated on time-series

data for a given industry or sector, which is reasonable under the

hypothesis that cost-functIon parameters are invariant over time (but not

necessarily across industries). In our empirical work, however, we

estimate S1-equations on a panel of 61 industries each observed in the

(Census of Population) years 1960, 1970, and 1980. There are several

reasons for taking this approach. First, reasonably good estimates of

the distribution of employment and labor cost by education and industry

are only available in Census years. One could, of course, estimate eq.

(5) on aggregate time-series data, but even at the aggregate level,

annual data on S1 would be subject to substantial measurement error.
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Moreover, it is much less reasonable to maintain the convenient assump-

tion that (relative) wage rates are exogenous at the aggregate level than

it is at the industry level.

The equations which we actually estimate on our panel are variants

of the following "fixed effects" or "analysis of covariance" model:

Slkt = k + ÷ 11 AGE + l2 in Kkt + l3 in kt (6)

where the double kt-subscript refers to the value of the variable for

industry k in year t. By including the industry effects we control

for the effects of any permanent differences across industries in unmea-

sured determinants of S1; the time dummies control for the effects of

changes over time in unmeasured determinants which are common to all

industries. Within this econometric framework the coefficients on the

covariates AGE, K, and Q capture the partial relationships between

deviations of these variables from their respective industry means and

deviations of Slkt from its respective industry mean. A heuristic

interpretation of our estimation procedure is that it reveals whether an

industry which experienced an increase in AGE above the average experi-

enced by all industries between, say, 1960 and 1970, had a (significant-

ly) below-average increase in S1 during that period.

The reader will note that whereas eq. (5) includes the relative-wage

variable and the technology index T on the RHS, these variables are

absent from eq. (6). We can at least partially justify the omission of

these variables from our estimating equations on the following grounds.

In contrast to Welch, we assume that both types of labor are mobile

across industries in the long run, so that (relative) wages are both

equalized across industries and exogenous to any given industry in any

particular year. Under this assumption all of the relative-wage
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variation in our sample is in the time-dimension, and this variation is

controlled for by the presence of time dummies.19

T, the index of the state of technology, is excluded from eq. (6)

because we lack industry- and year-specific data on this variable. To

the extent that the total sample variation in T is accounted for by

permanent interindustry differences and by changes common to all indus-

tries, T is controlled for by the industry- and year-effects.2° We

recognize, however, that industries experience different rates of techni-

Cal change, so that not all of the variation in T will be captured by the

fixed effects. Of course, if technical progress is, in reality, neutral

with respect to the structure of labor demand, then we do not commit a

specification error by omitting T from the share equation.

We turn now to an issue of obviously critical importance in our

research design -- the measurement of "age of the technology." The age

or "newness" of the technology is for us, as it was for Welch, not

directly observable. As noted above, Welch used R&D expenditure as a

proxy for "newness" of inputs. We also find industries' R&D spending to

contribute to the explanation of the observed variation in Si, but in a

way different from that hypothesized or investigated by Welch. Our proxy

191t is true that the effect on S1 of a given change in relative
wages will be different in industries with different elasticities of
substitution between the two types of labor (and hence different values
of a11); we might think of the time dummies as capturing, inter alia, the
product of the year-specific relative wage and the mean across industries
of a11. Indeed under suitable assumptions we can interpret all of our
parameter estimates (e.g., ]i as means of the respective distributions
of parameters across industries.

201n fact, specifying time dummies is somewhat less restrictive than
specifying a time trend, the proxy for T frequently employed in previous
econometric factor-demand studies, such as Binswanger (1974) and Levy and
Jondrow (1983).
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for the age of an industry's technology is the age of its capital stock

(or the ages of its two components, plant and equipment).

If one accepts the notion of embodied technological change, then the

age of the capital stock is identical to the age of the technology. Even

if technological change is not completely embodied, we expect there to be

a strong relationship between the age of the capital stock and the age of

the technology. The link between the age of capital and the age of

technology results from the assumption that the introduction of new

technology increases equilibrium industry output, due to both demand

increases arising from product innovations and cost reductions arising

from process innovations. Output increases in turn lead to a higher rate

of investment and a younger capital stock.2' The link can also be

interpreted as consistent with the product life cycle approach (Wells,

1972), according to which early in a product's life, a low capital to

labor ratio is used because of frequent design changes. Once a stable

production technique is established, intense capital investment occurs,

thereby producing a correlation between age of the capital stock and age

of the technology in a cross section of industries.

