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1. Introduction 

As one of the primary factors of production, labor is an essential element in every 

nation’s economy.  Investing in human capital is widely viewed as a key to sustaining increases 

in labor productivity and economic growth.  While health is increasingly seen as an important 

part of human capital, environmental protection, which typically promotes health, has not been 

viewed through this lens.  Indeed, such interventions are typically cast as a tax on producers and 

consumers, and thus a drag on the labor market and the economy in general.  Given the large 

body of evidence that causally links pollution with poor health outcomes (e.g., Chay and 

Greenstone, 2003; Currie and Neidell, 2005; Dockery et al., 1993; Pope et al. 2002; Bell et al. 

2004), it seems plausible that efforts to reduce pollution could in fact also be viewed as an 

investment in human capital and thus a tool for promoting, rather than retarding, economic 

growth. 

The key to this assertion lies in the impacts of pollution on labor market outcomes.  

While a handful of studies have documented impacts of pollution on labor supply (Ostro, 1983; 

Hausman et al., 1984; Graff Zivin and Neidell, 2010; Carson et al., 2010; Hanna and Oliva, 

2011)2, their focus on the extensive margin, where behavioral responses are non-marginal, only 

captures high-visibility labor market impacts.  Pollution is also likely to have productivity 

impacts on the intensive margin, even in cases where labor supply remains unaffected.  Since 

worker productivity is more difficult to monitor than labor supply, these more subtle impacts 

may be pervasive throughout the workplace, so that even small individual effects may translate 

into large welfare losses when aggregated across the economy.  There is, however, no systematic 

                                                 
2 Numerous cost-of-illness studies that focus on hospital outcomes such as length of hospital stay also implicitly 
focus on labor supply impacts. 
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evidence to date on the direct impact of pollution on worker productivity.3  This paper is the first 

to rigorously assess this environmental productivity effect. 

Estimation of this relationship is complicated for two reasons. One, although datasets 

frequently measure output per worker, these measures do not isolate worker productivity from 

other inputs (i.e., capital and technology), so that obtaining clean measures of worker 

productivity is a perennial challenge.  Two, exposure to pollution levels is typically endogenous.  

Since pollution is capitalized into housing prices (Chay and Greenstone, 2005), individuals may 

sort into areas with better air quality depending, in part, on their income, which is a function of 

their productivity (Banzhaf and Walsh, 2008).  Furthermore, even if ambient pollution is 

exogenous, individuals may respond to ambient levels by reducing time spent outside, so that 

their exposure to pollution is endogenous (Neidell, 2009).   

In this paper, we use a unique panel dataset on the productivity of agricultural workers to 

overcome these challenges in analyzing the impact of ozone pollution on productivity.  Our data 

on daily worker productivity is derived from an electronic payroll system used by a large farm in 

the Central Valley of California who pays their employees through piece rate contracts.  A 

growing body of evidence suggests that piece rates reduce shirking and increase productivity 

over hourly wages and relative incentive schemes, particularly in agricultural settings (Paarsch 

and Shearar, 1999, 2000; Lazear, 2000; Shi, 2010; Bandiera et al. 2005, 2010).  Given the 

incentives under these contracts, our measures of productivity can be viewed as a reasonable 

proxy for productive capacity under typical work conditions.   

We conduct our analysis at a daily level to exploit the plausibly exogenous daily 

fluctuations in ambient ozone concentrations.  Although aggregate variation in environmental 

                                                 
3In a notable case study, Crocker and Horst (1981) examined the impacts of environmental conditions on 17 citrus 
harvesters. They found a small negative impact on productivity from rather substantial levels of pollution in 
Southern California in the early 1970s.  
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conditions is largely driven by economic activity, daily variation in ozone is likely to be 

exogenous.  Ozone is not directly emitted but forms from complex interactions between nitrogen 

oxides (NOx) and volatile organic chemicals (VOCs), both of which are directly emitted, in the 

presence of heat and sunlight.  Thus, ozone levels vary in part because of variations in 

temperature, but also because of the highly nonlinear relationship with NOx and VOCs.  For 

example, the ratio of NOx to VOCs is almost as important as the level of each in affecting ozone 

levels (Auffhammer and Kellogg, 2011), so that small decreases in NOx can even lead to 

increases in ozone concentrations, which has become the leading explanation behind the “ozone 

weekend effect” (Blanchard and Tanenbaum, 2003).  Moreover, regional transport of NOx from 

distant urban locations, such as Los Angeles and San Francisco, has a tremendous impact on 

ozone levels in the Central Valley (Sillman, 1999).  Given the limited local sources of ozone 

precursors, this suggests that the ozone formation process coupled with emissions from distant 

urban activities are the driving forces behind the daily variation in environmental conditions 

observed near this farm.   

Furthermore, the labor supply of agricultural workers is highly inelastic in the short run.  

Workers arrive at the field in crews and return as crews, thus spending the majority of their day 

outside regardless of environmental conditions.  Moreover, since we have measures of both the 

decision to work and the number of hours worked, we can test whether workers respond to 

ozone, and in fact we are able to rule out even small changes in avoidance behavior. Thus, 

focusing on agricultural workers greatly limits the scope for avoidance behavior, further ensuring 

that exposure to pollution is exogenous in this setting, and that we are detecting productivity 

impacts on the intensive margin. 
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After merging this worker data with environmental conditions based on readings from air 

quality and meteorology stations in the California air monitoring network, we estimate 

econometric models that relate mean ozone concentrations during the typical work day to 

productivity.  We find that ozone levels well below federal air quality standards have a 

significant impact on productivity: a 10 ppb decrease in ozone concentrations increases worker 

productivity by 4.2 percent.  These effects are robust to various specification checks, such as 

flexible controls for temperature, inclusion of lagged ozone concentrations, and the inclusion of 

worker fixed effects.   

