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1 Introduction

Numerical methods for solving dynamic economic models differ substantially

in their accuracy and speed. For example, in the comparison studies by Den

Haan (2010), and Kollmann, Maliar, Malin and Pichler (2011) (henceforth,

KMMP), these differences amount to several orders of magnitude. To de-

velop efficient solution methods, we must understand what accounts for the

differences across methods and identify computational techniques that lead

to best results. This is not easy to do because existing solution methods dif-

fer in many dimensions (solution domain, interpolation method, integration

method, iterative procedure, etc.) and contain steps that are not directly

comparable.

In the present paper, we assess computational techniques that are part

of the basis of two broad classes of solution methods, the stochastic simu-

lation and projection.1 The first class approximates solutions on a set of

simulated points using Monte Carlo integration, while the second class ap-

proximates solutions on a fixed grid of points using deterministic numerical

integration. Furthermore, in stochastic simulation methods, the integration

and curve-fitting steps are merged into one by means of regression, whereas in

projection methods, these steps are performed separately. Finally, stochastic

simulation methods are simpler to implement and are relatively less expen-

sive in high-dimensional problems than projection methods, but they are also

less accurate; see Maliar, Maliar and Judd (2011) and KMMP (2011).

We introduce a notion of generalized stochastic simulation algorithm

() that breaks down the fusion of integration and curve-fitting that

is present in the conventional stochastic simulation algorithm. We specifi-

cally allow for the use of deterministic (quadrature and monomial) integra-

tion methods which are characteristic for the projection class of algorithms.

 effectively lies between a pure stochastic simulation and pure projec-

tion algorithms and includes both of these algorithms as limiting cases. By

separating the integration and curve-fitting steps, we are able to decompose

the total solution error into errors associated with integration, curve-fitting

and the choice of a solution domain.

Within our generalized framework, we show that errors associated with

1Examples of stochastic simulation methods are Den Haan and Marcet (1990), Smith

(1991), Maliar and Maliar (2005), Judd, Maliar and Maliar (2010b) (henceforth, JMM),

and examples of projection methods are Judd (1992), Christiano and Fisher (2000),

Krueger and Kubler (2004), and JMM (2010a).
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curve-fitting decrease rapidly with the degree of the approximating polyno-

mial function. Furthermore, errors associated with a stochastically gener-

ated solution domain decrease rapidly with the simulation length. Finally,

the integration errors also decrease with the simulation length but slowly.2

Under the conventional one-node Monte Carlo method, the integration er-

rors are considerably larger than other kinds of errors and restrict the overall

accuracy of solutions. After we substitute the conventional one-node Monte-

Carlo integration method with a one-node Gauss-Hermite quadrature inte-

gration method, the integration errors decrease dramatically. As a result,

 combines high accuracy of projection methods and low cost in high-

dimensional problems of stochastic simulation methods.3

We first test the performance of  on the example of the standard

representative-agent growth model. We find that for a wide range of parame-

ters, replacing conventional one-node Monte Carlo integration with one-node

Gauss-Hermite quadrature integration reduces the solution errors by about

2 − 3 orders of magnitude, while replacing it with several-node quadrature
integration reduces such errors by up to 5 orders of magnitude. For example,

for Monte Carlo integration with with 1, 30 and 3000 nodes, the solution

errors (measured by the size of Euler equation errors on a stochastic simula-

tion) are at most 51 · 10−4, 31 · 10−4 and 12 · 10−5, respectively, while for
quadrature integration with 1, 2 and 10 nodes, the solution errors are at most

63 · 10−7, 17 · 10−9 and 16 · 10−9, respectively. Surprisingly, the quadrature
integration method with just one node leads to more accurate solutions than

a Monte Carlo method with thousands of nodes.

We next study the performance of in the context of a heterogeneous-

agent growth model, namely, we consider a multi-country model with up to

thirty heterogeneous countries. We find that for a second-degree polynomial,

the one-node Gauss-Hermite quadrature integration method produces errors

that are up to two orders of magnitude smaller than those produced by the

conventional one-node Monte Carlo integration method. For example, after

we substitute one-node Monte Carlo integration by one-node quadrature in-

2Galant and Nychka (1987) analyze a relation between the choice of an approximating

polynomial function and the sample size in the context of semi-parametric maximum

likelihood estimation.
3Stochastic simulation algorithms operate on the ergodic set realized in equilibrium.

This allows to avoid costs associated with finding a solution in areas of state space that

are never realized in equilibrium. The higher is the dimensionality of the problem, the

larger is the gain from focusing on the ergodic set; see JMM (2010b) for a discussion.
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tegration, the solution error in a thirty-country model goes down from 5·10−3
to 25 · 10−5.
We finally point out that the use of numerically stable approximation

methods is crucial for the successful performance of . The problem of

recovering policy functions from simulated data is often ill-conditioned, and

standard least-squares methods (such as ordinary least-squares and Gauss-

Newton methods) work only under low-degree polynomial approximations.

JMM (2009, 2010b) describe a variety of approximation methods that can

handle ill-conditioned problems in the context of stochastic simulation al-

gorithms. The numerically stable approximation methods include the least-

squares method based on SVD, Tikhonov regularization, least absolute devia-

tion methods and principal components method. These methods help restore

numerical stability under high-degree polynomial approximations and allow

us to achieve high accuracy of solutions.

The rest of the paper is as follows: In Section 2, we describe the represen-

tative agent model (the heterogeneous agents model is outlined in Appendix

A). In Section 3, we present. In Section 4, we discuss the determinants

of accuracy of . In Section 5, we describe the numerical experiments

performed for both the representative- and heterogeneous-agent models. Fi-

nally, in Section 6, we conclude.

