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ABSTRACT
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from infringed markets were faster in responding and differentiating from counterfeits. The proposed
framework can be widely applied to study dynamic and heterogeneous causal effects of marketing
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1. Introduction

Brand names have significant economic values and are vulnerable to counterfeiting. The

Federal Bureau of Investigation reports that U.S. companies lose $200-250 billion annually

due to worldwide copyright, trademark, and trade-secret infringements. Significantly, the

European Commission (EC) reckons that the value of counterfeiting as a percentage of world

trade is growing. Between 1990 and 1999, it doubled from 3.5 percent to 7 percent (Choate

2005). The World Customs Organization (WCO) estimates that over 500 billion Euro of

traded world merchandise in 2004 may have been counterfeits (WCO 2004). Most of the

counterfeits are charged at extremely low prices, e.g., $65 for a counterfeited LV handbag

whose original price is $1200, or $5 for Windows 95 software only after days it was introduced

in the U.S. for $85 (Choate 2005). The entry of counterfeiters with fractionally low prices can

have two opposite impacts on the authentic prices: On the one hand, their entry potentially

exerts competitive pressure on authentic prices. Authentic prices could also drop as a result

of limit (predatory) pricing strategy (Carlton and Perloff, 2005). On the other hand, their

entry may lead to increases in authentic prices due to the segmentation of price-sensitive

and insensitive consumers in the market, or due to authentic producers’ innovations and

self-differentiation mechanics to alleviate competition (Qian 2008). The former competitive

effect is likely to take place immediately upon entry, while the latter effect may arrive with

some lags. This lag differs from company to company due to inherent firm heterogeneity

in their ability to respond to market shakeups caused by counterfeit entry. Therefore, how

much and when authentic firms’ marketing norms (e.g. prices) change in response to the

counterfeit entry are both interesting and pertinent questions to address.

In evaluating the causal effects of counterfeit entry on the authentic price outcome, it is

worth noting two important challenges. First, counterfeit entry is unlikely to be exogenous.

Counterfeiters are more likely to infringe upon a brand if the authentic product is easier
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to imitate, has a larger markup, or if the brand management is worse. Under such circum-

stances, counterfeit entry will be correlated with authentic prices and profits. However, a

causal link cannot be inferred from this correlation. Qian (2008) adopts the Instrumental

Variable (I.V.) identification strategy. Instrumental variables are correlated with the en-

dogenous treatment variable but uncorrelated with the outcome of interest conditional on

the treatment variable. One can subsequently use the instrumental variables to tease out

the exogenous component of the treatment variation and identify the causal effect. The I.V.

method is widely applied in economic and marketing studies.

The second challenge arises because various authentic firms respond to their own coun-

terfeit entry with different time lags. It is natural for the authentic firms to take time to

analyze the changing business environment, design corresponding strategies, and implement

them in practice. The stable long-term effect follows only with some delay in time, which we

refer to as response time. Such delay in response is frequently observed. Robinson (1988)

noted a pattern of delayed responses by the incumbent firms based on studying 199 new

product entries in a start-up business database. Even defensive price reactions, which are

the easiest to implement, are also often delayed. Bowman and Gatignon (1995) also observed

delayed response in the PIMS database. In these scenarios, the effect of market change is

nonstationary in time in that a study unit (e.g., a firm) changes its state underlying the

outcome of interest (e.g., price) at a random time point. Such phenomenon is not restricted

to studies on firms, but is also prevalent in studies involving other marketing players, e.g.,

dynamic effects due to delayed response of consumers to marketing efforts (Kotler 1971).

Fader, Hardie and Huang (2004, hereafter referred to as FHH) highlight the importance

of taking the nonstationary consumer behavior process into account when forecasting new

product sales. In summary, the dynamic effect of a market change is a prevalent phenomenon

in practice and is an important subject to study.
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A simple strategy to handle the dynamic effects is to pre-specify a common timepoint

where the short-term and long-term effects of the market change can be separated, and then

posit an econometric model that enables separate estimation of short-term and long-term

effects. This analytic strategy, albeit simple, has the following three limitations.

First, pre-specifying the separating time point may not be easy and requires considerable

prior knowledge on the underlying marketing activities. It would be preferable to have a

data-driven approach to automatically select the timepoint that separate out the short- and

long-term effects of market change.

Second and more importantly, it is often the case that there exists a significant amount

of heterogeneity among different units (e.g. firms) in their response times. For example,

Bowman and Gatignon (1995) documented a heterogeneous pattern of delayed responses

in the widely analyzed PIMS database: the defensive responses to new product entries

occurred after more than a year in 28.7% of the cases, between six months and a year in

18% of the cases, and immediately in only 13.4% of the cases. We also observe a pattern of

heterogeneous response time in our dataset. It is well known that heterogeneity is common

in emprical studies and modeling the heterogeneity can lead to improved prediction. For

example, FHH (2004) shows that modeling the changepoints that are heterogeneous among

consumers can substantially improve new product sales forecast. Similarly, when there exists

such heterogeneity among units in their response time, explicitly modeling the heterogeneous

response time can lead to substantially improved estimation of dynamic effects of a market

change, and consequently can have more accurate policy implications. For example, we find

in our study that ignoring the heterogeneity of response time can attenuate the effect estimate

of both short-term and long-term effects. Such attenuation is more serious in evaluating the

derterminants of firms’ differential response behaviors. We find in our study that the simple

strategy to investigate dynamic effects misassesses the effects of several factors on marketing
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responses and is not able to identify their significant effects.

Third, in many cases, how fast a firm responds to a market change is an important

dimension of management strategy, and therefore questions such as what determines firms’

ability to respond to the market change are of considerable interest (e.g., Bowman and

Gatignon 1995). Specifying a common response time ignores this heterogeneity and as a

result provides no basis to study such questions. An alternative approach is to employ a

distributed lag regression model. However, prior information on response time is rarely

available and thus it can be difficult to specify a sensible lag function. Moreover, neither

of the above methods is satisfactory if one is interested in studying the individual response

times.

Our solution to the above challenge is to explicitly model the unit-specific response time

as a changepoint problem. The general class of the changepoint model is well suited for

modeling parameter changes in econometric models. There has been extensive research on

the changepoint model with early applications in statistics and economics (e.g. Smith 1975,

Barry and Hartigan 1993, Carlin et al. 1992, Lange et al. 1992, Bai 1997, Chib 1998).

There are important innovations of changepoint modeling in recent marketing literature.

Böckenholt and Dillon (1997), Poulsen (1990) and Ramaswamy (1997) use the hidden Markov

Models to study the changes in segment memberships over time, which can be viewed as a

special case of more general changepoint process models. FHH (2004) develop a dynamic

changepoint model that allows the changepoint process itself to evolve over time. They

show that the dynamic changepoint model improves the new product sales forecasting. The

method has been further studied and extended by Schweidel and Fader (2009). Neelamegham

and Chintagunta (2004) and Van Heerde, Mela and Manchanda (2004) extend the Dynamic

Linear Model to model new product sales. Fong and DeSarbo (2007) study Bayesian variable

selection problems in multiple regression models with changepoints. Our approach is more
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similar to that of FHH (2004) in that we explicitly model the random changepoints which

are heterogeneous among the study units. However, unlike FHH (2004) which focuses on

forecasting new product sales, the focus of our study is on an accurate ascertainment of

dynamic and heterogeneous causal effects of a market change. As such, we must explicitly

deal with the endogeneity issue, an important feature in empirical studies. To the best of

our knowledge, the endogeneity issue in a changepoint model framework has not been dealt

with previously, although its importance has been discussed in FHH (2004).