Before turning to our empirical analysis, we wish to make two

econometric points regarding our proxy for AGE. First, the mean age of

the capital stock is, like (the quantity of) the capital stock itself,

21jorgenson's 1971 survey of the literature on investment concluded
that output was clearly the major determinant of investment in fixed

capital.
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determined by the past history of investment. Thus one can view an

equation including the mean age variable as a specification including a

very restricted distributed lag on past investment. In principle, it

might be desirable to relax this restriction, and to include an uncon-

strained distributed lag, but this would be likely to introduce severe

multicollinearity and render the interpretation of our estimates diffi-

cult. Second, we recognize that a significant fraction of investment may

involve simply replacing old capital with capital of similar design, as

opposed to the installation of capital embodying new technology. We try

to take account of this by allowing the effect of changes in capital age

on S1 to depend on an industry's own and "embodied" R&D-intensity. In

any case, however, the fact that some or even most investment is merely

"replacement" investment implies that the mean age of capital is a

"noisy" (error-ridden) indicator of the age of the technology, which

should render our hypothesis tests on strong tests (i.e., biased

towards acceptance of the hypothesis that = 0).

IV. EMPIRICAL ANALYSIS

A. Data

Variants of equation (6) are estimated on a pooled cross-section

time-series data set containing 61 manufacturing industries in each of

the years 1960, 1970 and 1980.22 Data on the demographic characteristics

22The 61 industries and their SIC counterparts are listed in
Appendix A. These are the industry sectors used by the BIE for their
labor demographic matrices. The industry codes in the other datasets
that we use are all matched to the 61 BIE codes.
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of the workers in these industries were obtained from the Labor Demo-

graphics Matrices of the Bureau of Industrial Economics (BIE). Informa-

tion on the age and the quantity of the industryes capital stock is taken

from the Bureau of Industrial Economics Capital Stocks Data Base. Data

on real output are from the Census/SRI/Penn Data Base which is derived

primarily from the Annual Survey of Manufactures and the Census of

Manufactures,23 and finally, information on the R&D intensity of each

industry is obtained from the technology matrix constructed by FM.

Scherer (1984). Table 1 presents some summary statistics from our

database.

B. Results

The results of estimating variants of equation (6) are shown in

Table 2. The dependent variable is the share of labor cost attributed to

highly educated workers, defined as those with greater than a high school

education. Since our data set does not report labor cost, we approximate

it by using the information on employment in the following way. We have

two classes of workers: highly educated (L1) and less educated (L2).

Define ( = L1/(L1 + L2)) which is L1's share in total employment; and w

W2/W1, the ratio of less educated to highly educated wages. Then it

24
can be shown that s share in labor cost is given by

(7) S1 = (1 + w(2 -

23 . . . .See Griliches and Lichtenberg (1984b) for a complete description.

24Since S1 = W1L1/(W1L1
+

W2L2)
= 1/(1 + w(L2/L1)).
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We have information on £ from the BIE and we can obtain an estimate of u

in each of the years 1960, 1970 and 1980 from the Current Population

Reports.25 Since we assume in is constant across industries for any given

year, the cost share is simply a nonlinear transformation of the

employment share.26

Columns (1), (2) and (3) of Table 2 report regressions using alter-

native measures of the age of the capital stock and omitting in IC and in

Q; the first column uses the average age of the plant and equipment

(AGECAP) while the second column uses the average age of equipment only

(AGEEQ) and the third uses the average age of the plant (AGEPL). While

AGECAP and AGEEQ both have the hypothesized signs and are significant,

AGEPL does not have a significant effect. This is not surprising since

technology is more likely to be embodied in the industry's equipment.

The insignificance of AGEPL is also important because it casts doubt upon

an alternative interpretation of the negative effect of AGECAP. The

alternative argument is that industries that are relocating their plants

to developing regions such as the South are more likely to increase their

share of educated workers because they will be hiring new labor force

entrants who, on average, have more education. If this argument were

correct, AGEPL would have a negative and significant coefficient. In the

remainder of Table 2, we use equipment age to measure the age of the

technology in the industry.

25From the Current Population Reports, we calculate the ratio of
mean total earnings of year-round full-time workers with 13+ years of
education to the comparable mean for workers with less than 13 years of
education. The values of the ratio are .59 in 1960, .62 in 1970 and .68
in 1980.

26The results we present below are virtually identical to those that
use the employment share.



