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In recent years, a large market in volatility derivatives has developed. An emblem of
this market, the VIX index, is often described in the financial press as “the fear index”;
its construction is based on theoretical results on the pricing of variance swaps. These
derivatives permit investors and dealers to hedge and to speculate in volatility itself.
They also play an informational role by providing evidence about perceptions of future
volatility.

The events of 2008 and 2009 severely disrupted these markets and revealed certain
undesirable features of variance swaps. Carr and Lee (2009) write, “The cataclysm
that hit almost all financial markets in 2008 had particularly pronounced effects on
volatility derivatives . . . . Dealers learned the hard way that the standard theory for
pricing and hedging variance swaps is not nearly as model-free as previously supposed . . . .
In particular, sharp moves in the underlying highlighted exposures to cubed and higher-
order daily returns. The inability to take positions in deep OTM options when hedging a
variance swap later affected the efficacy of the hedging strategy. As the underlying index
or stock moved away from its initial level, dealers found themselves exposed to much more
vega than a complete hedging strategy would permit. This issue was particularly acute
for single names, as the options are not as liquid and the most extreme moves are bigger.
As a result, the market for single-name variance swaps has evaporated in 2009.” In
response to this sensitivity to extreme events, market participants have imposed caps
on variance swap payoffs. These caps limit the maximum possible payoff on a variance
swap, at the cost of complicating the pricing and interpretation of the original contract.

In this paper, I define and analyze a financial contract that I call a simple variance
swap. Although it has, arguably, a simpler definition than that of a standard variance
swap,1 I show that simple variance swaps are robust to the issues mentioned in the
quotation above, and explain why this is the case. Simple variance swaps can be priced
and hedged under far weaker assumptions than are required for pricing variance swaps
(or the recently introduced gamma swaps): in particular, they can be hedged in the
presence of jumps. Moreover, from an informational perspective, simple variance swaps
provide a more useful measure of market-implied volatility than do variance swaps.

Lastly, I consider the problem of computing market-implied correlations. In this
respect, too, simple variance swaps are shown to be an improvement on variance swaps,
both for observers interested in the market’s view of implied correlation and for investors
seeking to implement dispersion trades.

Section 1 introduces the definition of a simple variance swap, and presents the main
pricing and hedging results. Result 1 is a straightforward application of no-arbitrage

1I will refer to this standard product as a variance swap, and to the proposed alternative as a simple

variance swap.
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logic. Results 2 and 3 derive an important simplification in the natural limiting case.
Section 2 compares these results to those already known for standard variance swaps.
Existing results are summarized in Result 4. These results depend on the assumption
that the underlying asset’s price cannot jump. Next, I propose an index, SVIX, that
is analogous to VIX but based on the strike on a simple variance swap rather than on
a (standard) variance swap. Results 5 and 6 show how VIX can be interpreted in the
presence of jumps, and compare to the much simpler interpretation of the proposed
SVIX index. Section 3 discusses the potential application of simple variance swaps to
the measurement of market-implied correlation. Section 4 concludes.

Related literature. The literature on variance swaps (Carr and Madan (1998), Deme-
terfi et al. (1999)) is based on papers by Breeden and Litzenberger (1978) and Neuberger
(1990, 1994). Carr and Corso (2001) propose a contract related to the simple variance
swap proposed below, but their pricing and hedging methodology is only valid if the
underlying is a futures contract. Moreover, as the authors note, options on futures are
almost invariably American-style, whereas the replicating portfolio calls for European-
style options. Lee (2010a, 2010b) provides a brief summary of volatility derivative pricing
in the absence of jumps. Finally, the paper of Carr and Lee (2009) quoted above provides
an excellent survey of the state of the art in the area.

1 Pricing and hedging simple variance swaps

Consider an underlying asset whose price at time t is St. This price is assumed to include
reinvested dividends, if the asset pays dividends. Today is time 0. I assume that the
interest rate r is constant; this is the standard assumption in the related literature. At
time 0, the asset’s forward price to time t is then Ft ≡ S0e

rt.
We can now define a simple variance swap on this underlying asset. This is an

agreement to exchange, at time T , some prearranged payment V (the “strike” of the
simple variance swap) for the amount(

S∆ − S0

S0

)2

+
(
S2∆ − S∆

F∆

)2

+ · · ·+
(
ST − ST−∆

FT−∆

)2

. (1)

V is chosen so that no money changes hands at initiation of the contract. The choice
to put forward prices in the denominators is important: below we will see that this
choice leads to a dramatic simplification of the strike V , and of the associated hedging
strategy, in the limit as the period length ∆ goes to zero. In an idealized frictionless
market, this simplification of the hedging strategy would merely be a matter of analytical
convenience; in practice, with trade costs, it acquires far more significance.

