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1 Introduction

Is time-varying firm-level profitability risk a major cause of regular business cycle fluctuations?

Shocks to firm risk have the appealing theoretical property that they can generate naturally

bust-boom cycles, as shown in a seminal paper by Bloom (2009). After a surprise increase in

risk, firms, more uncertain about future profitability, will halt or slow down all activities that

cannot be easily reversed, they wait and see. Investment in equipment and structures is an

important example. After the heightened uncertainty is resolved, pent-up demand for capital

goods leads to an investment boom. In this paper we evaluate this mechanism quantitatively.

We start from a heterogeneous-firm dynamic stochastic general equilibrium model with

persistent idiosyncratic productivity shocks and fixed capital adjustment costs. In such an en-

vironment, time-varying firm-level risk is naturally modeled as fluctuations in the variance of

future firm-level productivity shocks. We develop the numerical tools to solve such a model in

general equilibrium. The model features ‘wait-and-see’ when firm-level risk rises, because in-

vestment decisions cannot be reversed easily. The conditional effect of increases in firms’ risk is

thus a bust-boom cycle in aggregate economic activity. While important, conditional moments

paint an incomplete picture of the business cycle. We study the unconditional business cycle

implications of time-varying firm-level risk and compare them to the data and the business

cycle properties of a model with aggregate productivity shocks only.

We use the Deutsche Bundesbank balance sheet data base of German firms, USTAN, to cal-

ibrate the model – in particular the capital adjustment costs and the idiosyncratic risk pro-

cess. USTAN is a private sector, annual, firm-level data set that allows us to use 26 years of data

(1973-1998), with cross-sections that have, on average, over 30,000 firms per year. USTAN has

a broader ownership, size and industry coverage than the available comparable U.S. data sets

from Compustat and the Annual Survey of Manufacturers. The richness of USTAN lets us take

into account measurement error and sample selection issues. It also allows us to formulate

lower and upper bound scenarios for the size of firm-level risk fluctuations.

We find that risk shocks alone do not produce recognizable business cycles. They generate

only 15 per cent of the volatility of aggregate output, with investment and employment being

too volatile relative to output. They lead to negative correlations between aggregate consump-

tion on the one hand and output, investment and employment on the other. We then introduce

risk shocks as an independent process alongside standard aggregate productivity shocks. In

such an environment, risk shocks help to dampen the notoriously too high contemporaneous

correlations in the productivity-shocks-only model. Otherwise the business cycle properties

are unaltered. Moreover, the conditional impulse responses to surprise increases in firm-level

risk are inconsistent with at least the point estimates of their data counterparts. This can be

amended by allowing for correlation between aggregate productivity and firm-level risk and
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then feeding their joint dynamics into the model. In this case, firm-level risk shocks contribute

substantially to aggregate fluctuations. Yet, when we isolate the contribution of the ‘wait-and-

see’ effect to these fluctuations, we find that it is again small.

We also show that including time-varying aggregate risk has negligible effects since the av-

erage level of idiosyncratic risk is estimated to be an order of magnitude larger than aggregate

risk. Relative to the large average idiosyncratic risk that firms face, even the sizeable fluctua-

tions of aggregate risk in the data, with a percentage volatility between 30 and 40 per cent, have

a negligible impact on the total risk in firms’ future profitability and hence also negligible effects

on firms’ optimal policies.

There is now a growing literature arguing that various measures of firm-level risk both across

countries and across data sources, e.g. balance sheet and survey data, are unconditionally

countercyclical.1 While interesting and pervasive, these facts do not, however, directly speak

to the question whether risk fluctuations generate regular business cycle fluctuations. Some

authors have tackled this question using structural VARs and (linearized) DSGE models. In

Christiano et al. (2009), a DSGE estimation exercise, risk shocks have a low frequency and a

rather small business cycle impact. This is similar to the SVAR findings in Bachmann, Elstner

and Sims (2010), who use business survey data to measure firms’ risk. They also argue that

observed risk increases might be systematic reactions to first-moment shocks, rather than au-

tonomous drivers of the business cycle.

Our approach, by contrast, is to quantitatively evaluate the ‘wait-and-see’ effect caused by

capital adjustment frictions. We thus build on the literature that highlights physical frictions as

a propagation mechanism for risk shocks: Bernanke (1983), Dixit and Pindyck (1994), Hassler

(1996 and 2001), Bloom (2009), Bloom et al. (2010) and Schaal (2010). Bloom (2009) structurally

estimates a rich heterogeneous firm model that features the ‘wait-and-see’ effect in partial equi-

librium. Bloom et al. (2010) show that this conditional effect survives general equilibrium price

movements. Schaal (2010) uses a directed search model with uncertainty shocks to understand

the labor market in the so-called Great Recession.2

The remainder of this paper is organized as follows: Section 2 explains the model. Section 3

describes its calibration and Sections 4 and 5 discuss the results. Appendices provide details on

the data as well as the robustness of the calibration and the simulation results.
1Bachmann and Bayer (2011), Bachmann, Elstner and Sims (2010), Berger and Vavra (2010), Bloom et al. (2010),

Doepke et al. (2005), Doepke and Weber (2006), Gilchrist, Yankow and Zakrajsek (2009), Gourio (2008), Higson et
al. (2002, 2004) and Kehrig (2010).

2The literature has considered other channels, for example financial frictions in Arellano et al. (2010), Chugh
(2009) and Gilchrist, Sim and Zakrajsek (2009); or agency problems in Narita (2010). Fernandez-Villaverde et al.
(2009) argue that positive shocks to the interest rate volatility depress economic activity in several Latin American
economies. Another literature stresses the importance of rare, but drastic changes in the economic environment,
disaster risk: Barro (2007), Barro et al. (2010), Gourio (2010). There is also a literature that studies low frequency
movements in both idiosyncratic and aggregate risk, see Davis et al. (2006) as well as Carvalho and Gabaix (2010).
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2 The Model

Our model follows closely Khan and Thomas (2008) as well as Bachmann, Caballero and Engel

(2010). The main departure from either paper is the introduction of time-varying idiosyncratic

and aggregate productivity risk. Specifically, we assume that firms today observe the standard

deviations of aggregate and idiosyncratic productivity shocks tomorrow, respectively, σ(z ′) and

σ(ε′). Notice the timing assumption: if firms learn their productivity levels at the beginning of

a period, an increase in today’s standard deviation of idiosyncratic shocks does not constitute

higher risk for firms. It merely leads to a higher cross-sectional dispersion of idiosyncratic pro-

ductivity today. In contrast, higher standard deviations tomorrow are true risk today. We make

this stark timing assumption to give risk shocks the best chance to have the most direct effect

possible. None of our main results depend on it.3

2.1 Firms

The economy consists of a unit mass of small firms. There is one commodity in the economy

that can be consumed or invested. Each firm produces this commodity, employing its pre-

determined capital stock (k) and labor (n), according to the following Cobb-Douglas decreasing-

returns-to-scale production function (θ > 0, ν> 0, θ+ν< 1):

y = zεkθnν, (1)

where z and ε denote aggregate and idiosyncratic revenue productivity, respectively.

The idiosyncratic log productivity process is first-order Markov with autocorrelation ρε and

time-varying conditional standard deviation, σ(ε′). Idiosyncratic productivity shocks are oth-

erwise independent from aggregate shocks. The aggregate log productivity process is an AR(1)

with autocorrelation ρz and time-varying conditional standard deviation, σ(z ′). Idiosyncratic

productivity shocks are independent across productive units. The processes forσ(ε′)−σ̄(ε) and

σ(z ′)− σ̄(z) are also modeled as AR(1) processes, where σ̄(ε) denotes the time-average of id-

iosyncratic risk and σ̄(z) the same for aggregate risk.

We denote the trend growth rate of aggregate productivity by (1−θ)(γ−1), so that aggregate

output and capital grow at rate γ− 1 along the balanced growth path. From now on we work

with k and y (and later aggregate consumption, C ) in efficiency units.

3In Table 10 in Appendix B we explore a timing assumption, where firms today know only today’s standard
deviations, but predict tomorrow’s using persistence in the process for the standard deviation of idiosyncratic
productivity shocks.
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Each period a firm draws its current cost of capital adjustment, ξ ≤ ξ ≤ ξ̄, which is denom-

inated in units of labor, from a time-invariant distribution, G . G is a uniform distribution on

[ξ, ξ̄], common to all firms. Draws are independent across firms and over time, and employ-

ment is freely adjustable.

Upon investment, i , the firm incurs a fixed cost of ωξ, where ω is the current real wage.

Capital depreciates at a rate δ. We can then summarize the evolution of the firm’s capital stock

(in efficiency units) between two consecutive periods, from k to k ′, as follows:

Fixed cost paid γk ′

i 6= 0: ωξ (1−δ)k + i

i = 0: 0 (1−δ)k

Given the i.i.d. nature of the adjustment costs, it is sufficient to describe differences across

firms and their evolution by the distribution of firms over (ε,k). We denote this distribution by

µ. Thus,
(
z,σ(z ′),σ(ε′),µ

)
constitutes the current aggregate state and µ evolves according to the

law of motion µ′ = Γ(
z,σ(z ′),σ(ε′),µ

)
, which firms take as given.