A key contribution of our study is to provide a tractable methodological framework to

achieve consistent and efficient estimation of the dynamic causal effects of an endogenous

treatment variable on marketing responses. Specifically, we propose a random-changepoint

simultaneous equation model (RC-SEM) to properly measure dynamic effects of an endoge-

nous treatment on the outcome. Our modeling approach jointly models the marketing re-

sponse, the endogenous treatment variable and the latent unit-specific response time. There-

fore the model extends the traditional changepoint model to allow for endogeneity. Another

useful feature of our model is that we extend the changepoint model to allow for covariates

explaining the inter-firm differences in their response times. Our analysis demonstrates that

the proposed model minimizes the bias on the entry effect estimates and can allow us to in-

vestigate the determinants of inter-firm difference in their response time. More specifically,

we summarize the features and benefits of our modeling framework below.

First, it allows for an automatic and cleaner separation of different stages of the effects of

a market change. As explained above, failure to properly account for unit-specific response

times can lead to biased estimates of dynamic effects of a market change, thus leading to

considerable loss of power for detecting a change in the marketing response. Our approach

explicitly models the unit-specific changepoint, thereby providing a much cleaner assessment

of dynamic effects. We are able to delineate the short-term pricing responses to counter-
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feiting as well as the stabilized long-term effect, a feature that would have been washed out

without appropriately accounting for the heterogeneous response time. This methodological

advantage precisely enables us to unify two strands of IO literature and resolve the empirical

controversy in the pricing impacts and responses in the face of copycat entries (Pauwels

and Srinivasan 2004, Deleersnyder et al 2007 vs. Rao and Monroe 1996, Hoch and Banerji

1993). Furthermore, the changepoint model is a data-driven procedure that automatically

detects the changepoint in the outcome. This is particularly useful if there is no strong prior

belief on the possible positions of changepoints, and one would like to minimize the input of

researchers in this modeling aspect.1

Second, it models the endogeneity of the treatment variable. As explained above, the

counterfeit entry is likely to be endogenous, and failure to account for the endogeneity can

lead to misleading assessment of dynamic causal effects of counterfeit entry. In our analysis

we integrate the changepoint model with a simultaneous equation model, thereby simulta-

neously accounting for both endogeneity and nonstationary effects of counterfeit entry. The

need to account for both endogeneity and nonstationarity is not limited to our dataset. For

example, as discussed in FHH (2004), both the distribution build and competitive effects

could lead to endogeneity issues in new product sales forecasting. Our model provides a

framework based on which the endogeneity of a market change is accounted for and there-

fore cleaner assessment of the dynamic causal effects of market change can be made. Given

that both the endogeneity and nonstationary effects of a market change are important and

prevalent in empirical studies, the extension would be a useful generalization.

Third, our model enables recovery of individual-specific estimates of how much firms’

price respond to entry by counterfeits. We are then able to explore what are the firm

characteristics that drive such heterogeneity in pricing responses to counterfeiting. Discovery

1
Of course, our Bayesian approach allows incorporating such prior belief, if it exists, through proper specification of model

priors.
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of these moderating factors assists in understanding effective brand management strategies

that can be tailored to each type of firms. The findings are therefore of keen interests

to academics and practitioners and the framework can be applied to understand strategic

responses under other contexts, such as pricing of national brands upon entry of imitative

store brands.

Fourth, the modeling framework allows us to study how fast firms respond to market

change, an important dimension of a reactive strategy, and to study the determinants of

response speed. Given the staggering patterns of defensive responses by incumbents as iden-

tified in prior literature (Robinson, 1988; Bowman and Gatignon, 1995; Qian, 2008), the

following questions naturally arise: Why do some incumbents choose to respond immedi-

ately to the competitive entry while others delay their responses? The response time likely

represents the heterogeneity of the units, such as firms, in their ability to adapt to the con-

stantly changing environment. Thus, the response time can be of great interest to identify

institutional features that prompt effective and swift business strategy. The importance of

response time as a key strategic issue in marketing has been emphasized in previous liter-

ature (Robinson 1988, Smith et al. 1989, Heil and Robinson 1991, Bowman and Gatignon

1995). As pointed out by the authors, the study of similar issues such as the competitor’s

response in other context can be very useful to design informed marketing strategies. The

previous studies typically use survey data to investigate the questions. For example, Bow-

man and Gatignon (1995) use survey data to study the determinants of competitor response

time to a new product introduction. The survey contains a question that asks a firm how

long each of a firm’s leading competitors took to respond in a visible manner when the firm

introduced new products. As noted by the authors, one methodological limitation of this

approach relates to various potential response biases in the dependent variable.2 Using our

2
For example, the authors discusses that the interview question is on the firm’s customers but the respondent is the firm

introducing the new product. A threat to content validity is that the respondent does not have perfect complete knowledge of
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proposed model, researchers have an alternative method that uses the field data to study the

similar question. Specifically the method uses the changepoint modeling technique to infer

latent response times from the trajectory of the marketing response observed over time. The

hierarchical modeling structure allows us to further study the determinants of firms’ response

times. We hope that the proposed method expands the set of tools that can be used by the

researchers to study similar questions.

Another contribution of the study is the scope of the dataset, which is a large national

sample that includes 31 branded shoe manufacturing firms and their counterfeiters in China.

Both multinational brands in China and Chinese-originated brands are sampled through

the stratified random sampling method (Qian 2008). Twenty-two out of the total 23 large

branded firms in China are captured, together with a random sample of smaller ones. De-

tailed financial statements of each sampled company and their counterfeiters are obtained

from a 12-year window from 1993-2004. This is a unique dataset that overcomes severe

data limitations common in the underground economics. Our analysis here differs from Qian

(2008) in several important ways. First, we tackle a different research question. Qian (2008)

explores the overall impacts of entry by counterfeiters on a portfolio of marketing outcomes.

The study provides comprehensive first-cut analyses on the stabilized authentic quality, price,

sales, self-enforcement expenditure, and profits years after being infringed. It opens doors

to more detailed analyses like the current study, where we focus on the important pricing

strategies against counterfeits. We carefully analyze the longitudinal pricing responses by

the authentic brands and explicitly model the heterogeneous response times between firms.

The new methodology enables us to distinctively identify the negative short-term effect and

positive long-term effect of counterfeits on authentic prices. The empirical findings unify

two strands of theoretical predictions in the industrial organization and marketing litera-

its customer’s awareness.
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ture. Second, the explicit modeling of the latent response time also allows us to study how

fast firms respond to the entry of counterfeits, an important marketing strategy not yet

studied in Qian (2008). Third, using the hierarchical Bayesian method, we investigate the

heterogeneous effects of counterfeit entry on both the price outcome and firms’ response

time. This provides additional insights on the firm behavior when faced with the threat of

counterfeiting. This also sheds lights on the determinants of interfirm differences of their

response magnitudes and speed. Last but not least, we propose a new methodology to study

latent response times using field data and to delineate dynamic effects of an endogenous

marketing variables.