Table I

Summary Statistics

1960 1970 1980

Total Employment 18.6 21.1 22.2
(millions)

Employment Share of
Workers with 13+
Years of Education 15.8 19.01 27.1

(percent)

Mean Age of Capital
Stock (years) 9.25 9.18 9.45

Mean Age of Equipment 7.25 6.66 6.83
(years)

Mean Age of Plant 11.59 12.21 13.73
(years)

20
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While the negative and significant effect of AGEEQ in column (2)

strongly supports our hypothesis regarding the superior ability of

educated workers to adapt to new technology, it is likely that changes in

AGEEQ are highly correlated with the growth rates of the capital stock

and of output in the industry; i.e., growing industries have newer

equipment. In order to control for this, columns (4), (5) and (6) in

Table 2 add the logarithms of the real capital stock and real output to

the cost share equation. When only the log capital stock is added to the

equation, its coefficient is positive and significant (and the coeff i-

dent on AGEEQ remains negative and significant), a finding consistent

with the "capital-skill complementarity" hypothesis. Because growth in

the capital stock and in real output tend to be highly correlated across

industries, the output term in col. (5) has a coefficient similar to the

capital term in col. (4) and a similar effect on the AGEEQ coefficient,

although it reduces its significance somewhat more. When both the

capital and output variables are included (col. (6)), only the output

variable is significant, and AGEEQ remains significant.

These estimates appear to provide rather strong support for our

hypothesis about the effect of the introduction of new technology on the

relative demand for educated workers. We can gauge the magnitude of this

impact in the following way. Consider the two industries with maximum

and minimum sample values of AGEEQ: (1) Wood Containers, in which, in

1980, the mean age of the equipment is 8.66 years and the labor cost

share of highly educated workers is .307 and (2) Electronic Components

and Accessories in which, in 1980, the mean age of equipment is 5.19

years and the labor cost share of highly educated workers is .433.

According to the estimated parameter on AGEEQ in column 6, 18 percent of
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the observed difference in the labor cost share of highly educated

workers between these two industries is due to the difference in the ages

of their equipment.

Up to this point, we have been assuming that the effect of AGE on

the distribution of labor cost is constant across industries. It is

reasonable to hypothesize, however, that the impact of S1 of a change in

AGE will be greater in more R&D-intensive industries. This is because

new capital is most likely to embody new technology in R&D-intensive

industries. In order to test this hypothesis, we replaced AGEEQ by the

• . . , . 27interactian of AGEEQ with the industry s 1974 R&D-intensity. We use two

different measures of R&D-intensity. The first is OWNRD which equals the

ratio of the industry's 1974 R&D expenditures to its 1974 nominal output.

The second is IMPRTRD which is the ratio of 1974 R&D "imported" from

other industries, i.e. embodied in products purchased from other indus-

tries, to 1974 nominal output. In principle, we might expect S/&AGE to

depend more on INPRTRD than on OWNRD because IMPRTRD measures the R&D

that is embodied in the industry's capital stock. However, as can be

seen in columns (7) and (8), the effect of AGEEQ is more significant when

we use OWNRD rather than INPRTRD, probably because of the large amount of

error in measuring INPRTRD.28 Further, when AGEEQ and AGEEQ * OWNRD are

27Time-series data on R&D-intensity by industry are not available
for our industry classification. However, industries' relative
R&D-intensities are generally thought to be very stable over time.

28
, . . . .

See Scherer s (1984) discussion of the complicated algorithm in
constructing imported R&D. GrilIches and Lichtenberg (1984a) also found
that the imported R&D variable had an insignificant effect on productivi-

ty growth, holding OWNRD constant, again suggesting the existence of
substantial measurement error in this variable.
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used together, the coefficient on AGEEQ is not significant, while the

interaction term is.29 These findings demonstrate that the effect of the

age of technology on the labor cost share of highly educated workers is

heavily dependent on the R&D intensity of the industry.

C. Additional Findings

Although the significant negative effects of AGEEQ in Table 2 lend

strong support to our guiding hypothesis, there is potentially an alter-

native interpretation of the results. The industries that have been most

innovative are also likely to be hiring many new employees, and these new

hires will be younger, on average, then the experienced workers in the

industry. Since average educational attainment has been increasing over

the period we are studying,3° it is possible that the coefficients

observed in Table 2 are simply due to the entrance of young educated

workers into the labor market. We can address this problem by estimating

the employment share equation separately for different age groups.31 If

the adjustment hypothesis is correct, then we should still observe a

negative effect of the age of technology on the employment share of

educated workers within age groups. The results are shown in Table 3,

where we tried two specifications. In column (1) we assumed that the

29The t-value of AGEEQ is -.37 and the t-value on AGEEQ *OWNRD is
-2.11.