To summarize: at the beginning of a period, a firm is characterized by its pre-determined

capital stock, its idiosyncratic productivity, and its capital adjustment cost. Given the aggregate

state, it decides its employment level, n, production and depreciation occurs, workers are paid,

and investment decisions are made. Then the period ends.

Next we describe the dynamic programming problem of a firm. We will take two shortcuts

(details can be found in Khan and Thomas, 2008). We state the problem in terms of utils of

the representative household (rather than physical units), and denote the marginal utility of

consumption by p = p
(
z,σ(z ′),σ(ε′),µ

)
. Also, given the i.i.d. nature of the adjustment costs,

continuation values can be expressed without future adjustment costs.

Let V 1
(
ε,k,ξ; z,σ(z ′),σ(ε′),µ

)
denote the expected discounted value - in utils - of a firm that

is in idiosyncratic state (ε,k,ξ), given the aggregate state
(
z,σ(z ′),σ(ε′),µ

)
. Then the firm’s ex-

pected value prior to the realization of the adjustment cost draw is given by:

V 0(ε,k; z,σ(z ′),σ(ε′),µ
)= ∫ ξ̄

ξ
V 1(ε,k,ξ; z,σ(z ′),σ(ε′),µ

)
G(dξ). (2)

With this notation the dynamic programming problem becomes:

V 1(ε,k,ξ; z,σ(z ′),σ(ε′),µ
)= max

n
{CF+max(Vno adj,max

k ′ [−AC+Vadj])}, (3)

where CF denotes the firm’s flow value, Vno adj the firm’s continuation value if it chooses inaction

and does not adjust, and Vadj the continuation value, net of adjustment costs AC , if the firm
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adjusts its capital stock. That is:

CF = [
zεkθnν−ω(

z,σ(z ′),σ(ε′),µ
)
n

]
p

(
(z,σ(z ′),σ(ε′),µ

)
, (4a)

Vno adj =βE
[
V 0(ε′, (1−δ)k/γ; z ′,σ(z ′′),σ(ε′′),µ′)], (4b)

AC = ξω(
z,σ(z ′),σ(ε′),µ

)
p

(
z,σ(z ′),σ(ε′),µ

)
, (4c)

Vadj =−i p
(
z,σ(z ′),σ(ε′),µ

)+βE
[
V 0(ε′,k ′; z ′,σ(z ′′),σ(ε′′),µ′)], (4d)

where both expectation operators average over next period’s realizations of the aggregate and

idiosyncratic shocks, conditional on this period’s values, and we recall that i = γk ′− (1−δ)k.

The discount factor, β, reflects the time preferences of the representative household.

Taking as given ω
(
z,σ(z ′),σ(ε′),µ

)
and p

(
z,σ(z ′),σ(ε′),µ

)
, and the law of motion

µ′ = Γ(
z,σ(z ′),σ(ε′),µ

)
, the firm chooses optimally labor demand, whether to adjust its capital

stock at the end of the period, and the optimal capital stock, conditional on adjustment. This

leads to policy functions: N = N
(
ε,k; z,σ(z ′),σ(ε′),µ

)
and K = K

(
ε,k,ξ; z,σ(z ′),σ(ε′),µ

)
. Since

capital is pre-determined, the optimal employment decision is independent of the current ad-

justment cost draw.

2.2 Households

We assume a continuum of identical households that have access to a complete set of state-

contingent claims. Hence, there is no heterogeneity across households. They own shares in

the firms and are paid dividends. We do not need to model the household side in detail (see

Khan and Thomas (2008) for that), we just use the first-order conditions that determine the

equilibrium wage and the marginal utility of consumption.

Households have a standard felicity function in consumption and labor:4

U (C , N h) = logC − AN h , (5)

where C denotes consumption and N h the household’s labor supply. Households maximize the

expected present discounted value of the above felicity function. By definition we have:

p
(
z,σ(z ′),σ(ε′),µ

)≡UC (C , N h) = 1

C
(
z,σ(z ′),σ(ε′),µ

) , (6)

4We have experimented with a CRRA of 3 without much impact on our results.
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and from the intratemporal first-order condition:

ω
(
z,σ(z ′),σ(ε′),µ

)=− UN (C , N h)

p
(
z,σ(z ′),σ(ε′),µ

) = A

p
(
z,σ(z ′),σ(ε′),µ

) . (7)

2.3 Recursive Equilibrium

A recursive competitive equilibrium for this economy is a set of functions(
ω, p,V 1, N ,K ,C , N h ,Γ

)
,

that satisfy

1. Firm optimality: Taking ω, p and Γ as given, V 1
(
ε,k; z,σ(z ′),σ(ε′),µ

)
solves (3) and the

corresponding policy functions are N
(
ε,k; z,σ(z ′),σ(ε′),µ

)
and K

(
ε,k,ξ; z,σ(z ′),σ(ε′),µ

)
.

2. Household optimality: Taking ω and p as given, the household’s consumption and labor

supply satisfy (6) and (7).

3. Commodity market clearing:

C
(
z,σ(z ′),σ(ε′),µ

)= ∫
zεkθN

(
ε,k; z,σ(z ′),σ(ε′),µ

)νdµ−∫ ∫ ξ̄

ξ
[γK

(
ε,k,ξ; z,σ(z ′),σ(ε′),µ

)− (1−δ)k]dGdµ.

4. Labor market clearing:

N h(
z,σ(z ′),σ(ε′),µ

) =
∫

N
(
ε,k; z,σ(z ′),σ(ε′),µ

)
dµ+∫ ∫ ξ̄

ξ
ξJ

(
γK

(
ε,k,ξ; z,σ(z ′),σ(ε′),µ

)− (1−δ)k
)
dGdµ,

where J (x) = 0, if x = 0 and 1, otherwise.

5. Model consistent dynamics: The evolution of the cross-section that characterizes the econ-

omy, µ′ = Γ(
z,σ(z ′),σ(ε′),µ

)
, is induced by K

(
ε,k,ξ; z,σ(z ′),σ(ε′),µ

)
and the exogenous

processes for z, σ(ε′) as well as ε.

Conditions 1, 2, 3 and 4 define an equilibrium given Γ, while step 5 specifies the equilibrium

condition for Γ.
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2.4 Solution

It is well-known that (3) is not computable, because µ is infinite dimensional. We follow Krusell

and Smith (1997, 1998) and approximate the distribution, µ, by a finite set of its moments, and

its evolution, Γ, by a simple log-linear rule. As usual, we include aggregate capital holdings, k̄.

We also find that it improves the fit of the Krusell-Smith-rules to add the standard deviation of

the natural logarithm of idiosyncratic productivity, std(log(ε)). This is of course owing to the

now time-varying nature of the distribution of idiosyncratic productivity. In the same vein, we

approximate the equilibrium pricing function by a log-linear rule, discrete aggregate state by

discrete aggregate state:

log k̄ ′ =ak
(
z,σ(z ′),σ(ε′)

)+bk
(
z,σ(z ′),σ(ε′)

)
log k̄ + ck

(
z,σ(z ′),σ(ε′)

)
log std(log(ε)), (8a)

log p =ap
(
z,σ(z ′),σ(ε′)

)+bp
(
z,σ(z ′),σ(ε′)

)
log k̄ + cp

(
z,σ(z ′),σ(ε′)

)
log std(log(ε)). (8b)

Given (7), we do not have to specify an equilibrium rule for the real wage. We posit the log-linear

forms (8a)–(8b) and check that in equilibrium they yield a good fit to the actual law of motion.

The R2 for capital in our baseline calibration are all above 0.999. For the marginal utility of

consumption they exceed 0.995.5

Substituting k̄ and std(log(ε)) for µ into (3) and using (8a)–(8b), (3) becomes a computable

dynamic programming problem with corresponding policy functions

N = N
(
ε,k; z,σ(z ′),σ(ε′), k̄, std(log(ε))

)
and K = K

(
ε,k,ξ; z,σ(z ′),σ(ε′), k̄, std(log(ε))

)
. We solve

this problem by value function iteration on V 0. We do so by applying multivariate spline tech-

niques that allow for a continuous choice of capital when the firm adjusts.

With these policy functions, we can then simulate a model economy without imposing the

equilibrium pricing rule (8b). Rather, we impose market-clearing conditions and solve for the

pricing kernel at every point in time of the simulation. We simulate the model economy for

a large number of time periods. This generates a time series of {pt } and {k̄t } endogenously, on

which the assumed rules (8a)–(8b) can be updated with a simple OLS regression. The procedure

stops when the updated coefficients ak
(
z,σ(z ′),σ(ε′)

)
to cp

(
z,σ(z ′),σ(ε′)

)
are sufficiently close

to the previous ones.

5Of course, std(log(ε)) has an analytically known law of motion, given the AR(1) specification for σ(ε′). The
lowest R2 for the capital rule without std(log(ε)) is just above 0.94 and for the marginal utility of consumption just
above 0.99.
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3 Calibration

In this Section we discuss the calibration of those model parameters that remain the same

across all specifications and for the baseline model specification presented in Section 4. Our

firm-level data source is the USTAN database from Deutsche Bundesbank. USTAN is a large an-

nual firm-level balance sheet data base (Unternehmensbilanzstatistik). It has broader coverage

in terms of firm size, industry and ownership structure than comparable U.S. data sets.6 From

USTAN we compute a time series of the cross-sectional dispersion of firm-level Solow residual

growth for 26 years, spanning 1973-1998.