Although these workers are paid through piece rate contracts, worker compensation is 

subject to minimum wage rules, which can alter the incentive for workers to supply costly effort.  

To account for potential concerns about shirking, we artificially induce “bottom-coding” on 

productivity measures for observations where the minimum wage binds, and estimate both 

parametric and semi-parametric censored regression models.  Under this specification, the actual 

measures of productivity when the minimum wage binds no longer influence estimates of the 

impact of ozone on productivity.  Thus, if the marginal effects of productivity on this latent 

variable differ from the marginal effects from our baseline linear model, this would indicate 

shirking is occurring.  Our results, however, remain unchanged, suggesting that the threat of 

termination provides sufficient incentives for workers to supply effort even when compensation 

is not directly tied to output.  Consistent with this explanation, we find that employee separations 

are significantly correlated with low-levels of productivity. 

These impacts are particularly noteworthy, as the U.S. Environmental Protection Agency 

is currently contemplating a reduction in the federal ground-level ozone standard of 

approximately 10 ppb (EPA, 2010).  The environmental productivity effect estimated in this 
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paper offers a novel measure of morbidity impacts that are both more subtle and more pervasive 

than the standard health impact measures based on hospitalizations and physician visits.  

Moreover, they have the advantage of already being monetized for use in the regulatory cost-

benefit calculations required by Executive Order 12866. In developing countries, where 

environmental regulations are typically less stringent and agriculture plays a more prominent role 

in the economy, this environmental productivity effect may have particularly detrimental impacts 

on national prosperity. 

 The paper is organized as follows.  Section 2 describes the piece rate and environmental 

data.  Section 3 provides a conceptual framework that largely serves to guide our econometric 

model, which is described in Section 4. Section 5 describes the results, with a conclusion 

provided in Section 6. 

 

2. Data 

Our data comes from a unique arrangement with an international software provider, 

Orange Enterprises (OE).  OE customizes paperless payroll collection for clients, called the 

Payroll Employee Tracking (PET) Tiger software system.  It tracks the progress of employees by 

collecting real-time data on attendance and harvest levels of individual farm workers in order to 

facilitate employee and payroll management.  The PET Tiger software operates as follows.  The 

software is installed on handheld computers used by field supervisors.  At the beginning of the 

day, supervisors enter the date, starting time, and the crop being harvested.  Each employee 

clocks in by scanning the unique barcode on his or her badge.  Each time the employee brings a 

bushel, bucket, lug, or bin, his or her badge is swiped, recording the unit and time.  Data 
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collected in the field is transmitted to a host computer by synchronizing the handheld with the 

host computer, which facilitates the calculation of worker wages.   

We have purchased the rights to data from a farm in the Central Valley of California that 

uses this system.  To protect the identity of the farm, we can only reveal limited information 

about their operations.  The farm, with a total size of roughly 500 acres, produces blueberries and 

two types of grapes during the warmer months of the year.  The farm offers two distinct piece 

rate contracts depending on the crop being harvested: time plus pieces (TPP) for the grapes and 

time plus all pieces (TPAP) for blueberries.  Total daily wages (w) from each contract can be 

described by the following equations: 

(1) TPP: w = 8h + p·(q-minpcs·h)·I(q>minpcs·h) 

TPAP: w = 8h + p·q·I(q>minpcs·h) 

where the minimum wage is $8 per hour, h is hours worked, p is the piece rate, q is daily output, 

minpcs is the minimum number of hourly pieces to reach the piece rate regime, and I is an 

indicator function equal to 1 if the worker exceeds the minimum daily harvest threshold to 

qualify for piece rate wages and 0 otherwise.  In both settings, if the worker’s average hourly 

output does not exceed minpcs, the worker earns minimum wage.  The marginal incentive for a 

worker whose output places them in the minimum wage portion of the compensation schedule is 

job security.  In TPP, the marginal incentive in the piece rate regime is the piece rate.  TPAP 

slightly differs from TPP in that it pays piece rate for all pieces when a worker exceeds the 

minimum hourly rate (as opposed to paying piece rate only for the pieces above the minimum).  

Hence, the payoff at minpcs is non-linear and thus provides a stronger incentive to reach this 

threshold under this contract.  The incentive beyond this kink remains linear as under TPP. 
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The worker data set we obtained consists of a longitudinal file that follows workers over 

time by assigning workers a unique identifier based on the barcode of their employee badge.  It 

includes information on the total number of pieces harvested by each worker4, the location of the 

field, the type of crop, the terms of the piece rate contract5, time in and out, and the gender of the 

worker.6  Data quality is extremely high, as its primary purpose is to determine worker wages. 

The analyses in this paper are based on data from the farm for their 2009 and 2010 growing 

seasons.   

Our measures of environmental conditions come from data on air quality and weather 

from the system of monitoring networks maintained by the California Air Resources Board.  

These data offer hourly measures of various pollutants and meteorological elements at numerous 

monitoring sites throughout the state.  The farm is in close proximity to several monitors: three 

monitors that provide measurements of ozone and other environmental variables are within 20 

miles of the farm, with the closest less than 10 miles away.7  For all environmental variables, we 

compute an average hourly measure for the typical work day, 6 am – 3 pm. 