2 The model

We study the standard representative-agent neoclassical stochastic growth

model:

max
{+1}=0∞

0

∞X
=0

 () (1)

s.t.  + +1 = (1− )  +  ()  (2)

ln +1 =  ln  + +1 +1 ∼ N
¡
0 2

¢
 (3)

where initial condition (0 0) is given. Here,  is the operator of condi-

tional expectation; ,  and  are, respectively, consumption, capital and

productivity level;  ∈ (0 1) is the discount factor;  ∈ (0 1] is the deprecia-
tion rate of capital;  ∈ (−1 1) is the autocorrelation coefficient; and  ≥ 0
is the standard deviation. The utility and production functions,  and  , re-

spectively, are assumed to be strictly increasing, continuously differentiable

and concave.
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An interior solution to problem (1) − (3) satisfies the following Euler
equation:

0 () =  {0 (+1) [1− + +1
0 (+1)]}  (4)

where 0 and  0 are the first derivatives of the utility and production func-
tions, respectively. In this paper, we look for a solution to problem (1)− (3)
in the form of capital policy function, +1 =  ( ), satisfying conditions

(2) − (4). To approximate the capital policy function, we use the following
representation of Euler equation (4),

+1 =  [ (  +1)]  (5)

where  (  +1) is given by

 (  +1) ≡ 
0 (+1)
0 ()

[1− + +1
0 (+1)] +1 (6)

with  and +1 being determined by conditions (2) and (3) and by the

capital policy function,  ( ). Condition (5) holds because 
0 () 6= 0

and because +1 is -measurable.
4

3 Generalized stochastic simulation algorithm

We parameterize end-of-period capital, +1, in the left side of the Euler

equation (5) with a flexible functional form,

+1 = Ψ ( ;)  (7)

where  is a vector of coefficients. To find , the generalized stochastic

simulation algorithm () proceeds as follows:

Choose a simulation length,  . Fix initial condition (0 0). Draw a

sequence of productivity shocks, {}=1 . Compute a sequence of produc-
tivity levels, {}=0 , using (3), and fix it for all simulations. For initial
iteration  = 1, fix a vector of coefficients (1).

4In a similar way, one can use Euler equation (4) to express other -measurable variables,

e.g., ln (+1),  and 0 (). JMM (2009) show that the choice of a policy function to

approximate can affect the numerical stability of stochastic simulation methods.
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• Step 1. On iteration , use the assumed policy function Ψ
³
 ;

()
´

in (7) to compute forward the capital path, {+1}=0 , for the given
sequence {}=0 . Calculate the consumption path, {}=0 , from
budget constraint (2).

• Step 2. Approximate conditional expectation (integral) [ (  +1)]

in (5) for  = 0   − 1 as a weighted sum of the integrand, , evalu-
ated in  nodes:

 ≡
X
=1

 (  +1) (8)

where  is defined in (6) and {+1}=1 and {}=1 are

integration nodes and weights, respectively; +1 is given by (7); 
follows directly from (2); and +1 is determined by (2) conditional

on future productivity shock +1 with +1 = 

 exp (+1) and

+2 ≡ Ψ (Ψ ( ;)  

 exp (+1) ;).

• Step 3. Find a vector of coefficients b that minimizes the distance
between  and Ψ ( ;) by running a regression.

• Step 4. Compute the vector of coefficients to be used on the next-
iteration (+1) using fixed-point iteration, namely,

(+1) = (1− )() + b (9)

where  ∈ (0 1) is a damping parameter.

Iterate on Steps 1-4 until convergence is achieved,

1



X
=1

¯̄̄̄
¯()+1 − 

(+1)
+1


()
+1

¯̄̄̄
¯  10− (10)

where
n

()
+1

o
=1

and
n

(+1)
+1

o
=1

are the capital paths obtained

on iterations  and +1, respectively, and parameter   0 determines

the convergence criterion. (Note that convergence of the capital path

implies convergence of the polynomial coefficients, ).
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 is similar to the stochastic simulation algorithm () in JMM

(2009, 2010b) except for the integration procedure in Step 2.  relies on

a specific type of Monte Carlo integration, whereas  can use any inte-

gration methods including those unrelated to the estimated density function.

Formula (8) represents two alternative integration methods, Monte Carlo and

Gauss-Hermite quadrature ones, however other methods can be used as well.

Monte Carlo integration method For each period  and each node ,

an -node Monte Carlo integration method,  (), draws  shocks for

the next period, {+1}=1 , and computes (8) by assigning equal weights
to all nodes, i.e.  = 1 for all  and . We refer to  using the

-node Monte Carlo integration method as  − (). One-node

Monte Carlo integration,  (1), is the conventional integration procedure

used by stochastic simulation methods; see Den Haan and Marcet (1990) and

JMM (2009, 2010b). It approximates the conditional expectation in (5) by

the value of integrand (6) realized in period  + 1, i.e.,  = 1, +11 = +1
and 1 = 1 (this implies that +11 = 


 exp (+1)).

Gauss-Hermite quadrature integration method An -node Gauss-

Hermite quadrature integration method,  (), evaluates (8) using nodes

and weights that are constructed by Gauss-Hermite quadrature integration.

For example, two-node Gauss-Hermite quadrature,  (2), uses +11 = −,
+12 =  and 1 = 2 =

1
2
, and three-node Gauss-Hermite quadrature,

 (3), uses +11 = 0, +12 =
q

3
2
, +13 = −

q
3
2
and 1 =

2
√


3
, 2 =

3 =
√


6
for all ; see Judd (1998 p.261). We refer to  using -node

Gauss-Hermite quadrature integration as −(). A one-node Gauss-
Hermite quadrature integration method,  (1), approximates the conditional

expectation in (5) by the value of integrand (6) under the assumption of zero

shock in period  + 1, i.e.,  = 1, +11 = 0 and 1 = 1 (this implies that

+11 = 

 ).