The rest of the paper is structured as follows: Section 2 describes the proposed model:

RC-SEM. Section 3 describes the model inference with more details given in Appendix. Sec-

tion 4 applies the RC-SEM to the Chinese Shoe Market Data. In Section 5 we conduct

a simulation study to evaluate the performance of the method. We then conclude with a

discussion in Section 6.

2. Modeling Approach

In this section we develop the proposed methodology to investigate the dynamic effects

of counterfeit entry using a dataset of the Chinese shoe industry. The panel data consist

of annual average prices, costs and sales for 31 authentic branded companies and their

counterfeiters from the year 1993 to 2004. Qian (2008) includes more details of the dataset. In

this article, we focus on studying the dynamic and heterogeneous causal effects of counterfeit

entry and sales on the authentic product prices using the proposed RC-SEM framework. As

aforementioned, one question of great interest is to investigate the effects of counterfeit entry

on authentic firms’ pricing strategy. As a preliminary analysis, Figure 1 presents the time

plot of the average log deflated authentic high-end product prices. Specifically the figure
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plots the regression coefficients on a set of dummies indicating the number of years relative

to the year of counterfeit entry with the log deflated authentic price as the response variable.

The plot suggests the presence of dynamic effects of counterfeit entry on authentic prices:

there was a reduction in the average authentic prices within first two years of the counterfeit

entry, after which there was an increase in the average authentic prices.

The above simple analysis, though informative and useful, has some important limita-

tions. Notably, the analysis has not yet accounted for the potential endogeneity issue of

counterfeit entry. Secondly, although the analysis reveals a potential changepoint in the

average price profile, it ignores the heterogeneity of the changepoint among the firms, and

assumes that all the authentic firms took the same amount of time to respond to their

counterfeit entries. As aforementioned and further demonstrated in the following sections,

ignoring the heterogeneity can attenuate the dynamic-effect estimates of counterfeit entry.

Bias also arises when assessing the effects of various factors on the marketing responses. Fur-

thermore, such preliminary analysis does not allow us to study what affects a firm’s response

time to counterfeit entry.

In order to overcome the limitations of the preliminary analysis, we propose a random-

changepoint simultaneous equations model to investigate the dynamic effects of counterfeit

entry. Our modeling framework jointly models the panel price profiles of the authentic firms

evolved over time, the quantity of counterfeits faced by the authentic firms as well as the

latent random changepoints in the panel price profiles caused by the heterogeneous response

times of the authentic firms to the counterfeits products. The model accounts for several

important features in the data: endogeneity, heterogeneity as well as the nonstationary pa-

rameters due to changepoint. We describe the overall model in the following two subsections.
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2.1 Within-firm Model

Let Y1, ..., YN denote the outcome vectors on a random sample of N units (i.e. firms in

our application), where Yi = (Yi1, ..., YiJ) is a J-dimensional panel outcome vector for the

ith unit, i = 1, ..., N and N = 31, J = 12 in our application. 3 We assume that the vector

outcome Yi is generated from the following structural model with changepoint:

Yij =

{

XT
ijβ1i + UT

ijαi + W T
ij γ + ǫY

ij j = 1 , ..., Ti − 1
XT

ijβ2i + UT
ijαi + W T

ij γ + ǫY
ij j = Ti, ..., J,

(1)

where the covariate X includes variables that are believed to have potentially differential

short-term (β1i) and long-term (β2i) impacts on the outcome. In our application, X refers

to the quantity of counterfeit products in the market faced by the authentic firm i, divided

by the sale quantity of this authentic firm. It is clear from the model specification that the

commonly used static model is obtained by setting β1i = β2i. Therefore, our model nests

the commonly used static model as a special case. As discussed in the Introduction section,

we expect X to have dynamic effects on the outcome (i.e., β1i 6= β2i). When β1i is differ-

ent from β2i, the static model can give misleading estimates about the effects of X on the

outcome Y . For example, when β1i and β2i are of opposite sign, it is likely that the static

model that assumes β1i = β2i would greatly attenuate the effect estimate. Therefore, our

model development will be based on the more general model that allows for the possibility of

dynamic effects. The other variables in the model, U and W , include those observed exoge-

nous variables. U includes those variables whose effects on Y are heterogeneous among the

firms. This may include the unit dummy variables to capture the time-constant heterogene-

ity across units that are unobserved to the researchers, e.g., the attributes of individual-firm

management, etc. W may include the time dummy variables to capture the common market

shocks to all the units at a given time.

3
Although our dataset is a balanced data in which each firm has the same number of years of observations, the proposed

method is general and can be applied to unbalanced data as well.
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In our modeling framework, we allow X to be endogenous. We follow the approach of

Amemiya (1985) and introduce a latent variable X∗
ij as follows

Xij =

{

X∗
ij if X∗

ij ≥ 0
0 if X∗

ij < 0
(2)

X∗
ij = δZij + ǫX

ij , (3)

where X∗
ij is a latent variable that determines the observed variable Xij according to Equa-

tion (2), and Zij is a vector of exogenous instrumental variables that relate to X∗
ij. The

endogeneity of Xij is modeled by the correlation between the error terms ǫX
ij and ǫY

ij , which

are assumed to follow a bivariate normal:

[

ǫY
ij , ǫ

X
ij

]

∼ N(0, Σǫ), Σǫ =

(

σ11 σ12

σ12 σ22

)

. (4)

In this model, X is endogenous when σ12 is nonzero.

In the above simultaneous equation model, we are primarily interested in measuring the

causal effects of changing X on the outcome Y using a panel data where at least some of the

units in the sample experienced the change of X value over the period under examination.

The model allows dynamic effects of changing X on Y : a short-term effect denoted by the

parameter β1i and a long-term effect denoted by the parameter β2i. The model assumes

that the latent time point at which two effects are separated for the ith firm is Ti ≥ Ti0,

where Ti0 is the time of counterfeit entry for the ith firm. Let τi = Ti − Ti0, and then τi

denotes the time for the ith firm to respond: the time from the counterfeit entry to the

earliest time point when the long-term effect is manifested in the outcome variable. We

note here the one-to-one correspondence between τi and Ti. Furthermore, both τi and Ti are

unknown and will be inferred from the data using the changepoint modeling technique. It is

often the case that the long-term effect is very different from the short-term effect. Figure

2 represents two firms with different response times, τ1 and τ2. An ad-hoc method that
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specifies a common response time for both firms, say τc, ignores this heterogeneity and can

lead to biased estimates of the dynamic effects of X on Y , as will be shown later. Our model

aims to separate out these two effects more cleanly by explicitly modeling the underlying

unit-specific changepoint. An added benefit of doing this is to provide estimates of response

times and to be able to study what affects firms’ response times.

To model the response time as a function of firm-characteristics, we assume that there

is a continuous response time variable, τ ∗
i , for the firm i. Because the observed value is

determined by the coarsened units of the outcome, e.g. years in our dataset, the response

time τ ∗
i is observed to fall in a certain interval with its actual value unobserved. Such data

often occurred in other studies, such as the length of time with the present employer or

duration of unemployment in survey studies. In our case, the grouped value τ is determined

by its underlying value τ ∗ according to the following set of rules:

τi =







0 if τ ∗
i ≤ 0

k if k − 1 < τ ∗
i ≤ k, 1 < k ≤ J − Ti0

J − Ti0 + 1 if τ ∗
i > J − Ti0.