The following result shows how to price a simple variance swap (i.e. how to choose V
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so that no money need change hands initially) in terms of the prices of European call and
put options on the underlying asset. I write callt(K) for the time-0 price of a European
call option on the underlying asset, expiring at time t, with strike K, and putt(K) for
the time-0 price of the corresponding put option.

Result 1 (Pricing). The strike on a simple variance swap, i.e. an agreement to exchange
V for the amount in (1) at time T , is given by

V (∆, T ) =
T/∆∑
i=1

eri∆

F 2
(i−1)∆

[
Π(i∆)− (2− e−r∆)Π((i− 1)∆)

]
, (2)

where Π(t) is given by

Π(t) = 2
∫ Ft

0
putt(K) dK + 2

∫ ∞
Ft

callt(K) dK + S2
0e
rt, Π(0) = S2

0 . (3)

Proof. The absence of arbitrage implies that there exists a sequence of strictly positive
stochastic discount factors M∆,M2∆, . . . such that a payoff Xj∆ at time j∆ has price

Ei∆
[
M(i+1)∆M(i+2)∆ · · ·Mj∆Xj∆

]
at time i∆. The subscript on the expectation operator indicates that the expectation is
conditional on time-i∆ information. I abbreviate M(j∆) ≡M∆M2∆ · · ·Mj∆.

V is chosen so that the swap has zero initial value, i.e.,

E

[
M(T )

{(
S∆ − S0

S0

)2

+
(
S2∆ − S∆

F∆

)2

+ · · ·+
(
ST − ST−∆

FT−∆

)2

− V

}]
= 0. (4)

We have

E
[
M(T )

(
Si∆ − S(i−1)∆

)2] = e−r(T−i∆)E
[
M(i∆)

(
Si∆ − S(i−1)∆

)2]
= e−r(T−i∆)

{
E
[
M(i∆)S

2
i∆

]
−
(
2− e−r∆

)
E
[
M((i−1)∆)S

2
(i−1)∆

]}
,

using the law of iterated expectations, the fact that E(i−1)∆Mi∆Si∆ = S(i−1)∆, and the
fact that the interest rate r is constant, so that E(i−1)∆Mi∆ = e−r∆. If we define Π(i)
to be the time-0 price of a claim to S2

i , paid at time i, then we have2

E
[
M(T )

(
Si∆ − S(i−1)∆

)2] = e−r(T−i∆)
[
Π(i∆)−

(
2− e−r∆

)
Π((i− 1)∆)

]
.

2Neuberger (1990), the working paper version of Neuberger (1994), briefly mentions the relevance of

this “Squared contract” in a similar context.

4



Equation (2) follows on substituting this into (4), so it only remains to confirm that
(3) holds. To see that it does, note that3

S2
t = 2

∫ ∞
0

max {0, St −K} dK.

The right-hand side is the time-t payoff on a portfolio of European call options of all
strikes, so the absence of arbitrage implies that

Π(t) = 2
∫ ∞

0
callt(K) dK. (5)

Equation (3) follows by put-call parity, which is the relationship callt(K) = putt(K) +
S0 − Ke−rt. Although (3) is less concise than (5), it has the appealing feature that it
expresses Π(t) in terms of out-of-the-money options only.

The most important aspect of Result 1 is that it does not require the price process of
the underlying asset to be continuous. The strike on a simple variance swap is dictated
by the prices of options across all strikes and the whole range of expiry times ∆, 2∆,
. . . , T . Correspondingly, the hedging portfolio requires holding portfolios of options of
each of these maturities, as in the examples considered by Lee (2010b). Although this
is not a serious issue if ∆ is large relative to T , it raises the concern that hedging a
simple variance swap may be extremely costly in practice if ∆ is very small relative to
T . Fortunately, this concern is misplaced: both the pricing formula (2) and the hedging
portfolio simplify nicely in the limit as ∆→ 0, holding T constant.

Result 2 (Pricing, continued). In the limit as ∆→ 0, we have

V (0, T ) ≡ lim
∆→0

V (∆, T ) =
2e−rT

S2
0

{∫ FT

0
putT (K) dK +

∫ ∞
FT

callT (K) dK
}
. (6)

Proof. Observe that (2) can be rewritten

V (∆, T ) =
T/∆∑
i=1

{
eri∆

F 2
(i−1)∆

[
P (i∆)− (2− e−r∆)P ((i− 1)∆)

]}
+
T

∆
(
er∆ − 1

)2
, (7)

where

P (t) = 2
∫ Ft

0
putt(K) dK + 2

∫ ∞
Ft

callt(K) dK, P (0) = 0.