4 Determinants of accuracy

We now explore factors that determine the accuracy of . First, since

the integration method used in Step 2 is not exact, we have an integration
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error , namely,

 =  [·]−  (11)

where  [·] is a compact notation for the exact conditional expectation in
(5), and  is the approximation given by (8).

Second, since we use a finite-degree polynomial for approximation, there

is an error from omitting high-degree polynomial terms (curve-fitting error).

Let Ψ ( ;) = 
 

 be a complete ordinary polynomial of degree 

composed of +1 terms, where
 =

¡
1   

2
   

2
   




¢ ∈ R1×(+1)
and  = (0  


1   


 )

0 ∈ R(+1)×1. Furthermore, let ∞
 ∞ be an

infinite-degree polynomial, which is equivalent to the true policy function

 ( ). Then, the error from omitting high-degree polynomial terms is

∞−∞− ≡ ∞∞ − (12)

where ∞ ≡ ¡∞
0   ∞

−1
¢0 ∈ R×∞,  ≡ ¡

0  

−1
¢0 ∈ R×(+1),

and  is the initial segment of ∞ = (∞0  
∞
1  )

0 ∈ R∞×1.
If we use an approximating polynomial of an infinite degree, ∞∞, but

our integration method produces errors of type (11), the regression model in

Step 3 is

 = ∞∞ +  (13)

where  ≡ (0 [·]   −1 [·])0 ∈ R×1 and  ≡ (0  −1)0 ∈ R×1. Let us
assume that the coefficients in regression equation (13) are estimated using

the ordinary least-squares (OLS) method,

b∞ = £(∞)0∞¤−1 (∞)0 = ∞ +
£
(∞)0∞¤−1 (∞)0  (14)

where b∞ denotes the OLS estimator of ∞.5 The more accurate is the

integration rule, the smaller is the integration error, , and the closer is b∞
to ∞.
Since, in practice, we use a finite- rather than infinite-degree polynomial,

the regression model in Step 3 is misspecified,

 =  +  (15)

5OLS is used in the discussion of this section for the sake of expository convenience.

In the context of the stochastic simulation class of methods, OLS is numerically unstable.

See JMM (2009, 2010b) for a description of numerically stable approaches that can be

used in the approximation step of a stochastic simulation algorithm.
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where  ≡ (0  −1)
0 ∈ R×1 is an error term. Substituting the true

regression model, (13), into the OLS estimator corresponding to (15) and

using (12), we get

b = £()
0


¤−1
()

0
(∞∞ + ) =

 +
£
()

0


¤−1
()

0
+

£
()

0


¤−1
()

0
∞−∞− (16)

As a result, the OLS estimator, b, contains errors of both types, (11) and
(12). To measure accuracy of a solution, we compute the difference in capital

allocations produced by the true policy function, ∞∞, and our approxi-
mate policy function, b,

 ≡ ∞∞ −b = −− [ −  ]
∞−∞− (17)

where  is a  ×  identity matrix, and  ≡ 
£
()

0


¤−1
()

0
is

a matrix known in econometrics as a projection matrix.

Below, we assess the magnitude of errors of types (11) and (12) in our

model. We do not intend to give formal proofs concerning bounds on the

errors but lay out a series of arguments that helps us expose what we find

later to be quantitatively important.

Integration errors Let us consider an infinitely dimensional polynomial

approximation ∞∞ leading to estimator (14), and let us assume that the
integration error, , is  with zero mean and constant variance, 

2
 (i.e.,

we neglect a bias resulting from omitting the high-degree polynomial terms).

Under these assumptions, we have the standard version of the Central Limit

Theorem, namely, the asymptotic distributions of OLS estimator (14) and

the capital-allocation errors in (17) are given, respectively, by

√

³b − 

´
∼ N

³
0
£
(∞)0∞¤−1 2´  (18)

√
 ∼ N ¡0 ∞2¢  (19)

Thus, a rate of convergence of our approximate solution to the true solution

is
√
 . This means that to increase accuracy of the solution by an order

of magnitude, we must increase the simulation length,  , by two orders of

magnitude.
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Consider the conventional one-node Monte Carlo integration method,

 (1), which approximates the expectation in (5) with the next-period

realization of the integrand, so that the integration error is

 =  [ (  +1)]− (  +1)  (20)

where  (  +1) is given by (6). In a typical real business cycle model,

fluctuations in variables like  (  +1) amount to several percents. If in-

tegration error (20) is on average 1%, (i.e.,  = 001), then regression model

(13) with  = 10 000 observations allows us to approximate the conditional

expectation with accuracy of about 
√
 = 10−4. To achieve accuracy of

10−5, we need to increase the simulation length to  = 1 000 000. Thus,

a very long simulation is needed to approximate the conditional expecta-

tion with a high degree of accuracy if the integration method used is not

sufficiently accurate.6

We now present an integration theorem regarding our second integration

method, the Gauss-Hermite quadrature one; see, e.g., Judd (1998, p. 261).

Theorem 1 Under an-node Gauss-Hermite quadrature integration method,

the integration error is equal to

 =  [ (  +1)]−  =
!
√


2 (2)!

(2)
3 (  )  (21)

where  (  +1) and  are given by (6) and (8), respectively; 
(2)
3 de-

notes a 2-th order partial derivative of  with respect to the third argument;

and  is some real number,  ∈ (−∞∞).