(5)

In the above model, τi = 0 implies that there is no short-term effect and long-term effect kicks

in immediately for this firm; τi = J − Ti0 + 1 implies that a long-term effect has not arrived

and we only observed a short-term effect over the study period. Both of these two cases are

unlikely in our dataset since (1) it usually takes time for a firm to design responding strategy

and (2) our panel spans twelve years and all firms, if infringed, have at least five years of

observations after counterfeit entry, which is long enough for firms to respond. However, for

model completeness, we include these two cases in our model development.

We derive the likelihood for the above unit-level model as follows.

f(Yi, Xi|τ ∗
i , β1i, β2i, αi, γ, δ, Σǫ) =

∫

∑

τi

f(Yi, Xi, X
∗
i , τi|τ ∗

i , β1i, β2i, αi, γ, δ, Σǫ)dX∗
i

=

∫

∑

τi

f(Yi, Xi, X
∗
i |τi, β1i, β2i, αi, γ, δ, Σǫ)f(τi|τ ∗

i )dX∗
i , (6)
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where the density function f(τi|τ ∗
i ) is

f(τi|τ ∗
i ) ∝







I(τi = 0) if τ ∗
i ≤ 0

I(τi = k) if k − 1 < τ ∗
i ≤ k, 1 < k ≤ J − Ti0

I(τ = J + 1 − Ti0) if τ ∗ > J − Ti0.

(7)

The conditional density function f(Yi, Xi, X
∗
i |τi, β1i, β2i, αi, γ, δ) is derived as follows:

(1) τi = 0

This corresponds to the case of immediate response from firm i. In our derivation, we write

the joint distribution of f(ǫY
ij , ǫ

X
ij ) = f(ǫX

ij )f(ǫY
ij|ǫX

ij ) as in Rossi et al. (2005). In this decom-

position, ǫY
ij|ǫX

ij ∼ N(σ12

σ22

ǫX
ij , σ

2
1|2), where σ2

1|2 = σ11 − σ2

12

σ22

. We then have the density function

as follows:

f(Yi, Xi, X
∗
i |τi = 0) =

∏

j

[

(I(Xij = 0, X∗
ij < 0) + I(Xij > 0, X∗

ij = Xij))

φ(Yij − Xijβ2i − UT
ijαi − W T

ij γ − σ12

σ22

ǫX
ij |0, σ2

1|2)φ(ǫX
ij = X∗

ij − δZij|0, σ22)

]

,

where φ(·|µ, σ2) stands for the density function for normal distribution with mean µ and

variance σ2.

(2) 0 < τi < J − Ti0 + 1

In this case, we have the density function as follows:

f(Yi, Xi, X
∗
i |τi) =

∏

j<Ti0+τi

[

(I(Xij = 0, X∗
ij < 0) + I(Xij > 0, X∗

ij = Xij))

φ(Yij − Xijβ1i − UT
ijαi − W T

ij γ − σ12

σ22

ǫX
ij |0, σ2

1|2)φ(ǫX
ij = X∗

ij − δZij|0, σ22)

]

×
∏

j≥Ti0+τi

[

(I(Xij = 0, X∗
ij < 0) + I(Xij > 0, X∗

ij = Xij))

φ(Yij − Xijβ2i − UT
ijαi − W T

ij γ − σ12

σ22

ǫX
ij |0, σ2

1|2)φ(ǫX
ij = X∗

ij − δZij|0, σ22)

]

.
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(3) τi = J − Ti0 + 1

In this case, we have the density function as follows:

f(Yi, Xi, X
∗
i |τi) =

∏

j

[

(I(Xij = 0, X∗
ij < 0) + I(Xij > 0, X∗

ij = Xij))

φ(Yij − Xijβ1i − UT
ijαi − W T

ij γ − σ12

σ22

ǫX
ij |0, σ2

1|2)φ(ǫX
ij = X∗

ij − δZij|0, σ22)

]

.

Therefore, given each possible value of τi, we can construct the above likelihood. These

unit-level likelihood will be combined with the hierarchical prior distribution of unit-level

latent data to draw inference on the likely position of changepoints.

2.2 Between-firm Model

In this subsection, we consider modeling the firm-level parameters and latent variables,

(αi, β1i, β2i, τ
∗
i ), as a function of firm-level characteristics. The purpose is to study the

determinants of the interfirm difference on the short-term effect, long-term effect, and the

firms’ response times to counterfeit entry. We use the following multivariate normal to model

the heterogeneity of these latent variables.









αi

β1i

β2i

τ ∗
i









= ΠZi +









eα

eβ1

eβ2

eτ









, (8)

where Π is a nr×nz matrix containing the hyperparameters governing the population distrib-

ution of firm-level latent variables, nr is the number of these latent variables, nz is the number

of variables for firm characteristics (plus an intercept term), and e = (eα, eβ1
, eβ2

, eτ )
T are

random residuals that are assumed to be jointly multivariate normal as

(eα, eβ1
, eβ2

, eτ ) ∼ MVN [(0, 0, 0, 0), Σe] . (9)
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There are two benefits of the between-firm model. One is that this provides a framework

for us to investigate the determinants of firms’ heterogeneous response behaviors in terms

of both their response magnitudes and response speed. Second, this allows one to leverage

strength from different firms in the estimation of firm-level models. In this approach, the

latent response time τ ∗
i is treated the same as the other firm-level latent characteristics,

(αi, β1i, β2i). Therefore the model extends the traditional hierarchical model to incorporate

the latent response time as an additional dimension of the outcomes to study. These latent

variables are inferred from the observed data and the hierarchical model provide a framework

to study the determinants of the interfirm differences. In particular, the approach allows one

to use field data to study what might affect firms’ response times.

The above Equations (1),(2), (3), (4), (5), (8) and (9) specify a probability model describing

the data-generating process. The entire parameter vector is (Π, γ, δ, Σǫ, Σe). The likelihood

for these parameters is as follows:

L(Π, γ, δ, Σǫ, Σe; X,Y )

∝
∏

i

∫

f(Yi, Xi|τ ∗
i , β1i, β2i, αi, γ, δ, Σǫ)f(αi, β1i, β2i, τ

∗
i |Π, Σe)dαidβ1idβ2idτ ∗

i ,

where i = 1, ..., N , f(Yi, Xi|τ ∗
i , β1i, β2i, αi, γ, δ, Σǫ) is specified in Equation (6) and

f(αi, β1i, β2i, τ
∗
i |Π, Σe) is the density function of Equation (8) and (9).

3. Inference

As shown above, the likelihood for the RC-SEM involves integration and summation over the

latent variables X∗
ij, αi, β1i, β2i, τ

∗
i and τi respectively, which renders inference based on the

direct Maximum Likelihood Estimation or Least Square method difficult or even intractable.

We use the Bayesian approach for inference. Specifically we use data augmentation technique
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for the estimation of the model (Tanner and Wong 1987). We augment the parameter vector

by the latent data described above, and then sample from the joint posterior distribution of

model parameters and latent variables. Such a method does not require numerical evaluation

of integrals. Moreover, it is straightforward to make inferences on both the population

parameters and latent variables under the Bayesian framework. For example, their estimates

and the corresponding standard errors can be readily obtained from the posterior draws.