3Darrell Duffie suggested this approach. A previous draft derived (5) via Breeden-Litzenberger (1978)

logic and integration by parts: Π(t) =
R∞

0
K2 call′′t (K) dK = 2

R∞
0

callt(K) dK. The latter approach has

the advantage of being mechanical—it does not rely on a “trick”—but the disadvantage of requiring

twice-differentiability of callt(K).
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For 0 < j < T/∆, the coefficient on P (j∆) in equation (7) is

1
F 2

(j−1)∆

er∆j − 1
F 2
j∆

er∆(j+1)(2− e−r∆) =

(
er∆ − 1

)2
S2

0e
r∆j

.

We can therefore rewrite (7) as

V (∆, T ) =
erT

F 2
T−∆

P (T ) +
T/∆−1∑
j=1

(
er∆ − 1

)2
S2

0e
rj∆

P (j∆)︸ ︷︷ ︸
O(1/∆) terms of size O(∆2)

+
T

∆
(
er∆ − 1

)2
.

The second term on the right-hand side is a sum of T/∆ − 1 terms, each of which has
size on the order of ∆2; all in all, the sum is O(∆). The third term on the right-hand
side is also O(∆), so both tend to zero as ∆→ 0. The first term tends to erTP (T )/F 2

T ,
as required.

Result 2 is the motivation behind the choice of forward prices as the normalizing
weights in the definition (1). In principle, we could have put any other constants known
at time 0 in the denominators of the fractions in (1). Had we done so, we would have to
face the unappealing prospect of a hedging portfolio requiring positions in options of all
maturities between 0 and T . Using forward prices lets us sidestep this problem.

The proof of Result 1 implicitly supplies the dynamic trading strategy that replicates
the payoff on a simple variance swap. Tables 1 and 2 in the Appendix describe the
strategy in detail. Each row of Table 1 indicates a sequence of dollar cashflows that is
attainable by investing in the asset indicated in the leftmost column. Negative quantities
indicated that money must be invested; positive quantities indicate cash inflows. Thus,
for example, the first row indicates a time-0 investment of $e−rT in the riskless bond
maturing at time T , which generates a time-T payoff of $1. The second and third rows
indicate a short position in the underlying asset, held from 0 to ∆ and subsequently
rolled into a short bond position. The fourth row represents a position in a portfolio
of options expiring at time ∆ that has simple return S2

∆/Π(∆) from time 0 to time ∆.
(This is the portfolio whose price is provided in equations (3) or (5). It is perhaps easiest
to think in terms of (5), so the portfolio consists of call options of all strikes.) The fifth,
sixth, and seventh rows indicate how the proceeds of this option portfolio are used after
time ∆. Part of the proceeds are immediately invested in the bond until time T ; another
part is invested from ∆ to 2∆ in the underlying asset, and subsequently from 2∆ to T in
the bond. The replicating portfolio requires similar positions in options expiring at times
2∆, 3∆, . . . , T − 2∆. These are omitted from Table 1, but the general such position is
indicated in Table 2, together with the subsequent investment in bonds and underlying
that each position requires.
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The self-financing nature of the replicating strategy is reflected in the fact that the
total of each of the intermediate columns from time ∆ to time T −∆ is zero. The last
column of Table 1 adds up to the desired payoff,(

S∆ − S0

S0

)2

+
(
S2∆ − S∆

F∆

)2

+ · · ·+
(
ST − ST−∆

FT−∆

)2

− V.

Therefore, the first column must add up to the cost of entering the simple variance swap.
Equating this cost to zero, we find the value of V provided in Result 1.

The replicating strategy simplifies dramatically in the ∆ → 0 limit. The dollar
investment in each of the option portfolios expiring at times ∆, 2∆, . . . , T − ∆ goes to
zero at rate O(∆2). We must account, however, for the dynamically adjusted position
in the underlying, indicated in rows beginning with a U. As shown in Table 2, this calls
for a short position of 2e−r(T−∆)Sj∆/[Fj∆S0] units of underlying at time j∆. In dollar
terms this is a short position of 2e−r(T−∆)S2

j∆/[Fj∆S0] in the underlying. In the limit
as ∆ → 0, holding j∆ = t constant, the dynamic strategy calls for a short position
of 2e−rTSt/[FtS0] units of the underlying asset at time t, i.e. 2e−rTS2

t /[FtS0] in dollar
terms.

The static position in options expiring at time T , shown in the penultimate line of
Table 1, does not disappear in the ∆ → 0 limit. We can think of the option portfolio
as a collection of calls of all strikes, as in (5). It is perhaps more natural, though, to
think of the position as a collection of calls with strikes above FT and puts with strikes
below FT , together with a long position in 2/FT units of the underlying asset and a
bond position. Combining this static long position in the underlying with the previously
discussed dynamic position, the overall position at time t is long 2/FT−2e−rTSt/[FtS0] =
2(1−St/Ft)/FT units of the asset and long out-of-the-money-forward calls and puts, all
financed by borrowing. Initially, therefore, the direct position in the underlying asset is
2(1− S0/F0)/FT = 0 at time 0; subsequently, if the underlying’s price at time t exceeds
Ft = S0e

rt, the replicating portfolio is short the underlying in order to offset the effects of
increasing delta as calls go in-the-money and puts go increasingly out-of-the-money. In
the other direction, if the underlying asset’s price declines, then the delta-hedge requires
buying the underlying to offset the negative delta resulting from puts going in-the-money
and calls going out-of-the-money.