We assign environmental conditions to the farm using data from the closest monitoring 

station to the farm.  While studies find that ozone measurements at fixed monitors are often 

                                                 
4 For the two types of grapes, harvests are done in crews of 3 and individual productivity is measured as the total 
output of the crew divided by the crew size.  While crew work could introduce free-riding incentives, our measure of 
the environmental productivity effect will only be biased if these incentives change due to pollution.  This will only 
occur if both of the following are true: workers are differentially affected by ozone and the complementarities in 
team production are very high (e.g., Leontief production).  While each member of a crew has a specific task, they 
typically help each other throughout the day, suggesting that labor is indeed substitutable within the crew.  
Moreover, Hazucha et al. (2003) find little evidence of heterogeneous health impacts of ozone across healthy men 
and women.  Thus, assigning average productivity measures to individuals within a crew should not bias our 
estimates.  
5 Piece rate contracts are fixed to the crop for the duration of the season.  For simplicity, we label the two types of 
grapes as two crops given that they have different contracts. 
6 Although we have limited data on the demographic characteristics of our workers, demographics of piece-rate 
agricultural workers in California obtained from the National Agricultural Workers Survey, an employment-based 
random survey of agricultural workers, indicates these workers are poor, uneducated, and speak limited English, 
with the vast majority migrants from Mexico. 
7 To protect the identity of the farm we can not reveal the exact distance. 
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higher than measurement from personal monitors attached to individuals in urban settings 

(O’Neill et al., 2003), this is less of a concern in the agricultural setting where ratios of personal 

to fixed monitors have been found to be as high as 0.96 (Brauer and Brook, 1995).  Furthermore, 

even when the difference exists, the within-person variation is highly correlated with the within-

monitor variation (O’Neill et al., 2003).  As a crude test for spatial uniformity of ozone levels, 

we regress ozone levels from the closest monitor to the farm against the second closest monitor, 

which is roughly 15 miles away, and obtain an R-squared of 0.88.8  Thus, despite its simplicity, 

we expect measurement error using our proposed technique for assigning ozone to the farm to be 

quite small.   

Our data follows roughly 1,600 workers intermittently over 155 days.  Table 1 shows 

summary statistics for worker output, environmental variables, and a breakdown of the sample 

size.  There are three main crops harvested by this farm.9  Under the TPAP contracts (which are 

used to harvest crop type 1), workers are far less likely to reach the piece rate regime, with this 

happening for only 24% of workers compared to 57% and 47% for the other two crops, which 

are paid under TPP.  Among those workers whose output exceeds the levels that correspond to 

the $8 per hour minimum wage, the average hourly wages are $8.20, $8.28, and $8.88 for each 

of the three crops, respectively.  We also see that variation in worker output is equally driven by 

variation within as well as across workers.   

In terms of environmental variables, the average ambient ozone level for the day is under 

50 ppb, with a standard deviation of 13 ppb and a maximum of 86 ppb.  Since this measure of 

ozone is taken over the average work day from 6 am – 3 pm, it corresponds closely with national 

                                                 
8 Comparable R-squared for temperature is 0.94 and for particulate matter less than 2.5 μg/m3, another pollutant of 
much interest, is only 0.27; hence we do not focus on this important pollutant. 
9 The timing of the harvest determines when each crop is ready to be picked, so workers can not choose the crop on 
any given day. 
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ambient air quality standards (NAAQS), which are based on 8-hour ozone measures.  Current 

NAAQS are set at 75 ppb, suggesting that, while ozone levels during work hours can lead to 

exceedances of air quality standards, most work days are not in violation of regulatory 

standards.10  Consistent with the area being prone to ozone formation, mean temperature and 

sunlight (as proxied by solar radiation) are high and precipitation is low. 

For a deeper look at productivity, Figure 1 plots the distribution of average pieces 

collected per hour by crop and overall, with a line drawn at the rate that corresponds with the 

level of productivity that separates the minimum wage from the piece rate regime (the regime 

threshold).  To combine productivity across crops, we standardize average hourly productivity by 

subtracting the minimum number of pieces per hour required to reach the piece rate regime and 

dividing by the standard deviation of productivity for each crop, so the value that separates 

regimes is 0.  We can inspect these distributions to assess prima facie evidence of shirking.  If 

shirking occurs when the minimum wage binds, then we would expect part of the distribution to 

be shifted away from the area just left of the regime threshold and into the left tail. These plots, 

however, do not exhibit such patterns.  For the two crops paid TPP, the distribution of 

productivity follows a symmetric normal distribution quite closely.  For the crop paid TPAP, we 

do see evidence of mass displaced just before the regime threshold.  However, this mass is not 

moved to the left tail but is instead shifted towards the right of the threshold.  Consistent with the 

strong incentives associated with just crossing the threshold under this payment scheme, workers 

who are just below the threshold appear to increase their effort.  The pattern in all figures is 

consistent with the notion that shirking among those receiving a fixed wage is minimal, while 

sorting around the regime threshold for crop 1 is not trivial.  

                                                 
10 Violation of NAAQS is based on the daily maximum 8-hour ozone.  Since our measure of ozone begins at 6am, a 
time when ozone levels are quite low, the daily maximum 8-hour ozone is likely to be higher than our measure.  
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The significant variation in pieces collected in Figure 1 is also noteworthy, as this is 

critical for obtaining precise estimates of the impact of ozone.  Figures 2 and 3 further illustrate 

this variation both within and across workers.  For Figure 2, we collapse the data to the worker 

level by computing each worker’s mean daily productivity over time.  For Figure 3, we collapse 

the data to the daily level by computing the mean output of all workers on each day.  This 

significant variation suggests that both worker ability and environmental conditions appear to be 

important drivers of worker productivity. 