To complete our model, we need to specify the priors for the parameters in the model.

Let Θ = vec(Π′). We assign priors for the model parameters as follows:

Θ ∼ N(µΠ, Λ−1
Π ), γ ∼ N(µγ, A

−2
γ ), δ ∼ N(µδ, A

−1
δ ).

Σǫ ∼ IW (νǫ, Sǫ), Σe ∼ IW (νe, Se), (10)

where IW (ν, S) stands for an inverse-Wishart distribution with ν degrees of freedom and

the scale matrix S. The above distributional forms are chosen for priors because these

are conjugate priors for deriving the conditionals in our Gibbs sampler described later.

In our analysis, the constants in the priors are chosen in a way so that these priors are

relatively diffuse. The assignment of values for the constants in these priors is described in

Appendix. With the above specified priors, model specification, and observed data X and Y ,

the posterior distribution of the parameters and latent data is as follows, up to a constant:

π(Π, γ, δ, Σǫ, Σe, X
∗, αi, β1i, β2i, τ, τ

∗|Y,X) ∝
N
∏

i=1

f(Yi, Xi, X
∗
i |τi, αi, β1i, β2i, γ, δ, Σǫ)f(τi|τ ∗

i )f(τ ∗
i , αi, β1i, β2i|Π, Σe)

· π(Π|µΠ, Λ−1
Π )π(γ|µγ, Aγ)π(δ|µδ, Aδ)π(Σǫ|νǫ, Sǫ)π(Σe|νe, Se). (11)

Although the analytical expression of the posterior distribution is unavailable, we can ob-

tain draws from the posterior distribution of the parameters and the latent data through

simulation method. Detailed Gibbs sampler algorithm for model estimation is given in the
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Appendix.

4. Empirical Analysis

4.1 A Bayesian Analysis using RC-SEM

In this subsection, we apply the proposed RC-SEM methodology to analyze the dataset of

the Chinese shoe industry. In our empirical model, the outcome variable Yij is the logarithm

of the deflated prices for the ith authentic firm’s high-end product at year j. The explanatory

variable of main interest, Xij, is the quantity of counterfeit products in the market faced by

the ith authentic brand at year j, divided by the sale quantity of this authentic firm. The

covariate U in Equation (1) includes firm dummies and W includes year dummies. The year

dummies capture the effects of common shocks to the market that may vary by time. The

firm dummies capture the effects of unobserved firm-level time-constant characteristics.

The entry of counterfeits is likely to be endogenous due to unobserved time-varying firm

characteristics. Ignoring the endogeneity, when present, will lead to erroneous inference

about its causal effect on the authentic firms’ pricing. To identify the effects of the coun-

terfeit entry, we adopt the same IV strategy as in Qian (2008). Qian (2008) documents

a natural experiment in which the exogenous shocks led to the loosening of the Chinese

government’s monitoring of footwear trademarks. The identification strategy exploits the

interaction between the unexpected enforcement change and the relationship between each

branded company and the government, as proxied by the number of days it took each com-

pany to pass the required International Standards (ISO) applications. This IV strategy

recognizes that branded companies that have better relationships with the government are

less affected by the sudden loosening of trademark enforcements, and hence face less threats

by counterfeit entry. The identification strategy uses variations in these IVs to tease out

the exogenous components of the counterfeit sales which is then used to identify the causal
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effect of counterfeit entry. More institutional details regarding the IV validity are discussed

in Qian (2008). In Equation (3), we use LOOSE, RELATION and LOOSE∗RELATION

as the main instruments, where LOOSE is an indicator variable denoting the loosening of

Chinese government enforcement in monitoring the footwear trademarks, RELATION de-

notes the number of days it took the company to pass the required ISO applications, and

LOOSE ∗ RELATION is the interaction between these two variables.

Authentic firms respond to their own counterfeit entry with various time lags. As a

result, the change in prices of their products are manifested in the data only after the

response time. In the analysis below, we will use RC-SEM to explicitly model the latent

heterogeneous response times among the authentic firms. One advantage of the RC-SEM is

that it automatically detects the presence and location of firm-specific changepoint in the

outcome variable time-series. For comparison purposes, we also fit three nested models of the

RC-SEM. The first one is the OLS with a pre-specified response time common to all firms.

This model specification recognizes the dynamic effects of the counterfeit entry, and thus it is

more realistic than a static OLS model that assumes time-invariant effect of counterfeit sales.

However, this analysis requires researchers to specify a common value of response times and

as a result ignores the potential heterogeneity in response times among firms. In our analysis,

we pre-specify the common response time to be two years, which is the value closest to the

posterior mean of response times estimated from our RC-SEM shown later. The second one

is a random-changepoint (RC) model. This model recognizes the heterogeneous response

time but ignores the endogeneity issue. The third one is the simultaneous equation model

(SEM) with a pre-specified response time common to all firms. The standard SEM accounts

for the endogeneity issue. However, like OLS, SEM also assumes common response time

with a value of two years.

We first fit the models in which the covariate Zi in Equation (8) contains only the

20



intercept. The analysis enables us to compare the performance of different models in a

relatively simple setting. All model fittings run the Gibbs sampler for 50,000 iterations and

discard the first 10,000 iterations as the burn-in period. We check the convergence of the

Markov chains to make sure that the chain converges to the stationary distributions after

the burn-in period via both visual traceplot inspections and the Geweke’s numeric diagnostic

statistics (Geweke 1992).

The posterior means and standard deviations of the parameter draws from the Gibbs

sampler for all models are reported in Table 1. Under the RC-SEM, we are able to detect

the presence of response times that are heterogeneous among the authentic firms. Figure 3 (a)

and (b) plots the prior and posterior distributions of the latent response time τ ∗
i . As shown in

the figure, data provide a substantial amount of information so that the posterior distribution

of τ ∗
i is a much more condensed distribution as compared with its prior distribution. The

average response time is estimated to be 1.6 years with a standard deviation of 1.1. This

shows that the authentic firms took considerably different amounts of time to design and

implement counter measures against their counterfeits. In contrast, neither the OLS nor

SEM provides the estimates of the response times since both methods pre-specify them to

be a common value of two years.

The results also show that the effect estimates of counterfeit sales are also different for

different methods. Because the covariate Zi in Equation (8) contains only the intercept, the

parameter estimates in Π are the population mean effects. As shown in Table 1, RC-SEM

shows that there is a negative (-0.34) short-term population mean effect and a positive (1.61)

long-term population mean effect of counterfeit entry on the authentic firms’ prices. The

95% credible intervals for both effects exclude zero. In comparison, the results from SEM

show attenuated effects for both the short-term and long-term effects. In particular, the

95% credible interval for the short-term effect under the SEM includes zero. This shows
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that ignoring the heterogeneous response times, like what a standard SEM does, can lead to

attenuated effect estimates and lose power to detect a change in the marketing response. RC

and OLS also yield different estimates of the effect estimates since they do not model the

endogeneous entry or heterogeneous response times.4 Table 1 shows a negative value of the

posterior mean of the covariance term σ12. Figure 3 (c) and (d) plot the prior and posterior

distributions of the correlation coefficient, ρ = σ12√
σ11σ22

, and show that data provide strong

evidence for the presence of a negative correlation, as compared with its prior distribution.

