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1. Introduction

When the 2008 crisis hit, the implied volatility of options on stocks and Treasury bonds

skyrocketed as stocks suffered massive losses and the Federal Reserve dropped its target

rate in its attempt to stabilize the economy. The Fed funds rate has been near zero ever

since. This dramatic event underscores the active role of monetary policy in the economy,

and its potential impact on asset prices. Indeed, while it is intuitive that corporate stock

and option prices react to corporate news, empirical evidence also suggests that they react

to monetary policy shocks.1 This empirical evidence though spurs fundamental questions

about the relation between option prices, corporate fundamentals, and the actions of the

central bank. In this paper, we provide an equilibrium model that links option prices to

fundamentals and monetary policy, and provide a dynamic and time consistent methodology

to extract investors beliefs on the macroeconomic and central bank policy regime.

To motivate our approach, we begin by presenting some empirical relations between

option prices, the state of the economy, and monetary policy. Our analysis focuses on two

popularly quoted indices constructed from options prices. The first index is the implied

volatility of at-the-money options, henceforth ATMIV. We compute such index both for

equities, namely from options on the S&P 500 index, and for long-term Treasury bonds,

namely, from options on the 10-year Treasury bond futures. The equity ATMIV index has

long been considered an “investor fear gauge” (see e.g. CBOE Bulletin on VIX, 2003), as

it typically increases during bad times. The T-bonds’ ATMIV index is especially useful in

our context to discuss the drivers of uncertainty about monetary policy. The second index

is the ratio of the implied volatilities of out-of-the-money puts over out-of-the-money calls,

henceforth referred to as the P/C index. This index is designed to measure the market

assessment of downside risk versus upside risk, and it has been studied extensively since the

work of Bates (1991) to gauge investors’ worries about a market decline.

Quarterly time series plots of these indices, computed from three-months options, are

shown in the left panels of Figure 1 for the 24-year period 1988 - 2011. Comparing the

stock’ ATMIV index in panel A with the P/C index in Panel C we see that, surprisingly

perhaps, ATMIV and the P/C are negatively related, with the ATMIV (P/C) being generally

counter (pro) cyclical. While it is intuitive that implied volatility ATMIV is high during

1For example, Bernanke and Kuttner (2005) report that monetary policy surprises affect the stock market,
while Rigobon and Sack (2003) show that the monetary policy responds to stock returns with a greater
reaction during times of higher volatility, and more recently Bekaert, Hoerova, and Duca (2010) find a
significant reaction of options prices to lead and lag measures of monetary policy.
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downturns, it is less obvious why the downside-risk index P/C is high during booms and low

during recessions. Our model explains why by tying this variation to investors’ beliefs about

business cycle and monetary policy dynamics. Comparing instead Panel A and E, we see

that the ATMIV indices of stocks and bonds appear both counter-cyclical, with the bonds’

ATMIV index especially volatile in the last decade.

It is revealing to see how shocks to these options’ indices impact monetary policy. By way

of motivation, we estimate pairwise Vector Auto Regressions (VAR) of each option index

with the three-month T-bill rate, which we take as proxy of monetary policy.2 The right

panels of Figure 1 report resulting impulse responses for the historical series over the options

subsample of 1988 – 2011. The results are striking and all in one direction: shocks to both

equity ATMIV and to P/C lead to sustained impacts on future monetary policy (short-term

rate). In contrast, we do not find that monetary policy has any sustained impacts on the two

options indices (results not shown). Moreover, and more interestingly, Panel B shows that

the 3-month Treasury rate decreases for up to eight quarters in response to a shock to the

ATMIV index. Even more interestingly, Panel D shows a shock to the downside-risk index

P/C induces the 3-month T-bill rate to increase for up to eight quarters in the future. Under

the interpretation of Bates (1991), the latter result implies that when investors become more

worried about a stock market decline, future short-term rates increase. What is the economic

mechanism generating this empirical observation? What does this evidence tell us about the

central bank’s reaction to economic news and its interest rate policy?3

We provide a dynamic equilibrium model of learning that links equity and Treasury op-

tions to investors’ and central banks’ uncertainty about fundamentals. In order to have a

model amenable to the empirical investigation, we follow the recent macro-finance term-

structure literature (e.g. Ang and Piazzesi (2003) and Ang, Piazzesi, and Wei (2006)) and

posit a structural econometric model for the equilibrium dynamics of fundamental variables

along with the specification of a forward looking Taylor rule, which links the central bank’s

expected future inflation and expected future capacity utilization to its target interest rate.4

2In our empirical analysis, we use the 3-month T-bill rate as our short-term rate, rather than the Federal
Funds rate, as the latter is affected by banks’ default premium, which is absent in our model. The 3-month
T-bill rate and the Fed Funds rate are very highly correlated.

3Interestingly, we find that the put-to-call ratio P/C strongly predicts future interest rates, while we
do not find such relation with other measures of crash risk, such as the difference in implied volatility of
out-of-the-money puts versus at-the-money puts. Our fitted model is consistent also with this evidence.
Panel F of Figure 1 shows that shocks to bond ATMIV also do not predict future interest rates, which is
not inconsistent with our model either, as we will see.

4The New Keynesian Economics approach shows the optimality of such rules in settings where price
stickiness implies deviations from short run full employment and capacity utilization [see, e.g. Woodford
(2003)]. Gallmeyer, Hollifield, and Zin (2005), Gallmeyer, Hollifield, Palomino, and Zin (2007), and Bekaert,
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We impose no-arbitrage restrictions by also positing the equilibrium dynamics for the state

price density, which we use to price all traded assets from the fundamental variables, en-

dogenous investors’ beliefs about the economy, and the Taylor-rule-based riskless rate.

We generalize the Taylor rule by introducing three key features, which we provide evi-

dence for: First, we specify an unobserved regime switching model with composite regimes

of macroeconomic and policy fundamental variables. The composite regime formulation in-

troduces low frequency comovement of fundamentals and monetary policy variables, which

affect the dynamics of asset prices. Second, we specify a learning-based Taylor rule, in which

neither the central bank nor investors observe the true trend growths of nominal as well as

real variables. Agents in the economy (investors and the central bank) are econometricians

in the sense of Hansen (2007), that is, they attempt to learn about the drift regimes of fun-

damentals from the observation of past and current fundamentals. Their Bayesian learning

dynamics about the regime of the economy are the key drivers of our results, as explained

below. Finally, to extend the current understanding of the effects of monetary policy on the

stock market we follow the suggestions in Lucas (2007) to allow money growth to affects

transitions between fundamental drift regimes.5 The observations of money growth affect

investors’ beliefs about future fundamental regimes, which the econometrician can extract

from fundamentals and price data.

Our model sheds light on the compelling dynamic one-way relation between options’

ATMIV and P/C and monetary policy, discussed earlier in Figure 1. The strong evidence

that these option-based indices lead policy variables, but not the reverse, is not driven by

differences in information between investors and the central bank, as our model assumes

they observe the same data and have the same information. Instead, our model highlights

Cho, and Moreno (2010) build term-structure models using policy variables.
5 Lucas (2007) complains about the lack of use of monetary aggregates in recent models of monetary

policy and recommends their use in information extraction:

One source of this concern is the increasing reliance of central bank research on New-Keynesian
modeling. New-Keynesian models define monetary policy in terms of a choice of money market
rate and so make direct contact with central banking practice. Money supply measures play no
role in their estimation, testing or policy simulation. A role for money in the long run is some-
times verbally acknowledged, but the models themselves are formulated in terms of deviation
from trends that are themselves somewhere off stage. It seems likely that these models could
be reformulated to give a unified account of trends, including trends in monetary aggregates,
and deviations about trend but so far they have not been. This remains an unresolved issue on
the frontier of monetary theory. Until it is resolved, monetary information should continue to
be used as a kind of add-on or cross-check, just as it is in the ECB policy formulation today.

Coenen, Levin, and Wieland (2005) and Beck and Wieland (2008) show that money growth can help predict
real activity when the real output and real money are economically linked but the central bank, which
partially controls money growth, receives noisy information on the former.
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the role of beliefs about the economy that drive both option prices as well as monetary

policy through the forward looking Taylor rule. In particular, our model shows that a higher

stock and bond ATMIV occurs when investors are uncertain about the current regime. The

reason is that from Bayes’ formula high uncertainty leads to faster revision of beliefs to news

and thus higher return volatility. During such times, expected economic growth – which

also depends on beliefs – is lower than during good times, and in particular such times are

characterized by lower expected future capacity utilization. These beliefs thus induce the

central bank to react, through its forward looking Taylor rule, and lower the target real rate

of interest in order to maintain economic stability. This explains why shocks to ATMIV are

related to lower future rates, through the movement in beliefs about economic growth.

Indeed, in the last decade, the economy has suffered not only from the possibility of

lower economic growth, but also from fears of deflation, which bring about low inflation,

low economic growth, and low capacity utilization. Because the forward looking Taylor rule

depends on both expected future inflation and expected future capacity utilization, in the last

decade deflation fears sparked a very aggressive reaction of central bank into dramatically

lowering real rates. The same movement in beliefs increase the ATMIV index.

Similarly, our model shows why increases in the P/C index predict future increases in

short rates. In good times investors’ perceive greater downside risk in stocks than in bad

times, as positive fundamentals news have little impact on revising investors’ beliefs about

a boom regime, but negative fundamental news may lead to a large downward revision of

such beliefs. A large downward revision of beliefs to be in a booming regime would lead to

substantially lower stock prices. Thus, in good times, stock returns tend to be negatively

skewed. The negatively skewed return distribution rises the price of OTM put options

relative to OTM call options, the P/C index. When P/C raises it is an indication (for the

econometrician) that the economy is moving to a booming regime, which has regular capacity

utilization and regular inflation. As a consequence, the forward looking Taylor rule predicts

a tightening of monetary policy back to regular levels and hence higher future interest rates.

These effects also explain why ATMIV and the P/C are negatively correlated (see Figure

1): In periods of strong growth with stable policy variables, investors’ overall belief volatility

is relatively low, and so is the ATMIV. At these good times, however, the P/C index is high,

due to the relative increase in downside risk, as explained.

Finally, turning to bonds, we find that the model produces a positive relation between

stock ATMIV and bond ATMIV, as shows in Figure 1. This common variation stems from

the commonality in the uncertainty about economic growth and inflation regime. Because
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especially the last decade has been characterized by fear of deflation (low inflation and

low economic growth), uncertainty about economic growth and about inflation would move

together. Indeed, David and Veronesi (2013) show that this comovement generates not only

high stock and bond return volatility around the recessions during this period, but also

a negative covariance between stocks and bonds. David and Veronesi (2013) do not use

options, nor link the variation in interest rates to monetary policy, but their evidence is

consistent with our evidence in this paper.

Our model makes a number of additional predictions, which we test in the data and find

support for. First, similar impulse response functions that relate shocks to ATMIV and P/C

to future interest rates (see right panels of Figure 1) should be apparent also when performed

on capacity utilization (CU), which is a key variable of monetary policy. Indeed, we find

that the data support this prediction, as shocks to ATMIV predict lower future CU, while

shocks to P/C predict higher future CU.

Second, our model predicts that option prices should be related to beliefs about economic

growth and inflation. In particular, for stocks, the model predicts that ATMIV (P/C) should

be positively (negatively) related to the probability of a recession, to economic uncertainty,

and the probability of a deflationary period. Instead, expected inflation and inflation uncer-

tainty should not be significant predictors of either ATMIV or P/C. To test such predictions

in the data, we exploit the probability forecasts from the Survey of Professional Forecasters

(SPF). In fact, the SPF asks its forecasters not only the point forecast of the future value of a

given variable, but also to provide a probability assessment that such variable will lie in some

given intervals. We exploit such survey-based SPF probabilities to test the model’s predic-

tions described above, and find support for all of them. In addition, the model predicts that

P/C should be negatively related to ATMIV (R2 = 62%) and we find the same in the data

(R2 = 36%), which is of course not surprising given Figure 1. For bonds, our model predicts

that ATMIV should be positively related to the recession probability, economic uncertainty,

inflation uncertainty, and the probability of deflation. We test such predictions using the

same survey-based SPF probabilities and find support for all of these predictions, except

for inflation uncertainty that has the right sign, but is insignificant. Finally, the model also

predicts that bonds and stock ATMIV should be positively correlated (R2 = 32%) and we

find exactly the same result in the data (R2 = 26%).

Third, our model has a number of additional predictions for the behavior of option

prices themselves. For instance, it is known in the literature that high volatility periods

corresponds also to high “volatility of volatility” periods, a fact that is inconsistent with
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standard option pricing models, such as Heston (1993) (see e.g. Jones (2003)). Our model

in contrast predicts exactly such relation, both for stocks and bonds. Indeed, we find that

in the data, the correlation between implied volatility and absolute changes in volatility is

38% for stocks and 39% for bonds, and indeed the model implies correlations of 48% and

35% for stocks and bonds, respectively.

Why is this evidence consistent with our learning-based model? The reason is that it is

a property of Bayesian learning that during periods of high uncertainty beliefs react more

to news. It follows that during periods of high uncertainty not only the implied volatility

should be high, but also its volatility of volatility should be high. Indeed, not only the

behavior of volatility of volatility in the data is consistent with the one in the model, but

it is also related to beliefs, as the model predicts. In fact, we find that for both stocks and

bonds the absolute changes in implied volatility should be positively related to the recession

probability, to economic uncertainty, and the probability of deflation. For bonds, we also

find that expected inflation should be negatively related to the volatility of volatility. We

find that most of these predictions are supported in the data when again we proxy beliefs

using the SPF probabilities.

Finally, our model also provides the proper dynamics for the stock and bond implied

volatility premium (IVP), that is, the difference between implied volatility and expected

future volatility. The fluctuation over time of the IVP are driven by beliefs in our model,

and we find similar implications from the beliefs from survey data, especially for stocks.

In terms of methodology, we fit the parameters of our structural model with an overidenti-

fied Simulated Method of Moments (SMM) procedure, which uses the likelihood of observing

the fundamentals to extract investors’ beliefs, and then use such beliefs to compute pricing

errors for stock, Treasury bond, and option prices. It is important to note that our estima-

tion methodology ensures that the extracted beliefs are time-consistent and respect Bayes

formula over the whole sample period. This implies that the estimated dynamics of uncer-

tainty is also time consistent and is the outcome of the realization of fundamentals. This

distinguishes our work from related work on options with learning that resets the model un-

certainty in each period to some proxy of uncertainty in the data and focuses on conditional

reactions in options prices.6 Indeed, we find that our model-estimated beliefs are highly

6 For example Guidolin and Timmermann (2005) and Buraschi and Jiltsov (2006) study option prices
and volume in models with learning about fundamentals. Dubinsky and Johannes (2006) study the reaction
of options prices on individual stocks to news about earnings. Benzoni, Collin-Dufresne, and Goldstein
(2005) show that the increase in investors’ perception about the average jump size of stock prices led to a
steepening of the implied volatility smirk after the stock market crash of 1987, but do not study its time
variation in subsequent years. In a paper related to ours, Shaliastovich (2009) models investors’ non-Bayesian
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correlated with the probabilities extracted from the Survey of Professional Forecasters.

Besides the literature on option prices with learning (see footnote 6), this paper con-

tributes to a small set of papers that provides economic explanations of the implied volatil-

ity curve for options.7 Bollen and Whaley (2004) and Garleanu, Pederson, and Poteshman

(2008) find that net buying pressure affects the prices of options for several days as mar-

ket makers fail to provide options at no-arbitrage prices, but charge for the residual risk

due to the limits to arbitrage. In addition to focus on lower frequency data and explaining

the entire time series of options prices, we do not depart from the no-arbitrage framework.

Among theoretical explanations for smirks, Liu, Pan, and Wang (2005) study the impli-

cations for ambiguity about rare event risk that raise the prices of puts relative to calls.