To illustrate the relationship between ozone and temperature, Figure 4 plots the 

demeaned average hourly ozone and temperature by day for the 2010 ozone season, with an 

indicator for days on which harvesting occurs.  This Figure reveals considerable variation in both 

variables over time.  Importantly, while ozone and temperature are often correlated – 

temperature is an input into the production of ozone – there is ample independent variation for 

conducting our proposed empirical tests.11  We also take several steps to control for temperature 

flexibly to ensure that we are properly accounting for this relationship. 

 

3. Conceptual framework 

In this section, we develop a simple conceptual model to illustrate worker incentives 

under a piece rate regime with a minimum wage guarantee.  We begin by assuming that the 

output q for any given worker is a function of effort e and pollution levels Ω.  Workers are paid 

piece rate p per unit output, but only if their total daily wage is at least as large as the daily 

minimum wage y .12  In anticipation of our empirical model, we let zero denote the threshold 

                                                 
11 The R-squared from a regression of ozone on temperature alone is 0.61. When we more flexibly control for 
temperature and also include additional environmental variables, the R-squared increases to 0.70. 
12 While minimum wage standards are typically fixed at an hourly rate, the fixed length workday in our setting 
allows us to translate this into a daily rate.     
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level of output at which workers graduate from the minimum wage regime. Since employment 

contracts are extremely short-lived, we assume that the probability of job retention τ is an 

increasing function of output levels q when q<0.13  Denoting the costs of worker effort as c(e) 

and the value associated with job retention as k, we can characterize the workers’ maximization 

problem above and below the threshold output level. 

For those workers whose output level qualifies them for the piece rate wage (q≥0), effort 

will be chosen in order to maximize the following: 

(2)  Max e .    ( ) )(, eceqp −Ω⋅

For those workers whose output level places them under the minimum wage regime (q<0), effort 

will be chosen to maximize the following: 

(3)  Max e y  – τ(q(e,Ω))k – c(e). 

The first order conditions for each are: 

(2’) 0=
∂
∂

−
∂
∂
⋅

e
c

e
qp ; 

(3’) 0=
∂
∂

−
∂
∂

∂
∂

−
e
ck

e
q

q
τ . 

Under the piece rate regime, workers will supply effort such that the marginal cost of that effort 

is equal to additional compensation associated with that effort.  For those workers being paid 

minimum wage, the incentive to supply effort is driven entirely by concerns about job security.14  

Workers supply effort such that the marginal cost of that effort is equal to the increased 

probability of job retention associated with that effort times the value of job retention.  

                                                 
13 The assumption of perfect retention for those above the threshold is made for simplicity.  As long as the 
probability of job retention is higher for those workers whose harvest levels exceed the threshold, the basic intuition 
behind the results that follow remain unchanged. 
 
14 This is conceptually quite similar to the model of efficiency wages and unemployment advanced in Shapiro and 
Stiglitz (1984), where high wages and the threat of unemployment induce workers to supply costly effort.   
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The threat of punishment for low levels of output is instrumental in inducing effort under 

the minimum wage regime.  If workers are homogenous and firms set contracts optimally, the 

gains from job retention due to extra effort will be set equal to the piece rate wage, i.e. 

pk
q

=
∂
∂

−
τ , such that effort exertion will be identical across both segments of the wage contract.  

If firms are unable to design optimal contracts, effort will differ across regimes.  Of particular 

concern is the situation in which termination incentives are low-powered, i.e. pk
q

<
∂
∂

−
τ .  In 

this case, workers essentially have a limited liability contract and thus have incentives to shirk 

under the minimum wage regime.  Moreover, since the productivity impacts of pollution increase 

the probability of workers falling under the minimum wage portion of the compensation scheme, 

pollution will also indirectly increase the incentive to shirk.  Accounting for these potentially 

different responses to pollution across regimes is central to our econometric model. 

  

4. Econometric Model 

The worker maximization problem characterized in the previous section suggests the 

following econometric model: 

(4) E[q|Ω,X] = P(q≥0|Ω,X)*E[q|Ω,X,q≥0] + (1-P(q≥0|Ω,X))*E[q|Ω,X,q<0] 

where P is the probability a worker has output high enough to place them in the piece rate 

regime, 1-P is the probability a worker’s output places them in the minimum wage regime, and X 

are other factors that affect productivity (described in more detail below).  We are primarily 

interested in the direct effect of pollution on productivity (the environmental productivity effect).  

Since there is no incentive to shirk in the piece rate regime, δq/δΩ represents the environmental 
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productivity effect.15  To the extent that there is an incentive to shirk in the minimum wage 

regime, δq/δΩ will reflect not only the environmental productivity effect but also the indirect 

effect due to the interaction of this pollution effect with shirking incentives. 

We use two approaches for estimating this equation.  First, we estimate a linear model 

using all worker-day observations regardless of output levels and thus the payment regime 

obtained that day: 

(5) q = βolsΩ + θolsX + εols 

where βols is the sum of the direct impact and, if it exists, the indirect impact of pollution on 

productivity.  If the piece rate contract is set optimally by imposing an appropriate termination 

threat as described in the previous section, there is no incentive to shirk, and βols will only 

capture the environmental productivity effect. To the extent that contracts are not set optimally 

and there is an incentive to shirk in the minimum wage regime, βols will instead provide an upper 

bound of the estimate of the environmental productivity effect because it will also include the 

indirect effect of pollution on productivity via shirking.   