Result 3 (Hedging). In the ∆ → 0 limit, the payoff on a simple variance swap can be
replicated by holding a portfolio, financed by borrowing, of

(i) a static position in 2/F 2
T puts expiring at time T with strike K, for each K ≤ FT ;

(ii) a static position in 2/F 2
T calls expiring at time T with strike K, for each K ≥ FT ;

and
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(iii) a dynamic position that is long 2(1 − St/Ft)/FT units of the underlying asset at
time t.

2 Variance swaps, gamma swaps, and the VIX index

In contrast, a (standard) variance swap pays(
log

S∆

S0

)2

+
(

log
S2∆

S∆

)2

+ · · ·+
(

log
ST
ST−∆

)2

− Ṽ

at time T . (This definition is very natural in a world in which asset prices follow diffu-
sions.) To be fairly priced, we must have

Ṽ = E∗
[(

log
S∆

S0

)2

+
(

log
S2∆

S∆

)2

+ · · ·+
(

log
ST
ST−∆

)2
]
, (8)

where the asterisk on the expectation indicates that it is taken with respect to the risk-
neutral measure. To price the variance swap, i.e. to compute the expectation on the
right-hand side of (8), it is generally assumed that the asset’s price is an Itô process.
When this is the case, we have the following result in the ∆→ 0 limit; it is due to Carr
and Madan (1998) and Demeterfi, Derman, Kamal, and Zou (1999), building on an idea
of Neuberger (1994). From now on, Ṽ will always refer to the variance swap strike in
the limiting case ∆→ 0.

Result 4 (Neuberger (1994); Carr and Madan (1998); Demeterfi et al. (1999)). If the
underlying asset’s price follows an Itô process dSt = rSt dt + σtSt dZt under the risk-
neutral measure, then the strike on a variance swap is

Ṽ = 2erT
{∫ FT

0

1
K2

putT (K) dK +
∫ ∞
FT

1
K2

callT (K) dK
}
, (9)

which has the interpretation

Ṽ = E∗
[∫ T

0
σ2
t dt

]
. (10)

The variance swap can be hedged by holding a portfolio, financed by borrowing, of

(i) a static position in 2/K2 puts expiring at time T with strike K, for every K ≤ FT ;

(ii) a static position in 2/K2 calls expiring at time T with strike K, for every K ≥ FT ;
and

(iii) a dynamic position that is long 2(Ft/St − 1)/FT units of the underlying asset at
time t.
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Sketch of proof. In the ∆→ 0 limit, the expectation (8) converges to4

Ṽ = E∗
[∫ T

0
(d logSt)

2

]
.

Given the Itô process assumption, d logSt = (r − 1
2σ

2
t )dt+ σt dZt under the risk-neutral

measure, by Itô’s lemma, so (d logSt)2 = σ2
t dt, and

Ṽ = E∗
[∫ T

0
σ2
t dt

]
= 2E∗

[∫ T

0

1
St
dSt −

∫ T

0
d logSt

]
= 2rT − 2 E∗ log

ST
S0
. (11)

This shows that the strike on a variance swap is determined by pricing a notional contract
that pays, at time T , the logarithm of the underlying asset’s simple return RT = ST /S0.
Using Breeden-Litzenberger (1978) logic, the price of this contract, Plog, can be computed
explicitly in terms of the prices of European call and put options on the underlying asset:

Plog ≡ e−rTE∗ logRT = rTe−rT −
∫ FT

0

1
K2

putT (K) dK −
∫ ∞
FT

1
K2

callT (K) dK. (12)

For completeness, a derivation is provided in the Appendix. Substituting (12) back into
(11), we have the result.

Another recent innovation, the gamma swap, is closely related to a variance swap.
At time T , a gamma swap pays

S∆

S0

(
log

S∆

S0

)2

+
S2∆

S0

(
log

S2∆

S∆

)2

+ · · ·+ ST
S0

(
log

ST
ST−∆

)2

− Vγ .

Under the Itô process assumption, gamma swaps can be replicated in a similar way to
variance swaps; see Lee (2010a). The replicating portfolio consists of a static position in
out-of-the-money-forward calls and puts, in amounts inversely proportional to the strike
(together with a dynamic delta-hedge, and money market positions for financing). In
contrast, the standard variance swap holds options in amounts inversely proportional to
the square of the strike.