Drechsler (2008) and Du (2010) provide calibrated models with time-varying ambiguity and

with habit formation preferences, respectively, to generate the left skewed implied volatility

smile, but neither paper studies the time series properties of the smile, nor their interaction

with monetary policy. Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2010)

and Eraker (2008) construct equilibrium models with “long run risks” in the consumption

process to understand the size of the Variance Risk Premium and some of its unconditional

moments. None of these papers consider monetary policy and learning as we do.

The layout of the paper is as follows. Section 2. outlines the model and derives the key

pricing results. In Section 3. we estimate the parameters of our model and discuss the results

related to the dynamics of beliefs and asset prices. Section 5. focuses on monetary policy and

options, and we test for additional model’s predictions. In Section 6., we show the model also

sheds light on other properties of options, such as the dynamics of the volatility of volatility

and the implied volatility premium. Section 7. concludes. Two technical appendices provide

proofs of technical results and the estimation methodology, respectively.

(behavioral) learning about the long run drift of consumption to generate the smile, but does not study its
time series fit to data series.

7 There is also a large literature that explains the volatility smile by assuming exogenous processes for
stock prices, volatilities, and jumps. Indeed, since the classic work of Black and Scholes (1977) the major
innovations have been the addition of stochastic volatility [see, e.g., Hull and White (1987) and Heston
(1993)], jumps in prices [see e.g. Bates (1996) and Bates (2000), and Pan (2002)], and jumps in volatility
[see, e.g. Eraker, Johannes, and Polson (2003)]. A tremendous amount of empirical work has been done
on these extensions of the BS formula that has enriched our understanding of stock price dynamics, and of
options returns. Bakshi, Cao, and Chen (1997) provides a specification analysis of some of these models.
Among more recent innovations, Christoffersen, Jacobs, Ornthanalai, and Wang (2008) build multi-factor
stochastic volatility models, and somewhat related to our paper, Polson, Johannes, and Stroud (2008)
price options when exogenously specified volatility follows an unobserved process that investors learn about.
Constantinides, Jackwerth, and Perrakis (2008) find that several exogenously specified volatility models,
such as GARCH, can be rejected as possible data generating processes for S&P 500 index options.
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2. Structure of the Model

Our main assumption throughout the paper is that the drift rates of the fundamental pro-

cesses are driven by an N−regime, continuous time, hidden Markov chain process. It is useful

to describe this process first. We denote by st the regime at time t, where st ∈ {s1, .., sN},
and we let Λ denote the Markov chain infinitesimal generator matrix. That is, over the

infinitesimal time interval of length dt

λijdt = prob
(
st+dt = sj|st = si

)
, for i 6= j, λii = −

∑

j 6=i

λij .

All agents in our economy, both investors and the central bank, do not observe the

realizations of st but learn about it from the observation of numerous signals, including

realized fundamental variables. Given an information filtration {Ft} generated by such

signals, we denote agents’ common beliefs at time t about regime si as

πit = prob(st = si|Ft), i = 1, ..., N (1)

Lemma 1 below characterizes the dynamics of the vector πt = {π1t, ..., πNt}, but before we

introduce the learning result, we need to introduce the rest of the model.

There is a single homogeneous good in the economy whose price, Qt, follows:

dQt

Qt
= β(st) dt + σQ dWt, (2)

where Wt = (W1t, W2t, W3t, W4t, W5t)
′ is a 5-dimensional vector of independent Weiner pro-

cesses, inflation volatilities are summarized in 1 × 5 constant vector σQ = (σQ,1, 0, 0, 0, 0),

and the drift rate β(st) depends on the realization of the (hidden) regime st.

The main real corporate fundamental in the economy is the process of real earnings, Et,

which follows the jump-diffusion process

dEt

Et
= (θ(st) − κ ξ1) dt + σE dWt, +(eY1t − 1) dLt (3)

where volatilities, σE = (0, σE,2, 0, 0, 0), are constant, the drift rate θ(st) depends on the

realization of the regime st, Lt is the counter of a Poisson process with constant intensity

κ, i.e. Prob(dLt = 1) = κdt, the jump size Y1t is i.i.d. normal with mean µ1 and volatility

σ1, and ξ1 = eµ1+0.5σ2
1 − 1. The regime process, st, the Brownian motions, Wt, and the
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jump process Lt are all independent of each other. Under the assumption of continuous

observation of fundamentals, and hence their quadratic variation processes, investors can

perfectly observe jumps. In our model, jumps to earnings play two important roles: First,

their inclusion permits a better estimation of the earnings process, which has some large

outcomes in our sample. Second, negative mean jumps will be shown to increase the average

put-to-call implied volatility ratio (P/C). We model i.i.d. jump sizes and constant jump

intensity, however, and therefore the modeled jumps in themselves are unable to explain the

time series variation in either the ATMIV or P/C, which is the subject of our paper.

The next important fundamental in the economy is de-meaned industrial capacity uti-

lization (CU), Kt, which follows the process

dKt = ρ(st) dt + σK dWt, (4)

where σK = (σK,1, 0, 0, σK,4, 0), are constants, and the drift ρ(st) depends on the realization

of regime st. Unlike the other state variables, CU is stated in levels, and hence can become

negative. The use of CU improves the term structure fit of our model. We will comment on

the nonzero instantaneous correlation between CU and inflation in Section 3..

The final state variable is aggregate real money in the economy, Ht, which follows

dHt

Ht

= ω(st) dt + σH dWt, (5)

where σH = (0, 0, 0, 0, σH,5) and the drift ω(st) depends on the regime st. We emphasize that

Ht is the equilibrium quantity of real money in the economy determined both by its demand

and supply. It is also useful to note that while ours is not a full structural model in which the

quantity of money is endogenously determined, the statistical properties of dHt/Ht affect

agents’ beliefs’ dynamics, and thus equilibrium prices.

2.1. The Central Bank Policy Rule

All agents, investors and central bank, observe the same data and thus have the same

information about the regime of the economy. Thus, the regime probabilities πit defined in

(1) are common across all agents. The central bank sets the real rate of the economy φ̄t by

using a forward looking Taylor rule, namely

φ̄t = α0 + αβ E

[
dQt

Qt
|Ft

]
+ αρ E [dKt|Ft] . (6)
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where the expectations are taken with respect to the information available at time t, Ft.
8

The second and third terms of the real rate capture the essential elements of the Taylor

rule, which posits that the central bank increases rates in response to increases in expected

inflation and the expected real slack in the economy [see Taylor (1993)]. Our policy rule is

hence ‘forward-looking’ in the sense of Clarida, Gali, and Gertler (2000), who suggested re-

placing current and/or lagged values of inflation and the output gap by their forward-looking

conditional expectations. A significant contribution of our analysis is to jointly estimate the

expectations from corporate earnings as well as regular macroeconomic variables, so that

there is interaction between uncertainty in the corporate sector and central bank policy.

In addition, following the assumption in Rudebusch and Wu (2008) we use the industrial

capacity utilization series obtained from the Federal Reserve Board rather than the output

gap, in the original Taylor rule.

We finally note that in standard Taylor rules, the central bank sets the nominal interest

rate.9 In our model, the inflation risk premium is constant, so the policy rule can equivalently

be written as setting of the nominal rate by adding expected inflation and the inflation risk

premium on both sides of equation (6).

2.2. No Arbitrage Pricing

To build the policy rule of the central bank into a no-arbitrage framework, we follow Ang

and Piazzesi (2003) and Piazzesi (2005) in specifying a state price density to price all cash

flows in our model. Let Mt be the state price density at date t. As in the modern classic

asset pricing theory (see, e.g. Cochrane (2001)), a generic random real cash flow {Dt} is

priced as

MtPt = E

[∫ ∞

t

Ms Ds ds|Ft

]
. (7)

It is convenient to first write the process of the state price density in terms of the original

hidden Markov process st and Brownian motions Wt. We specify Mt taking the form

dMt

Mt
= (−φ(st) − κ ξ2)dt − σM dWt + (eY2t − 1) dLt, (8)

8We allowed for a generalization the Taylor rule to let interest rates directly be impacted by money growth
but did not estimate a significant effect.

9The original Taylor rule [see Taylor (1993)] is it = πt + r∗t + aπ(πt − π∗t ) + ay(yt − ȳt), where it is the
target nominal rate, πt is the realized rate of inflation, r∗t is the assumed equilibrium real rate of interest,
π∗t is the desired inflation rate, yt is the log of GDP, and ȳt is the log of potential GDP.
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where φ(st) denotes the real rate conditional on observing the regime (see discussion below),

σM = (σM,1, σM,2, σM,3, σM,4, σM,5) is a 1×5 constant vector of the market prices of risk, Lt is

the same Poisson counter as in the earnings process in (3), Y2t has an i.i.d. normal distribu-

tion with mean µ2 and volatility σ2 and perfectly correlated with Y1t, and ξ2 = eµ2+0.5σ2
2 − 1.

Note that jumps in earnings in equation (3) are systematic since they are perfectly correlated

with the pricing kernel. We note that constant prices of risk also arise in a simple Lucas

(1978) economy with no government where the representative agent has constant relative risk

aversion, and where the fundamental volatility of consumption (dividends) is constant. This

assumption along with the homoskedasticity of fundamentals ensure that all fluctuations in

volatilities and option indices arise endogenously only due to learning.

To ensure no-arbitrage, the expected drift rate of the state price density must equal the

real rate φ̄t in (6), so that we impose

E

[
dMt

Mt
|Ft

]
= −φ̄tdt

Since investors and the central bank have the same information, this no arbitrage restriction

is naturally obtained by requiring that regime by regime:10

φ(st) = α0 + αβ β(st) + αρ ρ(st). (9)

2.3. Learning Dynamics

For notational convenience, we stack the fundamental processes (2), (3), (4), and (5) that

are observed by the econometrician as signals in a vector dXt =
(

dQt

Qt
, dEt

Et
, dKt,

dHt

Ht

)′
, so that

dXt = %(st) dt + Σ4 dWt + J4t dLt, (10)

where the drift vector process is %(st) = (β(st), θ(st) − κξ1, ρ(st), ω(st))
′, the volatility matrix

is Σ4 = (σ′
Q, σ′

E, σ′
K , σ′

H)′, and the vector of jump sizes is J4t = (0, eY1t−1, 0, 0, ). In particular,

we assume the econometrician does not observe investors’ state price density Mt. Agents in

the economy, instead, observe both signals dXt and dMt and we denote the full set of signals

as dZt =
(
dX ′

t ,
dMt

Mt

)′
, which has the drift vector ν(st) = (%(st)

′,−φ(st) − κ ξ2)
′, volatility

matrix Σ = (Σ′
4, σ

′
M)′, and jump size of Jt = (J ′

4t, e
Y2t − 1)′.

The following Lemma characterizes the dynamics of beliefs πit = prob(st = si|Ft). For

notational convenience, we denote the drift of the signal vector dZt in regime i by νi = ν(si).

10Indeed, from (8): −E

[
dMt

Mt

|Ft

]
= E [φ(st)|Ft] = α0 + αβ E [β(st)|Ft] + αρ E [ρ(st)|Ft], which yields (6).

11



Lemma 1. Given an initial condition π0 = π̂ with
∑N

i=1 π̂i = 1 and 0 ≤ π̂i ≤ 1 for all i,

the vector of probabilities πt = (π1t, ..., πNt)
′ satisfies the N-dimensional system of stochastic

differential equations:

dπt = Λ′πtdt + Σ(πt)dW̃t, (11)

in which the i row of Σ(π) is

[Σ(π)]i = σi(πt) = πit [ ν
i − ν(πt)]

′ Σ′−1
, (12)

ν(πt) =

N∑

i=1

πit ν
i = Et (dZt|Ft) ,

and dW̃t = Σ−1[dZt − JtdLt − ν(πt)] = Σ−1 (νt − ν(πt))dt + dWt. (13)

Moreover, for every t > 0, πit ≥ 0 and
∑N

i=1 πt = 1.

This filtering result is a straightforward extension of the Wonham filter (see Wonham

(1964)), which characterizes the Bayesian learning about the hidden drift with Brownian

noise.11 In the setup here, the observed fundamental vector process has observable jumps in

some elements, which do not affect investors’ beliefs about the hidden drift. In particular, the

high frequency variation in investors’ beliefs is driven by investors’ inferred shocks, dW̃ , in

equation (13) as opposed to the true shocks, dW, which affect fundamentals. It is also possible

to write the fundamental process vector dZt = νtdt+ΣdW +JtdLt = ν̄(πt)dt+ΣdW̃ +JtdLt.

The right hand side of (13) also reveals that the inferred shocks process dW̃ , does not depend

on the jump parameters, since investors are able to observe jumps which thus do not affect

their inference about st.

2.4. Stock Prices and the Term Structure of Interest Rates

We now obtain the price-earnings (henceforth P/E) ratio and the nominal bond price:

Proposition 1. (a) The P/E ratio at time t is

P

E
(πt) =

N∑

j=1

Cj πjt ≡ C · πt, (14)

11The first application of the Wonham filter in financial economics, as well as several properties of the
filtering process, are derived in David (1997). We find it useful to recall that a main advantage of this model-
ing strategy as opposed to the more commonly used Kalman filter is that investors uncertainty (conditional
variance of expectations about the drift terms) fluctuates forever, while in the Kalman filter, this uncertainty
converges to a constant. The fluctuating confidence (inverse of the conditional variance) is the driver of the
options’ indices that we seek to explain in this paper.
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where the vector C = (C1, .., CN) has Ci = E

[∫∞

0
MτEτ

MtEt
dτ |νt = νi

]
and it satisfies C =

cA−1 · 1N , with c being a constant dividend payout ratio, and

A = Diag(φ1−θ1 +σM σ′
E −κ(ξ3−ξ1−ξ2), · · · , φN −θN +σM σ′

E −κ(ξ3−ξ1−ξ2)) − Λ. (15)

and ξ3 = eµ1+µ2+0.5(σ1+σ2)2 − 1.

(b) The price of a nominal zero-coupon bond at time t with maturity τ is

B(πt, τ ) =

N∑

i=1

πit Bi(τ ), (16)

where the N × 1 vector valued function B(τ ) with element Bi(τ ) = E
[

Mt+τ

Mt
· Qt

Qt+τ
|νt = νi

]

is given by

B(τ ) = Ω eω τ Ω−1 1N . (17)

In (17), Ω and ω denote the matrix of eigenvectors and the vector of eigenvalues, respectively,

of the matrix Λ̂ = Λ − Diag(r1, r2, · · · , rn), where each ri = ki + βi − σMσ′
Q − σQσ′

Q, is the

nominal rate that would obtain in the ith regime, were the regimes observable. In addition,

eωτ denotes the diagonal matrix with eωiτ in its (i, i) position.

The proof for stocks is in the appendix. The proof for bonds follows from a simple

extension of the proof in a similar setting in David and Veronesi (2013). The stock price

formula has a similar form to that developed in the pure diffusion setup of David and Veronesi

(2013). The major difference is the presence of jumps in earnings, which are priced and thus

decrease the P/E ratio, and the fact that our regimes here involve the drift rates of policy

variables, such as capacity utilization. Indeed, the constant Ci in (14) is the P/E as in

the Gordon growth model conditional on regime i being known, and such regime depends

on policy variables (inflation drift and CU drift) in that regime. Because the true economic

regime is not known to investors and central bank alike, the P/E ratio is the beliefs-weighted

average of such conditional P/E ratios. The interpretation for the bond pricing formula (16)

is similar to the one for the P/E ratio. In contrast to stocks, bond prices do not jump since

the belief processes are continuous and the main bond fundamental, inflation, is continuous.

Let P n
t = Pt · Qt be the nominal value of stock, where Pt is the real value of stocks in

Proposition 1. Using the dynamics of the inflation and earnings processes under the observed

filtration, we now formulate the nominal return processes for stocks and bonds.