As a second approach, we estimate equation (4) by artificially “bottom-coding” our data 

and estimating censored regression models.  To do this, we leave all observations in the piece 

rate regime as is, but assign a measure of productivity of 0 to all observations in the minimum 

wage regime.16  Thus, our estimation strategy can be viewed as a Type I Tobit model of the 

following form: 

(6) q* = βcenΩ + θcenX + εcen 

 q = q* if q≥ 0 

                                                 
15 Although environmental conditions may affect workers, they may also have a direct impact on crops.  While there 
is considerable evidence to support that chronic exposure to ozone affects crop yield (e.g., see Manning, 2003), there 
is no evidence to support an effect from acute exposure. 
16 Because of our standardization of productivity, a value of 0 represents the value when workers switch from the 
minimum wage to piece rate regime. 
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 q = 0 if q<0 

where q* is the latent measure of productivity.  Because we are interested in the impact of 

pollution on actual productivity, which can take on values less than zero, the environmental 

productivity effect is the marginal effect of pollution on the latent variable q*, which is simply 

βcen.  Importantly, the actual values of productivity in the minimum wage regime will have no 

impact on the likelihood function, and hence on βcen.  That is, if shirking occurs so that the 

distribution of productivity in the minimum wage regime is shifted to the left, these observations 

will no longer influence estimates of βcen because they have been censored.  Instead, only the 

observations in the piece rate regime will affect estimates of βcen.  Therefore, even if workers are 

shirking when paid minimum wage, our estimates of βcen will only capture the environmental 

productivity effect.   

The estimates from these two models can, in turn, be compared to test for the existence of 

shirking.  If workers shirk when the minimum wage binds, then we expect βols > βcen.  If workers 

do not shirk when the minimum wage binds, then we expect βols = βcen.  

 We include data from all crops in one regression by using the standardized measures of 

productivity described in the data section, so the coefficients can be interpreted as a standard 

deviation change in productivity from a 1 ppb change in ozone.  To control for other time-

varying factors that may affect productivity, the vector X includes a quadratic in temperature, 

humidity, precipitation, wind speed, air pressure, and solar radiation, all measured as the mean 

over the typical work-day.  X also includes a series of day-of-week indicators to capture possible 

changes in productivity throughout the week, indicator variables for the crop to account for the 

mean shift in productivity from different contracts, and year-month dummies to control for 

trends in pollution and productivity within and across growing seasons. All standard errors are 
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two-way clustered on the date because the same environmental conditions are assigned to all 

workers on a given day and on the worker to account for serial correlation in worker 

productivity. 

Two facts about how ozone affects health are relevant for the econometric model.  One, 

chamber studies, which randomly expose a small number of healthy, young adults to varying 

levels of ozone, find that exposure to ozone can affect lung functioning in as quickly as within 1-

2 hours, with effects exacerbated by exercise and with continued duration of exposure (see, e.g., 

Gong et al., 1986; Kulle et al., 1985; McDonnell et al., 1983).  These findings have generally 

been confirmed in the field using outdoor workers: mail carriers in Taichung City, Taiwan and 

agricultural workers in Fraser Valley, Canada show decrements in lung functioning on days with 

higher ozone concentrations (Chan and Wu, 2005; Brauer et al., 1996).  As such, we expect the 

impact of ozone on productivity to be contemporaneous, particularly given the strenuous nature 

of this work and duration of exposure.  Two, recovery from ozone pollution is fairly rapid when 

removed from exposure.  Nearly all lung functioning returns to baseline levels in healthy adults 

within 24 hours of exposure, with recovery taking longer for hyperresponsive adults with 

underlying health conditions (Folinsbee and Horvath, 1989; Folinsbee and Hazucha, 2000).17  

Since ozone levels fall considerably overnight as heat and sunlight decline, we expect lagged 

ozone to have minimal impacts on the productivity of our healthy worker population.  Given 

these two features of the dose-response to ozone, we focus our analysis on the contemporaneous 

relationship between ozone and productivity.  Nonetheless, we explore the impact of lagged 

ozone concentrations in order to confirm that our workers are indeed healthy. 

 

                                                 
17 Although lung functioning recovers after exposure, long term damage to lung cells may still occur (Tepper et al., 
1989).  
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5. Results 

To test the hypothesis that labor supply is inelastic in the short-run, we begin by focusing 

on whether work schedules respond to changes in ozone levels.  We estimate linear regression 

models for the decision to work and the number of hours worked (conditional on working), both 

with and without worker fixed effects.  Shown in Table 2, the results in the first two columns, 

which focus on the decision to work, do not support evidence of a labor supply response to 

ozone.18  The second two columns also reveal that the number of hours worked is not 

significantly related to ozone levels.  Even at the lower 95% confidence interval, a 1 ppb increase 

in ozone is associated with a 0.03 drop in hours worked, which is a roughly 1.5 minute decrease 

in hours worked.  The insensitivity of these results to including worker fixed effects strengthens 

our confidence in these findings.  Thus, consistent with our contention that avoidance behavior is 

not an issue in this setting, farm workers do not appear to adjust their work schedules in response 

to ozone levels. 

In Table 3, we present our main results.  Column (1) presents results from our linear 

regression model.  The estimated coefficient suggests that a 1 ppb increase in ozone leads to a 

statistically significant decrease in productivity of .012 of a standard deviation.  Based on the 

distribution of ozone and productivity in our sample, this estimate implies that a 10 ppb decrease 

in ozone increases worker productivity by 4.2 percent.  If wage contracts are set optimally, this is 

an unbiased estimate of the effect of ozone pollution.  If contracts are not set optimally and 

workers shirk when the minimum wage binds, then this estimate will overstate the impact of 

ozone.  In column (2) we show results from a Type I Tobit model, where we artificially censor 

                                                 
18 Marginal effects from logit and probit models for the decision to work are virtually identical to the results from 
the linear probability model.   
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observations when the minimum wage binds, and find an identical .012 standard deviation effect 

from a 1 ppb change in ozone.   