Thus we have a sequence: variance swaps are hedged with a static portfolio of options
with strikes K, held in amounts proportional to 1/K2; gamma swaps are hedged with
a static portfolio of options with strikes K, held in amounts proportional to 1/K; and

4To be more formal about it, eV converges, under technical conditions established by Jarrow et

al. (2010), to E∗ [〈logS〉T ], where 〈logS〉t is the quadratic variation process of logSt.
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simple variance swaps are hedged with a static portfolio of options with strikes K, held
in amounts proportional to 1. Only for simple variance swaps, though, is replication
possible in the presence of jumps.

Figure 1 makes this point graphically. It shows the required payoff and associated
hedge portfolio payoff over a particular sample path for the underlying asset, for a 3-
month variance swap and for a 3-month simple variance swap.

0.05 0.10 0.15 0.20 0.25
t

70

80

90

100

St

(a) Underlying price path

0.05 0.10 0.15 0.20 0.25
t
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0.08

0.10
hedge

(b) SVS required payout and

hedge portfolio performance
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0.00004
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(c) SVS hedge error
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t
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t
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0.05 0.10 0.15 0.20 0.25
t

-0.014
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-0.006
-0.004
-0.002

hedge - V.S.

(f) VS hedge error

Figure 1: A sample path of the required payout on a simple variance swap (SVS), and
on a variance swap (VS), given the underlying price path shown in panels (a) and (d).

Panels 1a, 1b, and 1f correspond to the simple variance swap, and panels 1d, 1e, and
1f to the variance swap. The underlying price follows the same path in each case. The
middle panels compare the required payout on the simple variance swap and variance
swap to the payout of the hedge portfolio in each case.5 In Panel 1b, only one line
is visible: the simple variance swap is essentially perfectly hedged. In contrast, Panel
1e shows that the hedge portfolio (lower line) substantially underperforms the required
payout on the variance swap (upper line) due to the downward jump in the price of
the underlying. Panels 1c and 1f plot the difference between required payout and hedge
portfolio performance in each case. In the case of the variance swap, the hedge error is
enormous—on the order of 10% of the required payoff—while in the case of the simple

5For times t prior to expiry (T = 0.25), I compute the required payout and hedge portfolio performance

on the assumption that volatility goes to zero after time t, i.e. that the underlying asset price grows

deterministically at the riskless rate between time t and time T .
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variance swap, the corresponding error is three orders of magnitude smaller.6

Result 4 motivates the definition of the VIX index, which is calculated based on option
prices using an annualized and discretized version of (9), and is generally interpreted as a
measure of risk-neutral variance in the sense of (10). Working with the idealized version
of VIX (i.e. not discretizing), we have

VIX2 ≡ 2erT

T

{∫ FT

0

1
K2

putT (K) dK +
∫ ∞
FT

1
K2

callT (K) dK
}
.

This is a definition, not a statement about pricing. Analogously, we can define an index,
SVIX, based on the annualized strike of a simple variance swap. Based on (6), let SVIX
be defined by

SVIX2 ≡ e2rT

T
V (0, T ) =

2erT

T

{∫ FT

0

1
S2

0

putT (K) dK +
∫ ∞
FT

1
S2

0

callT (K) dK
}
.

This definition annualizes the strike on a simple variance swap, V (0, T ), and scales it by
e2rT . The scaling has two benefits: it makes SVIX more directly comparable to VIX,
and it ensures that SVIX has a clean interpretation, as will be shown in Result 5.

Under the Itô process assumption, VIX2 corresponds to the (annualized) strike on a
variance swap, and has the interpretation (10). But this result leans heavily on the Itô
process assumption: if there are jumps, the correctly priced strike Ṽ will not be given by
(9); the replicating portfolio implied by the above analysis will not replicate the variance
swap payoff, as Figure 1 shows; and neither Ṽ nor VIX2 has the interpretation (10).7

The next result shows what VIX does measure, and contrasts this with the much simpler
interpretation of SVIX.

Result 5 (The interpretation of VIX and SVIX). Whether or not there are jumps, VIX
measures the risk-neutral entropy of the simple return:

VIX2 =
2
T
L(RT ), (13)

where the entropy L(X) ≡ log E∗X − E∗ logX for positive random variables X. If the
simple return RT is lognormal, then

VIX2 =
1
T

var∗ logRT ≈
1
T

var∗RT , (14)

6This example was generated using a discretization both in time—∆ strictly greater than zero—and

in the gap between strikes of options in the hedging portfolio. In the absence of this discretization, the

hedge error on a simple variance swap would be exactly zero, as shown in Result 3.
7Up to a third-order approximation, Carr and Lee (2009) show that the fair variance swap strike is

higher than that given in Result 4 if there are jumps and risk-neutral returns are negatively skewed.
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where the approximation is accurate over short time horizons. But, in general, with
jumps and/or time-varying volatility, VIX depends on all of the (annualized, risk-neutral)
cumulants of log returns,

VIX2 = 2
∞∑
n=2

κ∗n
n!