30The percentage of the civilian labor force aged 16 and over that
had completed at least one year of college was 18.9 in 1960, 26.2 in 1970
and 35.1 in 1980.

is quite likely, however, that the employment share of educated
workers by age group is subject to substantially greater measurement
error than the overall educated employment share.
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effect of AGEEQ does not vary across industries and in column (2), we

assumed that AGEEQ'S effect is a function of the R&D intensity of the

industry. Recall from Table 2 that the latter specification produced

much stronger results. In Column (2) of Table 3, we see that four out of

the six parameters are negative and significant. The hypothesis regard-

ing the superior ability of educated workers to adjust to new technology

is borne out for employees under age 45. The insignificance of the

parameters for workers over age 45 can be explained in one of two ways.

First, firms may be unable to adjust the composition of their senior

workers because of seniority rights regarding layoff and discharge. A

second explanation is that the value of education depreciates such that

individuals educated more than twenty-five years ago are no better able

to adjust to new technology than their less educated peers.

The estimates presented in Table 3 imply that our finding of a

significant ceteris paribus relationship between the educated labor share

and the average age of equipment is not merely reflecting a relationship

between changes in the age-structures of an industry's workforce and of

its capital stock. But although we can apparently dispose of this

potential explanation of our results, a problem of interpretation re-

mains. This is because the age of the equipment is defined as the date

at which the industry is observed (e.g., 1960) minus the date at which

the equipment was acquired. Since all industries are observed at the

same dates, in our sample equipment age is perfectly collinear with

equipment acquisition date. Hence one could interpret our results as

indicating that the cost-share of highly-educated workers is determined

by the calendar date at which the equipment was acquired (biased techni-

cal change), rather than, or in addition to, by the time elapsed since
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Table 3

Effects of Age of Technology on Employment Shares of Workers
with 13+ Years of Education, Within Specified Age Groups*

(1) (2)

AGEEQ AGEEQ * OWNED

Age Group b t b t

1. 14—17 -.0021 (-1.08) —.0189 (—1.94)

2. 18—24 -.0071 (-1.72) —.0400 (-1.90)

3. 25—34 -.0074 (-1.85) —.0781 (—4.06)

4. 35—44 -.0024 (-.66) -.0352 (-1.88)

5. 45-54 -.0033 (-.74) —.0241 (-1.07)

6. 55+ -.0030 (-.71) -.0024 (-.11)

*Each parameter shown here comes from a separate regression equation.
Every equation also idcludes the log of the real capital stock, the
log of real output, a vector of industry dummy variables and a set of
time dummy variables.

**The means of the employment shares of workers with 13+ years of
education are as follows:

1960 1970 1980
1. 14—17 .004 .005 .009
2. 18—24 .149 .190 .218

3. 25-34 .214 .236 .354
4. 35—44 .166 .210 .290
5. 45—54 .127 .170 .235
6. 55+ .107 .132 .204
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acquiring, or "experience with," the equipment. For this reason, it is

not possible to determine the extent to which the increase in educated

labor's share resulting from a reduction in equipment age is transitory

versus permanent. The coefficient on equipment age may be regarded as

capturing the sum of the transitory and permanent effects of the intro-

duction of new technology on the structure of labor demand. In our

opinion, while technical change may be biased in favor of highly-educated

workers, our results are primarily a reflection of the comparative

advantage enjoyed by these workers at learning and implementing new

technologies. Although this issue cannot be definitively resolved here,

we believe that our results, summarized in the next section, will be of

interest to economists and policymakers.