Standard Parameters

The model period is a year. This corresponds to the data frequency in USTAN. Most firm-

level data sets that are based on balance sheet data are of that frequency. The following pa-

rameters then have standard values: β = 0.98 and δ = 0.094, which we compute from German

national accounting data (VGR) for the nonfinancial private business sector. Given this depre-

ciation rate, we pick γ= 1.014, in order to match the time-average aggregate investment rate in

the nonfinancial private business sector: 0.108. γ= 1.014 is also consistent with German long-

run growth rates. The disutility of work parameter, A, is chosen to generate an average time

spent at work of 0.33: A = 2. We set the output elasticities of labor and capital to ν= 0.5565 and

θ = 0.2075, respectively, which correspond to the measured median labor and capital shares in

manufacturing in the USTAN data base.7

We measure the steady state standard deviation of idiosyncratic productivity shocks as σ̄(ε) =
0.0905. In the calculation of this number we take measurement error and 2-digit industry-year

effects as well as firm-level fixed effects in Solow residual growth rates into account.8 Since

idiosyncratic productivity shocks in the data also exhibit above-Gaussian kurtosis - 4.4480 on

6Davis et al. (2006) show that studying only publicly traded firms (Compustat) can lead to wrong conclusions,
when cross-sectional dispersion is concerned. Also, just under half of our firms are from manufacturing. We
focus instead on the nonfinancial private business sector. Specifically, we include firms that are in one of the
following six 1-digit industries: agriculture, mining and energy, manufacturing, construction, trade, transportation
and communication. For details on the data set and the calculation of σ(ε) in the data, see Appendix A as well as
Bachmann and Bayer (2011). An additional advantage of these data is easy access: while on-site, it is otherwise
practically unrestricted for researchers, so that results derived from this data base can be easily checked.

7If one views the DRTS assumption as a mere stand-in for a CRTS production function with monopolistic com-
petition, than these choices would correspond to an employment elasticity of the underlying production function
of 0.7284 and a markup of 1

θ+ν = 1.31. The implied capital elasticity of the revenue function, θ
1−ν is 0.47. Cooper

and Haltiwanger (2006), using LRD manufacturing data, estimate this parameter to be 0.592; Henessy and Whited
(2005), using Compustat data, find 0.551. We have experimented with both elasticities within conventional ranges,
but have not found any of our main results to depend on them. Simulation results are available on request.

8See Appendix A for details. Removing fixed effects here serves two purposes. First, it removes differences
in idiosyncratic productivity growth that are predictable for the firm. Second, it homogenizes the sample in the
sense that we can read these numbers as if the sample composition was fixed. Appendix A also deals with sample
selection issues.
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average -, and since the fixed adjustment costs parameters will be identified by the kurtosis of

the firm-level investment rate (together with its skewness), we want to avoid attributing excess

kurtosis in the firm-level investment rate to lumpy investment, when the idiosyncratic driving

force itself has excess kurtosis. We incorporate the measured excess kurtosis into the discretiza-

tion process for the idiosyncratic productivity state by using a mixture of two Gaussian distribu-

tions: N (0,0.0586) and N (0,0.1224) - the standard deviations are 0.0905±0.0319, with a weight

of 0.4118 on the first distribution. Finally, we set ρε = 0.95. This process is discretized on a

19−state-grid, using Tauchen’s (1986) procedure with mixed Gaussian normals. Heteroskedas-

ticity in the idiosyncratic productivity process is modeled with time-varying transition matrices

between idiosyncratic productivity states, where the matrices correspond to different values of

σ(ε′).

In what follows, we describe our baseline choices for the parameters that characterize the

aggregate shock processes and adjustment costs. In Section 5 as well as Appendix B we discuss

how our model behaves under various alternative choices for these parameters.

Aggregate Shocks

In the baseline case we abstract from time-varying aggregate risk and correlation between

aggregate productivity and idiosyncratic risk. Both themes will be taken up in Section 5. Thus,

to computeρz and σ̄(z), we estimate an AR(1)-process for the linearly detrended cross-sectional

average of the natural logarithm of firm-level Solow residuals, again taking industry as well as

firm-level fixed effects in Solow residuals into account. The estimation of the AR(1)-process

leads to ρz = 0.7530 and σ̄(z) = 0.0133.9 This process is discretized on a 5−state grid, using

Tauchen’s (1986) procedure.

We also estimate an AR(1)-process for the linearly detrended cross-sectional standard de-

viation of the first differences of the natural logarithm of firm-level Solow residuals. This leads

to ρσ(ε) = 0.5800 and σσ(ε) = 0.0037.10 Again, this process is discretized on a 5−state grid, using

Tauchen’s (1986) procedure. This finer discretization compared to a two-state one has the ad-

vantage that we do not need to define the high-risk state as a certain multiple of the size of the

low-risk state, in order to match the overall volatility of firm-level risk. We do not want to take

a stand on how ‘catastrophic’, i.e. strong but rare, a risk shock is. Instead, we opt for assuming

normality of risk shocks, which is supported by the data. Both a Shapiro-Wilk-test and a Jarque-

Bera-test do not reject at conventional levels. In fact, Bloom et al. (2010) show that catastrophic

risk events such as a doubling of firm-level risk has not occurred in U.S. post war data, and we

do not find it in German data, either.11

9Without taking out the fixed effects in the cross-section these numbers would be, respectively, ρz = 0.7209
and σ̄(z) = 0.0147. In Table 11 in Appendix B we report results, where we use an AR(1) based on aggregate Solow
residuals calculated from national accounting data. They are basically the same as our baseline results.

10Without the fixed effects these numbers would be, respectively, ρσ(ε) = 0.5710 and σσ(ε) = 0.0037.
11Figure 5 in Appendix A.2 shows the time path of firm-level risk and average productivity.
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To gauge the importance of shocks to firm-level risk for aggregate fluctuations we use its

time series coefficient of variation, which for our baseline case equals: CVr i sk = 4.72%. We will

show below that the business cycle relevance of firm-level risk shocks is essentially an increas-

ing function of this statistic.

Pinning down the value of CVr i sk from firm-level data is invariably laden with assumptions

and decisions during the data treatment process. We view our baseline number for CVr i sk as a

middle case. In order to assess how our results depend on CVr i sk , we consider two additional

scenarios: a ‘Lower Bound’ scenario, where we halve CVr i sk , and an ‘Upper Bound’ scenario,

where CVr i sk is quadrupled. The ‘Lower Bound’ scenario corresponds roughly to a case where

we do not eliminate fixed effects nor measurement error and focus only on the smallest 25 per-

cent of firms (CVr i sk = 1.97%). The idea behind this scenario is to stay as close as possible to

the raw data, using minimal assumptions, and to compensate, albeit somewhat crudely, for the

unavoidable overrepresentation of large firms even in USTAN. To compute the ‘Upper Bound’

scenario we take again measurement error and a full set of fixed effects in Solow residual growth

rates into account and capital-weight the cross-sectional standard deviation of firm-level Solow

residual shocks. This is to give more importance to large firms, which roughly doubles the base-

line CVr i sk to 8.38%. To be conservative, we double this again and use four times the baseline

CVr i sk as the ‘Upper Bound’ scenario. We show in Section 5.3 that these bounds also cover the

available U.S. numbers.

Adjustment Costs

In our baseline specification, we set the lower bound of the adjustment cost distribution, ξ,

to zero. Given the aforementioned set of parameters
(
β,δ,γ, A,ν,θ, σ̄(ε),ρε, σ̄(z),ρz ,σσ(ε),ρσ(ε)

)
,

we calibrate the remaining adjustment costs parameter, ξ̄, to minimize a quadratic form in

the normalized differences between the time-average firm-level investment rate skewness pro-

duced by the model and the data, as well as the time-average firm-level investment rate kurto-

sis:12

min
ξ̄
Ψ(ξ̄) ≡ 0.5 ·

[(( 1

T

∑
t

skewness(
ii ,t

0.5∗ (ki ,t +ki ,t+1)
)(ξ̄)−2.1920

)
/0.6956

)2+(( 1

T

∑
t

kur tosi s(
ii ,t

0.5∗ (ki ,t +ki ,t+1)
)(ξ̄)−20.0355

/
5.5064)

)2
]

. (9)

As can be seen from (9), the distribution of firm-level investment rates exhibits both substantial

positive skewness – 2.1920 – as well as excess kurtosis – 20.0355. Caballero et al. (1995) doc-

12The normalization constants in (9) are, respectively, the time series standard deviation of the cross-sectional
investment rate skewness and the time series standard deviation of the cross-sectional investment rate kurtosis in
the data.
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ument a similar fact for U.S. manufacturing plants. They also argue that non-convex capital

adjustment costs are an important ingredient to explain such a strongly non-Gaussian distri-

bution, given a close-to-Gaussian firm-level shock process. With fixed adjustment costs, firms

have an incentive to lump their investment activity together over time in order to economize on

these adjustment costs. Therefore, typical capital adjustments are large, which creates excess

kurtosis. Making use of depreciation, firms can adjust their capital stock downward without

paying adjustment costs. This makes negative investments less likely and hence leads to pos-

itive skewness in firm-level investment rates. We therefore use the skewness and kurtosis of

firm-level investment rates to identify ξ̄.