For a function  that is smooth and has little curvature, integration error

 decreases rapidly with the number of quadrature nodes, . This is because

the term
!
√


2(2)!
goes rapidly to zero with . For example, for  equal to 1,

2, 3 and 10, this term is 044, 0037, 00018 and 3 × 10−15, respectively. In
particular, Gauss-Hermite quadrature integration is exact for functions that

are linear in  since for such functions, we have 
(2)
3 (  ) = 0 for all

 ≥ 1.
6The Monte Carlo integration method with  nodes, (), has the convergence

rate of
√
 and has the cost proportional to . Roughly speaking, an increase in the

number of integration nodes from  = 1 to   1 under  () has the same effect on

accuracy and cost as an increase in the simulation length from  to  under (1).
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The properties of the integration errors produced by Gauss-Hermite quadra-

ture are in general unknown. If  has a non-zero expected value, the Central

Limit Theorem does not apply, and b∞ does not converge to ∞ asymptot-

ically. However, provided that the integration errors are very small in size,

our approximation to the conditional expectation will be still very accurate.

Error from omitting high-degree polynomial terms (curve-fitting

error) Suppose now that the only source of errors in (16) and (17) is the

omission of high-degree polynomial terms, ∞−∞− (i.e., we assume that
the integration procedure is exact so that integration errors are absent). Be-

low, we evaluate errors resulting from omitting high-degree polynomial terms

in a one-dimensional case under the Chebyshev polynomial representation;

see Judd (1998, p. 209). Chebyshev polynomial is defined with the following

recursive formula: 0 () = 1, 1 () =  and  () = 2−1 ()−−2 ()
for  ≥ 2.

Theorem 2 Let a function  : [−1 1] → R be  times differentiable and

have a Chebyshev polynomial representation

 () =
1

2
0 +

∞X
=1

 ()  (22)

where {}=0∞ are the Chebyshev polynomial coefficients. Then, there

exists a constant  such that || ≤ 

 ,  ≥ 1.

Thus, the Chebyshev polynomial coefficients decline rapidly with the

polynomial degree  if function  () is sufficiently smooth. Provided that

the coefficients on high-degree polynomial terms are small in size, the er-

ror from omitting such terms, ∞−∞−, is also small in size. Other

polynomial representations (e.g., ordinary polynomials, Hermite polynomi-

als, Legendre polynomials) are linear combinations of Chebyshev polynomials

so that result (22) applies to them as well.

Errors associated with stochastically generated solution domain

In the above discussion, we treated the dependent variables, , in the re-

gression as being exogenous. However, such variables are constructed by

 endogenously as a part of the solution procedure. It might happen

that the simulated points produced by  do not adequately represent

11



the relevant solution domain. First, the simulation length,  , might be not

sufficiently large. Second, the solution might depend on a specific random

sequence of productivity levels, {}=0 . Third, the capital series pro-
duced by our approximate policy function, b, might differ from those

implied by the true policy function, ∞∞. Finally, stochastic simulation
overrepresents the center of the ergodic distribution and underrepresents the

tails of the ergodic distribution. The above factors can be also important for

accuracy of solutions.

5 Numerical experiments

In this section, we discuss the implementation details of  and describe

the results of our numerical experiments. We first study the representative-

agent model of Section 2, and we later extend this model to include hetero-

geneous agents.

5.1 Representative-agent model

We investigate how the simulation length, polynomial degree and integra-

tion method affect accuracy of the  solutions in the context of the

representative-agent model.

5.1.1 Implementation

We assume a constant relative risk aversion (CRRA) utility function,  () =

1−
 −1
1− , with risk-aversion coefficient  ∈ (0∞) and a Cobb-Douglas produc-
tion function,  () =  , with capital share  = 036. We set the discount

factor and depreciation rate at  = 099 and  = 0025, respectively. We

set the damping parameter for fixed-point iteration in (9) at  = 01, and

we set the convergence parameter in (10) at  = 9 (i.e., we target nine-digit

precision).

We implement one- and -node Monte Carlo and quadrature integration

methods as discussed in Section 3. For a detailed description of quadrature

and monomial formulas and examples of their use, see JMM (2010a). Our

regression method in Step 3 is the numerically stable least-squares method

based on singular value decomposition, SVD; see JMM (2009, 2010b).
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For each experiment, we report the time necessary for computing a solu-

tion (in seconds) and unit-free Euler equation errors (defined as the difference

between the left and right sides of (5) divided by +1) on a stochastic sim-

ulation of 1,000 observations. To compute conditional expectation in the

test, we use an accurate ten-node Gauss-Hermite quadrature rule. We run

the computational experiments on a desktop computer ASUS with Intel(R)

Core(TM)2 Quad CPU Q9400 (2.66 GHz). Our programs are written in

Matlab, version 7.6.0.324 (R2008a).

5.1.2 Monte Carlo integration

We first solve model (1)− (3) using −(). We parameterize the

CRRA utility function by  = 1, and we parameterize the process for shocks

(3) by  = 095 and  = 001. We implement Monte Carlo integration using

 randomly drawn nodes in each simulated point with  ∈ {1 30 3000}; we
vary the simulation length by  ∈ {30 300 3000 10000}, and we compute
polynomial approximations up to degree five, ∈ {1  5}. −(1)

corresponds to  as is used in JMM (2009). The results are reported in

Table 1.

When the simulation length,  , and the number of integration nodes, ,

are small, −() fails to deliver high-degree polynomial approx-

imations and the accuracy of solutions is low. Increasing  and  helps

restore numerical stability and increase accuracy. The highest accuracy is

achieved in the experiment with the largest values of  and  considered

(i.e.,  = 10 000 and  = 3 000) under the third-degree polynomial,  = 3,

namely, the Euler equation errors are of size 10−6.