Since this Tobit model assumes normality and homoskedasticity, we assess the sensitivity 

of our results to these assumptions by estimating a censored median regression model, also 

displaying results from an uncensored median regression model as a reference point.19  Shown in 

column (3), the median regression estimate is quite comparable to the linear regression estimate, 

which is not surprising given the distribution of productivity shown in Figure 1.  The censored 

median regression results, shown in column (4), are also quite similar to the estimates from the 

parametric censored models, lending support to the parametric assumptions.  The comparability 

of the four estimates in this Table suggests that shirking due to the minimum wage is relatively 

minimal in this setting. Thus, the basic linear regression specification appears to yield unbiased 

estimates of the pollution productivity effect. 

Although the lack of shirking in the minimum wage regime may appear surprising, as 

discussed in the conceptual framework, this can arise if the gains from job retention associated 

with providing effort are sufficiently large.  This is particularly important in our setting where 

output is easily verified and labor contracts are extremely short-lived.  In order to examine the 

potential importance of these features, we provide descriptive evidence on the relationship 

between worker productivity and separations.  We define a separation as the last day we observe 

a worker in the data.  Similar to Lazear (2000), Table 4 shows the rate of separation by decile of 

daily productivity.  Immediately evident is that less productive workers are more likely to 

experience separations: 6.5 percent of workers whose productivity falls in the bottom decile on 

any given day separate from the farm, while only 2.5 percent in the top decile separate (this 

difference is statistically significant). As the next column shows, highly productive workers 
                                                 
19 We estimate a censored median model using the 3-step procedure developed by Chernozhukov and Hong (2002). 
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typically have more tenure, so some of these differences in separations could be driven by 

differences in tenure.  In column (3), we show separations by productivity after adjusting for the 

impact of tenure on productivity and find quite similar results.  Although we can not identify the 

reason for a separation, these results are consistent with the idea that the threat of termination for 

less productive workers is reasonably high in this setting.   

In Table 5, we explore the sensitivity of both our linear and Tobit estimates to various 

additional assumptions.  Column (1) repeats the baseline results.  In column (2) we include 

worker fixed effects.  Although this increases the explanatory power of our regressions 

considerably, the estimates for ozone are largely unchanged, consistent with the notion that 

workers are not selecting into employment on any given day based on ozone concentrations.   

Since ozone is formed in part because of temperature and sunlight, it is essential that we 

properly control for these variables. While we already control for a quadratic in mean 

temperature and solar radiation, we explore the sensitivity of the ozone estimates by also 

including daily minimum and maximum temperature and solar radiation (column 3), and by 

controlling for all three temperature measures more flexibly by using a series of indicator 

variables for every 5 degrees Fahrenheit instead of a quadratic (column 4).  Our estimates for 

ozone remain largely unaffected by these changes, suggesting that, although ozone and 

temperature are highly correlated, the quadratic in mean temperature in our main specification 

adequately controls for temperature.  

Figure 1 provided some evidence that worker effort changes near the regime threshold, 

particularly for crop 1 where contracts are time plus all pieces.  If higher ozone levels reduce 

productivity and hence make it more likely for workers to fall into the minimum wage regime, 

this offsetting increase in effort may bias our results down.  In the remaining two columns of 
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Table 5, we address this by excluding observations that are close to the regime threshold, varying 

our definition of “close.”20  Consistent with expectations, our results are slightly larger as we 

exclude more observations, but these differences are minimal. 

To address potential concerns about the cumulative effect of ozone exposure, we also 

present results that include 1 and 2-day lags of ozone.  Since ozone levels may only reflect 

exposure on days when workers actually work, we limit our focus to days when workers have 

worked the previous day by excluding from our analysis the first one or two days of the 

workweek depending on how many lags we include in our specification.  Table 6, column (1) 

repeats our baseline results from the linear regression model.  Shown in column (2) are results 

without any lags but excluding Monday, which are slightly higher than the baseline results.  

Including 1 lag of ozone, shown in column (3), we find that the coefficient on contemporaneous 

ozone remains the same, and lagged ozone is negative but statistically insignificant.  The results 

in column (4) show that excluding the first two work days continues to increase the 

contemporaneous coefficient on ozone.  Including two lags of ozone, column (5) shows that the 

coefficient on contemporaneous ozone remains statistically significant and again unchanged, 

while both lags of ozone are statistically insignificant.  Together, these estimates suggest that the 

predominant effect of ozone is from same day exposure, with an overnight respite from ozone 

sufficient for lung functioning to return to baseline levels.  Moreover, this rapid recovery implies 

that the environmental productivity effects measured in this paper are predominantly impacting a 

healthy population.21    

  

                                                 
20 We also estimated models that completely excluded observations under the time plus all pieces contract, and our 
estimates for ozone were -.010 for the linear model and -.013 for the Tobit model, which are largely the same as 
those found when those observations were included. 
21 Recall from Section 4 that chamber studies suggest a rapid recovery from ozone exposure for healthy individuals. 
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6. Conclusion 

In this paper, we merge a unique dataset on individual-level daily harvest rates for 

agricultural workers with data on environmental conditions to assess the impact of ozone 

pollution on worker productivity.   We find that a 10 ppb change in average ozone exposure 

results in a significant and robust 4.2 percent change in agricultural worker productivity.  Despite 

the applicability of minimum wages and the incentive to shirk, we find little evidence of 

differential effects depending on whether or not the minimum wage binds.  Importantly, this 

environmental productivity effect suggests that common characterizations of environmental 

protection as purely a tax on producers and consumers to be weighed against the consumption 

benefits associated with improved environmental quality may be misguided.  Environmental 

protection can also be viewed as an investment in human capital, and its contribution to firm 

productivity and economic growth should be incorporated in the calculus of policy makers. 