The following Table 1 shows that ξ̄ is indeed identified in this calibration strategy, as cross-

sectional skewness and kurtosis of the firm-level investment rates are both monotonically in-

creasing in ξ̄. The minimum ofΨ is achieved for ξ̄= 0.25, which constitutes our baseline case.13

This implies average costs conditional on adjustment equivalent to roughly 7% of annual firm-

level value added, which is well in line with estimates from the U.S. (see Bloom (2009), Table IV,

for an overview).

Table 1: CALIBRATION OF ADJUSTMENT COSTS - ξ̄

ξ̄ Skewness Kurtosis Ψ(ξ̄) Adj. costs/
Unit of Output

0 -0.0100 3.5696 18.9640 0%
0.01 0.8961 5.1365 10.7922 0.74%
0.1 2.2612 9.6531 3.5651 3.53%
0.25 (BL) 2.8847 12.3966 2.9162 6.97%
0.5 3.3398 14.75196 3.6431 12.09%
0.75 3.5958 16.2382 4.5482 16.97%
1 3.7735 17.3476 5.4069 21.90%
5 4.7616 24.8953 14.4252 110.31%

Notes: ‘BL’ denotes the baseline calibration. Skewness and kurtosis refer to the time-average of the corresponding

cross-sectional moments of firm-level investment rates. The fourth column displays the value ofΨ in (9). The last

column shows the average adjustment costs conditional on adjustment as a fraction of the firm’s annual output.

13Table 12 in Appendix B shows results where we quadruple the adjustment costs, ξ̄= 1. This is to give firms more
of a wait-and-see motive. Table 13 in Appendix B shows results for the case ξ = ξ̄. Our baseline specification has
stochastic adjustment costs, but their uncertainty does not change over time. This may reduce the time-varying
‘wait-and-see’ effect. We check this, by making adjustment costs deterministic in this alternative specification.
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4 Baseline Results

With this set-up we can now answer our initial question concerning the importance of risk

shocks as drivers of the business cycles. We do so in two steps. First, we study a model with

only risk shocks (‘Risk Model’). Then we add risk shocks as an independent process alongside

standard aggregate productivity shocks (‘Full Model’).

4.1 Risk Model

Partial equilibrium models feature ‘wait-and-see’ dynamics as their conditional response to a

risk shock: a collapse of economic activity on impact, then a strong rebound and overshooting

(Bloom, 2009). We confirm in Figure 1 that this characteristic impulse response survives general

equilibrium real interest rate and wage adjustments. In fact, the initial investment collapse is

somewhat stronger in general equilibrium due to the usual wealth effect. Households perceive

the prolonged rebound and overshooting of economic activity in the future, are wealthier and

increase consumption of goods and leisure today. Less output is produced, more of it consumed

and investment decreases. The rebound is weaker in general equilibrium due to consumption

smoothing.

Figure 1: Response of Aggregate Investment to a Shock in Idiosyncratic Risk
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Notes: impulse responses are computed by increasing σ(ε′) by one standard deviation and letting it return to its

steady state value, according to the AR(1) process estimated in Section 3. ‘GE’ stands for general equilibrium and

takes real wage and interest rate movements into account. ‘PE’ stands for partial equilibrium and fixes the real

wage and the interest rate at its steady state level.

To answer our initial question and to understand the importance of time-varying risk for the

business cycle, however, conditional responses are not sufficient. Table 2 displays the uncondi-
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Table 2: AGGREGATE BUSINESS CYCLE STATISTICS FOR THE ‘RISK MODEL’

Risk Model Risk Model Risk Model Data
Baseline Lower Bound Upper Bound

Volatility
of Output 0.34% 0.17% 1.20% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.79 0.79 0.81 0.78
Investment 7.26 7.26 7.27 1.90
Employment 1.48 1.47 1.51 0.78

Persistence
Output 0.47 0.47 0.47 0.48
Consumption 0.42 0.42 0.40 0.67
Investment 0.18 0.18 0.19 0.42
Employment 0.16 0.16 0.17 0.61

Contemporaneous Correlation with Aggregate Output
Consumption -0.12 -0.12 -0.14 0.66
Investment 0.86 0.86 0.85 0.83
Employment 0.82 0.82 0.81 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment -0.62 -0.61 -0.63 0.60
Employment -0.67 -0.67 -0.69 0.36

Notes: ‘Risk Model-Baseline’ refers to a simulation, where the only aggregate shock is to σ(ε′), whose time series

coefficient of variation is 4.72%. ‘Risk Model-Lower Bound’ halves this coefficient of variation and ‘Risk Model-

Upper Bound’ quadruples it. ‘Data’ refers to the nonfinancial private business sector’s aggregates. All series, both

from data and model simulations, have been logged and HP-filtered with smoothing parameter 100.

tional business cycle properties of models that feature the conditional ‘wait-and-see’-response

shown in Figure 1. Risk fluctuations in the ‘Upper Bound’ scenario explain somewhat over half

of the output volatility in the data. In the baseline calibration, however, risk shocks produce

only 15% of the output volatility in the data. Interestingly, output volatility is essentially a linear

function of the size of risk fluctuations. The relative volatilities of investment and employment

are too high. Their persistence is too low. Consumption is negatively correlated with the other

macroeconomic aggregates in this model.

This constitutes a negative result. The literature has argued that risk shocks might generate

cycles through the concentration of economic activity in periods of relatively stable economic

environments. However, our quantitative results show that risk fluctuations do not keep this
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promise when introduced in a relatively standard general equilibrium environment.

We note that going beyond a partial equilibrium analysis and taking into account general

equilibrium price movements is important to understanding the relatively mild fluctuations

from risk shocks. With fixed real interest rates and real wages the output fluctuations in each

scenario roughly double: 0.67%,0.34% and 2.42% for the ‘Baseline’-, ‘Lower Bound’- and ‘Upper

Bound’-scenarios, respectively.14

Table 2, in its last column, also shows that the business cycle properties in Germany are

roughly the same as in the U.S., so that our results are not due to idiosyncracies in the German

business cycle. The only exception is the (relative) volatility of investment, which is indeed

lower than in the U.S. However, in a very open economy such as Germany it is unclear what the

best data counterpart of model investment is; indeed, the relative volatility of national saving

in Germany is 4.62, much closer to the U.S. number for investment.

We conclude with our first result: firm-level risk fluctuations alone, mediated through capital

adjustment frictions, are unlikely to be major drivers of the business cycle.

4.2 Full Model

We next ask whether and how exogenous fluctuations in firm-level risk alter the business cycle

dynamics of a standard RBC model with fixed capital adjustment costs, when they are added as

a second independent aggregate shock process.

Table 3 shows that for an intermediate estimate of the CVr i sk the business cycle is essen-

tially identical to the one from the RBC model. The ability of risk fluctuations to proportionally

rescale output fluctuations has vanished, when first moment fluctuations are present. Only in

the extreme case of a CVr i sk = 18.88% can risk fluctuations contribute to dampening the noto-

riously too high comovement of aggregate quantities in the one-shock RBC model, albeit not

enough to match the data.

This is our second result: firm-level risk fluctuations added to first moment productivity shocks

do not alter significantly RBC business cycle dynamics, with the exception of comovement in the

case of highly volatile risk.

14Detailed simulation results are available on request.

15



Table 3: AGGREGATE BUSINESS CYCLE STATISTICS FOR THE ‘FULL MODEL’

Full Model Full Model Full Model RBC Model Data
Baseline Lower Bound Upper Bound

Volatility
of Output 2.26% 2.26% 2.39% 2.26% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.50 0.50 0.51 0.50 0.78
Investment 3.74 3.71 4.14 3.70 1.90
Employment 0.60 0.59 0.71 0.59 0.78

Persistence
Output 0.41 0.42 0.42 0.42 0.48
Consumption 0.59 0.59 0.56 0.59 0.67
Investment 0.34 0.34 0.31 0.35 0.42
Employment 0.33 0.34 0.28 0.35 0.61

Contemporaneous Correlation with Aggregate Output
Consumption 0.91 0.92 0.79 0.92 0.66
Investment 0.96 0.97 0.93 0.97 0.83
Employment 0.93 0.94 0.87 0.94 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment 0.77 0.79 0.51 0.80 0.60
Employment 0.70 0.74 0.38 0.75 0.36

Notes: see notes to Table 2. ‘Full Model’ refers to a simulation, where there are two orthogonal aggregate shocks,

to z and σ(ε′). The fluctuations of z in ‘Full Model-Baseline’ have been rescaled to roughly match the volatility of

output. All other models use the same rescaling factor. ‘RBC Model’ refers to a simulation, where the only aggregate

shock is to z.