= κ∗2 +
κ∗3
3

+
κ∗4
12

+
κ∗5
60

+ · · · , (15)

where κ∗n ≡ 1
T κ̃
∗
n, and κ̃∗n is the nth cumulant of logRT .8

In contrast, SVIX measures the risk-neutral variance of the simple return:

SVIX2 =
1
T

var∗RT . (16)

Proof. Equation (13) follows from the definition of VIX2 and (12), together with the fact
that E∗RT = erT .

Equation (14) follows from (13) because logE∗RT = E∗ logRT + 1
2 var∗ logRT if RT

is lognormal. For the approximation, write µ = E∗ logRT and σ2 = var∗ logRT ; over
short time horizons, var∗RT = e2µ

(
e2σ2 − eσ2

)
= e2µσ2 +O(σ4) ≈ σ2 = var∗ logRT .

For the general result (15), we introduce the function κ∗(θ) = log E∗
[
eθ·logRT

]
. This

function can be expanded as a power series in θ,

κ∗(θ) =
∞∑
n=1

κ̃∗nθ
n

n!
,

where κ̃∗n is the nth risk-neutral cumulant of logRT . The definition of entropy implies
that L(RT ) = κ∗(1) − κ∗

′
(0), from which (15) follows after annualizing the cumulants:

κ∗n ≡ 1
T κ̃
∗
n. For Normally distributed random variables, all cumulants above the variance

are zero, so skewness and excess kurtosis (and so on) drop out in the lognormal case.
Finally, using asterisks to indicate variances and expectations with respect to the

risk-neutral measure, we have

var∗RT = E∗
[(

ST
S0

)2
]
−
[
E∗
(
ST
S0

)]2

=
erTΠ(T )
S2

0

− e2rT .

From (3), this implies

var∗RT =
2erT

S2
0

{∫ FT

0
putT (K) dK +

∫ ∞
FT

callT (K) dK
}
,

and (16) follows, as required.

8So, for example, eκ∗1 = E∗ logRT ; eκ∗2 = var∗ logRT ; eκ∗3 is the skewness of logRT multiplied by (eκ∗2)3/2;eκ∗4 is the excess kurtosis, multiplied by (eκ∗2)2; and so on.
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Figure 2: If the prices of call and put options expiring at time T are as shown, then
the annualized risk-neutral variance of the underlying asset’s simple return equals the
shaded area under the curves multiplied by 2erT /(TS2

0).

No part of Result 5 requires the Itô process assumption, because the derivation
of equation (12) only depends on the static Breeden-Litzenberger logic. The entropy
operator L(·) provides a measure of the variability of positive random variables. Like
variance, it is nonnegative by Jensen’s inequality, and like variance it measures variability
by the extent to which a concave function of an expectation of a random variable exceeds
an expectation of a concave function of a random variable. It has been applied in the
finance literature by Alvarez and Jermann (2005), who refer to it as Theil’s (1967) second
entropy measure, and by Backus, Chernov and Martin (2010).9

Equation (16) has a nice graphical implication that is illustrated in Figure 2, which
shows how to calculate the risk-neutral variance of the underlying asset’s simple return
to time T , given the prices of call and put options of all strikes expiring at time T . Calls
and puts have equal value when the strike equals the forward price, so the two lines
intersect at K = FT . The annualized risk-neutral variance equals the shaded area under
the two curves multiplied by 2erT /(TS2

0). SVIX is the square root of this quantity, so
measures risk-neutral volatility.

Equation (15) implies that if returns are more negatively skewed then, all else equal,
VIX will be lower ; while, intuitively, one might have expected that negative skewness
would drive VIX higher. This logic, of course, is based on intuition about real-world,
not risk-neutral, cumulants, and it can be clarified by considering an equilibrium model
that supplies a link between the two. The model also helps to bring out the distinction
between the information in a simple variance swap and the information in VIX.

9Entropy is an overloaded term. I use it here because of the link to Theil (1967). Backus, Chernov

and Martin (2010) refer to L(M) as the entropy of a stochastic discount factor M because, in a complete

market, L(M) can be shown to equal the relative entropy, in the information-theoretic sense, of risk-

neutral probabilities with respect to real-world probabilities.
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Result 6 (Interpretation of VIX and SVIX in an equilibrium model). If there is a
representative agent with log utility, then VIX can be expressed in terms of the cumulants
of logRT under the real-world probabilities, i.e. κ1 = 1

T E logRT , κ2 = 1
T var logRT , and

so on,

VIX2 = 2
∞∑
n=2

(−1)n(n− 1)
κn
n!