Our results also speak to the ongoing debates on ozone policy.  Ozone pollution 

continues to be a pervasive environmental issue throughout much of the world.  Debates over the 

optimal level of ozone have ensued for many years, and current efforts to strengthen these 

standards remain contentious.  Defining regulatory thresholds depends, in part, on the benefits 

associated with avoided exposure, which has traditionally been estimated through a focus on 

high-visibility health effects such as hospitalizations.  The labor productivity impacts measured 

in this paper help make these benefits calculations more complete.  Our results indicate that 

ozone, even at levels below current air quality standards in most of the world, has significant 

negative impacts on worker productivity, suggesting that the strengthening of regulations on 

ozone pollution would yield additional benefits.   
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These impacts of ozone on agricultural workers are also important in their own right.  A 

back-of-the envelope calculation that applies the environmental productivity effect estimated in 

the Central Valley of California to the whole of the U.S. suggests that a 10 ppb reduction in the 

ozone standard would translate into an annual cost savings of approximately $1.1 billion in labor 

expenditure.22  In the developing world, where national incomes depend more heavily on 

agriculture, these productivity effects are likely to have a much larger impact on the economy.  

These impacts may be especially large in countries like India, China, and Mexico, where rapid 

industrial growth and automobile penetration contribute precursor chemicals that contribute to 

substantially higher levels of ozone pollution.   

While the impacts of ozone on agricultural productivity are large, the generalizability of 

these findings to other pollutants and industries is unclear.  Agricultural workers face 

considerably higher levels of exposure to pollution than individuals who work indoors.  That 

said, roughly 11.8 percent of the U.S. labor force works in an industry with regular exposure to 

outdoor conditions, and this figure is much higher for middle- and lower-income countries (Graff 

Zivin and Neidell, 2010).  Moreover, many forms of outdoor pollution diminish indoor air 

quality as well.  For example, indoor penetration of fine particulate matter ranges from 38-94% 

for typical residential homes in the US (Abt et al., 2000).  Examining the generalizability of the 

environmental productivity effect estimated in this paper to other pollutants and industries 

represents a fruitful area for future research.  

                                                 
22 Total labor expenditure in U.S. agriculture was approximately $26.5B in 2007 (USDA, 2009). 
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Figure 1. Standardized average hourly pieces collected by crop and for all crops 
 

 
 
Notes: We standardize average hourly productivity by subtracting the minimum number of pieces per hour required 
to reach the piece rate regime and dividing by the standard deviation of productivity for each crop. The vertical line 
reflects the regime threshold for crossing from the minimum wage to the piece rate regime.

0
.2

.4
.6

0
.2

.4
.6

-5 0 5 -5 0 5

Crop 1 (time+all pieces) Crop 2 (time+pieces, $0.3/p)

Crop 3 (time+pieces, $1/p) Total

D
en

si
ty

 26



 

Figure 2. Variation in productivity by worker, all crops 
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Figure 3. Variation in productivity by day, all crops 
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Figure 4. Average demeaned daily ozone and temperature in 2010 
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Table 1. Summary statistics 
 
A. Productivity variables (n=36,215)     
 Observations mean SD SD within 

worker 
SD between 

workers 
1. Minimum wage regime     
Hourly pieces (crop 1) 11753 2.03 0.57 0.44 0.47 
Hourly pieces (crop 2) 4114 3.08 0.77 0.65 0.69 
Hourly pieces (crop 3) 5920 2.29 0.48 0.31 0.44 
hours worked 21787 7.63 1.29 0.76 1.20 
2. Piece rate regime     
Hourly pieces (crop 1) 3675 3.42 0.40 0.30 0.32 
Hourly pieces (crop 2) 5512 4.92 0.85 0.61 0.64 
Hourly pieces (crop 3) 5241 3.88 0.82 0.50 0.66 
hours worked 14428 7.34 1.52 0.96 1.35 
      
B. Environmental variables (n=155)     
 mean SD min. max.  
ozone (ppb) 47.77 13.24 10.50 86.00  
temperature (F) 78.15 8.52 56.30 96.98  
atmospheric pressure (mb) 1001.55 6.48 988.86 1012.59  
resultant wind speed (mph) 2.74 0.53 1.61 4.60  
solar radiation (W/m2) 837.33 174.07 187.00 1083.33  
relative humidity (%) 45.33 10.04 27.90 93.50  
precipitation (mm) 2.40 5.05 0.00 35.48  
      
C. Sample      
total # of dates 155     
total # of employees 1664     
mean # of days with farm 20     
Notes: SD: Standard deviation. Crop 1 is time plus all pieces, with a piece rate of $0.5/piece and minimum pieces 
per hour of 3. Crop 2 is time plus pieces, with a piece rate of $0.3/piece and minimum pieces per hour of 4. Crop 3 is 
time plus pieces, with a piece rate of $1/piece and minimum pieces per hour of 3. 
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Table 2. Regression results of the effect of ozone on avoidance behavior 
 