5 Extensions and Robustness

5.1 A Model With Time-Varying Aggregate Risk

In this section, we add time-varying aggregate risk to the ‘Full Model’ with time-varying firm-

level risk and productivity shocks. Formally, we allow σ(z ′) to deviate from σ̄(z). For computa-

tional simplicity, to save on one state variable, we introduce this additional shock as perfectly

correlated with the state of firm-level risk. We expect to maximize the impact of time-varying

aggregate risk this way. The impact of time-varying risk – wait-and-see – can only be diluted,

when both types of risk can move in opposite directions. Thus, in the implementation, when-
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ever σ(ε′) moves around on its 5-state grid, centered around σ̄(ε) = 0.0905, we have σ(z ′) move

around in the same way on a 5-state grid, centered around σ̄(z) = 0.0133. We use the grid width

of the latter to calibrate the time series coefficient of variation of aggregate risk to roughly 35%.15

Relative to its average, aggregate risk is thus more than seven times as variable as idiosyncratic

risk. One might expect large aggregate effects from these risk fluctuations. The following Table 4

shows that this is not the case. The business cycle statistics of the ‘Full Model’ with time-varying

aggregate and idiosyncratic risk are very similar to those from the ‘Full Model’ with time-varying

idiosyncratic risk only, which are similar to those from the ‘RBC Model’.

Table 4: AGGREGATE BUSINESS CYCLE STATISTICS FOR THE ‘FULL MODEL’ WITH TIME-VARYING

AGGREGATE RISK

Full Model Full Model RBC Model Data
AGGR-RISK Baseline

Volatility
of Output 2.35% 2.26% 2.26% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.50 0.50 0.50 0.78
Investment 3.73 3.74 3.70 1.90
Employment 0.59 0.60 0.59 0.78

Persistence
Output 0.43 0.41 0.42 0.48
Consumption 0.60 0.59 0.60 0.67
Investment 0.36 0.34 0.35 0.42
Employment 0.34 0.33 0.35 0.61

Contemporaneous Correlation with Aggregate Output
Consumption 0.91 0.91 0.92 0.66
Investment 0.96 0.96 0.97 0.83
Employment 0.93 0.93 0.94 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment 0.77 0.77 0.80 0.60
Employment 0.70 0.70 0.75 0.36

Notes: see notes to Tables 2 and 3. ‘Full Model-AGGR-RISK’ refers to a variant of the ‘Full Model’, where also σ(z ′)
varies over time. It is perfectly correlated with σ(ε′) and its time series coefficient of variation is 34.72%.

15We use rolling window standard deviation estimates for the growth rates of aggregate output and employment
in Germany and the U.S. The precise number is somewhat sensitive to the data frequency and window size used -
higher frequencies and larger window sizes tend to give lower coefficients of variation for aggregate volatility. But
most results lie between 30 and 40 per cent.
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To understand this result note that the average idiosyncratic risk, σ̄(ε), is almost an order

of magnitude larger than the average aggregate risk, σ̄(z). Since standard deviations are not

additive, the combined small aggregate and large idiosyncratic conditional risk, i.e. the stan-

dard deviation of the combined productivity shock, is close to the one of idiosyncratic risk. For

example, starting from a situation of average aggregate and idiosyncratic risk, the combined

conditional risk the firm faces is 0.0915. Jumping from here to a situation with highest aggre-

gate risk (and average idiosyncratic risk) would lead to a combined conditional risk of 0.0940, a

2.7% increase. Moving from the average situation to a situation with highest idiosyncratic risk

(and average aggregate risk), leads to an increase in the combined risk to 0.1049 or almost 15%.

We conclude with our third result: aggregate risk fluctuations added to first moment pro-

ductivity shocks and idiosyncratic risk fluctuations do not alter significantly RBC business cycle

dynamics.

5.2 A Model with Correlated Risk and Productivity Shocks

In the previous sections we have investigated the unconditional business cycle properties of

models with risk shocks. In this Section we study the conditional responses of the model and

the data to an innovation in firm-level risk.

We estimate three-variable VARs with the cross-sectional average of the natural logarithm

of firm-level Solow residuals, idiosyncratic risk and various aggregate activity variables. This

ordering is then used in a simple Choleski-“identification”, which is, obviously, not meant to

have a structural interpretation. It is rather a different, but convenient and instructive way to

summarize the data, albeit, given the annual frequency of the data and thus relatively few data

points, invariably with some imprecision.

Figure 2 shows this exercise for aggregate output and total hours (using aggregate employ-

ment leads to essentially the same picture). Figure 3 does the same for aggregate investment

and consumption. The responses in the data of output, hours, investment and consumption to

a risk innovation are positive, positive, positive and negative, respectively. The model responses

for the ‘Full Model - BL’, i.e. independent first and second moment shocks, are just the opposite;

they feature wait-and-see dynamics. Moreover, the risk responses of the ‘Full Model - BL’ are

not nearly as pronounced as in the data and have overall the wrong shape.

The impulse responses estimated on simulated model data are much closer to those in the

data, however, when we allow for correlated risk and productivity processes and feed into the

model the joint dynamics we estimate from the data for these two time series (‘CORR-BL’). The

impulse responses from simulated data now qualitatively match the shape of the impulse re-

sponses from actual data for all four macroeconomic quantities.
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Figure 2: Impulse Responses to an Innovation in Idiosyncratic Risk - Data and Models
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Notes: impulse response functions from SVARs with the linearly detrended cross-sectional average of the natural

logarithm of firm-level Solow residuals (ordered first), the linearly detrended idiosyncratic risk (ordered second)

and HP(100)-filtered aggregate output/total hours (ordered third). The dotted lines reflect one standard deviation

confidence bounds for the estimates on the data from 10,000 bootstrap replications. We employ a bias correction a

la Kilian (1998). Estimates from data are in red, estimates from simulated model data in blue (‘Full Model-BL’) and

green (‘CORR-BL’), respectively. ‘CORR-BL’ refers to a simulation, where there are two correlated aggregate shocks,

to z and σ(ε′). ‘CORR-BL’ is based on a time series coefficient of variation for σ(ε′) of 4.72%. The joint process is

given by: ( 0.8749 −1.4708
0.1382 0.5101 ), for the VAR-coefficients, where the first row is for the z-equation, and ( 0.0088 0.2010

0.2010 0.0029 ) for the

matrix of standard deviations and the correlation coefficient. The joint process for z and σ(ε′) is discretized by a

two-dimensional analog of Tauchen’s (1986) procedure.

19



Figure 3: Impulse Responses to an Innovation in Idiosyncratic Risk - Data and Models
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Notes: see notes to Figure 2.

Unlike in the ‘Full Model’, the introduction of risk shocks in ‘CORR-BL’ also changes the

stochastic properties of aggregate productivity. This effect is very strong, as can be seen in Fig-

ure 4, where we compute the impulse response of a risk shock on aggregate investment in a

model, where actual firm-level risk is fixed at σ̄(ε) and σ(ε) is re-interpreted as a latent state

variable, which jointly evolves with z just as in ‘CORR-BL’. This specification is denoted ‘Fore-

cast Model’, because “risk” today merely predicts productivity tomorrow, but does not change

the idiosyncratic stochastic environment of the firms. In other words, “risk” is just a signal of

future productivity in this specification. The impulse responses for ‘CORR-BL’ and ‘Forecast

Model’ are almost identical, which suggests that the conditional effects of risk on aggregate ac-

tivity are mainly driven by this signalling effect.

This signalling effect – the coefficient of risk today on productivity tomorrow is negative

(−1.4708) – has important general equilibrium implications. Figure 4 shows that without market-

clearing real interest rates and wages, the investment response to a risk shock would be strongly

negative. Since higher risk today forecasts lower productivity tomorrow, a general equilibrium

wealth effect makes agents consume less and work more (the real wage declines both in the

data and the model), which drives up output and – through a decrease in the real interest rate –

investment on impact.
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Figure 4: Impulse Response of Aggregate Investment to an Innovation in Idiosyncratic Risk
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Notes: see notes to Figure 2. ‘Forecast Model’ uses the same aggregate driving process as ‘CORR-BL’, but sets the

actual value of σ(ε) constant at σ̄(ε). σ(ε) is simply a second random variable that is correlated with z. ‘Full Model

- BL - PE’ is ‘Full Model - BL’ with a fixed real interest rate and real wage.
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Table 5: AGGREGATE BUSINESS CYCLE STATISTICS FOR THE MODEL WITH CORRELATED RISK AND

PRODUCTIVITY SHOCKS

CORR CORR CORR Forecast Naive RBC Data
BL LB UB Model Model Model

Volatility
of Output 2.34% 2.52% 1.67% 2.71% 2.42% 1.75% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.42 0.40 0.59 0.39 0.51 0.50 0.78
Investment 3.97 4.12 3.32 4.24 3.67 3.69 1.90
Employment 0.62 0.66 0.53 0.69 0.58 0.58 0.78

Persistence
Output 0.61 0.62 0.47 0.64 0.64 0.42 0.48
Consumption 0.68 0.70 0.56 0.73 0.72 0.59 0.67
Investment 0.58 0.60 0.42 0.61 0.60 0.35 0.42
Employment 0.58 0.59 0.45 0.60 0.60 0.35 0.61

Contemporaneous Correlation with Aggregate Output
Consumption 0.94 0.92 0.93 0.90 0.92 0.92 0.66
Investment 0.98 0.98 0.95 0.98 0.96 0.97 0.83
Employment 0.98 0.97 0.82 0.97 0.94 0.94 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment 0.86 0.83 0.76 0.79 0.78 0.80 0.60
Employment 0.84 0.80 0.55 0.75 0.72 0.75 0.36

Notes: see notes to Tables 2 and 3, as well as Figure 2. ‘CORR-BL’ is based on CVr i sk = 4.72%. ‘Risk Model-Lower

Bound’ halves this coefficient of variation and ‘Risk Model-Upper Bound’ quadruples it. ‘Naive Model’ is the same

as ‘Forecast Model’, except that agents do not take into account that there is a second random variable that shocks

the economy. The fluctuations of z in ‘CORR-BL’ have been rescaled to roughly match the volatility of output. All

the models use the same rescaling factor.