V CONCLUSIONS

In this paper we have estimated variants of a labor demand equation

derived from a (restricted variable) cost function in which "experience"

on a technology (proxied by the mean age of the capital stock) enters

"non—neutrally." Our specification of the underlying cost function was

based on the hypothesis that highly educated workers have a comparative

advantage with respect to the adjustment to and implementation of new

technologies. Our empirical results are consistent with the implication

of this hypothesis, that the relative demand for educated workers de-

clines as the capital stock (and presumably the technology embodied

— therein) ages. According to our estimates, the education-distribution of

employment depends more strongly on the age of equipment than on the age

of plant, and the effect of changes in equipment age on labor demand is

magnified in R&D-intensive industries.
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The evidence we have provided has several important policy implica-

tiou. First, it suggests that macroeconomic policies which affect rates

of innovation and investment (particularly in equipment) will affect the

relative demand for workers classified by education, and hence the

aggregate skill distribution of employment and earnings. Thus, policies

such as the investment tax credit, accelerated depreciation, and liberal-

ization of antitrust restraints on R&D joint ventures, will be expected

to increase highly-educated workers' share in labor income. Our results

may also have a bearing on the role of government education policy in

promoting economic growth. In particular, government subsidies and other

policies which tend to encourage the acquisition of education and in—

crease the relative supply of highly-educated workers, will be expected

to accelerate the rate of diffusion of new industrial technologies by

lowering the costs of adjustment and implementation.
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APPENDIX A
Description of Industries
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Sector Title
1. Food and Kindred Products
2. Tobacco Manufactures
3. Broad and Narrow Fabrics, Yarn,

and Thread Mills
4. Miscellaneous Textile goods and

Floor Coverings
5. Knitting Mills
6. Apparel
7. Miscellaneous Fabricated textile

Products
8. Lumber & Wood Products, Exc.

Containers
9. Wood Buildings & Mobile Homes.
10. Wood Containers. . . . . .
11. Household Furniture
12. Other Furniture & Fixtures
13. Paper & allied products, exc.

containers, Boxes & (Paper Mills,
Exc. building paper)

14. Paper mills, Exc. Building Paper
15. Paperboard Containers & boxes.
16. Printing & Publishing
17. Chemicals & Selected Chemical

Products, exc. Nitrogenous &
Phosphate Fertilizers,
Fertilizers (mixing only), and
Agricultural Chemicals

18. Nitrogenous & Phosphatic
fertilizers, Fertilizers (mixing
only) & Agricultural chemicals,
nec

19. Plastic and synthetic materials.
20. Drugs, Cleaning & toilet

preparations
21. Paints & allied products
22. Petroleum Refining
23. Misc. Products of Petroleum & Coal
24. Paving & Roofing Materials .
25. Rubber & misc. Plastics Products
26. Leather Tanning & Finishing. .
27. Footwear & Other Leather Products.
28. Glass & Glass Products

29. Cement, Hydraulic
30. Stone & Clay Products, exc.

Hydraulic Cement
31. Blast Furnaces, Steel Works, and

Rolling and Finishing Mills
32. Iron & Steel Foundries, Forgings,

and Misc. Metal Products. .
33. Primary Nonferrous Metals

1972 SIC Code
20
21

221,222,223,224,226,228

227, 229
225

231,232,233,234,235,236,237,238

239

241,242,243,249
2451,2452
91J

251
252,253,254,259

261,263,264,266
262
265
27

287
282

283,284
285
291
299
295
30
311

313,314,315,316,317,319
321,322,323
324

325,326,327,328,329

331

332,339
33,334,335,336

281, 286, 289



34. Metal Containers .
35. Heating, Plumbing, & Fabricated

Structural Metal Products
36. Screw Machine Products
37. Metal Stampings
38. Other Fabricated Metal Products.
39. Ordinance and Accessories, exc.

Vehicles & guided missiles.
40. Engines & Turbines
41. Farm & Garden Machinery
42. Construction & Mining Machinery.
43. Materials Handling Machinery &

Equipment
44. Metalworking Machinery & Equipment
45. Special Industry Machinery and

Equipment
46 General Industrial Machinery and

Equipment
47. Misc. Machinery, exc. electrical
48. Office, Computing, and Accounting.
49. Service Industry Machines
50. Electrical transmission &

distribution equipment and
industrial apparatus

51. Household appliances
52. Electric Lighting & Wiring

Equipment
53. Radio, T.V. and Communication

equipment
54. Electronic Components &

Accessories
55. Misc. electrical machinery,

equipment, & supplies
56. Motor vehicles & equipment
57. Aircraft & Parts
58. Other transportation equipment .
59. Professional, scientific, and

controlling instruments &

supplies
60. Optical, ophthalmic and

photographic equipment & supplies
61. Misc. Manufacturing Equipment. .

348
351
352

2531,3532,3533,3795

3534,3535,3536,3537
354

361,362
363

364

369
371

372,376
373, 374, 375 ,379 (exc. 3795)

31

341

343,344
345
346

342,347349

355

359
357
358

365,366

367

381,382,384,387

383,385,386
39