= κ2 −
2
3
κ3 +

κ4

4
− κ5

15
+ · · · , (17)

while SVIX measures the risk premium under the real-world probabilities,

SVIX2 =
erT

T
E
[
RT − erT

]
. (18)

Proof. To derive (17), let κ(θ) = log E
[
eθ·logRT

]
=
∑∞

n=1
eκnθn

n! (the generating function
of the real-world cumulants κ̃n), and let κ∗(θ) be the corresponding CGF calculated with
respect to risk-neutral probabilities. In this notation, equation (13) becomes

VIX2 =
2
T

[
κ∗(1)− κ∗

′
(0)
]
. (19)

If the representative investor—a holder of the market portfolio, which is assumed
to be the asset underlying VIX and SVIX—has log utility, then the reciprocal of the
market return, 1/RT , is a stochastic discount factor, so for any time-T payoff X, E∗X =
erTE [X/RT ]. With X = 1, this implies that rT = −κ(−1); and from this it follows, on
setting X = RθT , that κ∗(θ) = κ(θ−1)−κ(−1). Using these observations, (19) becomes

VIX2 =
2
T

[
−κ(−1)− κ′(−1)

]
= − 2

T

[ ∞∑
1

(−1)nκ̃n
n!

+
∞∑
1

(−1)n−1κ̃n
(n− 1)!

]
,

which simplifies to (17) after annualizing the cumulants: κn ≡ 1
T κ̃n.

Similarly, equation (18) follows immediately from equation (16). (Note, incidentally,
that from equation (13) we have

VIX2 = 2r +
2erT

T
E
[

1
RT

log
1
RT

]
; (20)

this is an alternative to (17) that is more directly comparable to (18).)

Equation (20) shows that VIX does not have an obvious interpretation within the
model, though the extreme sensitivity to the possibility of bad outcomes is evident once
again. We can also reevaluate the intuition that making skewness more negative should
drive VIX up. Equation (17) shows that this is true when cumulants are calculated with
respect to real-world probabilities; equation (15) shows it is false when cumulants are
calculated with respect to risk-neutral probabilities.
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In contrast, the interpretation of SVIX within the model is clear: it gives us a direct
measure of the expected risk premium on the market under the true, not the risk-neutral,
probability distribution. This is a natural—perhaps the natural—measure of risk.

3 Market-implied correlation

The strikes of simple variance swaps on the market and of simple variance swaps on
the constituents of the market can be combined to supply a measure of market-implied
(i.e. risk-neutral) correlation. Write σ2

M for the risk-neutral variance of the simple return
on the market from time 0 to time T ; write σ2

i for the risk-neutral variance of the simple
return on stock i from time 0 to time T ; write ρij for the correlation between stocks i
and j; and write wi for the market weights:

σ2
M = var∗

(
N∑
i=1

wiRi

)
=

N∑
i=1

w2
i σ

2
i +

∑
i6=j

wiwjρijσiσj . (21)

Note that for the purposes of backing out a correlation measure, the variances we are
interested in, σ2

M and σ2
i , are the variances of simple returns, not log returns: because the

quantity var∗ log
∑
wiRi does not decompose nicely into a sum of individual variances

var∗ logRi, there is no analogue of (21) for log returns.
Based on (21), we can define the implied correlation measure

ρ̂ =
σ2
M −

∑
w2
i σ

2
i∑

i6=j wiwjσiσj
.

The implied correlation ρ̂ can then be calculated directly from the strike on a simple
variance swap on the market (which reveals σ2

M , via equations (6) and (16)) and from the
strikes on simple variance swaps on the index constituents (which reveal

{
σ2
i

}
i=1,...,N

),
together with the observable market weights wi.

Computing a measure of market-implied correlation from (standard) variance swaps
is considerably more challenging. Even under the assumption that prices are continuous,
the strike on a variance swap would not reveal risk-neutral variance, but the risk-neutral
expectation of integrated instantaneous variance, as in equation (10). And even if the
index constituents had lognormal simple returns R(i)

T , so that variance swaps on the
underlying assets revealed the risk-neutral variance of log returns, var∗ logR(i)

T , as in
(14), the market return itself—a sum of lognormals—would not be lognormal. In the
presence of jumps, these problems are even more acute.
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4 Conclusion

The market turmoil of 2008 and 2009 should have been the volatility derivatives market’s
moment in the sun. Unfortunately, precisely when the ability to hedge and speculate in
volatility and variance would have been particularly valuable, these markets dried up.

This decline in liquidity can be attributed to the critical assumption that underpins
the theory of pricing and hedging of variance swaps: that prices follow diffusions, and
hence cannot jump. The dependence on this assumption means that variance swaps are
hardest to price at times when they are needed most. This problem is particularly severe
for variance swaps on single names: Carr and Lee (2009) observe that “the contractual
payoffs that appear in thousands of term sheets become literally infinite if the underlying
ever closes at zero.” As a workaround, it is now the market convention to cap the payoffs
on variance swaps, though doing so complicates both the pricing and the interpretation
of the contract.