Table 5 summarizes and compares the unconditional business cycle moments for the ‘RBC

Model’ and ‘CORR-BL’. It does so in several steps, as the introduction of a second correlated

shock changes several features at once relative to the one-shock ‘RBC Model’. The intermedi-

ate steps help identify these different effects. The ‘Naive Model’ uses the jointly estimated data

generating process for risk and productivity in the model simulations, under two assumptions:

first, the agents in the economy – naively – continue to use the univariate process for produc-

tivity from the ‘RBC Model’ when they compute their optimal policies; and, secondly, σ(ε) is

constant at σ̄(ε). The ‘Forecast Model’ lifts the first assumption, while keeping the second. It

corresponds to a model where productivity is driven by two latent random processes instead
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of one, and agents know that. In addition, ‘CORR-BL’ lifts the second assumption. ‘CORR - LB’

and ‘CORR - UB’ halve and quadruple, respectively, the time series coefficient of variation of

firm-level risk. The changes from the ‘Forecast Model’ to ‘CORR-BL’ identify the specific effects

of time-varying firm risk on aggregate fluctuations.

It is mostly volatilities and relative volatilities that are changed by introducing the second

shock. Output fluctuates more, but these output fluctuations are dampened, when actual risk

shocks hit the economy, the more so the more volatile risk is. The responsiveness of the econ-

omy to productivity shocks decreases in the overall volatility of risk shocks. In terms of relative

volatilities, the more volatile actual risk, the less fluctuates aggregate investment and the more

aggregate consumption. The correlation structure of aggregate quantities is the same across

models, and the increase in persistence from the ‘RBC Model’ to a model with risk shocks is

largely mechanical, as it is manifest already in the ‘Naive Model’.

We summarize this section with our fourth result: the conditional impulse responses of aggre-

gate quantities to a risk innovation in a model where risk and productivity shocks are uncorre-

lated are inconsistent with their data counterparts. A model with correlated risk and productivity

shocks matches the data better in terms of conditional impulse responses and leads to a reduction

of the ability of productivity shocks to generate aggregate fluctuations.

5.3 Discussion

Are the firm-level risk processes in Germany and the U.S. comparable?16

Table 6: COMPARISON GERMANY - U.S.

CVr i sk C ycl i cal i t yr i sk

STD IQR STD IQR
Baseline Calibration 4.72% -0.47
Manufacturing USTAN 6.08% -0.61
Manufacturing USTAN Output-based 5.01% 8.00% -0.54 -0.50
Manufacturing ASM Ouptut-based 9.80% -0.36

Notes: CVr i sk is the time series coefficient of variation for the corresponding firm-level risk measure, which can

be a cross-sectional standard deviation (‘STD’) or the interquartile range (‘IQR’). C ycl i cal i t yr i sk is the correla-

tion coefficient of the corresponding firm-level risk measure with HP(100)-filtered GDP. ‘Manufacturing USTAN’

is similar to ‘Baseline Calibration’ in that it take fixed effects and measurement error into account, as described in

Appendix A, but restricts the sample to manufacturing. ‘Manufacturing USTAN Output-based’ uses the raw firm-

level real gross value added data, for better comparison with the available U.S. evidence. ‘Manufacturing ASM

Ouptut-based’ is the 1973-2005 IQR series for firm-level output growth rates in the Annual Survey of Manufactur-

ers, available from ht t p : //w w w.st an f or d .edu/ nbloom/i ndex_ f i les/Pag e315.htm.

16We note that German business cycle statistics look rather similar to those in the U.S., which is at least prima
facie inconsistent with risk fluctuations being important and different in the two countries.
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Table 6 compares our results with the available limited U.S. evidence and shows that both

economies have similar firm-level risk processes. The first important fact to note is that all mea-

sures of firm-level risk are countercyclical. Second, volatility of the cross-sectional interquartile

range of output growth from the Annual Survey of Manufacturers, 9.80%, is close to the corre-

sponding number in the USTAN data, 8.00%. Third, this table also shows in rows one and two

that focusing on manufacturing is likely to lead to an overestimation of firm-level risk fluctua-

tions. The USTAN data set allows for a comparison of the extent of firm-level risk fluctuations

across industries and our analysis demonstrates that manufacturing is different from services.

The combined retail and wholesale trade sector, for example, features a similar volatility and

cyclicality of risk as the overall USTAN data set (see Table 8 in Appendix A.1). The combined

transportation and communication sector has somewhat higher risk volatility (albeit lower than

manufacturing), but firm-level risk is essentially acyclical there. Restricting the analysis to man-

ufacturing data is thus problematic and even more so in the U.S., where this industry has an

even smaller share in aggregate production and employment than it has in Germany. Finally,

Table 6 shows that the lower and upper bound scenarios we use – half and quadruple the CVr i sk

of the baseline scenario – comfortably cover the available U.S. evidence.

6 Conclusion

This paper argues that shocks to firm-level risk, mediated through physical capital adjustment

frictions, are unlikely to be major drivers of the business cycle. We arrive at this conclusion

by studying a heterogeneous-firm dynamic stochastic general equilibrium model with persis-

tent idiosyncratic shocks, fixed capital adjustment costs and time-varying firm-level risk. We

discipline the model using a rich German firm-level data set. The model features the ‘wait-and-

see’ property for investment after surprise increases in firm-level risk that the recent literature

has highlighted. We focus on the unconditional business cycle dynamics generated by firm-

level risk fluctuations. On its own, time-varying firm-level risk does not produce quantitatively

realistic year-to-year business cycle fluctuations, and when juxtaposed to standard aggregate

productivity shocks it does little to alter these fluctuations. We leave open the possibility that

in different model environments and/or for specific historical episodes risk shocks are impor-

tant for understanding aggregate developments (see Arellano et. al., 2010, Gilchrist, Sim and

Zakrajsek, 2010, as well as Schaal, 2010).
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A Appendix - Data

A.1 Description of the Sample

Our firm-level data source is USTAN (Unternehmensbilanzstatistik) of Deutsche Bundesbank,

which is a large annual firm-level balance sheet data base. It provides annual firm level data

from 1971 to 1998 from the balance sheets and the profit and loss accounts of over 60,000 firms

per year. It originated as a by-product of the Bundesbank’s rediscounting and lending activities.

Bundesbank law required the Bundesbank to assess the creditworthiness of all parties backing

a commercial bill put up for discounting. It implemented this regulation by requiring balance

sheet data of all parties involved. These balance sheet data were then archived and collected

into a database (see Stoess (2001) and von Kalckreuth (2003) for details).

Although the sampling design – one’s commercial bill being put up for discounting – does

not lead to a perfectly representative selection of firms in a statistical sense, the coverage of the

sample is very broad. USTAN covers incorporated firms as well as privately-owned companies.

Its industry coverage – while still somewhat biased towards manufacturing firms – includes the

construction, the service as well as the primary sectors. The following Table 7 displays the

industry coverage of our final baseline sample.

Table 7: INDUSTRY COVERAGE

One-digit Industry Firm-year observations Percentage
Agriculture 12,291 1.44
Mining & Energy 4,165 0.49
Manufacturing 405,787 47.50
Construction 54,569 6.39
Trade (Retail & Wholesale) 355,208 41.59
Transportation & Communication 22,085 2.59

While there remains a bias towards larger and financially healthier firms, the size coverage

is still fairly broad: 31% of all firm-year observations in our final baseline sample have less than

20 employees and 57% have less than 50 employees. In terms of ownership structure, only 2%

of firm-year observations are from publicly traded firms, just under 60% from limited liability

companies and just under 40% from private firms with fully liable partners. Finally, the Bun-

desbank itself frequently uses the USTAN data for its macroeconomic analyses and for cross-

checking national accounting data. We take this as an indication that the bank considers the

data as sufficiently representative and of high quality. This makes the USTAN data a suitable

data source for the study of cross-sectional business cycle dynamics.
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From the original USTAN data, we select only firms that report information on payroll, gross

value added (before depreciation) and capital stocks. Moreover, we drop observations from East

German firms to avoid a break of the series in 1990. We deflate all but the capital and investment

data by the implicit deflator for gross value added from the German national accounts.

Capital is deflated with one-digit industry- and capital-good specific investment good price

deflators within a perpetual inventory method. Similarly, we recover the amount of labor inputs

from wage bills (we calculate an average wage for cells of firms described by industry, year, firm-

size, and region and then divide the payroll by this average), as information on the number

of employees is only updated infrequently for some companies. Finally, the firm-level Solow

residual is calculated from data on real gross value added and factor inputs.