Proposition 2. The nominal stock return process under the investor’s filtration is given by

dP n
t

P n
t

(πt) = (µn(πt) − δ(πt) − κξ1) dt + σn(πt) dW̃t + (eY1t − 1) dLt,

13



where δ(πt) = c/(C ·πt) is the dividend yield, µn(π) = rn
t +σn(π) (σM +σQ)−κ(ξ3 − ξ1 − ξ2)

is the nominal expected return. The nominal stock price volatility is

σn(πt) = σE + σQ +

∑N
i=1 Ci πit (νi − ν(πt))

′(Σ′)−1

∑N
i=1 Ci πit

. (18)

The proof follows from an application of Ito’s formula for jump-diffusions. Asset volatil-

ities have exogenous as well as learning-based components, which depends on the volatility

of each regime probability πi. A similar expression holds for bonds, but we do not report it

for brevity.

2.5. Return Volatility and its Dynamic Properties

A key variable for understanding a number of features of options prices is the volatility

of stock variance. We develop its properties here. We start by introducing the following

notation. Let

π◦
it =

πitCi

ΣN
j=1πjt Cj

(19)

As in Veronesi (2000), we call π◦
t = (π◦

1t, ..., π
◦
nt) the value-weighted probabilities (notice that

π◦
it ≥ 0 for each i and

∑N
i=1 π◦

it = 1,). From now on, a “◦” denotes a quantity computed

with respect to the distribution π◦
t . For example, θ

◦

t denotes the mean of the drift vector θ

computed using the distribution π◦
t (whereas e.g. θt denotes the mean drift vector computed

using the original distribution πt), and

σθβt =
N∑

i=1

πit(θi − θt)(βi − βt); and σ◦
θβt =

N∑

i=1

π◦
it(θi − θ

◦

t )(βi − β
◦

t ) (20)

are the covariances of the drift vectors θ and β computed using π and π◦, respectively. In

addition we denote σθν and σ◦
θν to be the vectors of covariances of θ with each element of

the vector ν using the two sets of probabilities respectively. We then have:

Proposition 3 (a) Stock return variance is given by

Vt = σn(πt)σ
n′

(πt) = (σE +σQ)(σE +σQ)′+(ν̄◦
t − ν̄t)

′(ΣΣ′)−1(ν̄◦
t − ν̄t)+2 [(θ

◦

t −θt)+(β
◦

t −βt)]

(21)

(b) Return variance Vt follows the process dVt = µV tdt + σV t dW̃t, where

σV t = 2

[∑

i

(
[π◦

it (νi − ν◦
t ) − πitνi]

′(ΣΣ′)−1(ν̄◦
t − ν̄t)(νi − ν̄t)

′
)

+ (σ◦
θνt − σθνt)

′ + (σ◦
βνt − σβνt)

′

]
Σ

′−1

(22)
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(c) The volatility of stock volatility is

σσt = 0.5
σV t√

Vt

(23)

Similar expressions hold for bonds, and we do not report them for brevity. We finally

show that the stock price process in our model satisfies important regularity conditions, which

guarantee the solutions to the option pricing partial differential equation as well as estimation

of the likelihood function. These conditions will be useful to compare the properties of our

model with standard option pricing models in Section 6..

Proposition 4 The stock price process, P n
t , in Proposition 2 satisfies global Lipschitz and

growth conditions.

2.6. Option Prices

Unfortunately, closed form formulas for option prices are not available. However, we can

easily compute stocks and bonds’ option prices using Monte Carlo simulations. We need to

find the process for stocks and bonds under the risk-neutral measure first.12

Proposition 5 The stock and zero-coupon bond prices under the risk-neutral measure follow:

dP n∗
t

P n∗
t

= (r(π∗
t ) − δ(π∗

t ) − κ∗ξ∗1) dt + σn(π∗
t ) dW̃ ∗

t + (eY ∗

1t − 1) dL∗
t ,

dB∗
t (τ )

B∗
t (τ )

= r(π∗
t ) dt + σB(π∗

t ) dW̃ ∗
t ,

dπ∗
t = (Λ′π∗

t − ϑ(π∗
t )) dt + Σ(π∗

t ) dW̃ ∗
t ,

where dW̃ ∗
t is 5 × 1 vector Brownian motion, L∗

t is the counter of a Poisson process with

intensity κ∗ = κ · eµ2+.5σ2
2 , Y ∗

1t is distributed N(µ1 + σ1σ2, σ
2
1), and ξ∗1 = eµ1+σ1σ2+0.5σ2

1 − 1.

Finally the market price of risk of the belief of regime i, which is the covariance of πi with

the nominal pricing kernel is given by

ϑi(π
∗
t ) = π∗

it

(
(βi − β̄(π∗

t )) + (φi − φ̄(π∗
t )
)
. (24)

12In Proposition 5 we report the risk neutral dynamics of zero coupon bonds. The appendix discusses how
we modify the model to price options on futures on coupon bonds, which correspond to our data.
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The proof is in Appendix 1. We appeal to the Feynman-Kac formula to use Monte-Carlo

simulations to evaluate the risk-neutral expectation

f(t, πt, P
n
t ) = E

Q

[
exp

(
−
∫ T

s=t

r(πs)ds

)
g(P n

T , πT )

]
. (25)

2.7. A Three-Regime Example

Before we take the model to the data, it is useful to illustrate the impact of our learning

model with monetary policy on stock and bond option prices by using a simple three-regime

model. Table 1 provides the drift rate parameters for three composite regimes: Regime 1

is a regular boom, with relatively low inflation, high earnings growth, and close to average

capacity utilization (0%, as the series is demeaned in our model). Regime 2 is a “deflationary”

regime, in which inflation is slightly negative, earnings growth is very negative, and capacity

utilization is far below average. Finally, Regime 3 is a regular boom like Regime 1, except

that capacity utilization is again below average. These regimes characterize part of the

option’s sample, 1988 - 2011, and the parameters in Table 1 are in fact those we estimate in

Section 4.13

Table 1 also contains the conditional P/E ratios across the three regimes, the short-

term rate, and the long-term bond prices. The short-term rate depends on monetary policy

through the Taylor rule (9). Thus, the short-term rate is the highest in Regime 1, the

smallest in the deflationary Regime 2, and intermediate in Regime 3, when the economy is

in a boom, but capacity utilization is below average. The impact of monetary policy on

stock prices is now apparent from comparing the conditional P/E ratio across Regimes 1

and 3. In fact, although both Regimes 1 and 3 have the same growth rate of real earnings

and inflation rate, Regime 3 has lower capacity utilization, and thus lower real rate, which

in turn increases the P/E ratio compared to Regime 1.

Figure 2 plots the stock and bonds ATMIV, and the stock P/C, in two cases. In the

first case (Panels A and C), we consider the impact of uncertainty between the regular boom

Regime 1 and the recession Regime 2. In particular, we set the probability of the low-capacity

boom Regime 3 to zero, π3 = 0. Panel A shows that as the probability of Regime 1 decreases,

the ATMIV of both stocks (solid line) and bonds (dashed line) increase, to a maximum

13The remaining parameters of the model are as estimated in Table 2 with the exception of the infinitesimal

generator, which here is assumed as follows Λ =




−0.1 0.1 0.0
0.1 −0.2 0.1
0 0.1 −0.1


. That is, booms are longer than

recessions, and the recession can be accessed by either boom regime.
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around the point of maximum uncertainty (π1 = 0.5) and then decline again. Intuitively,

higher real economic uncertainty increases the volatility of stocks, while uncertainty about

monetary policy, induced by uncertainty about inflation and capacity utilization, increase

the volatility of bonds. Panel C plots the P/C ratio against the probability of the boom

Regime 1, π1. In good times (π1 ≈ 1) the P/C ratio is very high, while in bad times the

P/C ratio is very low. The intuition is that in good times, there is a larger probability of

stock price drop than in bad times, as prices are affected not only by i.i.d. shocks (random

Brownian motions or jumps), but also by the possibility of bad earnings news that would

decrease the probability to be in a boom, thereby giving a double downward kick to the

stock prices. Thus, OTM put options become relatively more expensive than OTM calls and

the P/C is high. The opposite argument holds when π1 ≈ 0.

Panels B and D of Figure 2 highlight instead the impact of monetary policy on option

prices. Indeed, in this case we keep the probability of a recession constant at zero, π2 = 0, but

only examine the uncertainty between the two “boom” regimes, namely, one with average

capacity utilization (Regime 1) and one with low capacity utilization (Regime 3). Panel B

shows that the patterns of ATMIVs of stock and bonds are qualitatively similar to the ones

in Panel A, with higher monetary policy uncertainty increasing ATMIV of both stocks and

bonds. While the pattern is similar, comparing the magnitudes in Panel A and B, we see the

impact of just monetary policy uncertainty on stocks’ and bonds’ ATMIV is smaller than

when we have both economic and monetary policy uncertainty (in Panel A).14

To understand the source of variation in ATMIV, it is useful to look at the expression

of variance V (πt) in (21), specialized to the case in which there are two regimes i and j for

which πi = 1 − πj. In this case, we obtain

V (πt) = (σQ + σE)(σQ + σE)′ +

{
2πit(1 − πit)

(Ci −Cj) [(βi − βj) + (θi − θj)]

P/E(πt)

}
+

+

{
[πit(1 − πit)]

2 (Ci −Cj)
2h

P/E(πt)2

}
(26)

where h = (νi − νj)
′(ΣΣ′)−1(νi − νj) is a positive constant. Given the log pricing function

log(P n) = log (EtQt) + log
(∑

j Cjπj

)
, the variance of stock returns (26) is given by three

terms. The first term is induced directly by fundamental shocks, and it is constant. The

second term is induced by the comovement of inflation and earnings news with the log P/E

ratio, that is, the volatility of returns due to Cov [d log (EtQt) , d log(P/E(πt))]. This term

is large when uncertainty πit(1 − πit) is large, when the difference of conditional P/E ratios

14We emphasize that this is not however a general result. Parameters can be found that increase the
impact of monetary policy uncertainty on stock option’s volatility.
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across regimes (Ci−Cj) is large, and when news have an impact on expected future inflation

and earnings, which occur if the difference in regime values βi − βj and θi − θj are large.

Finally, the last term in (26) is induced by conditional variance of log(P/E(πt)) itself. This

last term is also large when both πit(1 − πit) and (Ci − Cj) are large. In addition, this

term increases with the multiplier h, which itself depends on distances of drift differences

across regimes, weighted by the informativeness of the signals Σ−1. For bond returns, the

expression for variance is just given by the third term in (26), with conditional bond prices

Bi(τ ) replacing conditional price/earnings ratios Ci.

Coming back to understanding the impact of uncertainty on volatility, when uncertainty

is about inflation and earnings regimes, as in the first case (Panel A), both the second and

third term in (26) are non-zero. The second term is especially important. For instance, a

negative earnings news impacts the price twice: both because earnings are now smaller and

also because that news implies a downward revision of the boom probability π1t, which in

turn lowers the P/E ratio. Thus, uncertainty leads to a relatively high volatility of stock

returns. When the uncertainty is purely about monetary policy, i.e. between Regime 1 and

3, then the second term in (26) is instead zero. In fact, in this case a negative earnings news,

for instance, has no direct impact on the probability of future earnings, as both Regimes 1

and 3 have the same earnings drift. In this case, only news about capacity utilization matter

as they move the probability π1t and thus the P/E ratio. For instance, a negative news on

capacity utilization has no direct impact the stock price, but only an indirect effect as it

increases the probability of Regime 1, which increases the price/earnings ratio (see Table 1).

Economically, the bad news about capacity utilization implies a reaction from the central

bank to lower interest rates, which in turn increases prices. This type of variation is implied

by the third term in (26), and uncertainty about the CU regime generates higher implied

volatility for both stocks and bond options.

Finally, Panel D of Figure 2 shows that CU uncertainty has very small impact on the

P/C ratio, compared to the case in Panel C, which features both economic and monetary

policy uncertainty. The intuition is the same as above: In either case we are in a boom, and

thus in both cases there is a relatively high probability of negative economic news in case of

an increased perceived probability of transitioning in the deflationary Regime 2.

How does all this translate on the relation between ATMIVs and P/C and interest rates,

which are set by the forward looking Taylor rule and thus depend on beliefs? In each Panel

A through C of Figure 3, we plot each options’ index against the short-term rate, when both

are computed on a grid of beliefs (π1t, π2t, π3t) on the unit simplex (with πit ∈ [0, 1] and
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∑3
i=1 π1t = 1.) Panel A shows that the three composite regime model implies that stock’s

ATMIV is broadly decreasing with short term-rates. That is, in this example, periods with

very high interest rates tend to be mainly related to low implied volatility periods. However,

the relation between ATMIV and interest rates is not one-to-one and much noise should be

observed in the data when we relate monetary policy to implied volatilities. Panel B shows

that the P/C ratio is mainly increasing in interest rates. That is, good times (high interest

rates) are correlated with a high P/C ratio, consistently with the intuition provided above,

namely, that in good times it becomes relatively more likely that stocks may drop due to

learning about a potential regime switch into a recessionary period. Finally, bond return

volatility is typically lower for higher interest rates, although there is much dispersion of

bond ATMIV across various levels of interest rates, and in fact even more so than for stocks

in Panel A.

This example shows that even with only three composite regimes, the relation between

option indices, ATMIV and P/C, and monetary policy is quite complex and it depends on

current beliefs about composite regimes themselves.15

3. Estimation

3.1. Data

Our data sample for fundamentals runs from 1967 to 2011. The definitions of fundamental

series are as follows. Aggregate quarterly earnings for the economy are approximated as

the operating earnings of S&P 500 firms, and these data are obtained from Standard and

Poor’s. The other three fundamentals, the Consumer Price Index (CPI), Industrial capacity

utilization (CU) and money (M1) are obtained from the Federal Reserve Board.

Stock prices are obtained from Standard & Poor and P/E ratio is estimated as the equity

value of these firms divided by their operating earnings. The time series of zero-coupon yields

and returns on Treasury bonds of different maturities are obtained from Gurkaynak, Sack,

and Wright (2007). Options data are obtained from two sources. We obtain transactions

data on S&P 500 index options from 1986:Q2 to 1996:Q1 from the CBOE. These data are

no longer available from 1996:Q2, and therefore, we use data on these same options from

15While the relations between options and monetary policy described in this example are intuitive, we
should remember they depend on the three regimes used. As shown in Section 3., in reality there are many
additional composite macroeconomic - policy regimes, such as stagflation regimes, whose implications for
the relation between monetary policy and options may differ from what discussed in the simple example.
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Option Metrics from 1996:Q2 to 2011:Q4. It is important to note that Option Metrics provide

the average of bid and ask prices at the end of each trading day, and not prices based on

actual transactions. Prices at the beginning of each quarter are fitted with fundamental data

available at the end of the previous quarter. At-the-money implied volatilities on options on

10-year Treasury bond futures are from Mueller, Vedolin, and Yen (2013) and are available

from 1985Q3 to 2011Q4.16 We restrict the option sample to the post October 1987 crash

period, when the option smile became relevant and P/C increased substantially to above one

(e.g. Bates (1991)).

Survey data are from the Survey of Professional Forecasters (SPF) at the Federal Re-

serve Bank of Saint Louis. We obtain survey data for consensus forecasts of inflation (GDP

deflator), GDP growth, the probability of GDP decline (“anxiety index”), and the consensus

probabilities that inflation (GDP deflator) will lie in pre-specified intervals in following quar-

ter. Data are available at the quarterly frequency for the sample 1968 to 2011. We follow

the same procedure as David and Veronesi (2013) to obtain SPF probabilities for inflation

regimes. Finally, survey data on capacity utilization for the sample 1998 to 2011 are from

Bloomberg.

3.2. Methodology

Except for the data used, the empirical methodology is close to the one used in David (2008)

and especially David and Veronesi (2013). While we leave the details to the Appendix,

we provide a brief summary of the methodology in this section to highlight its benefit and

especially to better interpret the empirical results in Section 4.