This paper has analyzed a financial contract, a simple variance swap, that is closely
related to variance swaps. Unlike variance swaps, however, simple variance swaps can be
priced and hedged even in the presence of jumps. The weighting by forward price in the
definition (1) leads to an important simplification of the hedging strategy that is critical
to make the contract potentially tradable in practice.

Simple variance swaps have a natural interpretation: whether or not there are jumps,
they reveal the (risk-neutral) variance of the simple return on the underlying asset, so
permit hedging and speculation by market participants with views on this quantity.

The contrast between simple variance swaps and variance swaps can be seen most
directly by examining their respective hedging portfolios. The hedge portfolio for a simple
variance swap holds equal amounts of options of all different strikes, while variance swaps
require increasingly large positions in puts with increasingly low strikes. This makes
explicit the dependence of variance swaps on extreme events. Even if one is prepared to
assert that there are no jumps (as is required to legitimize the theory of variance swap
and gamma swap pricing), variance swaps are harder to hedge than simple variance
swaps, since they load more strongly on deep-out-of-the-money puts.

As a result of these unfortunate properties of variance swaps, gamma swaps have
recently started trading. While the hedge portfolio for variance swaps holds portfolios of
options with strikes K in amounts proportional to 1/K2, the hedge for a gamma swap
holds portfolios of options with strikes K in amounts proportional to 1/K. However, as
with variance swaps, this only holds if prices cannot jump. In the sense that the hedge
portfolio on a simple variance swap holds options with strikes K in amounts proportional
to 1, simple variance swaps are the answer to the question: ‘What is the next member
of the sequence “variance swap, gamma swap, . . . . . . ”?’ But simple variance swaps
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are distinguished from the other two by the fact that they can be priced and hedged in
the presence of jumps.

By comparing the strikes on simple variance swaps on an index to the strikes on
simple variance swaps on the index constituents, a measure of implied correlation can
be calculated. What one needs here are the variances of simple returns, not log returns.
Thus simple variance swaps would provide the natural way to measure implied correlation
even in a world in which jumps did not occur. With jumps, their advantages become
even clearer. Most obviously—even setting aside the difficulties in pricing variance swaps
in the presence of jumps, and in using the resulting prices to compute a correlation
measure—it is critical that the single-name market should not evaporate at times of
stress, since the variances of single names are needed to compute correlation.
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A Appendix

This appendix provides a derivation of (12). Using the result of Breeden and Litzenberger
(1978), we have

Plog =
∫ ∞

0
log

K

S0
call′′T (K) dK.

Evaluating this integral is a straightforward exercise in integration by parts, though we
do need one small trick right at the beginning, splitting the range of integration into two
parts and using the observation that put′′T (K) ≡ call′′T (K), which follows from put-call
parity; and, half-way through, to use the fact that put′T (K) − call′T (K) = e−rT , which
again follows from put-call parity.

Plog =
∫ FT

0
log

K

S0
put′′T (K) dK +

∫ ∞
FT

log
K

S0
call′′T (K) dK

=
[
log

K

S0
· put′T (K)

]FT

0

−
∫ FT

0

1
K

put′T (K) dK +
[
log

K

S0
· call′T (K)

]∞
FT

−
∫ ∞
FT

1
K

call′T (K) dK

= rTe−rT −
∫ FT

0

1
K

put′T (K) dK −
∫ ∞
FT

1
K

call′T (K) dK

= rTe−rT +
[
− putT (K)

K

]FT

0

−
∫ FT

0

1
K2

putT (K) dK +
[
− callT (K)

K

]∞
FT

−
∫ ∞
FT

1
K2

callT (K) dK

= rTe−rT −
∫ FT

0

1
K2

putT (K) dK −
∫ ∞
FT

1
K2

callT (K) dK.
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asset 0 j∆ (j + 1)∆ T

j∆ −(er∆−1)2
Πj∆

er(T−j∆)F 2
j∆

(er∆−1)2
S2

j∆

er(T−j∆)F 2
j∆

B −e−r(T−j∆)

(
S2

j∆

F 2
(j−1)∆

+
S2

j∆

F 2
j∆

)
S2

j∆

F 2
(j−1)∆

+
S2

j∆

F 2
j∆

U
2S2

j∆

er(T−(j+1)∆)F 2
j∆

−2Sj∆S(j+1)∆

er(T−(j+1)∆)F 2
j∆

B 2Sj∆S(j+1)∆

er(T−(j+1)∆)F 2
j∆

−2Sj∆S(j+1)∆

F 2
j∆

Table 2: Replicating the simple variance swap. The generic position in options of in-
termediate maturity, expiring at time j∆, together with the associated trades required
after expiry. In the left column, B indicates positions in the bond, U indicates positions
in the underlying, and j∆ indicates positions in options expiring at j∆.
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