We remove outliers according to the following procedure: we calculate log changes in real

gross value added, the Solow residual, real capital and employment, as well as the firm-level

investment rate and drop all observations where a change falls outside a three standard devia-

tions interval around the year-specific mean. We also drop those firms for which we do not have

at least five observations in first differences. This leaves us with a sample of 854,105 firm-year

observations, which corresponds to observations on 72,853 firms, i.e. the average observation

length of a firm in the sample is 11.7 years. The average number of firms in the cross-section of

any given year is 32,850. Details on the implementation as well as the representativeness of the

resulting sample can be found in Bachmann and Bayer (2011).

A.2 The Measurement of Firm-Level Risk

A.2.1 Dispersion of Innovations in Measured Firm-Level Solow Residuals

We model fluctuations in idiosyncratic risk as fluctuations in the cross-sectional standard de-

viation of firm-specific innovations to Solow residuals. Our first step is thus to calculate firm-

specific Solow residuals. In accordance with our model, we use the Cobb-Douglas production

function from Section 2:

yi ,t = ztεi ,t kθi ,t nν
i ,t ,

where εi ,t is firm-specific and zt aggregate productivity. We assume that labor input ni ,t is im-

mediately productive, whereas capital ki ,t is pre-determined and inherited from last period. We

estimate the output elasticities of the production factors, ν and θ, as median shares of factor

expenditures over gross value added within each industry. We use log-differences in the Solow

residual to capture Solow residual innovations, as the persistence of firm-level Solow residuals

is high, close to a unit root.

Table 8 displays the cyclical properties of the cross-sectional standard deviation of mea-

sured Solow residual innovations for various ways of cutting the sample and treating the data.
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Table 8: THE CYCLICAL PROPERTIES OF std(∆ logεi ,t )

Specification CV (std(∆ logεi ,t )) Cor r el (std(∆ logεi ,t ),
HP (100)−Y )

Raw data 2.89% -0.45
Industry and firm fixed effects removed 2.67% -0.48
Two observations of first differences 2.33% -0.43
Twenty observations of first differences 5.42% -0.29
Smallest 25% firms (capital) 1.97% -0.40
Largest 5% firms (capital) 5.41% -0.41
Size weighted (capital) 5.92% -0.68
Publicly traded 5.03% -0.27
Limited liability 3.44% -0.45
Privately owned 2.72% -0.40
Manufacturing 3.83% -0.57
Trade 2.86% -0.22
Transportation and Communication 3.20% 0.20
Constant material intensity 4.57% -0.26

Notes: the first column displays the time series coefficient of variation of the cross-sectional standard deviation

of firm-specific Solow residual innovations. The second column displays the time series correlation of this cross-

sectional standard deviation with HP(100)-filtered aggregate real gross value added for the nonfinancial private

business sector. The first row, ‘Raw data’, is the baseline relative to which the other rows of the table change.

The first row of Table 8, ‘Raw data’, is the baseline relative to which the other rows change.17

For the second row we remove firm fixed and industry-year effects from these first-difference

variables to focus on idiosyncratic fluctuations that do not capture differences in industry-

specific responses to aggregate shocks or permanent ex-ante firm heterogeneity. The small dif-

ferences between the first and second row indicate that the raw data are indeed mostly driven

by truly idiosyncratic shocks.

For a firm to be in our baseline sample, we required it to have at least five observations in

first differences of payroll, gross value added and capital stocks. When we focus on firms that

are in the data base for almost the entire time horizon, i.e. for twenty observations in first dif-

ferences, the volatility of firm-level risk almost doubles. The reason for this is explained in the

next two panels of Table 8, which, respectively, analyze the time series properties of firm risk by

firm-size and ownership. It is indeed large and publicly traded firms that display stronger risk

fluctuations than smaller and privately owned ones. Since smaller firms seem to face weaker

17We also explore different subsamples, for example only the pre-reunification period, industry-specific deflators
for firm-level gross value added and various ways to remove outliers – 2.5 and 5 standard deviations or, alterna-
tively, the largest 1% and 5% of observations. None have any significant effect on the results.
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fluctuations in risk,18 our baseline sample in which small firms are underrepresented (and in-

deed all data sets with an overrepresentation of large and or publicly traded firms) is likely to

yield an overestimation of the true cyclical risk fluctuations.

The next to last panel tells a cautionary tale about relying exclusively on manufacturing data

when measuring firm-level risk fluctuations. In services, firm-level risk is either less volatile

than in manufacturing (‘Trade’) or not countercyclical (‘Transportation and Communication’).

Finally, in any Solow residual calculation that is based on a simple Cobb-Douglas produc-

tion function with only labor and capital, there is the potential problem of attributing optimal

changes in utilization, hours per worker or effort to random productivity changes and therefore

of overstating (average) firm-level risk. Using ideas from Basu (1996), we calculate the disper-

sion of the Solow residual innovations for those firms that keep the intensity of material usage

constant between two periods, i.e. firms for which the fraction of material usage to sales does

not change. One can see that the coefficient of variation goes up but it is still below the estimate

for large firms.

In the reminder of this subsection, we check whether the particular sample selection of the

USTAN data has any impact on our findings. Clementi and Palazzo (2010) show in a struc-

tural model with firm entry and exit that selection on productivity would produce procyclical

measured risk fluctuations in an actually homoskedastic world. This result provides some indi-

cation that our findings are not driven by selection on productivity. The econometric evidence

confirms this.

The sample consists of those firms whose bills of exchange were put up for discounting at

the Bundesbank. These are likely to be financially healthier and more productive than the aver-

age firm. However, this implies a bias for our results only if the level of productivity or financial

health predicts productivity changes. To asses whether such a bias is present, we estimate the

following simple Heckman (1976)-selection model with a maximum likelihood estimator for

each year t = 1973, . . . ,1998. We take all firms present in t −1 and observe the estimated level of

the Solow residual ε̂i ,t−1. We assume that the selection to remain in the sample at time t is based

on a latent variable ϑi ,t composed of current productivity αεi ,t and some normally distributed

noise term ui ,t .

ϑi t =αεi ,t +ui ,t =αεi ,t−1 +ui ,t +α∆εi ,t︸ ︷︷ ︸
=ηi ,t

Moreover, we assume that productivity follows a random walk whose increments ∆εi ,t = vi ,t

will be correlated with the composed error term of the selection equation, ηi ,t = ui ,t +αvi ,t . We

18Bachmann and Bayer (2011) show that they have higher average risk.
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assume that vi ,t is orthogonal to εi ,t−1. Let mt be the expected growth rate of εi ,t , then:

∆εi ,t = mt + vi t .

A (latent) random walk fulfils the exclusion restriction necessary to use the Heckman estimator

with εi ,t−1 being independent of the innovation vi ,t and thus a valid instrument for selection. It

is indeed more likely for the firm to remain in the sample with higher levels of εi ,t−1. However,

this does not influence the estimated variance of vi t , σ̂ML
v (t ) . Its correlation with the sample

variance std(∆ logεi ,t ) is almost perfect and the cyclical properties of σ̂ML
v (t ) are almost iden-

tical to those of std(∆ logεi ,t ), namely: CV = 2.63% vs. CV = 2.67% and a cyclicality of −0.44

versus −0.48.19 We conclude that, although the sample is clearly no random sample with re-

spect to productivity levels, it is sufficiently random with respect to productivity changes.

A.2.2 Dealing with Measurement Error

Measured Solow residuals will reflect true firm productivity only with error. We take this into

account and assume that measured Solow residuals ε̂i ,t are composed of the true productivity

εi ,t that follows a random walk and a white-noise error term ui ,t . We assume that ui ,t has a time-

constant variance σ2
u , while the innovations to εi ,t , vi ,t , have a time-varying variance σ2

v (t ) .

Under these assumptions we can recover the variance of measurement error, σ2
u , from

s1 (t ) : = E
(
ε̂i ,t − ε̂i ,t−1

)2 = E
(
εi ,t −εi ,t−1

)2 +E
(
ui ,t −ui ,t−1

)2

= σ2
v (t )+2σ2

u

and

s2 (t ) : = E
(
ε̂i ,t+1 − ε̂i ,t−1

)2 = E
(
εi ,t+1 −εi ,t−1

)2 +E
(
ui ,t+1 −ui ,t−1

)2

= σ2
v (t +1)+σ2

v (t )+2σ2
u

by estimating σ2
u from the sample analogues ŝ1 and ŝ2 of s1 and s2, averaging over time:

2σ̂2
u = 1

T −2

T−1∑
t=2

{[ŝ1 (t )+ ŝ1 (t +1)]− ŝ2 (t )} .

19We used the case with industry and firm fixed effects removed for this analysis.
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This estimated measurement error is then subtracted from the variance of measured Solow

residuals ŝ1 (t ) in order to obtain an estimate of the variance of productivity innovations:

σ̂2
v (t ) = ŝ1 (t )− 1

T −2

T−1∑
s=2

{[ŝ1 (t )+ ŝ1 (t +1)]− ŝ2 (t )} . (10)

We take (10) as our measure of firm-level risk, which is depicted in Figure 5 below, together

with average firm-level productivity and aggregate output.