We use a Simulated Method of Moments that combines both a maximum likelihood

estimation of the fundamentals and pricing errors from asset prices. More specifically, denote

the parameters to estimate by Φ and let L(Φ) be the likelihood function of fundamental

variables (CPI, real earnings, CU, and money growth). We construct the quarterly likelihood

function by simulations at daily frequency, as in Brandt and Santa-Clara (2002), and then

compute the scores the likelihood function ∂L
∂Φ

. For given path of beliefs πt we can compute

the model-implied prices, namely, the P/E ratio, the 3-month rate, the slope of the term

structure of interest rates, as well as the ATMIV of stocks and bonds, and finally the OTM

Put/Call implied volatility ratio. We can thus compute the model’s pricing errors, stack

them together with the scores of the likelihood function, and minimize the usual GMM

16We thank Mueller, Vedolin, and Yen for providing the data.
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criterion function.

We highlight three important features of our procedure. First, it is important for the goal

of this paper to extract investors’ beliefs in a dynamic, forward-looking, and time-consistent

manner. The SMM procedure ensures we achieve this goal, as the structural parameters are

held constant through time, but the arrival of fundamental news lead to updates of posterior

probabilities about the underlying composite regimes. Importantly, our simulation method

ensures that the estimated beliefs πt are mainly driven by fundamentals (CPI, real earnings,

CU, and Money Growth) and that Bayes formula in equation (11) exactly holds. That is,

the beliefs that we estimate in our model are consistent with shocks to fundamental data

throughout the sample, as the evidence in Section 4.1. will show.

Second, the use of stocks, bonds and options also ensures the identification of composite

regimes that matter for asset prices. That is, as discussed in David and Veronesi (2013) asset

prices depend on beliefs about regimes that may or may not occur in sample (i.e. classic

“Peso Problem” situations). Our SMM procedure that combines fundamental shocks with

asset prices allow us to estimate composite regimes that would not be precisely estimated if

only fundamentals were used. For instance, as we are going to see, the existence of a potential

deflationary period is important for asset prices, and explains extremely low interest rates

and high stocks and bonds’ implied volatilities. However, it may not necessarily be the case

that such regime has been realized on an ex-post basis. Finally, our methodology allows us

deal with potential time-aggregation issues that arise from our availability of only annual

earnings at the quarterly frequency. In the SMM procedure, we simulate the same annual

averages at quarterly frequencies and thus we can compute the proper likelihood function.

We conclude this section with a couple of remarks about the selection of the number

of composite regimes, and the constraints we impose to avoid parameter proliferation. We

select N = 8 composite regimes, which are described below. While this number of composite

regimes may appear large at first, we note that even allowing just two regimes for each of

the four fundamental series would lead to a cross-product of 24 = 16 composite regimes. In

addition, for each individual series we can actually detect three or four regimes, whose cross-

product would lead to between 81 (= 34)and 256 (= 44) composite regimes. Clearly, not only

such a large number of regimes would be intractable, but such an analysis would be mostly

useless, as the vast majority of such composite regimes have zero probability of occurring in

sample. Our choice of N = 8 composite regimes allow us to still detect the low-frequency

common variation across series, but in a more parsimonious model. In addition, the use of

asset prices to detect regimes allow us to compute such regimes with reasonable precision.
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Finally, we also impose a number of parameter restrictions to the estimation driven by the

results of a preliminary un-restricted estimation.

A second point to emphasize is that our model with eight regimes implies seven state

variables (beliefs πt), which follow a vector autoregressive process with stochastic volatility

(equation (11)). Beliefs are driven only by five Brownian motions (four fundamental news

plus pricing kernel shocks), which implies ours is a five-factor model.17 Moreover, four of the

five shocks that drive beliefs are in fact observable by the econometrician, as they are just

fundamental shocks. This is important as it ensures our beliefs have an obvious economic

meaning, and they are not just “hidden factors” (e.g. level, slope, and curvature) that are

extracted from prices. Indeed, we present evidence in Section 4.1. that our beliefs extracted

from fundamentals and asset prices as described in the previous paragraphs are in fact

consistent with survey beliefs.

4. Estimation Results

Table 2 contains the parameter estimates. The top panel contains the estimates of the eight

composite regimes, with evocative names for easier reference.18 Overall, we have four regimes

characterized by high (or very high) earnings growth (referred to as booms hereafter), and

four regimes with negative earnings growth (recessions). Recessions are accompanied either

by medium or high inflation, or by deflation. Finally, capacity utilization and monetary

policy vary across regimes: For instance, Regime 1 and Regime 7 are identical, except that

capacity utilization is far lower in the latter than in the former, while money growth is

higher. Regime 1 is a “Regular Boom,” which, as we shall see, characterizes most of the

sample, while Regime 7 really only characterizes the last decade. We return on discussing

these regimes in the next Section, as we discuss the probabilities.

The middle panel of Table 2 contains the estimates of the diffusion matrix, and the jump

parameters. The latter show that jumps in earnings and the pricing kernel are important,

and large. Jumps occur with intensity 7.52%, implying a jump every 13 years or so. The

size of the jump is substantial, as the average jump size is negative 6.30% with and standard

17The number of “factors” in a factor model depends on the number of uncorrelated Brownian motions.
The number of state variables may be larger than the number of factors driving them.

18The first six regimes are similar to those in David and Veronesi (2013), who only fit inflation and real
earnings, but no monetary policy variables. Indeed, note that the last two regimes (7 and 8) are identical
to regime 1 and 2 for inflation and earnings, but differ in their monetary policy regime. Compared to David
and Veronesi (2013), the two additional fundamental series to fit (CU and MG) required an expansion of the
number of composite regimes from six to eight. See discussion in previous section.
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deviation of 34%. While this number is very large, it should be compared with the massive

jump in earnings growth during the crisis, as visible in Figure 4.

The Taylor rule coefficients are reasonable, as the interest rate rule parameters suggest

that the real rate in the economy depends positively on both expected inflation and expected

change in CU: αβ = 0.2278 and αρ = 0.2188. These estimates are similar to estimates of the

Taylor rule in many other papers. In interpreting the results, however, we should remember

that the left-hand-side of the Taylor rule is the real rate, that we use industrial capacity

utilization rather than the output gap used by Taylor, and that the rates depend on the

expected drifts of the variables rather than the variable realizations themselves.

Panels A to D of Figure 4 plots the fundamental data, together with the model’s expected

fundamental drift for each variable. Panels A to B also reports consensus forecasts for

inflation (GDP deflator) and for economic growth (real GDP growth) from the Survey of

Professional Forecasters. As it can be seen, in both cases the model’s expectation tracks

well the consensus forecasts. Panel C also plots Bloomberg consensus forecasts of capacity

utilization, whose series only starts in 1998. The figure shows that the model expected drift

rate of CU tracks well the realized level, as well as the Bloomberg forecasts for the common

sample. Panel D reports only money growth and the model expected drift rate, which again

track well each other. Unfortunately, no survey data on money growth are available.

Table 3 reports the regression of realized fundamental variables and their expected value

according to the fitted model. We find that the regression coefficients are all strongly sig-

nificant, and that the expected fundamental explain realized fundamentals with a relatively

high R2, ranging from 17.4% for real earnings growth, to 85.3% for capacity utilization. Real

earnings growth is clearly the harder series to predict, as it is has large volatility and it is

also affected by large i.i.d. jumps, consistently with the model.

4.1. The Dynamics of Beliefs

Figure 5 plots the dynamics of the fitted beliefs πit over the sample. The left panels (A, C, E,

and G) are the “boom” regimes, while the right panels (B, D, F, and H) are the recessionary

regimes. The description of the regimes is in Table 2. Panel A shows the beliefs of a

“regular boom,” with low inflation, high growth, average capacity utilization, and slightly

decreasing money growth. The posterior probability of this regime hovers around 70% in

the sample, with significant dips around the NBER-dated recessions (the shaded areas), or

during booms that are characterized by a over-heating economy (with higher CU, as in Panel
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C), or exceptionally strong earnings growth (Panel E), or very low capacity utilization (Panel

G). The latter regime characterizes in fact the last decade. The right panels plot beliefs of

recessionary regimes, whose probabilities indeed increase around the shaded areas. Notable

in these panels are the spikes in the last decade of the probability of a deflationary regime,

visible in Panel F.

While the fitted posterior probabilities increase and decrease around historical periods in a

reasonable way, we check in Figure 6 whether their variation correspond to probabilities that

can be extracted from surveys. The first five panels (A - E) of this figure uses probabilities

of inflation and economic growth from the Survey of Professional Forecasters (SPF). Indeed,

in this survey, professional forecasters are not only asked a point forecast about a given

economic variables (e.g. inflation), but also their probability assessment that next quarter

such economic variable will be in given intervals. SPF also provides the average probabilities

from the professional forecasters.

Panels A to D compare the model’s beliefs of high, medium, low, and zero inflation

regime with the probabilities from SPF, where for SPF we define high, medium, low, and

zero inflation intervals by using the middle points of our estimated regimes. The correlations

between SPF probabilities and the model-fitted probabilities are 71%, 51%, 80% and 36%

for high, medium, low, and zero inflation, respectively. Similarly, Panel E plots the SPF

probability of a decline in GDP growth next quarter with the fitted model probability of a

recession. The correlation between the two series is 57%. These results provide comfort that

the model’s “state variable” resemble real probabilities.

Panels F to G still of Figure 6 provide evidence that the model-fitted beliefs on capacity

utilization are also similar to survey-based forecasts. Unfortunately, Bloomberg forecasts

only provide point forecasts of next month CU, but they do not ask their forecasters about

probability assessments. Thus, in this case we use the dispersion of forecasters’ forecasts to

elicit a distribution of forecasts, and obtain an implied forecast probability of high, medium,

and low CU, using the middle points in our regimes’ estimates to determine the ranges.

One additional fact about Bloomberg forecasts is that such forecasts are projection for the

current month’ CU reading, which thus dramatically limit the dispersion. One implication

is that such forecasts dispersion-based beliefs are concentrated at zero or one. Still, Panels

F and G show that such beliefs are very close to the model-fitted beliefs, which again lend

support to our fitted model.

To conclude this section, this evidence is meant to underscore that the state variables in

our model – the posterior beliefs – are mostly driven by four observable fundamental shocks
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(inflation, earnings, capacity utilization, and money growth) and updated according to Bayes

rule (equation (11)), and they are not merely inverted from asset prices. Asset prices are used

in the estimation to determine the model’s parameters, which indirectly affect the beliefs.

But the full dynamics of beliefs is largely determined by observable shocks.

4.2. The Dynamics of Asset Prices

We now move to discuss the model’s fit to asset prices. Figure 7 shows the fit of the six

asset pricing series used in the estimation. In particular, the left panels A, C, and E plot the

realized P/E ratio, the 3-month T-bill rate, and the slope of the term structure, respectively,

along with their model-fitted counterparts. In each panel, the solid gray line represents the

data, while the dashed, black line the fitted model. As it can be seen, the model performs

rather well, especially if we remember that model prices only depend on beliefs πt, which

are driven mostly by observable fundamental shocks, as discussed in the previous section.

Admittedly, the model’s fit has some shortcomings, such as its inability to match the P/E

ratio during the dot-com boom, or the sizable slope of the term structure in early 1990s and

early 2000. Still, Table 3 reports the results of a regression of realized prices on their fitted

counterparts, and we find very significant slope coefficients with R2 of 47.5%, 45.4%, and

50.8% for P/E ratio, 3-month T-bill, and slope, respectively. That is, the dynamics of beliefs

in Figure 5 capture the variation of asset prices at the proper frequency.

The right panels B, D, and F plot the option-related series, namely, stock ATMIV index,

P/C index, and the 10-year bond ATMIV index, for the shorter option sample 1988 - 2011.

As it can be seen, the model’s quantities, which we emphasize are only driven by beliefs πt

and thus by fundamental shocks, track the realized prices well. Indeed, Table 3 shows that

the R2’s of regressions of data on model-fitted prices are 37%, 32.5% and 30.5% for stock’s

ATMIV, the P/C index, and the bond’s ATMIV, respectively. The slope coefficients are

strongly significant.

5. Monetary Policy and Option Prices

The previous section shows that the model fits well the data. We now turn to investigate

the relation between option prices and monetary policy in light of our model.

25



5.1. Understanding Impulse Responses

Panel A of Figure 8 plots the impulse response of the 3-month T-bill rate to a unit shock to

stock ATMIV, in the data (solid line), and in the fitted model (dashed line). The dotted lines

correspond to the 95% confidence interval. As it can be seen, the impulse response obtained

from the fitted model is very similar to the one in the data. This finding is important,

as recall that the model-fitted ATMIV and 3-month rate are solely functions of beliefs πt,

which themselves are mostly driven by observable shocks to fundamentals through Bayes

formula. That is, conditional on the parameter estimates, shocks to fundamentals and Bayes

formula capture the correct dynamics of ATMIV and short-term interest rates to generate

the observation that a shock to ATMIV tends to decrease future interest rates, whereas both

are driven by a belief process. Within our model, the interpretation is that adverse shocks

to fundamentals change the beliefs of both the investors, whose uncertainty increases the

implied volatility of options, and of the central bank, whose beliefs affect the interest rates

through the Taylor rule in expression (6).

A similar comment pertains to the impulse response of the 3-month T-bill rate to a unit

shock to the P/C index, plotted in Panel C of Figure 8. As in Panel A, the impulse response

computed from the fitted model (dashed line) is very close to the one computed from the data

(solid line), once again suggesting that the slow movement of beliefs driven by fundamental

shocks captures the proper dynamics to explain monetary policy action. Finally, Panel E of

Figure 8 reports the impulse response of the 3-month T-bill rate to unit shock to the bond

ATMIV. Differently from the previous two cases, while in the data it appears that bond

ATMIV has not much of an impact on the 3-month T-bill rate, whose impulse response

function converges quickly to zero, the pattern in the fitted data is a bit different, although

it still lies within the 95% confidence interval. The main reason of this different behavior

appears to be that the model generates a slightly too high covariance between bond ATMIV

and stock ATMIV, as documented in Table 4 and further discussed in the next section,

compared to the data.

To provide further evidence of the relation between option prices and monetary policy,

the right panels of Figure 8 plot the impulse response of the capacity utilization – a key policy

variable – to a unit shock to stock ATMIV (Panel B), P/C (panel D), and bond ATMIV

(panel F). In particular, in Panel B we see that a unit shock to stock ATMIV decreases

capacity utilization for the following eight quarters. Moreover, the fitted model produces a

very similar result. This additional evidence supports the channel that increases in economic

uncertainty through variation in beliefs (the drivers of ATMIV) affect monetary policy , as
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the forward looking Taylor rule implies that the expectation of lower capacity utilization

generates lower future interest rates.

Panels D and F report similar evidence on P/C and bond ATMIV. A shock to P/C tends

to raise future capacity utilization, both in the data and in the fitted model. The similar

pattern indicates that the same variation in beliefs that increases P/C also affects expected

future capacity utilization, which in turn affects the short-term rate through the Taylor

rule. Economically, during good times, bad shocks to fundamentals decrease the P/C, as

the reaction of beliefs to bad news pushes down stock prices and decreases the probability

of further sharp declines, and it also decreases expected capacity utilization, which in turn

decreases the short-term rate (as in Panel C). Interestingly, in Panel F we also find that a

shock to bond ATMIV tends to decrease future capacity utilization, for the same reason as

in Panel A. The fitted model and the data are in fact very similar. Insofar as expected lower

CU affect interest rates, this finding is consistent with the overall message of the model.

5.2. Option Prices and Beliefs

The previous section shows that indeed shocks to option prices have an impact on both

the short-term rate and capacity utilization in a way that is similar to the model, whose

quantities are mostly driven by beliefs. In this section we document that indeed option

prices and beliefs are in fact quite correlated, both in the model and in the data.

Table 4 provides the results of the following regression

(Option Index)t+1 = α + βXt + εt+1 (27)

where “Option Index” is the stock ATMIV index (Panel A), the P/C index (Panel B), and

the bond ATMIV index (Panel C). The independent variable is a belief-related variable

described by the name on each row, and whose definition is discussed below. We lag the

independent variables to deal with potential concerns of reverse causality in the data.