This implies that there were some unobserved factors that affected the price and counterfeit

entry in opposite directions. These factors could be a firm’s managerial skills that are

positively correlated with product prices and negatively correlated with the counterfeit entry.

It is also possible that higher prices are associated with higher quality products that are

harder to be imitated or counterfeited. The endogeneity issue, if not accounted for in the

modeling, will lead to inconsistent estimate of causal effects.

We also conduct model comparisons using the logarithm of Bayes factors (Newton and

Raftery 1994). In our model comparisons, the RC-SEM is considered as the full model, and

the other three models (SEM, RC and OLS) can be considered as various nested models of

the RC-SEM.5 A general rule is that a log Bayes factor of larger than 5 provides strong evi-

dence against the null model (Raftery 1996). Our calculation shows that the log Bayes factor

for RC-SEM against SEM (null model) is 350.49 which provides overwhelming evidence for

the presence of heterogeneous random changepoints among firms. The log Bayes factor for

RC-SEM against RC (null model) is 121.78, which provides very strong evidence for the

presence of endogeneity of counterfeit entry. The log Bayes factor for RC-SEM against OLS

4
In particular, both models significantly underestimate the long-term effect of counterfeit entry. Furthermore, as shown in

the next subsection, these two models also mis-assess the effects of several factors on marketing outcomes and are not able to
identify their significant effects.
5
Because the RC and OLS use a single-equation approach, in order to make their marginal likelihood comparable with those

of the SEM-type models, we have added the contribution of the likelihood from an independent model for X in the calculation
of marginal likelihood for these two models.
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(null model) is 398.63, which provides overwhelming evidence for the simultaneous presence

of both heterogeneous random changepoints among firms and the endogeneity of counterfeit

entry.

4.2 Investigating Factors Affecting Firms’ Responses

In this subsection, we conduct a finer analysis to study factors affecting authentic firms’

responses to the counterfeit entry. The firms’ response behaviors studied here include both

their response magnitude in short term and long term as well as their response speed. Specif-

ically, we expand the RC-SEM model as specified above and include a set of observed firm

characteristics to explain the differential responses in the between-firm model as specified in

Equation (8). The descriptive statistics of the firm characteristics included in Z are summa-

rized in Table 2. All these variables take on the average of pre-entry values, and our analysis

is concerned with how various characteristics of the firms associate with their responses to

counterfeiting. In Table 3 we report estimates of the hierarchical parameters in Π for all

models considered. The covariates in Z are standardized before entering the hierarchical

model analysis for ease of interpretation. We will further explain these firm-level variables

and the corresponding results in the following paragraphs.

The authentic product quality could moderate the counterfeiting effects in a subtle way.

Our hypothesis is that it will be easier for consumers to detect counterfeits from authentic

products when the authentic quality is higher. Since it is harder for counterfeiters to close

the quality gap, the short-term shock to the authentic branded company will be less severe.

The analyses do show that the authentic quality, as proxied by unit product costs, helps to

alleviate the negative impacts of counterfeit entry on prices in the short run (Column 2 of

Table 3).

Market share is an obvious brand characteristics to consider as an influencing factor. On

23



the one hand, a brand with a larger market share is likely to attract more counterfeiting

and face more competition that way. On the other hand, larger market share also implies

the brand enjoys more market power and stability, and can be less influenceable by fringe

competitions. Under our analyses of identifying the effects of plausibly exogenous entries, it

does appear that brands with larger market shares are less affected by counterfeiting, with a

less negative short-term effect and a smaller long-term entry effect by counterfeits (Column

3 in Table 3).

To test whether the degree of diversification moderates the effects of counterfeiting, we

collected data on the number of sub-brands and percentage of the sales values for exports

each branded company had. There is no significant effect associated with the number of

sub-brands a branded company owns, possibly because counterfeiters infringe on all sub-

brands (Column 4 in Table 3). However, companies with larger percentage of sales value

for export are less affected by the entry of counterfeits, because they are more diversified

than the companies that rely primarily on the domestic market where counterfeits massively

entered. They correspondingly have less urgency to respond to counterfeiting and have a

longer response time (Column 5 in Table 3).

In theory, the more innovativeness a company is, the faster it will come up with newer

product designs and innovations to differentiate from counterfeits. We use two alternative

proxies for innovativeness: annual R&D expenditures and patent application costs of each

branded company. R&D expenditures measure more of the inputs to innovation while patent

costs proxy for innovation outputs (Qian 2007). These two variables are highly correlated

(correlation coefficient = 0.97), so we include only the patent costs in the main specifications.

Robustness checks using R&D instead of patent costs yield similar results. As expected, the

companies with higher levels of patent costs or R&D responded to counterfeiting in a shorter

time-frame by introducing a higher priced high-end shoes, as compared to companies with
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lower levels of innovativeness (Column 6 in Table 3). This suggests that the innovative

companies not only innovate faster in the face of competition, but also innovate with better

products given that Qian (2008) has shown very high correspondence between these shoe

prices and their unit product costs as well as characteristics.

We additionally have information on the annual advertising expenditure of each branded

company. While heavier advertising could imply that consumers are more familiar with the

branded products and possibly less confused by counterfeits, it could also present a larger

brand premium for counterfeiters to free ride on. It then becomes an empirical question

whether advertising moderates the effect of entry by counterfeiters. Column 7 of Table 3 show

that companies that are accustomed to heavier advertising raise their high-end product prices

more after they introduced new products to countervail counterfeits, potentially because

there is a higher brand premium to leverage or because there is a higher fixed cost to

recuperate via higher prices.

Finally, we gathered data on human capital within companies to test whether and how

this factor moderates the effects of counterfeiting and brand responses. We include the

employment and total annual wages of the branded companies to proxy for brand-level

human resources. Wage is a proxy for skilled labor commonly used in the labor economics

literature. Columns 8 and 9 in Table 3 demonstrate that the more human resources a branded

company has, the shorter time it takes to respond to counterfeits by innovating.

One important thing to note in the analysis is that the traditional SEM and OLS method

do not model the heterogeneous response times and therefore do not allow for the study of

what affects firms’ reaction speed. Furthermore, ignoring the heterogeneous response time

also lead to mis-assessment of the effects of firm characteristics. The RC model allows for

this feature but does not model the endogeneity issue. Their effect estimates are also differ-

ent from those from the RC-SEM.
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5. A Simulation Study

In this section, we conduct a set of simulation experiments to evaluate the performance of

different models to estimate the dynamic effects in repeated samples. We follow the steps

below to simulate data with dynamic effects:

• For each simulation dataset, we set the number of units n = 30 and the number of

observations per unit J = 12, similar to those in the Chinese Shoe Market Data.

• To simulate data for Yij, X∗
ij and Xij, we first set the mean parameters in the following

equations:

Yij =

{

Xijβ1i + αi + W T
ij γ + ǫY

ij j = 1 , ..., Ti − 1
Xijβ2i + αi + W T

ij γ + ǫY
ij j = Ti, ..., J

and

X∗
ij = δZij + ǫX

ij

Xij =

{

X∗
ij if X∗

ij ≥ 0
0 if X∗

ij < 0.