Table 9: THE CYCLICAL PROPERTIES OF FIRM-LEVEL RISK

Specification CV (r i sk) Cor r el (r i sk,
HP (100)−Y )

Baseline - FE and ME 4.72% -0.47
Smallest 25% firms (capital) - LB 1.97% -0.40
Size weighted (capital) - FE and ME - UB 8.38% -0.62
Raw - ME 4.10% -0.44
20 obs. of first differences - FE and ME 7.26% -0.38
Largest 5% firms (capital) - FE and ME 7.28% -0.46
Manufacturing - FE and ME 6.08% -0.61
Publicly traded - FE and ME 7.34% -0.29
20 obs. of first differences manufacturing - FE and ME 7.52% -0.50

Notes: the first column displays the time series coefficient of variation of the cross-sectional standard deviation of

firm-specific Solow residual growth purged of measurement error (‘ME’) and firm-specific as well as industry-year

fixed effects (‘FE’): firm-level risk. The second column displays the time series correlation of firm-level risk with

HP(100)-filtered GDP.

Table 9 shows the cyclical properties of firm-level risk, i.e. the innovations of the Solow resid-

ual purged of measurement error. The first row represents our baseline calibration. We base our

lower bound calibration scenario loosely on the second row, which displays the cyclical prop-

erties of firm-level risk for small firms, which are underrepresented in USTAN, and using the

raw data, which are based on a minimum amount of assumptions. We base our upper bound

calibration scenario loosely on the third row, which delivers the strongest risk fluctuations. To

be conservative we roughly double this value when computing the upper bound models. Inter-

estingly, combining features that increase risk fluctuations, such as ‘being almost always in the

sample’ and ‘being in manufacturing’ (see Table 8 in the previous subsection), does not sub-

stantially increase the volatility of risk over and above what one of these features alone does

(see the last row of Table 9). Any other combination would not have left sufficient data to yield

reliable results.

Figure 5 depicts the time series of firm-level productivity risk, average productivity and

cyclical aggregate output.
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Figure 5: Time Series of Firm-Level Risk, Average Productivity and Cyclical Aggregate Output
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Notes: ‘Firm-Level Risk’, the solid line, is the time series of our baseline measure of firm-level risk, linearly de-

trended and normalized by time-average risk. ‘Average Productivity’, the dotted line, is the time series of firm-level

average productivity, linearly detrended. ‘HP(100)-Y’ is HP(100)-filtered aggregate real gross value added for the

nonfinancial private business sector.
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B Appendix - Robustness

The following tables display results from simulations of our model for (i) a different timing as-

sumption for when firms learn the dispersion of idiosyncratic shocks, (ii) aggregate productiv-

ity being calibrated from aggregate Solow residuals, (iii) a calibration with higher fixed costs of

capital adjustment and (iv) a calibration with deterministic fixed costs of adjustment.

Table 10: AGGREGATE BUSINESS CYCLE STATISTICS FOR THE ‘FULL MODEL’ - DIFFERENT TIMING

FOR RISK

Full Model Full Model RBC Model Data
Diff. Timing Baseline

Volatility
of Output 2.25% 2.26% 2.26% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.50 0.50 0.50 0.78
Investment 3.68 3.74 3.70 1.90
Employment 0.58 0.60 0.59 0.78

Persistence
Output 0.42 0.41 0.42 0.48
Consumption 0.59 0.59 0.59 0.67
Investment 0.34 0.34 0.35 0.42
Employment 0.34 0.33 0.35 0.61

Contemporaneous Correlation with Aggregate Output
Consumption 0.92 0.91 0.92 0.66
Investment 0.97 0.96 0.97 0.83
Employment 0.94 0.93 0.94 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment 0.80 0.77 0.80 0.60
Employment 0.75 0.70 0.75 0.36

Notes: ‘Full Model-Baseline’ refers to a simulation, where there are two orthogonal aggregate shocks, to z andσ(ε′).

This is the baseline model discussed in Section 4.2. ‘Full Model-Baseline’ and ‘Full Model-Diff. Timing’ differ in

that the latter allows agents to know only σ(ε) (and not σ(ε′)). ‘RBC Model’ refers to a simulation, where the only

aggregate shock is to z; obviously, here there is no timing issue. ‘Data’ refers to the nonfinancial private business

sector’s aggregates.
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Table 11: AGGREGATE BUSINESS CYCLE STATISTICS FOR THE ‘FULL MODEL’ - AGGREGATE SOLOW

RESIDUALS

Full Model RBC Model Full Model RBC Model Data
Aggr. SR Aggr. SR Baseline Baseline

Volatility
of Output 2.34% 2.34% 2.26% 2.26% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.41 0.41 0.50 0.50 0.78
Investment 4.19 4.18 3.74 3.70 1.90
Employment 0.69 0.68 0.60 0.59 0.78

Persistence
Output 0.30 0.31 0.41 0.42 0.48
Consumption 0.55 0.55 0.59 0.59 0.67
Investment 0.23 0.25 0.34 0.35 0.42
Employment 0.22 0.24 0.33 0.35 0.61

Contemporaneous Correlation with Aggregate Output
Consumption 0.87 0.88 0.91 0.92 0.66
Investment 0.97 0.97 0.96 0.97 0.83
Employment 0.95 0.96 0.93 0.94 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment 0.73 0.75 0.77 0.80 0.60
Employment 0.68 0.71 0.70 0.75 0.36

Notes: see notes to Table 10. ‘Full Model-Aggr. SR’ refers to a simulation, where there are two orthogonal aggregate

shocks, to z andσ(ε′), but in contrast to the baseline case we use Solow residuals calculated from German industry

national accounting data that correspond to the nonfinancial private business sector to calibrate the exogenous

aggregate process. We use ν= 0.5565 and θ = 0.2075. ‘RBC Model-Aggr. SR’ is the analog of ‘RBC Model-Baseline’,

again with Solow residuals from national account data. The fluctuations of z in ‘Full Model-Aggr. SR’ have been

rescaled to roughly match the volatility of output. ‘RBC Model-Aggr. SR’ uses the same rescaling factor.
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Table 12: AGGREGATE BUSINESS CYCLE STATISTICS FOR THE ‘FULL MODEL’ - HIGHER ADJUST-
MENT COSTS

Full Model RBC Model Full Model RBC Model Data
High AC High AC Baseline Baseline

Volatility
of Output 2.16% 2.16% 2.26% 2.26% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.54 0.54 0.50 0.50 0.78
Investment 3.48 3.41 3.74 3.70 1.90
Employment 0.56 0.54 0.60 0.59 0.78

Persistence
Output 0.42 0.42 0.41 0.42 0.48
Consumption 0.54 0.55 0.59 0.59 0.67
Investment 0.34 0.36 0.34 0.35 0.42
Employment 0.33 0.36 0.33 0.35 0.61

Contemporaneous Correlation with Aggregate Output
Consumption 0.94 0.95 0.91 0.92 0.66
Investment 0.96 0.97 0.96 0.97 0.83
Employment 0.93 0.95 0.93 0.94 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment 0.81 0.86 0.77 0.80 0.60
Employment 0.75 0.81 0.70 0.75 0.36

Notes: see notes to Table 10. ‘Full Model-High AC’ refers to a simulation, which is similar to ‘Full Model-Baseline’,

but the upper adjustment cost factor, ξ̄, is quadrupled. ‘RBC Model-High AC’ is the analog of ‘RBC Model-Baseline’,

again with quadrupled adjustment costs.
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Table 13: AGGREGATE BUSINESS CYCLE STATISTICS FOR THE ‘FULL MODEL’ - DETERMINISTIC

ADJUSTMENT COSTS

Full Model RBC Model Full Model RBC Model Data
Det. AC Det. AC Baseline Baseline

Volatility
of Output 2.30% 2.31% 2.26% 2.26% 2.30%

Volatility of aggregate variables relative to output volatility
Consumption 0.49 0.49 0.50 0.50 0.78
Investment 3.84 3.81 3.74 3.70 1.90
Employment 0.63 0.61 0.60 0.59 0.78

Persistence
Output 0.41 0.42 0.41 0.42 0.48
Consumption 0.61 0.62 0.59 0.59 0.67
Investment 0.33 0.34 0.34 0.35 0.42
Employment 0.31 0.34 0.33 0.35 0.61

Contemporaneous Correlation with Aggregate Output
Consumption 0.89 0.90 0.91 0.92 0.66
Investment 0.96 0.96 0.96 0.97 0.83
Employment 0.93 0.94 0.93 0.94 0.68

Contemporaneous Correlation with Aggregate Consumption
Investment 0.73 0.76 0.77 0.80 0.60
Employment 0.66 0.70 0.70 0.75 0.36

Notes: see notes to Table 10. ‘Full Model-Det. AC’ refers to a simulation, which is similar to ‘Full Model-Baseline’,

but adjustment costs are deterministic. ‘RBC Model-Det. AC’ is the analog of ‘RBC Model-Baseline’, again with

deterministic adjustment costs. Adjustment costs are again calibrated to match a weighted quadratic form in the

skewness and kurtosis of the average investment rate distribution (see Section 3). The fluctuations of z in ‘Full

Model-Det. AC’ have been rescaled to roughly match the volatility of output. ‘RBC Model-Det. AC’ uses the same

rescaling factor.
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