 1 2 3 4 
 extensive margin: 

probability(work) 
intensive margin: hours worked 

ozone (ppb) -0.0017 -0.0018 0.0014 0.0014 
 [0.0020] [0.0021] [0.0123] [0.0125] 
worker fixed effect N Y N Y 
Observations 39,223 39,223 36,215 36,215 
R-squared 0.11 0.16 0.24 0.27 
Standard errors clustered on date and worker in brackets. * significant at 10%; ** significant at 5%; *** significant 
at 1%. All regressions include controls for temperature (quadratic), air pressure, wind speed, solar radiation, relative 
humidity, precipitation, day of week dummies, month*year dummies, and piece rate contract type dummies.  All 
environmental variables are the mean of hourly values from 6am-3pm.   
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Table 3. Main regression results of the effect of ozone on productivity 
 
 1 2 3 4 
ozone (ppb) -0.0116 -0.0123 -0.0092 -0.0124 
 [0.0043]*** [0.0052]** [0.0055]* [0.0058]** 
model linear Tobit median censored 

median 
Observations 36215 36215 36215 36215 
(Psuedo) R2 0.31 0.10 0.19 0.24 
Standard errors clustered on date and worker in brackets. * significant at 10%; ** significant at 5%; *** significant 
at 1%. The dependent variable is standardized hourly pieces collected.  All regressions include controls for 
temperature (quadratic), air pressure, wind speed, solar radiation, relative humidity, precipitation, day of week 
dummies, month*year dummies, and piece rate contract type dummies.  All environmental variables are the mean of 
hourly values from 6am-3pm.  Bootstrapped standard errors for both median regressions were obtained using 50 
replications. 
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Table 4. Separation rates by productivity decile 
 
 1 2 3 4 
 A. Unadjusted productivity B. Productivity adjusted for 

tenure 
productivity  
decile 

separation rate tenure (days) separation rate tenure (days) 

1 0.065 12.44 0.061 17.99 
2 0.060 15.55 0.063 19.20 
3 0.047 16.58 0.055 18.47 
4 0.053 18.96 0.047 19.47 
5 0.034 18.64 0.047 21.56 
6 0.042 21.28 0.039 22.13 
7 0.044 21.09 0.038 19.24 
8 0.032 22.27 0.029 18.72 
9 0.025 23.24 0.024 19.41 
10 0.025 24.31 0.023 18.17 
This table shows daily mean separation rates and tenure by productivity decile. 
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Table 5. Sensitivity of regression results of the effect of ozone on productivity 
 
 1 2 3 4 5 6 
A. Linear model      
ozone (ppb) -0.0116 -0.0097 -0.0125 -0.0111 -0.0129 -0.0136 
 [0.0043]*** [0.0041]** [0.0045]*** [0.0050]** [0.0048]*** [0.0052]***
R-squared 0.31 0.53 0.31 0.33 0.32 0.33 
       
B. Tobit model      
ozone (ppb) -0.0123 -0.0105 -0.0121 -0.0130 -0.0146 -0.0154 
 [0.0052]** [0.0049]** [0.0053]** [0.0059]** [0.0057]** [0.0064]** 
Pseudo R-
squared 

0.10 0.31 0.10 0.11 0.12 0.13 

       
model baseline worker 

fixed 
effect 

include 
min. and 
max. of 
temp. 

(quadratic) 
and solar 

rad. 

include 
min. and 
max. of 
temp. 

(indicators) 
and solar 

rad. 

exclude 
obs. .1 SD 
of regime 
threshold 

exclude 
obs. .2 SD 
of regime 
threshold 

Observations 36215 36215 36215 36215 32415 30239 
Standard errors clustered on date and worker in brackets. * significant at 10%; ** significant at 5%; *** significant 
at 1%. The dependent variable is standardized hourly pieces collected.  All regressions include controls for 
temperature (quadratic; except column 4, which includes indicator variables for every 5 degrees F), air pressure, 
wind speed, solar radiation, relative humidity, precipitation, day of week dummies, month*year dummies, and piece 
rate contract type dummies.  All environmental variables are based on hourly values from 6am-3pm. 
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Table 6. Regression results of the effect of lagged ozone on productivity 
 
 1 2 3 4 5 
A. Linear model      
ozone (ppb) -0.011 -0.013 -0.013 -0.016 -0.015 
 [0.004]*** [0.005]*** [0.005]*** [0.005]*** [0.005]*** 
1 lag ozone (ppb)   -0.004  -0.006 
   [0.004]  [0.006] 
2 lag ozone (ppb)     0.003 
     [0.005] 
R-squared 0.31 0.32 0.32 0.32 0.32 
      
B. Tobit model      
ozone (ppb) -0.012 -0.013 -0.012 -0.016 -0.014 
 [0.005]** [0.006]** [0.006]** [0.006]*** [0.006]** 
1 lag ozone (ppb)   -0.003  -0.003 
   [0.005]  [0.007] 
2 lag ozone (ppb)     0.001 
     [0.005] 
Pseudo R-squared 0.10 0.10 0.10 0.10 0.10 
      
Day(s) of week 
excluded 

none Monday Monday Monday & 
Tuesday 

Monday & 
Tuesday 

Observations 35465 25456 25456 17498 17498 
Standard errors clustered on date and worker in brackets. * significant at 10%; ** significant at 5%; *** significant 
at 1%. The dependent variable is standardized hourly pieces collected.  All regressions control for temperature 
(quadratic), air pressure, wind speed, solar radiation, relative humidity, precipitation, day of week dummies, 
month*year dummies, and piece rate contract type dummies. All environmental variables are the mean of hourly 
values from 6am-3pm.  
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