The first five columns of Table 4, under the heading “Model”, only use model-based

quantities, both for the right-hand-side and for the left-hand-side of (27). For instance, in

Panel A the “Option Index” ATMIV is the stock ATM implied volatility ATMIV (πt) which

is fitted through the 1988 - 2011 sample, and only depend on the model’s filtered beliefs πt,

depicted in Figure 5. Similarly, the same model’s filtered beliefs are used to construct the

independent variables Xt = f(πt) as described below. This exercise is important because

both the left-hand-side and the right-hand-side of (27) depend on beliefs that are observable
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to the econometrician, and thus provide the exact model’s implications about the source

variation in option prices.

The second set of five columns, under the heading “Data”, perform regression (27) only

on data, where the left-hand-side is one of the option indices constructed from traded options,

and the right-hand-side variable Xt depends on beliefs that are obtained from the Survey

of Professional Forecasters. We already used such survey-based beliefs to compare model’s

beliefs to survey beliefs in Panels A - E of Figure 6.

5.2.1. Stock’s ATMIV and Beliefs

Turning to the result, the first row in Panel A shows the result of a regression of stock ATMIV

on the probability of a recession ProbRecess. In the model, such probability is simply given

by the probability to be in a recession regime, that is, the sum of the beliefs of Regime 2,

4, 6, and 8. In the data, such probability is given by the probability of a GDP decline next

quarter from the Survey of Professional Forecasters. Both probabilities are plotted in Panel

E of Figure 6. The model predicts that stock ATMIV should be strongly positively relative

with the recession probability, with an R2 = 38%. This result is of course related to usual

finding in the literature that volatility should be higher in recessions, and our fitted model

predicts exactly that. Consistently with our model, the data-based regression produces very

similar results, with a strongly significant slope coefficient (t-stat = 3.59), and R2 = 32%.

Moreover, we also see that the slope coefficient itself is very similar to the model’s prediction.

The second row regresses ATMIV on economic uncertainty, which is defined as the poste-

rior variance of earnings growth, that is, EconUnc = Vt[θ] =
∑8

j=1 πjt (θj − Et[θ])
2. Again,

ATMIV is strongly positively related to economic uncertainty, as its slope coefficient is

strongly significant (t-stat = 5.11) and R2 = 54%. In the data, we define economic un-

certainty from the SPF probability of a decline in GDP. That is, we proxy EconUnc =

ProbRecess × (1 − ProbRecess). Indeed, in a regime switching model with two regimes,

this quantity is in fact proportional to posterior variance.19 The empirical results strongly

support a positive relation between stock ATMIV and economic uncertainty, with a slope

t-stat of 3.02 and R2 = 23%.

The next three regressions consider inflation probabilities, that is, those for which we

19In such case, we have EconUnc =
∑2

j=1
πjt(θ

j −Et[θ])
2 = π1t(1−π1t)(θ

1 − θ2)2. We note that because

in the data we regress only on the quantity π1t(1 − π1t), the slope coefficient also includes (θ1 − θ2)2, and
thus regression coefficients in data and model are not directly comparable.
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actually have empirical counterparts in the SPF data. The model suggests that expected

inflation should be negatively related to stock ATMIV, although only mildly. Indeed, the SPF

data show that there is only a marginally significant relation between these two variables.

Interestingly, in the model inflation uncertainty, which is defined analogously as economic

uncertainty, is not a significant explanatory variable for stock ATMIV. We find the same

result using option data and SPF probabilities.20

Given that since the turn of the millennium, deflation fears have resurfaced and indeed

led the Federal Reserve to slash rates in the aftermath of the 2001 and 2008 recessions, it is

interesting to check how beliefs of deflation correlate with stock ATMIV, both in the model

and in the data. In the last row of Panel A we perform such test. We find that the model

ATMIV is positively related to the probability of a deflationary regime (regime 6), with a

strong slope coefficient and R2 = 23%. A similar result occurs in the data. In this case,

we proxy for the probability of deflation as the SPF beliefs of very low inflation (see Panel

D in Figure 6), and we find a positive and significant slope coefficient (t-stat = 2.89) with

R2 = 13%. That is, fears of deflation seem to have contributed to the increase in implied

volatility over the option sample, as the model predicts.

5.2.2. The OTM Put-to-Call Implied Volatility Index and Beliefs

Panel B of Table 4 investigates the relation between the put-to-call OTM implied volatility

ratio (P/C) and beliefs. The fitted model shows that P/C should be negatively related to the

probability of recession (R2 = 27%), to economic uncertainty (R2 = 23%), to the probability

of deflation (R2 = 26%). Exactly the same results are observable in the data, as ProbRecess,

EconUnc, and ProbDef are all significant (t-stats from -2.14 to -3.42), with the expected

sign, and with R2’s ranging from 14% (ProbRecess) to 16% (EconUnc). Instead, ExpInf

and UncInf are not significant.

Moreover, the model also predicts that P/C should be negative related to stock ATMIV

(R2 = 62%), and indeed, the same relation holds in the data (R2 = 36%), as we would expect

from Figure 1. This matching of the inverse variation of ATMIV and P/C in the model is

important, as recall that ATMIV and P/C in the model are only driven by beliefs πt, which

themselves are mostly driven by fundamental shocks. This empirical finding is consistent

with the intuition provided in the simple three-regime model in Section 2.7. and the related

20Specifically, we compute InfUnc =
∑J

j=1
pSPF

jt (Ij − Et[I])
2 where pSPF

jt is the SPF probability that
inflation will be in the unit interval centered at Ij . We compute the probabilities on unit intervals by
interpolating the SPF inflation probabilities, as discussed in the David and Veronesi (2013).
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Figure 3.

5.2.3. Bonds’ ATMIV and Beliefs

Finally, Panel C considers the relation between the bonds ATMIV index and beliefs. The

model predicts that ATMIV should be positively related to the recession probability, eco-

nomic uncertainty, inflation uncertainty, and the probability of deflation. The data confirm

that all of these four belief-related quantities are in fact significant regressors in the data,

with t-stats ranging between 1.97 (ProbDef) and 3.41 (ProbRecess), and R2 between 4%

(UncInf) and 21% (ProbRecess). The model also predicts a positive relation between bond

implied volatility and stock implied volatility (R2 = 32%), which is in fact verified in the

data (t-stat = 3.94 and R2 = 26%).

Overall, this section provides strong evidence that beliefs’ dynamics about the economy

and the inflation affect option prices. Because under the forward looking Taylor rule, beliefs

enter into the determination of the short-term interest rate, the evidence provided in these

last two sections support the belief-based explanation of the time variation of options and

interest rates.

6. Additional Properties of Options’ Dynamics

In this section we discuss features of observed option prices that are not directly fitted by

our empirical methodology. The ability of our model to replicate these additional features

provides further support for the economic mechanism that determines option prices in our

model. Moreover, we see that beliefs dynamics enter as an important explanatory variable,

as predicted by the model.

6.1. The Volatility of ATM Implied Volatility

In the previous section we saw that our model ATMIV was able to explain about 37 percent

of the variation in the data ATMIV. In the model, the implied volatility is to a large part

determined by the endogenous volatility of stock prices, which increases during periods

of greater investor and central bank uncertainty. Looking again at Panel A of Figure 1,

we see that during episodes of high volatility around the three NBER dated recessions in
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the options subsample, ATMIV also fluctuated by large amounts. The positive relation

between volatility and the volatility of volatility is noted in Jones (2003) who further notes

that it cannot arise in the Heston (1993) stochastic volatility model, which has been the

workhorse of the option pricing literature. To obtain the level dependence of volatility,

Jones (2003) proposes a generalization of the Constant Elasticity of Variance (CEV) model

of Chan, Karolyi, Longstaff, and Sanders (1992). One drawback of the volatility processes

in such models is that they do not satisfy global growth and Lipschitz conditions, which

are commonly used sufficient conditions for a number of important results. In contrast,

our model, which satisfies these two regularity conditions (see Proposition 4), is able to

provide an economic explanation of the positive relation between volatility and the volatility

of volatility.

Indeed, the top panels of Figure 9 show the scatter plots of implied volatility and absolute

changes in implied volatility for the data and model series. Both show a positive association

of similar magnitude between these variables with correlations of 38 percent and 48 percent,

respectively, and these correlations are statistically significant. The economic explanation

offered from the model can be readily seen in expression (11). In particular, the Bayesian

learning mechanism that drives volatility in our model implies that investors revise their

beliefs faster during periods of high uncertainty as they have low confidence in their estimates

of the current regime of the fundamentals.

If the mechanism implied by the model is correct, we should see a similar positive associ-

ation between the volatility of return volatility and absolute changes in the implied volatility.

We construct a time series of the model’s volatility-of-volatility (VV) using expression (23)

and evaluate it at each date using the filtered beliefs in Figure 5. The scatter plot of absolute

changes in implied volatility (data and model) with this VV series are shown in the bottom

panels. As seen, the model volatility of volatility is highly correlated with both the data and

model absolute changes in implied volatility with correlations of 33 and 36 percent respec-

tively. Note that the model series measures the ex-ante volatility of volatility at each date

and is compared to the ex-post realized absolute changes in ATMIV and our model predicts

a positive but not one-to-one association between these variables. This is highlighted by the

fact that the correlation between these variables is only about 36 percent correlation even

when both variables are generated by our model.

Additional supporting evidence in favor of our learning mechanism comes from performing

the same exercise but for bond volatility. Figure 10 shows the scatter plots of bonds’ implied

volatility and absolute changes in implied volatility for the data and model series. Once
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again, we see that the model and the data behave similarly, with correlations of 39 and 35

percent, respectively. In addition, the bottom panels show that, as for stocks, the model-

based volatility of bond return volatility and the absolute changes in volatility are positively

correlated, with correlations of 26 and 39 percent in the data and the model, respectively.

Finally, to provide further evidence on the beliefs-based explanation of the time varying

volatility of volatility, Table 5 reports results from the regression

|∆ATMIV (t + 1)| = α + βXt + εt+1 (28)

where |∆ATMIV (t + 1)| is the absolute changes in ATMIV for both stocks (Panel A) and

bonds (Panel B), and Xt are the beliefs-based explanatory variables already used in Table

4. Again, as in this latter table, the first five columns are results from the fitted model for

which beliefs variation is the only driver of implied volatility and absolute changes in implied

volatility, while the second five columns are the results in the data, where beliefs use the

Survey of Professional Forecasters probabilities.

Panel A of Table 5 shows that both in the model and in the data, the recession probability

and economic uncertainty are both important drivers of the absolute changes in volatility.

In all cases, the slope coefficient is strongly significant, and the R2 are high, in the 30 - 35%

range for the model, and 12-16% range for the data. Interestingly, expected inflation and

inflation uncertainty are not significant drivers of the absolute changes in volatility in either

the model or the data. Finally, the probability of deflation, ProbDef, is significant for both

model and data.

Panel B shows similar results for the absolute changes in ATMIV for Treasury bonds.

Consistently with the Bayesian learning story, we find that absolute changes in ATMIV is

positively related to the recession probability and economic uncertainty, both in the model

and in the data, with strong t-statistics and high R2. In the model, higher expected inflation

implies a lower volatility of volatility, although such evidence is not present in the data. Like

before, inflation uncertainty is not significant for either the model or the data. However, we

find that the probability of a deflationary state is strongly significant explanatory variable

of the absolute changes in volatility, while it is not as strong in the data. While the sign of

the regression is correct, the coefficient is insignificant.

In sum, the evidence from this section provides strong support for the learning-based

mechanism proposed in this paper as to the dynamics of option prices.
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6.2. The Implied Volatility Premium

In this last section we investigate the model’s implication for the dynamics of the implied

volatility premium, for both stocks and bonds. The implied volatility premium is an ex-

ante measure of the market volatility forecast of investors’ priced into options relative to a

volatility forecast under the objective (P ) measure see, and it has attracted much attention

in the literature lately (see e.g. Bollerslev, Tauchen, and Zhou (2009), Drechsler (2008),

Drechsler and Yaron (2010), and Mueller, Vedolin, and Yen (2013)). Our fitted model also

provides predictions about the relation between the implied volatility premium (IVP) and

beliefs, which we can test in the data.

More formally, we define the implied volatility premium as

IVP(t) = ATMIV(t, t + τ ) − Et [VOL(t, t + τ )]

where now we emphasize the maturity of the options underlying the ATMIV, and VOL(t, t+

τ ) is the realized return volatility during the life of the option. As in Drechsler and Yaron

(2010) we use ATMIV(t, t + τ ) as an information variable to compute the expectation, con-

trolling for lagged realized volatility, that is, we use the projection:

Et [V OL(t, t + τ )] = β0 + β1 ATMIV(t, t + τ ) + β2 V OL(t − τ, t)

Given our use of three month options, we thus regress realized volatility during the quarter

(t, t + τ ) on the implied volatility ATMIV (t, t + τ ) and lagged realized volatility. While

for bonds, lagged volatility is significant, for stocks lagged volatility is not significant (t-stat

close to zero) and so we omit it in the forecasting regression. We thus obtain the forecasting

regressions:

VOLS(t, t + τ ) = −1.66 + 0.92ATMIVS(t, t + τ ) R̄2 = 66.0%

[−9.70] [6.73]

VOLB(t, t + τ ) = 1.46 + 0.35ATMIVB(t, t + τ ) + 0.43VolB(t − τ, t); R̄2 = 38.50%

[2.11] [2.51] [4.13]

The result for stocks are consistent with Drechsler and Yaron (2010), who also find high

R2 using similar regressions. The R2 for bond return volatility is not as high, but we verified

that adding lags of predicting variables does not improve the forecasting power.

We similarly construct a model based IVP series by taking the difference between the

model implied volatility and the model forecast of volatility under the P-measure using

simulation methods as described in equation (52) in Appendix 2.

33



To check whether the model captures the variation of the IVP, we first regress the IVP

from the data on the IVP from the model, through a contemporaneous regression.

Stocks : IVPData
S (t) = 3.45 + 0.29 IVPModel

S (t); R̄2 = 13.77%

[20.91] [2.14]

Bonds : IVPData
B (t) = 0.11 + 0.23 IVPModel

B (t); R̄2 = 4.58%

[1.05] [1.88]

The regression slope for stock IVP is significant, with a reasonable R2. Given that the

model IVP is only driven by beliefs (and hence fundamental shocks), it is reassuring that

the model is capturing some of the time variation in the true IVP. However, the regression

coefficients suggest that the model’s stock IVP is too small compared to the data. Indeed,

the average model IVP for stocks is negative 1.04%, against a positive 3.16% in the data.21.

The slope coefficient for the bond IVP is only marginally significant, and the R2 is small. In

terms of magnitudes, though, the model bond IVP averages to 0.17% which is very close to

its counterpart in the data of 0.15%.

Recalling that our estimation methodology does not target the level of the IVP as one of

the moments, it may not be too surprising that we fail to exactly match the level of stock

IVP. However, our model suggests some specific predictions on the relation between IVP and

beliefs, which we can test in the data. Table 6 reports the results of the regression:

IV P (t + 1) = α + βXt + εt (29)

for both stocks (Panel A) and bonds (Panel B), where the explanatory variables Xt are the

beliefs-based variables already used in Tables 4 and 5. Again, as in previous tables, the

first five columns are the results from the fitted model for which beliefs variation is the only

driver of IVP, while the second five columns are the results in the data, where we proxy for

beliefs by using the Survey of Professional Forecasters probabilities.

Turning to Panel A, the model shows that stock’s IVP should be positively related to the

probability of a recession ProbRecess, inflation uncertainty UncInf , and the probability of

deflation ProbDef . The data show that both probability of a recession and the probability

of deflation are significant predictors of stock IVP, with R2 of ProbRec of 32%. Instead,

inflation uncertainty is not significant in the data, but economic uncertainty EconUnc is

21The variance risk premium, defined as the difference between expected variance under Q and P, is
positive in our model. It appears that ATMIV does not capture well the tails of the risk neutral distribution
due to the large risk neutral jump sizes.
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significant (t-stat = 3.02 and R2 = 23%). Looking at bond’s IVP in Panel B, we see that

the model again predicts that bond IVP should be positively related to the probability

of a recession, economic and inflation uncertainty, and the deflation probability. Of these

predictions, the data only support inflation uncertainty as a driver of bond’s IVP. In addition,

in the data, expected inflation is also significant (higher inflation leads to a higher IVP), as

is the probability of deflation, the latter though with the opposite sign compared to the

model’s prediction.