In simulations, we set the short-term effect β1 = −0.4 and the long-term effect β2 = 1.0.

The parameter vector γ includes the time fixed-effects that are simulated from N(0, 0.12).

The firm effects αi is simulated from N(0, 0.12). In simulations, we include in Z an in-

tercept and three instrumental variables. The first IV is 0 before J = 4 and 1 afterward,

mimicking the occurrence of a natural experiment. The second IV is simulated from

N(0.5,1), and the third IV is the interaction of the first two IVs. We set the parameter

values for coefficients on the intercept and the IVs to be (−1, 2, 0, 0.5). We then randomly

generated the response time τ ∗
i from N(2, 1.52) and form the grouped version of the re-

sponse time τi according to Equation (5). The changepoint time Ti = Ti0 + τi, where Ti0

is the first time that the treatment variable becomes positive.
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• We generate the error terms (ǫX
ij , ǫ

Y
ij) from a bivariate normal distribution with mean 0

and variance-covariance matrix

Σǫ =

(

σ11 ρ
√

σ11σ22

ρ
√

σ11σ22 σ22

)

,

where ρ is the correlation coefficient of two error terms. In simulations, we set σ11 = 0.152

and σ22 = 0.52, and we vary ρ in (0,−0.2, 0.2,−0.5, 0.5, 0.8,−0.8) to cover various strengths

of endogeneity in both directions.

• We then generate Yij, X∗
ij and Xij given the above model parameters. We repeat the

above steps for M = 50 times for each parameter setting. This will generate 7*M panel

datasets because there are seven values of ρ specified in step 3.

• We fit each simulated dataset with four models: the RC-SEM, SEM, RC model and

the OLS model. Note that RC-SEM model is the full model and the other models can

be considered as reduced models of RC-SEM. The RC model assumes ρ = 0 (i.e. no

endogeneity issue) but allows heterogeneity of response times across units. In both SEM

and the OLS the response times are assumed to be the same for all units. Furthermore,

this common response time is not to be estimated from the data in SEM and OLS, but

rather needs to be pre-specified. In the simulation study, we assume this common response

time is 2, which is the mean of the response time used in the simulation. This corresponds

to a scenario that the best guess of the response time, under the assumption of common

response time, is used.

• We compare the estimates for both the population temporary short-term effect β1 and the

stable long-term entry effect β2 from these four models. The result is summarized in Table

4. The columns “Bias”, “SD” and “RMSE” are the bias, standard deviation, and square

root of Mean squared error, respectively, calculated from the resulting sample of Bayesian
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estimates. We repeat the process for each value of ρ. The column “Coverage Rate” is

the proportion of 95% credible intervals that contain the true values in the simulation

experiments.

The simulation study shows that the estimation algorithm under the RC-SEM model

recovers the true values of the temporary short-term β1 and stable long-term entry effect

β2 reasonably well. Its RMSEs are smallest among four models across different strength

of endogeneity. In addition, the coverage rates of the credible intervals are closest to the

nominal 95% rate, among all methods. The simulation study shows that both the SEM

model and OLS that ignores the heterogeneity in latent response times attenuate dynamic

entry effects. The attenuation bias could be as large as 50% reduction in the true effect size.

This shows that in the presence of heterogeneous response time, ignoring the heterogeneity

and specifying a common response time can lead to severely biased estimates of dynamic

effects. Moreover, the Bayesian estimator from the RC-SEM model has less variability (i.e.

smaller standard error) than that from the SEM, because the RC-SEM model provides better

model-fitting by taking into account the latent response times. The RC estimates are bi-

ased because of the endogeneity issue. The OLS estimate has serious bias, particulary when

the endogeneity is strong, and the 95% credible intervals hardly contain the true effect value.

6. Discussion

In marketing and economics studies, measuring the causal relationships among variables

is of critical importance. In practical applications, however, the issues of nonstationary,

endogeneity and heterogeneity are frequently encountered and can potentially spoil inference

if not taken into account properly. In this paper, we have considered the modeling and

inference of a simultaneous equation model with random changepoints, and apply the model

to study the dynamic and heterogeneous causal effects of counterfeit entry on the authentic
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firm’s price. The set of incumbent responses to entry by counterfeiters provide an interesting

case study to demonstrate the applicability of the proposed methodology. To the best of

our knowledge, this is the first study to propose and apply a tractable framework to account

for all the above issues. As shown in our application and simulations, because the proposed

method considers both the heterogeneous nature of marketing players’ response times and

the endogeneity issue, it minimizes the bias in the dynamic effect estimation. These more

accurate dynamic effect estimates are also beneficial for future welfare analyses and policy

experiments.

An added benefit of our method is the automatic detection of changepoints across units

and the data-driven estimations of such changepoints (i.e., the authentic companies’ re-

sponse times in our application), which are interesting to study in their own rights. We

further study what affects the firms’ response times along with their response magnitudes

using the hierarchical Bayesian method. We find that firms that have more human resources

or less diversification from markets affected by trademark infringement are quicker to fire

sustainable long-term responses to new competitive threats by counterfeiters. As demon-

strated in the application, the proposed method provides marketing researchers with a new

approach to study similar questions on response times using field data.

The empirical results in this paper help to unify two strands of Industrial Organization

literature on the entry effects on prices. In particular, the finding that the authentic prices

fell immediately upon the entry of counterfeiters can be explained by Fudenberg and Ti-

role (2000). That is, new entry imposes competitive pressure in the short-run. We further

identify that authentic prices rose substantially on average two years after counterfeit entry.

This positive effect could be resolved with the other strand of theories. Notably, Frank and

Salkever (1997) predicts that generic entry could steal away the price-sensitive consumer seg-

ment, leaving behind a more inelastic demand for the branded companies to re-optimize into
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a higher price. In addition, Qian (2006) predicts that companies invest to differentiate their

products from counterfeits through innovation, self-enforcement, vertical integration, as well

as price signaling, and all these mechanics lead to price increases. It becomes apparent that

these theories can better explain the long-term entry effects, and are complementary rather

than contradictory to traditional economic theories that predict negative price shocks. The

individual-level parameter estimates also uncover a set of firm characteristics that moderate

the timing and magnitude of pricing responses to entry by counterfeiters. These results pre-

scribe effective brand management strategies tailored to each type of firms. The empirical

findings on the pricing effects of counterfeiting can also shed lights on the private label lit-

erature, where imitation or copycat strategy accounts for more than 50% of the store brand

introductions (Scott Morton and Zettelmeyer, 2004).

There are also some possible extensions to the proposed model. Our modeling framework

is well suited for studying two-stage dynamic effects with a temporary short-term effect and

a stable long-term effect. Such a model provides a relatively parsimonious summarization of

the dynamic effects of market changes on the responses. In other settings (e.g. FHH 2004),

each study unit may have multiple changepoints in their panel responses. One could extend

the model developed in this article to allow for such scenario. Second, our hierarchical model

uses the standard multivariate normal model for unit-specific latent variables. One could

exploit the usage of a more general second stage model, such as a multivariate−t distribution.

In summary, the method proposed in this article is flexible and has potential to be expanded

along these directions.
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Appendix: Prior Specification and MCMC algorithm for the RC-SEM.