5.1.3 Gauss-Hermite quadrature integration

We next solve model (1)− (3) using −(). We specifically repeat

the experiments reported in Section 5.1.2 using Gauss-Hermite quadrature

integration with  ∈ {1 2 10} nodes instead of the Monte Carlo integration
with  ∈ {1 30 3000} nodes. We report the results in Table 2.
The accuracy of the solutions increases with the polynomial degree, the

sample size and the number of integration nodes. Any of these three factors

can restrict the overall accuracy of solutions. Specifically, if we use a rigid

first-degree polynomial, the maximum error is of order 10−4; if we use a
small sample size of  = 30, it is of order 10−5; and if we use the least
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accurate one-node integration rule, it is of order 10−7. In turn, under our
most accurate case of fifth-degree polynomial,  = 10 000 and the most

accurate ten-node integration, the maximum error is of order 10−9. Under
quadrature integration, the simulation length plays a less important role

than under Monte Carlo integration. This is because in the former case, the

simulation length affects only the solution domain, while in the latter case, it

affects both the solution domain and the number of integration nodes. The

key result of Table 2 is that the change in the integration procedure leads

to a large increase in accuracy. The least accurate solution, produced by

 − () under  = 30 and  = 1, is still more accurate than the

most accurate solution, delivered by −() under  = 10 000 and

 = 3000. In order −() had a comparable degree of accuracy

as −(), its running time must be of orders of magnitude larger.

5.1.4 Sensitivity experiments

In Table 3, we present the results of the sensitivity experiments, namely,

we consider  ∈ {02 1 5},  ∈ {095 099} and  ∈ {001 003}. We use
 = 10 000, polynomial approximations up to degree five and two alternative

integration methods such as  (1) and  () with  = {1 2 10}.
As is seen from the table, the tendencies, observed in the sensitivity ex-

periments, are similar to those observed in Tables 1 and 2. Under some para-

meterizations, the difference between the mean and maximum errors is large

(up to two orders of magnitude), which indicates that the approximation ob-

tained is not uniformly accurate. Since stochastic simulation overrepresents

the center and underrepresents the tails of the ergodic distribution, the ac-

curacy of solutions on tails might be low. To achieve more uniform accuracy,

we should use an approximation method that minimizes the maximum error

instead of the least-squares error. Finally, we find that the results are not

visibly affected by a specific random draw of productivity shocks.

5.2 Heterogeneous-agent economy

In this section, we apply  for solving a multi-country (heterogeneous-

agent) variant of representative-agent model (1)− (3). A formal description
of the heterogeneous-agent model, the parameters choice and the implemen-

tation details are provided in Appendix A. We compute the second-degree

polynomial approximations, and we employ two alternative integration meth-
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ods, namely, the conventional (one-node) Monte Carlo integration method,

 (1), and the one-node Gauss-Hermite quadrature integration method,

 (1). The results are shown in Table 4.

Under  (1), the accuracy of solutions visibly depends on the sample

size,  , relative to the dimensionality of the problem,  (the number of the

regression coefficients, +1). For a given  , an increase in  leads to a lower

degree of accuracy because there are more regression coefficients to identify;

for example, under  = 10 000, going from  = 2 to  = 30 increases

the mean solution error by about a factor of 10, namely, from 83 · 10−5 to
93·10−4. For a given  , an increase in  leads to a higher degree of accuracy;
for example, under  = 8, going from  = 10 000 to  = 100 000 decreases

the mean solution error by about a factor of 3, namely, from 24 · 10−4 to
74 · 10−5. These results are in line with a

√
 -rate of convergence predicted

by the Central Limit Theorem.

Replacing (1) with  (1) increases the accuracy of solutions between

one and two orders of magnitude. A reduction in the simulation length from

 = 10 000 to  = 3 000 has virtually no effect on the accuracy of solutions.

With a small number of countries, we can reduce  even further without a

visible decrease in accuracy (these experiments are not reported), however,

we must have at least as many observations as the polynomial coefficients to

identify; for example, for the model with  = 30, we cannot reduce  below

+ 1 = 1 891.

The computational time for (1) and  (1) is similar: it ranges from 3

minutes to 3 hours depending on the number of countries,  , and simulation

length,  . This time is quite modest given that we use a standard desktop

computer and solve computationally costly high-dimensional problems.

Finally, in the studied models,  −  (1) delivers accuracy that is

comparable to the highest accuracy achieved in the literature; see KMMP

(2011) for accuracy comparison of different solution methods. If  (1) hap-

pens to be not sufficiently accurate in other applications, we can extend

 to include more accurate integration methods such as low-cost non-

product monomial integration rules; see JMM (2010a).

6 Conclusion

In this paper, we generalize the stochastic simulation approach to make it

compatible with both Monte Carlo and deterministic (quadrature and mono-
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mial) integration methods. At the conceptual level, our analysis provides a

link between the stochastic simulation and projection classes of algorithms

and makes it possible to assess different kinds of approximation errors. At

the practical level, our generalized framework allows us to select the integra-

tion method most suitable for a given application. Any existing stochastic

simulation algorithm can be easily extended to include deterministic inte-

gration. A version of  based on one-node Gauss-Hermite quadrature

integration is particularly easy to implement and is as simple and intuitive

as the conventional stochastic simulation method based on one-node Monte

Carlo integration.  can solve high-dimensional problems that are com-

putationally demanding and even intractable for earlier solution procedures,

and it delivers accuracy comparable to the highest accuracy attained in the

literature.
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7 Appendix A

In this section, we describe the heterogeneous-agent model studied in Section

5.2. For the sake of comparison, we consider the same setup as the one used

in JMM (2010a) and JMM (2010b) for testing the performance of the cluster-

grid and stochastic simulation approaches, respectively (the notation in this

section corresponds to that in JMM, 2010b).