Overall, while we find mixed evidence on the model’s predictions of the dynamics of bond

IVP, we do find quite strong evidence on the model’s predictions of the dynamics of stock

IVP and, especially, its relation to beliefs.

7. Conclusions

Option prices provide key forward looking information on investors’ expectations, and mar-

ket attention is often focused on two uncertainty measures from options, the at-the-money

implied volatility (ATMIV) and the ratio of implied volatilities of out-of-the-money puts and

calls (P/C). The former is measure of market turbulence, while the latter is a measure of

downside risk. We show that both measures are empirically relevant for monetary policy,

but in opposite direction: a positive shock to equity ATMIV leads to a decline in future

rates, while the opposite is true for a positive shock to P/C.

We provide a model in which stock, bond, and option prices, are functions of investors’ be-

liefs of the composite regimes of macroeconomic and policy fundamentals through a forward-

looking Taylor rule. The model is able to shed light on the counter-cyclicality of the stock

and bond ATMIV and pro-cyclicality of the P/C index. In addition, the model shows why

shocks to stock ATMIV tend to be followed by an expansionary monetary policy with lower

future rates, while positive shocks to the downside risk (P/C) index tend to be followed by

an increase in interest rates.

The fitted model produces numerous predictions about the relation between option prices

and beliefs, that we test using the Survey of Professional Forecasters. Differently from

previous literature, we do not consider dispersion of beliefs, but rather actual forecasters

average beliefs about future economic growth and inflation. The model’s predictions that

stocks and bonds ATMIV indices should be positively related to beliefs about recession,

economic uncertainty, and the probability of a deflationary regime, are strongly supported
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in the data. In addition, our model predicts that the down-side risk P/C measure should be

negatively related to such variables, and we find so in the data.

Moreover, our model produces also predictions for quantities that we did not use in the

estimation of the model, such as the variation in volatility of implied volatility and the im-

plied volatility premium. In particular, we show our model is able to explain the positive

correlation between ATMIV and absolute changes in ATMIV (a feature that is not consis-

tent with standard option pricing models), both for stocks and bonds, as well as the time

variation in the implied volatility premium. More importantly, our model also provides addi-

tional predictions about the relation between such quantities and beliefs. Using again beliefs

extracted from the Survey of Professional Forecasters we show that such predictions are sup-

ported in the data. This evidence provides additional support for the learning mechanism

proposed in the paper.

Our reduced form model for equilibrium fundamental processes suggests some further

support for the Taylor type rules, but also some additional factors to be worked on in future

macro research such as the direct impact of uncertainty on interest rates and the role of

money in monetary policy, which has been conspicuously absent in recent modeling. Indeed,

the further understanding of the potential feedback relation between asset prices and the

behavior of the central bank seem also a fruitful and important area of future research.
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Appendix 1

For proving Proposition 1 we will need the following lemma.

Lemma 2 Given the process of earnings in (3) and the SPD in (8), over a small interval of time

∆ we have

E

[
Mt+∆Et+∆

MtXt
|νt = νi

]
= e[θi−φi−σM σ′

E+κ(ξ3−ξ1−ξ2)]∆ + o(∆),

where ξ3 = eµ1+µ2+0.5 (σ1+σ2)2 − 1.

Proof. From (3) and (8) we have

Es

Et
= exp



∫ s

t
θs − κξ1 − 0.5 σEσ

′
Edu+ σE(Ws −Wt) +

Ls∑

j=Lt+1

Y1j




Ms

Mt
= exp



∫ s

t
−φs − κξ2 − 0.5 σMσ

′
Mdu− σM(Ws −Wt) +

Ls∑

j=Lt+1

Y2j


 .

Multiplying the two equations we have

EsMs

EtMt
= exp

(∫ s

t
[θs − φs − σEσ

′
M − κ(ξ1 + ξ2) − 0.5 (σEσ

′
E + σMσ′M)]du+ (σE − σM)(Ws −Wt)

)

× exp




Ls∑

j=Lt+1

Y1j + Y2j


 .

Now for a small interval of time ∆ and the fact that jumps in the drift processes and Lt are
independent of each other and each occurs with probability of order O(∆), we have

E[
Et+∆Mt+∆

EtMt
|νt = νi] = e[θi−φi−σEσ′

M
−κ(ξ1+ξ2)]∆ · E

[
e

PLt+∆
j=Lt+1

Y1j+Y2j

]

= [1 + (θi − φi − σEσ
′
M − κ(ξ1 + ξ2))∆][1− κ∆ + κ∆(1 + ξ3)] + o(∆)

= 1 + [θi − φi − σEσ
′
M + κ(ξ3 − (ξ1 + ξ2))]∆ + o(∆)

= e[θi−φi−σM σ′

E+κ(ξ3−ξ1−ξ2)]∆ + o(∆),

as claimed. Note in the first equality above we have used the independence property of the drift
process and the jump process, while in the second we have used the definition of ex = 1+x+x2/2! · · ·.
�

Proof of Proposition 1: The price-dividend ratio at time t satisfies

Pt

Dt
= E

[∫ ∞

t

MsDs

MtDt
ds|Ft

]
= E

[∫ ∞

t

MsEs

MtEt
ds|Ft

]

=

N∑

i=1

πitE

[∫ ∞

t

MsEs

MtEt
ds|νt = νi

]
≡

N∑

i=1

πitVit.

37



Let θ̂i = θi −φi −σMσ′E +κ(ξ3 − ξ1 − ξ2). Using Lemma 2 to evaluate the expectations over a time
interval ∆, we have

Vi,t = E

[∫ t+∆

t

MsEs

MtEt
ds|νt = νi

]
+ E

[
Mt+∆ Et+∆

Mt Et

∫ ∞

t+∆

MsEs

Mt+∆Et+∆
ds|νt = νi

]

=

∫ t+∆

t
eθ̂ids + eθ̂i∆E

[∫ ∞

t+∆

MsEs

Mt+∆Et+∆
ds|νt = νi

]

=
eθ̂i∆ − 1

θ̂i
+ eθ̂i∆


(1 + λii∆)Vi,t+∆ +

∑

j 6=i

λij∆Vj,t+∆


 .

Since Vi,t is time homogeneous, we have Vi,t = Vi,t+∆ = Vi. Now collecting terms and taking the
limit as ∆ → 0, we get

Vi
1− eθ̂i∆

∆
=

eθ̂i∆−1

θ̂i∆
+ eθ̂i∆


λiiVi +

∑

j 6=i

λijVj




−θ̂iVi = 1 +


λiiVi +

∑

j 6=i

λijVj


 .

In vector form we can write this equality as
(
Diag(−θ̂) − Λ

)
V = 1N ,

whose solution is V = A−1 · 1N . Finally, defining by c = D/E a constant dividend payout ratio,
the P/E ratio is mechanically given by P/E = c P/D

∑n
i=1 Vi πit. Thus, C = c V = c A−1 · 1N

as in the statement of the proposition. �

For proving Proposition 3 we will use the algebraic result stated in the following lemma.

Lemma 3

∂θ
◦

∂πi
=
Ci

(
θi − θ

◦
)

(∑
j πjCj

) .

Proof of Lemma 3:

∂θ
◦

∂πi
=

∂
(P

j πjCjθj
P

j πjCj

)

∂πi
=
Ciθi

(∑
j πjCj

)
−Ci

(∑
j πjCjθj

)

(∑
j πjCj

)2

=
Ciθi(∑
j πjCj

) −
Ci

(∑
j πjCjθj

)

(∑
j πjCj

)2 =
Ciθi(∑
j πjCj

) − Ciθ
◦

(∑
j πjCj

)

=
Ci

(
θi − θ

◦
)

(∑
j πjCj

) ,
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which completes the proof. �

Proof of Proposition 3: Let the second term in the variance equation be V2 = (ν̄◦−ν̄)′(ΣΣ′)−1(ν̄◦−
ν̄). Then, using Lemma 3 on each element of the drift vector ν we have

∂V2

∂πi
= 2

[
Ci(νi − ν◦)∑

j πjCj
− νi

]′
(ΣΣ′)−1(ν̄◦ − ν̄).

Then, using the volatilities of the beliefs process in equation (12), we have dV2 = µV,2dt + σV,2,
where

σV,2 =
∑

i

∂V2

∂πi
σi

= 2
∑

i

πi

[
Ci(νi − ν◦)∑

j πj Cj
− νi

]′
(ΣΣ′)−1(ν̄◦ − ν̄)(νi − ν̄)′ Σ

′−1

= 2
∑

i

[π◦i (νi − ν◦) − πiνi]
′(ΣΣ′)−1(ν̄◦ − ν̄)(νi − ν̄)′ Σ

′−1
.

Similarly, let the third term in the variance equation be V3 = 2 [(θ
◦ − θ) + (β

◦ − β)]. Then we have

dV3 = µV,3dt+ σV,3, where

σV,3 =
∑

i

∂V3

∂πi
σi = 2

∑

i

∂[(θ
◦ − θ) + (β

◦ − β)]

∂πi
σi

= 2
∑

i

πi

([
Ci(θi − θ

◦
)∑

j πjCj
− θi

]
+

[
Ci(βi − β

◦
)∑

j πjCj
− βi

])
(νi − ν̄)′Σ

′−1

= 2
[
(σ◦θν

− σθν
)′ + (σ◦βν

− σβν
)′
]

Σ
′−1

,

where the second equality follows from Lemma 3, the third the definition of π◦i , and the fourth
from the fact that ∑

j

π◦j (θj − θ
◦
)(βj − β) =

∑

j

π◦j θjβj − θ
◦
β
◦

= σ◦θβ ,

and analogous terms for the other elements of ν. Now summing σV,2 and σV,3 provides the statement

of (b). �

Proof of Proposition 4 Since ||σn(π)|| in (18) is a continuous function of π on the N dimensional
simplex, which is a compact set, it has a maximum and minimum, which we denote by ||σ̄n|| and

||σn||. Therefore, ||S1σ
n(π1)−S2σ

n(π2)|| ≤ (||σ̄n||−||σn||) · |S1−S2| so that the Lipschitz condition
is satisfied for the stock price. Similarly, ||S σn(π)||2 ≤ ||σ̄n||2 S2 < (1 + ||σ̄n||2 S2), so that the

growth condition holds as well. Similarly the norm of the volatility of beliefs in (12) is bounded by
||σ̄i|| and ||σi|| and both conditions hold for the beliefs processes, which completes the proof. �

Proof of Proposition 5: The change of measure with respect to the Brownian motions in the

context of the filtering setup has been derived in David (2008). For brevity, we only provide the
proof of the change of measure for the jump component.
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κE[
M+ −M

M

S+ − S

S
|Ft] = κ

∫ ∞

−∞

∫ ∞

−∞

eY1eY2f(Y1, Y2)dY2dY1

= κ

∫ ∞

−∞

eY1f(Y1)

∫ ∞

−∞

eY2f(Y2|Y1)dY2dY1

= κ

∫ ∞

−∞

eY1e
µ2+

σ2
σ1

(Y1−µ1)
f(Y1)dY1

= κe
µ2−

σ2
σ1

µ1e
µ1(1+

σ2
σ1

)+0.5(1+
σ2
σ1

)2σ2
1

= κeµ2+.5σ2
2eµ1+σ1σ2+0.5σ2

1

= κ∗E∗[eY1 ].

In the above, the second equality arises from the definition of a conditional expectation, the third
because the two jump processes are perfectly correlated, and the fourth from the moment generating

function of a normal distribution. �

Appendix 2

1. SMM Estimation of the Regime Switching Jump-Diffusion Model

We start by providing here the details of the SMM estimation procedure, which is used to
estimate the model. The procedure uses the SML methodology of Brandt and Santa-Clara (2002),

which has already been extended to learning framework in the pure diffusion setting in David
(2008). We provide here the extension to the case of observable jumps in the fundamental processes.

Piazzesi (2005) has extended the procedure to a setting with jump-diffusions.

Using the definition of the inferred shocks (13) we can write the variables observed by the

econometrician in (10) as perceived by the investors as dYt

Yt
= %(πt)dt + Σ4 dWt + J4tdLt. Similarly

the pricing kernel in (8) under investors’ filtration can be written as dMt/Mt = (−φ̄(πt)−κξ2)dt−
σM dW̃t − (eY2t − 1)dLt, where the real rate in the economy, φ̄(πt), is the expected value of φt in
(6) conditional on investors’ filtration. Since fundamentals are stationary in growth rates, we start

by defining logs of variables: yt = log(Yt), and mt = log(Mt). Using these characterizations we can
write

dyt = (%̄(πt) −
1

2
diag(Σ4Σ

′
4))dt+ Σ4 dW̃t + J4tdLt, (30)

dmt = (−φ̄(πt) − κξ2 −
1

2
σMσ

′
M )dt − σM dW̃t + Y2dLt, (31)

where diag(x) is a column vector composed of the diagonal elements of a square matrix x. It is im-
mediate that investors’ beliefs πt completely capture the state of the system (yt, mt) for forecasting
future growth rates. The specification of the system is completed with the belief dynamics in (11).

The econometrician has data series {yt1, yt2, · · · , ytK}. Let Ψ be the set of parameters of the
model. Let

L(Ψ) ≡ p(yt1, · · · , ytK ; Ψ) = p(πt0; Ψ)

K∏

k=1

p(ytk+1
− ytk , tk+1|πtk, tk; Ψ),
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where p(ytk+1
−ytk , tk+1|πtk, tk; Ψ) is the marginal density of fundamentals at time tk+1 conditional

on investors’ beliefs at time tk. Since {πtk} for k = 1, · · · , K is not observed by the econometrician,

we maximize

E[L(Ψ)] =

∫
· · ·
∫

L(Ψ)f(πt1, πt2, · · · , πtK)dπt1, dπt2, · · · , dπtK , (32)

where the expectation is over all sample paths for the fundamentals, ỹt, such that ỹtk = ytk ,
k = 1, · · · , K. In general, along each path, the sequence of beliefs {πtk} will be different.

As a first step, we need to calculate p(ytk+1
− ytk , tk+1|πtk , tk; Ψ). Following Brandt and Santa-

Clara (2002), we simulate paths of the state variables over smaller discrete units of time using the
Euler discretization scheme (see also Kloeden and Platen (1992)):

ỹt+h − ỹt = (%̄(πt) −
1

2
(σQσ

′
Q, σEσ

′
E)′) h+ Σ2

√
hε̃2t + 1ũt<κhε̃2t, (33)

mt+h −mt = (−φ̄(πt) − κζ2 −
1

2
σM σ′M ) h− σM

√
hε̃1t + 1ũ<κhε̃2t, (34)

πt+h − πt = µ(πt) h+ σ(πt)
√
hε̃1t, (35)

where ε̃1t and ε̃2t are 5- and 1- dimensional standard normal variables, respectively, ũt is uniformly

distributed, and h = 1/M is the discretization interval. The Euler scheme implies that the marginal
conditional density of the 4 × 1 fundamental growth vector yt over h is 4-dimensional normal.