A world economy consists of  countries. Each country is populated by

a representative consumer. The social planner’s problem is

max
{ +1}=1=0∞

0

X
=1



" ∞X
=0


¡




¢#
(23)
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subject to

X
=1



 +

X
=1



+1 =

X
=1



 (1− ) +

X
=1






¡




¢
 (24)

ln 

+1 =  ln 


 +

¡
+1 + 


+1

¢
,  = 1   (25)

where initial condition
©


0 


0

ª=1
is given, and  ∼ N (0 2),  ∼

N (0 2). We denote by 

 , 


+1, 


+1 and  a country’s  consumption,

end-of-period capital, productivity level and welfare weight, respectively. A

common productivity shock, +1, and a country-specific technology shock,



+1, determines country’s  productivity level. The utility and production

functions,  and  , are both increasing, continuously differentiable and

concave.

We assume that  =  and   =  for  = 1   , which implies that

 = 1 and that 

 =  ≡ 1

P

=1 

 for  = 1  . We parameterize the

capital policy functions of each country, 

+1 = 

³©


  




ª=1´
, by a

polynomial Ψ
³©



  




ª
=1
;
´
using a set of Euler equations:



+1 = 

½

0 (+1)
0 ()

£
1− + 


+1

0 ¡+1¢¤ +1¾ ≈ Ψ
³©



  




ª
=1
;
´


(26)

for  = 1   . Note that since the countries are identical in their fundamen-

tals, we could have computed just one capital policy function for all countries.

However, we treat the countries as fully heterogeneous and compute a sep-

arate policy function for each country considered. This approach allows us

to make a judgement regarding accuracy and costs in models with hetero-

geneous fundamentals.  for solving the heterogeneous-agent model is

similar to the one presented in Section 3 for the case of the representative-

agent model, however, instead of doing each step just once, we do it for each

country  = 1   .

We parameterize the model by  = 1;  = 095 and  = 001. We set

the damping parameter for the first- and second-degree polynomial approx-

imations at  = 01 and  = 005, respectively; we use  = 6 (i.e., six-digit

precision) for all experiments. To estimate the regression coefficients, we

normalize the data and use the OLS method. In the studied model, data

normalization is sufficient for stabilizing the stochastic simulation approach
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under low-degree polynomial approximations; see JMM (2009, 2010b) for

a discussion. An important advantage of linear approximation methods is

that they can be vectorized in multi-dimensional applications; this enables

us to iterate on policy functions of all heterogeneous countries simultaneously

which reduces the costs considerably. To compute the Euler equation errors,

we evaluate the conditional expectation in (26) using a 2-node monomial

rule; JMM (2010a) shows that this rule is sufficiently accurate for the purpose

of accuracy checks.
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Table 1. Solving the benchmark model using Monte Carlo integration.  
 

Remark:  emean and emax are the average and maximum Euler equation errors, respectively; CPU is computational time in 
seconds; and the notation x(m) means x·10m. 
 

T=30 T=300 T=3000 T=10000 
 

emean emax CPU emean emax CPU emean emax CPU emean emax CPU

Monte Carlo integration with P=1 draw 
1st degree 8,98(-4) 2,16(-3) 1 2,97(-4) 1,36(-3) 4 5,38(-5) 3,05(-4) 1(1) 5,5(-5) 3,0(-4) 1(1)
2nd degree - - - 3,80(-4) 2,03(-3) 3 9,26(-5) 3,94(-4) 1(1) 4,0(-5) 2,0(-4) 3(1)
3rd degree - - - - - - 1,03(-4) 5,91(-4) 1(1) 5,1(-5) 3,3(-4) 2(1)
4th degree - - - - - - 1,38(-4) 1,01(-3) 1(1) 5,4(-5) 9,0(-4) 3(1)
5th degree - - - - - - 1,53(-4) 1,64(-3) 1(1) 7,1(-5) 5,1(-4) 3(1)
Monte Carlo integration with P=30 draws 
1st degree 1,28(-4) 7,10(-4) 4 6,00(-5) 3,15(-4) 1(1) 4,40(-5) 2,58(-4) 6(1) 4,7(-5) 3,0(-4) 2(2)
2nd degree - - - 1,84(-4) 1,02(-3) 1(1) 1,60(-5) 6,68(-5) 4(1) 8,6(-6) 4,1(-5) 2(2)
3rd degree - - - 2,27(-4) 2,61(-3) 1(1) 1,89(-5) 8,87(-5) 5(1) 1,5(-5) 1,4(-4) 1(2)
4th degree - - - 5,79(-4) 1,02(-2) 5(1) 2,04(-5) 2,59(-4) 5(1) 1,6(-5) 1,6(-4) 1(2)
5th degree - - - - - - 2,96(-5) 3,35(-4) 6(1) 1,7(-5) 3,1(-4) 1(2)
Monte Carlo with integration with P=3000 draws 
1st degree 1,28(-4) 5,26(-4) 4(2) 5,41(-5) 3,82(-4) 6(2) 4,36(-5) 2,86(-4) 3(3) 4,9(-5) 3,1(-4) 7(3)
2nd degree 7,28(-4) 5,39(-3) 3(2) 1,39(-5) 1,14(-4) 6(2) 1,74(-6) 1,92(-5) 1(3) 1,2(-6) 1,0(-5) 5(3)
3rd degree 2,08(-3) 9,51(-2) 6(2) 3,07(-5) 3,55(-4) 5(2) 2,29(-6) 4,00(-5) 1(3) 1,1(-6) 9,5(-6) 2(3)
4th degree - - - 1,32(-4) 3,19(-3) 4(2) 2,45(-6) 5,58(-5) 1(3) 1,1(-6) 1,0(-5) 3(3)
5th degree - - - 7,66(-4) 2,68(-2) 5(2) 2,51(-6) 2,73(-5) 1(3) 1,2(-6) 1,2(-5) 2(3)



Table 2. Solving the benchmark model using the Gauss-Hermite quadrature integration method.  
 

Remark:  emean and emax are the average and maximum Euler equation errors, respectively; CPU is computational time in 
seconds; and the notation x(m) means x·10m.  
 

T=30 T=300 T=3000 T=10000 
 

emean emax CPU emean emax CPU emean emax CPU emean emax CPU

Gauss-Hermite quadrature with P=1 node 
1st degree 4,49(-5) 2,66(-4) 2 5,19(-5) 3,62(-4) 5 4,50(-5) 2,90(-4) 1(1) 5,0(-5) 3,0(-4) 5(1)
2nd degree 1,05(-6) 1,12(-5) 2 1,18(-6) 1,32(-5) 4 9,11(-7) 9,29(-6) 1(1) 1,1(-6) 1,0(-5) 4(1)
3rd degree 1,92(-6) 3,25(-5) 8(-2) 4,84(-7) 1,45(-6) 1 4,83(-7) 7,07(-7) 8 4,8(-7) 9,5(-7) 3(1)
4th degree 8,05(-7) 1,78(-5) 1(-1) 4,82(-7) 6,41(-7) 6(-1) 4,86(-7) 6,30(-7) 3 4,9(-7) 6,3(-7) 2(1)
5th degree 5,57(-7) 7,61(-6) 2(-1) 4,90(-7) 6,63(-7) 9(-2) 4,86(-7) 6,26(-7) 1 4,9(-7) 6,3(-7) 9
Gauss-Hermite quadrature with P=2 nodes 
1st degree 4,68(-5) 2,71(-4) 2 5,19(-5) 3,68(-4) 4 4,36(-5) 2,85(-4) 1(1) 4,8(-5) 3,1(-4) 5(1)
2nd degree 9,08(-7) 1,15(-5) 2 1,03(-6) 1,33(-5) 2 7,62(-7) 9,60(-6) 1(1) 8,6(-7) 1,0(-5) 3(1)
3rd degree 1,34(-6) 2,00(-5) 1(-1) 4,77(-8) 1,15(-6) 2 2,46(-8) 3,56(-7) 8 3,3(-8) 6,5(-7) 2(1)
4th degree 9,25(-7) 1,71(-5) 1(-1) 3,27(-9) 8,65(-8) 1 1,24(-9) 2,23(-8) 4 2,1(-9) 4,1(-8) 1(1)
5th degree 3,74(-7) 1,08(-5) 2(-1) 1,57(-8) 4,21(-7) 6(-2) 5,21(-10) 7,22(-9) 2 1,1(-10) 1,7(-9) 9
Gauss-Hermite quadrature with P=10 nodes 
1st degree 4,68(-5) 2,71(-4) 1 5,19(-5) 3,68(-4) 8 4,36(-5) 2,85(-4) 4(1) 4,8(-5) 3,1(-4) 2(2)
2nd degree 9,08(-7) 1,15(-5) 2 1,03(-6) 1,33(-5) 8 7,62(-7) 9,60(-6) 3(1) 8,6(-7) 1,0(-5) 1(2)
3rd degree 1,34(-6) 2,00(-5) 1(-1) 4,78(-8) 1,15(-6) 2 2,46(-8) 3,56(-7) 2(1) 3,3(-8) 6,5(-7) 5(1)
4th degree 9,25(-7) 1,71(-5) 1(-1) 3,28(-9) 8,65(-8) 7(-1) 1,25(-9) 2,25(-8) 1(1) 2,1(-9) 4,1(-8) 4(1)
5th degree 3,03(-7) 6,79(-6) 2(-1) 1,57(-8) 4,22(-7) 9(-2) 5,24(-10) 7,00(-9) 4 1,1(-10) 1,6(-9) 2(1)



 
Table 3. Comparison of the Monte Carlo and Gauss-Hermite quadrature integration methods: sensitivity results.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Remark:  emean and emax are the average and maximum Euler equation errors, respectively; CPU is computational time in 
seconds; and the notation x(m) means x·10m.  