We approximate p(·|·) with the density pM(·|·), which obtains when the state variables are
discretized over M subintervals. Since the drift and volatility coefficients of the state variables in

(11), and (30) to (31) are infinitely differentiable, and ΣΣ′ is positive definite, Lemma 1 in Brandt
and Santa-Clara (2002) implies that pM(·|·) → p(·|·) as M → ∞. First consider the case where
earnings are observed quarterly. The Chapman-Kolmogorov equation implies that the density over

the interval (tk, tk+1) with M subintervals satisfies

pM(ytk+1
−ytk , tk+1|πtk , tk; Ψ) =

∫ ∫
φ
(
ytk+1

− y; Ψ
)
×pM (y − ytk , π,m, tk + (M − 1)h|πtk, tk) dπ dy,

(36)
where φ(y;ψ), denotes the mixture-of-normals density given as:

φ(y;ψ) = N (%(πt)h,Σ4Σ
′
4h) with probability κh, (37)

= N (%(πt)h+ (0, 1, 0, 0)′µ1,Σ4Σ
′
4h + i2σ

2
1) with probability 1 − κh, (38)

where i2 is the 4 × 4 square matrix with zero in all elements except the (2, 2) element, which is
1. Now pM (·|·) can be approximated by simulating L paths of the state variables in the interval

(tk, tk + (M − 1)h) and computing the average

p̂M

(
ytk+1

− ytk , tk+1|πtk, tk; Ψ
)

=
1

L

L∑

l=1

φ
(
ytk+1

− y(l); Ψ
)
. (39)

The Strong Law of Large Numbers (SLLN) implies that p̂M → pM as L→ ∞.

To compute the expectation in (32), we simulate S paths of the system (33) to (35) “through”
the full time series of fundamentals. Each path is started with an initial belief, πt0 = π∗, the

stationary beliefs implied by the generator matrix Λ. In each time interval (tk, tk+1) we simulate

(M-1) successive values of ỹ
(s)
t using the discrete scheme in (33), and set ỹ

(s)
tk

= ytk . The results
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in the paper use M = 90 for quarterly data, so that shocks are approximated at roughly a daily
frequency. The pricing kernel and beliefs along the entire path of the sth simulation are obtained

by iterating on (34) and (35). We approximate the expected likelihood as

L̂(S)(Ψ) =
1

S

S∑

s=1

K−1∏

k=0

p̂M (y
(s)
tk+1

− y
(s)
tk
, tk+1|π(s)

tk
, tk; Ψ), (40)

where p̂M (·|·) is the density approximated in (39). The SLLN implies that L̂(S)(Ψ) → E[L(Ψ)]

as S → ∞. We often report π̄tk = 1/S
∑S

s=1 π
(s)
tk
, which is the econometrician’s expectation of

investors’ belief at tk.

So far above we assumed that quarterly earnings growth is observed. In fact, S&P provides the
four quarter moving average of earnings, and hence the observed vector contains the growth rate

of four-quarter moving average of earnings. Our simulated system of observables in (33) instead
computes the quarterly growth rate of all fundamentals when aggregated over all the subintervals.

Let Y c
t denote the vector of all observed variables other than earnings. To deal with the aggregation

of earnings, we instead compute

φ
(
ŷc
tk+1

− yc, êtk+1
− 1/4 (e+ e

(s)
tk

+ e
(s)
tk−1

+ e
(s)
tk−2

)
)
, (41)

where e
(s)
tk

is the model’s simulated quarterly earnings growth rate in the interval ending at time

tk along the s-th sample path in the previous paragraph, and yc denotes the simulated growth rate
for the period ending at tk+1 after (M − 1) subintervals.22

To extract investors’ beliefs from data on price levels and volatilities in addition to fundamentals
we add overidentifying moments to the SML method above. From Proposition 1, we can compute

the time series of model-implied price-earning ratios and bond yields at the discrete data points tk,
k = 1, · · · , K as

P̂/Etk
= C · π̄tk, îtk(τ) = −1

τ
log (B (τ) · π̄tk) .

We note that the constants Cs and the functions B (τ) both depend on the parameters of the
fundamental processes, Ψ. Hence, we let the pricing errors be denoted

ePtk =
(
P̂/Etk

− P/Etk
, îtk (0.25)− itk (0.25) , (̂itk (5) − îtk (1))− (itk (5) − itk (1))

)
.

We similarly formulate the errors from options prices as

eOtk =
(
V̂tk − Vtk, (̂P/C)tk − (P/C)tk

)
,

where V is the ATMIV, and P/C is the put-call ratio as discussed. The model-implied options
prices are calculated using Monte-Carlo simulations as described below.

22We log linearize the model’s growth rate of the moving average. In particular the first order approxima-
tion of the growth rate is

log

[
exp(w + z + y + x) + exp(y + z + w) + exp(z + w) + exp(w)

exp(y + z +w) + exp(z +w) + exp(w) + 1

]
' 1

4
(w + z + y + x).

For the subset of the earnings data, where we have the quarterly growth rates available, the approximation
leads to growth rate very close to the growth rate of the moving average.
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To estimate Ψ from data on fundamentals as well as financial variables, we form the overiden-
tified SMM objective function

c =

(
1

T

T∑

t=1

εt

)′

· Ω−1 ·
(

1

T

T∑

t=1

εt

)
. (42)

The moments used are the scores of the log likelihood function from fundamentals, and the

pricing errors from stock, Treasury bond, and options prices. The number of scores in ∂ log(L̂)
∂Φ (tk)

equals the number of parameters driving the fundamental processes in Ψ. There are seven pricing

errors (stocks’ P/E, short rate, term structure slope, stocks’ ATMIV and P/C, bond’s ATMIV,
and the unconditional Sharpe ratio on stocks, which we set equal to 0.3). The pricing kernel has

seven parameters (two prices or risk, three parameters for the interest rate rule, and two for the
jumps in the kernel), which we collectively call Φ. Finally, we have 14 equality constraints in the

generator matrix, which we discuss below. Overall, the statistic c in (42) has a chi-squared distri-
bution with 14 degrees of freedom. We correct the variance covariance matrix for autocorrelation

and heteroskedasticity using the Newey-West method [see, for example, Hamilton (1994) equation
14.1.19] using a lag length of q = 8.

The asymptotic distribution of the constrained GMM estimator satisfies

√
T (θ̂ − θ0) ∼ N [ 0, B−1/2M B−1/2],

whereM = I−B−1/2 A′ (AB−1 A′)−1AB−1/2, A = ∇θa(θ0), B = G′ Ω−1 G, and G = E[∇θg(zt, θ0)].
a(θ0) is the 2 × k vector of constraints on the parameters, and g(zt, θ0) is the vector of moment

conditions using data point zt. The estimate of G as

GT =

[
1
T

∑T
t=1

∂e′

∂Φ
1
T

∑T
t=1

∂e′

∂Ψ

0 1
T

∑T
t=1

[
∂L1

∂Ψ (t)′ ∂L1

∂Ψ (t)
]
]

(43)

We end the description of our estimation methodology with two important details. First,

for determining the number of specified regimes we do not use likelihood ratio tests, which are
computationally extremely demanding and beyond the scope of this paper (see Garcia (1998)).
Instead, we follow the simpler and more practical methodology of using the overidentified SMM

objective to determine a stopping rule on the number of regimes used in a number of papers
modeling regimes shifts (e.g. Gray (1996), Bansal and Zhou (2002)). Second, to reduce the number

of parameters, we follow a two-step procedure. First we estimate an unrestricted generator matrix
and rank all its elements into 7 bins. All elements in the smallest bin (whose values we estimated

to be below 0.001) were set to zero. Elements in each of the remaining bins were constrained to be
equal in our second step estimation.

2. Options Prices

As for the likelihood function we formulate options prices as expected discounted values of
their terminal payoffs under the risk-neutral measure. Because for Treasury bonds, our options

on futures on the 10-year coupon bond, we need to first obtain the value of a coupon bond, as
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opposed to a zero coupon bond, and then simulate futures on coupon bonds. We use the following
proposition

Proposition A.1 The price of a coupon bond at t with maturity τ paying semi-annual coupons of
0.5 c is given by

B(πt, c, τ) =
N∑

i=1

πitBi(c, τ), (44)

where the N × 1 vector valued function B(c, τ) is

B(c, τ) = 0.5 c

2 τ∑

i=1

B(0.5 i) + B(τ). (45)

Under the risk neutral probabilities, futures are martingales, and therefore, the futures price

with delivery time T of a τ−maturity bond is given by

F (π∗t ) = E
∗
t [B(π∗T , c, τ)] =

n∑

i=1

E
∗
t [π

∗
iT ]Bi(c, τ)

where π∗it follows the risk neutral process described in (24). Unfortunately, the evaluation of E∗
t [π

∗
iT ]

requires either additional MC simulations, or the solution to a non-linear system of equations. Given

the short-maturity of the options (three months) compared to the maturity of the bonds (10 years),
and the fact that we only need the volatility of futures for simulation, as futures are martingales, we
approximate such futures volatility with the risk neutral volatility of the coupon bonds themselves,

i.e. with

σB(c, π∗t ) =

∑N
i=1 Bi(c, τ) π

∗
it (νi − ν(π∗t ))

′(Σ′)−1

∑N
i=1 Bi(c, τ) π

∗
it

. (46)

Expectations are approximated using Monte Carlo simulation while discretizing the dynamics

of the state variables of our system along the sth sample path under the risk-neutral measure as:

π
∗(s)
t+h − π

∗(s)
t =

(
µ(π

∗(s)
t ) − ϑ(π

∗(s)
t )

)
h+ σ(π

∗(s)
t )

√
hε̃

∗(s)
1t , (47)

P
n∗(s)
t+h = P

n∗(s)
t exp

[(
r(π

∗(s)
t ) − 0.5||σn(π

∗(s)
t )||2 − δ(π

∗(s)
t ) − κ∗ξ∗1

)
h+

+σn(π
∗(s)
t )

√
hε̃

(s)∗
1t + 1ũt<κ∗hε̃

(s)∗
2t

]
, (48)

F
n∗(s)
t+h = F

n∗(s)
t exp

[
−0.5||σB(c, π

∗(s)
t )||2dt+ σB(c, π

∗(s)
t )

√
hε̃

(s)∗
1t

]
, (49)

B
∗(s)
t+h = B

∗(s)
t exp[ −r(π∗(s)t ) h], (50)

where ε̃∗1t and ε̃∗2t are 5- and 1- dimensional standard normal variables, respectively, ũt is uniformly
distributed, and h = 1/M is the discretization interval. On each sample the process for the state

variables is simulated starting with π
∗(s)
t = πt, the assumed beliefs of investors at time t. Then the

value of a European call option at time t when investors have beliefs πt that matures at t + T is

given by

CM ∗(t, T, πt) =
1

S

S∑

s=1

B
∗(s)
t+T max

[
P

n∗(s)
t+T −K, 0

]
.

44



We report option prices for M = 90. To reduce the time of computations we use three variance
reduction techniques: the first two, antithetic and control variate (with Black-Scholes prices), are

well known. In addition, we use the expected martingale simulation technique of Duan et. al. The
volatility forecast under the Q-measure is approximated from the path of forecasted beliefs under

this measure as

σM∗(t, T, πt) =

√√√√√ 1

S

(T−t)M∑

j=1

σn(π
∗(s)
t+j h) σn(π

∗(s)
t+j h)

′
h. (51)

Similarly, using the discretized beliefs processes as in (35), volatility forecasts under the objec-
tive measure are analogously constructed as

σn(t, T, πt) =

√√√√√ 1

S

(T−t)M∑

j=1

σn(π
(s)
t+j h) σn(π

(s)
t+j h)

′
h. (52)
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Table 1: Example with Three Composite Regimes

Regime βi (%) θi (%) ρi (%) (P/E)i φi (%) Bi(10) (×100) yi(10) (%)
i = 1 2.33 5.65 -0.80 15.45 4.33 72.54 3.21
i = 2 -0.04 -5.27 -6.78 12.47 0.12 84.60 1.67
i = 3 2.33 5.65 -6.78 17.46 3.03 78.48 2.42

Notes: The first three columns contain the composite regimes for inflation rate βi, real earning growth θi,
and de-meaned capacity utilization ρi for a simple 3-regime switching model. Conditional P/E ratios (P/E)i,
real rate φi, 10-year bond price Bi(10) and yield yi(10) are computed by using the same parameters as in
Table 2, except for the infinitesimal generator, assume here to be

Λ =




−0.1 0.1 0.0
0.1 −0.2 0.1
0 0.1 −0.1




.
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Table 2: Parameter Estimates

Composite Regimes Conditional P/E and Rates

Infl Earn CapUt Money P/E Conditional Rates (%)
Regime Name # β (%) θ (%) ρ (%) w(%) Ci rn

i yi(1) yi(10)
Regular Boom 1 2.33 5.65 -0.80 -0.57 14.41 4.33 5.04 6.36

(0.03) (3.07) (0.25) (0.14)
Regular Recession 2 6.71 -5.27 -0.80 3.98 9.68 9.70 9.61 8.25

(0.14) (1.45) (0.25) (0.28)
Overheating Boom 3 6.71 5.65 4.66 -0.57 13.69 10.90 10.09 7.49

(0.14) (3.07) (0.17) (0.14)
Stagflation 4 9.87 -5.27 4.66 -5.82 9.41 14.78 13.85 9.54

(0.34) (1.45) (0.17) (2.11)
New Economy Growth 5 2.33 6.73 -0.80 -1.87 33.14 4.33 4.32 4.42

(0.03) (3.23) (0.25) (1.44)
Deflation 6 -0.04 -5.27 -6.75 3.98 9.77 0.12 0.67 3.37

(0.00) (1.45) (0.123) (0.28)
Low Capacity Boom 7 2.33 5.65 -6.75 3.98 14.45 3.03 3.17 4.34

(0.03) (3.07) (0.12) (0.28)
Deep Recession 8 6.71 -5.27 -6.75 -1.87 10.37 8.40 7.90 6.38

(0.14) (1.45) (0.12) (1.44)

Diffusion Matrix(%) Jump (%) Taylor Rule (×100)
Inflation 1.76 0.00 0.00 0.00 0.00 κ 7.53 α0 1.67

(0.01)) – – – – (0.030) (0.06)
Earnings 0.00 7.93 0.00 0.00 0.00 µ1 -6.30 αβ 22.78

– (0.724) – – – (0.044) (0.79)
Kernel 0.00 26.73 46.41 0.00 0.00 σ1 34.77 αρ 21.88

– (1.541) (7.901) – – (0.813) (0.63)
Capacity Utilization 1.86 0.00 0.00 3.31 0.00 µ2 -81.41

(0.06) – – (0.03) – (8.593)
Money 0.00 0.00 0.00 0.00 3.67 σ2 -129.92

– – – – (0.14) (3.502)

Infinitesimal Generator
Regime 1 2 3 4 5 6 7 8 Estimates
1 −∑j λ1j λ4 λ6 0 λ2 λ1 λ3 0 λ1 0.499 (0.094)

2 λ4 −∑j λ2j λ3 λ5 λ1 λ2 0 λ2 λ2 1.636 (0.0531)

3 λ6 λ2 −∑j λ3j λ2 0 λ1 λ3 λ2 λ3 5.656 (0.851)

4 λ4 λ5 λ4 −∑j λ4j 0 0 0 λ2 λ4 9.495 (1.956)

5 λ2 0 0 0 −∑j λ5j λ1 0 0 λ5 10.167 (1.274)

6 λ3 λ3 0 λ2 0 −∑j λ6j λ3 0 λ6 20.439 (23.601)

7 λ4 0 0 0 0 λ3 −∑j λ7j λ3

8 λ4 λ3 λ2 λ2 0 λ3 λ4 −∑j λ8j

Notes: Simulated Methods of Moments (SMM) estimates of the regime-switching model’s parameters. The
methodology combines the scores of the (simulated) likelihood function from fundamentals (inflation, real
earnings, capacity utilization, and money growth) with pricing errors from financial variables (S&P500 index
P/E ratio, 3-months Treasury Rate, Treasury Slope, Stock ATM Implied Volatility, 5% OTM Put-to-Call
Implied Volatility Ratio, and 10-year Treasury Bond Futures ATM Implied Volatility) The last four columns
of top panel also report the conditional P/E ratios and conditional yields across the eight composite regimes.
The data sample is 1962 - 2011, except for options, whose sample is 1988 - 2011. Newey-West adjusted
standard errors are in parenthesis.
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Table 3: Model Fit and Data