γ = 1/5 γ = 5 ρ = 0.99 σ = 0.03 
 

emean emax CPU emean emax CPU emean emax CPU emean emax CPU

Monte Carlo integration with P=1 random draw 
1st degree 1,9(-5) 1,9(-4) 8 4,5(-4) 3,1(-3) 8(1) 1,1(-4) 7,1(-4) 8 4,50(-4) 3,12(-3) 1(1)
2nd degree 1,2(-5) 1,2(-4) 1(1) 2,2(-4) 3,8(-4) 2(2) 6,3(-5) 1,4(-4) 4(1) 1,20(-4) 5,39(-4) 5(1)
3rd degree 1,5(-5) 1,3(-4) 1(1) 2,7(-4) 2,3(-3) 2(2) 1,1(-4) 7,9(-4) 3(1) 1,57(-4) 1,12(-3) 4(1)
4th degree 1,9(-5) 4,6(-4) 1(1) 3,4(-4) 3,4(-3) 3(2) 1,1(-4) 9,6(-4) 4(1) 1,65(-4) 2,51(-3) 5(1)
5th degree 2,2(-5) 4,2(-4) 2(1) - - - 1,4(-4) 1,3(-3) 4(1) 2,11(-4) 2,72(-3) 6(1)
Gauss-Hermite quadrature with P=1 node 
1st degree 1,5(-5) 1,4(-4) 2(1) 4,3(-4) 3,2(-3) 3(2) 1,2(-4) 7,2(-4) 5(1) 5,03(-4) 3,21(-3) 5(1)
2nd degree 2,2(-6) 4,1(-6) 2(1) 1,1(-4) 2,3(-4) 3(2) 6,0(-6) 3,0(-5) 4(1) 2,94(-5) 3,14(-4) 5(1)
3rd degree 2,1(-6) 2,3(-6) 2(1) 1,1(-4) 1,4(-4) 2(2) 5,1(-6) 6,8(-6) 3(1) 5,44(-6) 6,43(-5) 4(1)
4th degree 2,1(-6) 2,2(-6) 1(1) 1,1(-4) 1,3(-4) 2(2) 5,1(-6) 5,7(-6) 2(1) 4,35(-6) 1,24(-5) 3(1)
5th degree 2,1(-6) 2,2(-6) 4 1,1(-4) 1,3(-4) 1(2) 5,1(-6) 5,7(-6) 2(1) 4,36(-6) 8,17(-6) 2(1)
Gauss-Hermite quadrature with P=2 nodes 
1st degree 1,4(-5) 1,5(-4) 2(1) 4,5(-4) 3,2(-3) 3(2) 1,2(-4) 7,3(-4) 4(1) 4,91(-4) 3,22(-3) 5(1)
2nd degree 2,6(-7) 3,2(-6) 2(1) 1,3(-5) 1,6(-4) 3(2) 3,5(-6) 3,3(-5) 4(1) 2,67(-5) 3,23(-4) 5(1)
3rd degree 1,0(-8) 1,9(-7) 1(1) 7,0(-7) 1,5(-5) 2(2) 2,9(-7) 4,8(-6) 3(1) 3,18(-6) 6,61(-5) 4(1)
4th degree 4,1(-10) 7,6(-9) 6 6,0(-8) 1,5(-6) 1(2) 3,8(-8) 5,6(-7) 2(1) 5,54(-7) 1,33(-5) 3(1)
5th degree 8,8(-11) 5,4(-10) 2 5,7(-9) 1,5(-7) 1(2) 5,3(-9) 6,6(-8) 2(1) 9,18(-8) 2,30(-6) 2(1)
Gauss-Hermite quadrature with P=10 nodes 
1st degree 1,4(-5) 1,5(-4) 8(1) 4,5(-4) 3,2(-3) 9(2) 1,2(-4) 7,3(-4) 2(2) 4,91(-4) 3,22(-3) 2(2)
2nd degree 2,6(-7) 3,2(-6) 5(1) 1,3(-5) 1,6(-4) 7(2) 3,5(-6) 3,3(-5) 2(2) 2,67(-5) 3,23(-4) 2(2)
3rd degree 1,0(-8) 1,9(-7) 3(1) 7,0(-7) 1,5(-5) 5(2) 2,9(-7) 4,8(-6) 1(2) 3,18(-6) 6,61(-5) 1(2)
4th degree 4,2(-10) 7,6(-9) 1(1) 6,0(-8) 1,5(-6) 3(2) 3,8(-8) 5,6(-7) 7(1) 5,55(-7) 1,33(-5) 8(1)
5th degree 6,5(-11) 5,0(-10) 5 5,4(-9) 1,5(-7) 3(2) 5,3(-9) 6,6(-8) 6(1) 9,18(-8) 2,31(-6) 6(1)



Table 4. Solving the multi-country model using Monte-Carlo and Gauss-Hermite quadrature integration: comparison results.  
 

 
 

Remark: J is the number of countries; 1n  is the number of polynomial coefficients in the parameterized decision rule of 
one country; emean and emax are the average and maximum Euler equation errors, respectively; T is the simulation length; 
CPU is computational time in seconds; and the notation x(m) means x·10m. 

MC(1), T = 10,000 MC(1), T = 100,000 Q(1), T=10,000 Q(1), T=3000 J 1n  
emean emax CPU emean emax CPU emean emax CPU emean emax CPU

J=2 15 8.3(-5) 1.1(-3) 8(2) 2.6(-5) 2.4(-4) 9(3) 7,19(-6) 4,06(-5) 2(3) 7,31(-6) 3,59(-5) 6(2)
J=4 45 1.4(-4) 1.3(-3) 1(3) 4.5(-5) 2.7(-4) 1(4) 9,56(-6) 4,54(-5) 4(3) 9,60(-6) 4,59(-5) 1(3)
J=6 91 2.0(-4) 1.6(-3) 2(3) 5.7(-5) 3.5(-4) 2(4) 1,04(-5) 3,55(-5) 5(3) 1,02(-5) 3,53(-5) 1(3)
J=8 153 2.4(-4) 1.4(-3) 3(3) 7.4(-5) 4.5(-4) 2(4) 1,09(-5) 3,20(-5) 9(3) 1,06(-5) 3,22(-5) 2(3)
J=10 231 2.9(-4) 1.7(-3) 5(3) - - - 1,10(-5) 3,01(-5) 1(4) 1,08(-5) 3,09(-5) 5(3)
J=12 325 3.6(-4) 2.1(-3) 6(3) - - - 1,12(-5) 2,97(-5) 2(4) 1,09(-5) 3,01(-5) 2(3)
J=16 561 4.4(-4) 2.4(-3) 2(4) - - - 1,13(-5) 3,17(-5) 3(4) 1,11(-5) 3,56(-5) 5(3)
J=20 861 5.6(-4) 3.1(-3) 2(4) - - - 1,14(-5) 2,93(-5) 5(4) 1,12(-5) 3,75(-5) 6(3)
J=30 1891 9.3(-4) 5.0(-3) 1(5) - - - 1,15(-5) 2,54(-5) 1(5) 1,10(-5) 3,81(-5) 2(4)