α β t(α) t(β) R2

Inflation -2.16 1.68 -3.67 9.68 60.3
Real Earnings -9.20 2.88 -2.89 4.88 17.4
Capacity Utilization -32.34 1.41 -4.19 14.77 85.3
Money Growth 0.71 2.61 1.17 5.87 31.5
P/E Ratio -4.64 1.40 -1.66 7.86 47.5
3-month Treasury Rate -0.19 0.89 -0.17 5.42 45.4
Term Structure Slope 1.15 0.73 8.91 8.86 50.8
Stock Implied Volatility 5.45 0.72 1.59 3.84 37.0
Put-to-Call Ratio 0.37 0.75 2.07 5.13 32.5
Bond Implied Volatility 4.53 0.39 8.05 4.49 30.5

Notes: Results of the regressions

(Fundamentals)t = b0 + b1Et[Fundamentals] + εt

(Financial Variable)
Data
t = b0 + b1 (Financial Variable)

Model
t + εt

where “Fundamentals” is either inflation, real earnings growth, capacity utilization, or money growth, and
financial variables are identified in each row. In these regressions, both expected fundamentals and model-
implied financial variables are conditional on the fitted beliefs. The sample is 1967 - 2011, except for option-
based quantities, whose sample is 1988-2011. All t-statistics are Newey-West adjusted for heteroskedasticity
and autocorrelation using four lags.
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Table 4: Beliefs and Options

Panel A: Stock ATM Implied Volatility
Model Data

α β t(α) t(β) R2 α β t(α) t(β) R2

ProbRecess 16.62 30.56 17.64 3.47 38.12 14.21 27.93 9.30 3.59 32.43
EconUnc 14.76 59.72 14.82 5.11 53.84 11.76 0.60 4.98 3.02 22.69
ExpInf 24.53 -181.60 5.71 -1.51 5.77 24.78 -209.83 7.19 -1.85 6.33
UncInf 17.72 52.37 8.79 0.83 1.34 19.07 1.82 8.21 0.02 0.00
ProbDef 17.93 26.57 17.87 3.58 23.49 16.69 33.77 12.14 2.89 12.51

Panel B: OTM Put-to-Call Implied Volatility Ratio
α β t(α) t(β) R2 α β t(α) t(β) R2

ProbRecess 1.31 -0.45 56.78 -5.03 26.75 1.39 -0.36 39.52 -3.42 13.76
EconUnc 1.32 -0.68 47.76 -3.20 22.56 1.45 -0.01 27.54 -3.09 15.90
ExpInf 1.17 3.28 14.64 1.50 6.13 1.24 3.23 19.66 1.38 3.86
UncInf 1.29 -0.93 30.65 -0.78 1.37 1.36 -2.66 24.96 -0.98 1.14
ProbDef 1.29 -0.49 62.53 -5.41 26.30 1.37 -0.56 40.49 -2.14 8.85
Stock ATMIV 1.53 -0.01 38.39 -7.00 61.69 1.55 -0.01 27.27 -4.59 35.69

Panel C: Bond ATM Implied Volatility
α β t(α) t(β) R2 α β t(α) t(β) R2

ProbRecess 5.35 9.59 15.06 4.49 33.40 6.80 4.66 17.86 3.41 23.08
EconUnc 4.83 17.81 12.40 5.25 42.63 5.66 0.10 10.23 2.57 16.54
ExpInf 4.47 55.21 2.53 1.07 4.75 7.04 -5.38 10.73 -0.30 0.11
UncInf 3.75 90.66 5.86 5.01 35.83 6.54 27.95 13.22 1.21 1.25
ProbDef 5.79 7.60 15.30 5.53 17.11 6.62 3.94 22.47 1.97 4.36
Stock ATMIV 2.51 0.19 2.53 3.83 32.25 4.96 0.10 8.78 3.94 26.44

Notes: The table reports t-statistics and R2 of the regression

(Option Index)t+1 = α+ βXt + εt+1

where “Option Index” is the ATM implied volatility of stocks (Panel A), the put-to-call 5% OTM implied
volatility ration (Panel B), and the ATM implied volatility of options on the 10-year Treasury bond futures.
The independent variable Xt is identified by each row’s name. The first five columns report results for the
fitted model, while the next five columns report results for the data. For the fitted model, ProbRecess is
the probability to be in a recession (probability of Regime 2, 4, 6, 8), EconUnc is economic uncertainty,
computed as the posterior variance of real earnings growth, ExpInf is expected inflation, UncInf is inflation
uncertainty, computed as the posterior variance of inflation drifts, and ProbDef is the probability to be in
the deflationary regime (Regime 6). For the data, ProbRecess is the probability of GDP decline the next
quarter from the Survey of Professional Forecasters (SPF), EconUnc is the economic uncertainty computed
from ProbRec, ExpInf is the consensus forecast from SPF, UncInf is inflation expectation computed as the
conditional variance of next-year inflation obtained from the SPF forecasters’ beliefs, and ProbDef is the
probability of a deflation according to SPF beliefs. The sample is 1988 - 2011. All t-statistics are Newey-West
adjusted for heteroskedasticity and autocorrelation using four lags.
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Table 5: Absolute Changes in ATMIV and Economic Uncertainty

Panel A: Stock Absolute Change in ATM Implied Volatility
Model Data

α β t(α) t(β) R2 α β t(α) t(β) R2

ProbRecess 0.95 13.50 3.98 3.47 0.33 2.05 10.83 3.66 4.50 15.73
EconUnc 0.33 23.64 1.29 3.89 0.38 0.97 0.24 0.82 2.46 12.08
ExpInf 3.95 -63.77 2.25 -1.21 0.03 5.36 -52.28 3.84 -1.12 1.27
UncInf 1.55 18.81 2.49 0.77 0.01 3.69 19.79 4.03 0.38 0.08
ProbDef 1.53 11.66 4.53 4.36 0.20 3.16 10.94 6.17 2.86 4.24

Panel B: Bond Absolute Change in ATM Implied Volatility
α β t(α) t(β) R2 α β t(α) t(β) R2

ProbRecess 0.55 6.08 7.53 9.05 0.47 0.46 2.33 4.25 4.45 21.56
EconUnc 0.37 9.21 3.50 3.88 0.40 0.24 0.05 1.24 3.09 15.75
ExpInf 2.51 -49.13 3.29 -2.20 0.13 1.04 -6.51 3.45 -0.73 0.58
UncInf 1.01 1.23 5.44 0.15 0.00 0.76 8.27 4.63 0.78 0.41
ProbDef 0.78 5.98 7.01 13.37 0.37 0.71 2.23 5.99 1.41 5.21

Notes: The table reports the results of the regression

(Absolute Change in ATMIV)t+1 = α+ βXt + εt+1

where “Absolute Change in ATMIV” is for stocks (Panel A), and for the 10-year Treasury bonds futures
options (Panel B). The independent variableXt is identified by each row’s name. The first five columns report
results for the fitted model, while the next five columns report results for the data. For the fitted model,
ProbRecess is the probability to be in a recession (probability of Regime 2, 4, 6, 8), EconUnc is economic
uncertainty, computed as the posterior variance of real earnings growth, ExpInf is expected inflation, UncInf
is inflation uncertainty, computed as the posterior variance of inflation drifts, and ProbDef is the probability
to be in the deflationary regime (Regime 6). For the data, ProbRecess is the probability of GDP decline
the next quarter from the Survey of Professional Forecasters (SPF), EconUnc is the economic uncertainty
computed from ProbRec, ExpInf is the consensus forecast from SPF, UncInf is inflation expectation computed
as the conditional variance of next-year inflation obtained from the SPF forecasters’ beliefs, and ProbDef
is the probability of a deflation according to SPF beliefs. The sample is 1988 - 2011. All t-statistics are
Newey-West adjusted for heteroskedasticity and autocorrelation using four lags.
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Table 6: Implied Volatility Premium and Economic Uncertainty

Panel A: Stock Implied Volatility Premium
Model Data

α β t(α) t(β) R2 α β t(α) t(β) R2

ProbRecess -0.01 0.03 -9.39 3.62 23.43 0.03 0.02 22.22 3.59 32.43
EconUnc -0.01 0.03 -7.75 1.52 10.55 0.03 0.001 13.32 3.02 22.69
ExpInf -0.01 0.15 -1.94 0.65 2.61 0.04 -0.17 12.91 -1.85 6.33
UncInf -0.02 0.27 -9.19 4.96 23.32 0.03 0.00 16.70 0.02 0.00
ProbDef -0.01 0.03 -8.97 3.73 19.81 0.03 0.03 26.50 2.89 12.51

Panel B: Bond Implied Volatility Premium
α β t(α) t(β) R2 α β t(α) t(β) R2

ProbRecess 0.00 0.04 -1.68 5.48 48.61 0.00 0.01 0.31 0.71 1.45
EconUnc -0.003 0.07 -5.78 8.07 64.70 0.00 0.0002 -0.29 1.12 2.07
ExpInf 0.00 -0.08 0.89 -0.62 1.05 -0.01 0.38 -4.00 5.93 22.57
UncInf 0.00 0.15 -1.34 2.37 9.96 0.00 0.37 -1.80 4.06 9.29
ProbDef 0.00 0.03 0.43 7.51 23.74 0.00 -0.04 3.12 -3.90 16.44

Notes: The table reports the results of the regression

(Implied Volatility Premium)t+1 = α+ βXt + εt+1

where the “Implied Volatility Premium” (IVP) is for stocks (Panel A), and for the 10-year Treasury bonds

futures options (Panel B). The independent variable Xt is identified by each row’s name. The first five

columns report results for the fitted model, while the next five columns report results for the data. IVP

is the difference between the ATM implied volatility and the forecast of future volatility obtained from

regressing realized volatility on lagged volatility and lagged implied volatility (equations (??) and (??) in

the text). For the fitted model, ProbRecess is the probability to be in a recession (probability of Regime 2, 4,

6, 8), EconUnc is economic uncertainty, computed as the posterior variance of real earnings growth, ExpInf

is expected inflation, UncInf is inflation uncertainty, computed as the posterior variance of inflation drifts,

and ProbDef is the probability to be in the deflationary regime (Regime 6). For the data, ProbRecess is the

probability of GDP decline the next quarter from the Survey of Professional Forecasters (SPF), EconUnc

is the economic uncertainty computed from ProbRec, ExpInf is the consensus forecast from SPF, UncInf

is inflation expectation computed as the conditional variance of next-year inflation obtained from the SPF

forecasters’ beliefs, and ProbDef is the probability of a deflation according to SPF beliefs. The sample is

1988 - 2011. All t-statistics are Newey-West adjusted for heteroskedasticity and autocorrelation using four

lags.

56



57



Figure 1: Option Prices and Impulse Responses
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The left panels A, C, and E plot the time series of the stock at-the-money option implied
volatility (ATMIV), the ratio of implied volatility of out-of-the-money puts over out-of-the-
money calls (P/C), and the 10-year bond future option ATMIV, respectively. In each panel,
the shaded areas correspond to NBER-dated recessions. The right panels B, D, and F plot
the impulse response functions of a shock to, respectively, stock ATMIV, P/C, and bond
ATMIV on the 3-month t-bill rate. The solid line is the impulse response function, and the
dotted line are the 95% confidence interval.
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Figure 2: Option Indices in a Three Regime Example
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This figure shows the ATMIV of bonds and stocks and the stock put-to-call implied volatility
ratio (P/C) for a three regime case. Regime 1 is a regular boom, with regular inflation, high
earnings growth, and average capacity utilization. Regime 2 is a deflationary regime, with
low inflation, negative earnings growth, and low capacity utilization. Regime 3 is similar to
Regime 1, but with low capacity utilization, like Regime 2. In Panels A and C, π3 = 0, and
thus the uncertainty is between a regular boom and deflationary regime. In Panels B and D,
π2 = 0, and thus the uncertainty is between two boom regimes, one with average capacity
utilization and one with low capacity utilization.59



Figure 3: Option versus Interest Rates in a Three Regime Example
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This figure shows scatterplots of stock ATMIV (Panel A), P/C (Panel B) and bond ATMIV
(Panel C), plotted against the short term rate, for the three regime case in Table 1. Each
panel is obtained by computing the respective option index and the short term rate for a large
set of beliefs (π1t, π2t, π3,t) on a grid on the unit simplex, i.e. with πit > 0 and

∑3
j=1 πjt = 1,

and then plot the corresponding scatterplot.

60



Figure 4: Model, Surveys and Fundamentals
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Panel A plots the inflation data, the expected inflation rate from the fitted model, and the
Survey of Professional Forecasters (SPF) consensus forecasts for GDP deflator-based infla-
tion. Panel B plots real earnings data, the expected earnings growth from the fitted model,
and the SPF consensus forecasts of real GDP growth. Panel C plots capacity utilization, the
expected change from the model, and Bloomberg consensus forecasts of capacity utilization
one quarter ahead. Finally, Panel D plots money growth and the model expected money
growth rate. In all panels the solid grey line are the data, the solid black line is the model
expectation, and the dashed line is the survey-based forecasts.
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Figure 5: Composite Regime Probabilities
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Model’s fitted beliefs about each of eight composite regimes from 1967 to 2011. Shaded areas
correspond to NBER-dated recessions. The estimates of the eight composite regimes are in
Table 2.
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Figure 6: Marginal Probabilities: Model vs. Surveys
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Panels A to D: Model’s fitted marginal posterior probabilities about the four possible inflation
regimes (black lines) and professional forecasters’ probability assessments of similar levels of
next-year inflation (grey lines). Panel E: Model’s fitted marginal probability of a recession
(black line) and professional forecasters probability assessment of a GDP decline the following
quarter. Panels F to H: Model’s fitted marginal posterior probabilities about high, medium,
and low capacity utilization (black lines) and Bloomberg-based probability of the same three
high, medium, low level of capacity utilization obtained from the distribution of Bloomberg
forecasts. Shaded vertical bars are the NBER-dated recessions.
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Figure 7: Fitted and Data Series
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Panels A, C, and E plot the realized price/earnings ratio, 3-month T-Bill rate, and the
slope of the term structure (10 year minus 1 year), respectively, and their model-fitted
counterparts, over the sample 1967 - 2011. Panels B, D, and F plot the realized stock ATM
IV, Put-to-Call implied volatility ratio, and 10 Bond futures option ATM IV, respectively,
and their model-fitted counterparts over the option’s sample 1988 - 2011. In all panels, the
solid grey line is the data and the dashed black line is the model’s fitted. Shaded areas
correspond to NBER-dated recessions.
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Figure 8: Impulse Responses: Data vs. Fitted Model
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Data Model 95% C.I.

The left panels A, C, and E report the impulse response function from a shock to stock ATM
IV, P/C ratio, and bond ATM IV, respectively, on the 3-month t-bill rate. The right panels
B, D, and F report the impulse response function from a shock to stock ATM IV, P/C ratio,
and bond ATM IV, respectively, on capacity utilization (CU). In each panel, the solid line
is the impulse response, the dotted lines are the two-sided confidence bands, and the dashed
line is the impulse response function computed on the fitted data.
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Figure 9: Relationship Between Stocks ATM Implied Volatility and Absolute Changes in
ATM Implied Volatility, (1988-2011)
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Data and model ATM implied volatility are shown in panel B of Figure 7. The model
volatility of volatility is computed using (23) and the filtered belief series in Figure 5.
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Figure 10: Relationship Between Bonds ATM Implied Volatility and Absolute Changes in
ATM Implied Volatility, (1988-2011)
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Data and model bond ATM implied volatility are shown in Panel F of Figure 7. The model
volatility of volatility is computed using the analogous formula as in (23) but for bonds, and
the filtered belief series in Figure 5.
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Figure 11: Implied Volatility Premium
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This figure plots the normalized implied volatility premium for stocks (Panel A) and bonds
(Panel B), both in the data and implied from the model. The IVP in the data equals the
ATM implied volatility minus the expected one-quarter ahead volatility obtained from a
regression of realized volatility on lagged volatility and lagged implied volatility. The model
implied volatility premium is computed using the model’s implied volatility and the expected
future volatility conditional on the filtered belief series in Figure 5.
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