In this Appendix, we present the details of prior specification and the MCMC algorithm for

estimating the proposed simultaneous equation model with random changepoints (RC-SEM).

Equation (10) presents the forms of the priors. In our analysis, we set the constants

in the priors as follows: µΠ, µγ , µδ are assigned as vectors of zeros. ΛΠ = 0.01 × Inr×nz
,

Aγ = 0.01 × Inγ
, Aδ = 0.01 × Inδ

, νǫ = 5 and νe = nr + 3, Sǫ = νǫΣǫ0 and Se = νeΣe0, where

nr is the dimension of the square matrix of Σe, and nz is the number of columns of Z, nγ

and nδ is the length of γ and δ.

When choosing the value for Σǫ0 and Σe0, we follow the approach suggested in Rossi et

al. (2005). Because Σǫ0 is related to the mean of the prior for the variance-covariance matrix

of the error terms of the simultaneous equation model, we would like to take into account

the scale of the outcomes and the explanatory power of the regressors in the assignment

of its value. Rather than assigning an arbitrary value, such as an identity matrix, we set

Σǫ0 = Σ̂OLS
ǫ , where the diagonal entries of Σ̂OLS

ǫ are OLS estimates of error variances for Y

equation and X equation, separately, and the off-diagonal entries of Σ̂OLS
ǫ are zeros. The

choice of the prior is reasonable because the resulting prior is reasonably flat over a wide

range of plausible values of the correlation coefficient ρ between ǫX and ǫY , the measure

of the endogeneity strength. Figure 3 (c) displays the marginal prior distribution of the

correlation coefficient ρ = σ12√
σ11σ22

given the choices of the above chosen prior. The histogram

is constructed from sampling 10000 iid draws from the priors of Σǫ, and then calculating

ρ for each draw. The histogram shows that for this prior, the distribution of correlation

coefficient ρ is centered at zero and reasonably spread out between -1 and +1. Similarly,

we have set the block in Σe0 for (αi, β1i, β2i) as Σ̂OLS
e . Because the OLS does not model the

heterogeneity of τ ∗
i , we set the corresponding entry in Σe0 to be one. Using a larger value (

e.g., 2) or a smaller value (e.g., 0.5) has little impact on the resulting estimation.



Given the above prior and posterior distribution derived in Equation (11), we implement

a Gibbs sampler to obtain draws from the posterior distribution. The full conditionals of

model unknowns for each step of the Gibbs sampler are derived below.

1. Draw β1i, β2i, αi|δ, γ, Σǫ, Ti, X
∗

We decompose the joint bivariate normal distribution of the error term (ǫX
ij , ǫ

Y
ij) as

the product of the marginal distribution of ǫX
ij and the conditional distribution of

ǫY
ij|ǫX

ij . We note that the conditional distribution ǫY
ij|ǫX

ij is N(σ12

σ22

ǫX
ij , σ11 − σ2

12

σ22

). We

write ǫY
ij = σ12

σ22

ǫX
ij + eij, where eij ∼ N(0, σ2

e), σ2
e = σ11 − σ2

12

σ22

and eij⊥ǫX
ij . Given δ,

the error term ǫX
ij = X∗

ij − δZij. To make notation more compact at the unit level, let

Yi = (Yi1, ..., YiJ), ǫX
i = (ǫX

i1, ..., ǫ
X
iJ), ei = (ei1, ..., eiJ). Then at the unit level, we have:

Yi − W T
i γ − σ12

σ22

ǫX
ij = Hi





β1i

β2i

αi



+ ei,

where the design matrix for the ith unit Hi is:

Hi = (HT
i1, ..., H

T
iJ)T =

















Xi1 0 Ui1

. . ...

Xi,Ti−1 0 ...

0 Xi,Ti
...

. . ...

0 Xi,J UiJ

















, (12)

and Ti = Ti0 + τi. We rewrite the variance-covariance matrix, Σe, in the distribution

of the latent variables (β1i, β2i, αi, τ
∗
i ) in Equation (9) as follows,

Σe =

[

Σe,11 Σe,12

Σe,12 Σe,22

]

(13)

where Σe,11 and Σe,22 are variance-covariance matrix of (β1i, β2i, αi) and τ ∗
i , respectively,

and Σe,12 is covariance matrix between these two blocks of parameters. The prior
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distribution of (β1i, β2i, αi)|τ ∗
i is N(µ1|2,i, A

−1
1|2) where

µ1|2,i = µ1i + Σe,12Σ
−1
e,22(τ

∗
i − µ2i)

A−1
1|2 = Σe,11 − Σe,12Σ

−1
e,22Σe,21,

and µ1i and µ2i are the prior means of (β1i, β2i, αi) and τi, respectively, and (µ1i, µ2i) =

ΠZi. Then the conditional draws of (β1i, β2i, αi) can be obtained from the following

normal distribution:

N

(

(
HT

i Hi

σ2
e

+ A1|2)
−1(

HT
i Ri

σ2
e

+ A1|2µ1|2,i), (
HT

i Hi

σ2
e

+ A1|2)
−1

)

where Ri = Yi − W T
i γ − σ12

σ22

ǫX
i .

2. γ|δ, β1i, β2i, αi, Σǫ, T,X∗

Given the prior distribution for γ as N(µγ, A
−1
γ ), we have the conditional draw of γ as

N

(

(
W T

i Wi

σ2
e

+ Aγ)
−1(

W T
i R

γ
i

σ2
e

+ Aγµγ), (
W T

i Wi

σ2
e

+ Aγ)
−1

)

,

where R
γ
i = Yi − Hi[β1i, β2i, αi]

T − σ12

σ22

ǫX
i .

3. X∗
ij|β1i, β2i, αi, γ, δ, Σǫ, T

If Xij > 0, then X∗
ij = Xij. If Xij = 0, then X∗

ij is drawn from a truncated normal

distribution with the mean Zijδ+ σ12

σ11

ǫY
ij and the variance σ22− σ2

12

σ11

, where the truncation

is to (−∞, 0).

4. δ|β1i, β2i, αi, γ, Σǫ, T,X∗

Following Lahari and Schmidt (1978) and Rossi et al. (2005), we re-express the tri-

angular system specified in Equation (1), (3) and (4) as a SUR model for making
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conditional draw of δ. Let Y ∗
i = Yi − Hi(β1i, β2i, αi)

T , where Hi is given in Equation

(12). We then have the likelihood of the triangular system the same as that of the

following SUR model:

(

Y ∗
ij

X∗
ij

)

=

(

Wij

Zij

)(

γ

δ

)

+

(

ǫY
ij

ǫX
ij

)

where Y ∗
ij is the jth component of Y ∗

i , Wij is the jth row in the design matrix Wi. Let

Mij =

(

Wij

Zij

)

. Then (γ, δ) has a likelihood as that from a multivariate normal

with the mean

(γ̄, δ̄) =

(

∑

i,j

MT
ijΣ

−1
ǫ Mij

)−1(
∑

i,j

MT
ijΣ

−1
ǫ

(

Y ∗
ij

X∗
ij

)

)

and the variance-covariance matrix

(

Ωγγ Ωγδ

Ωδγ Ωδδ

)

=

(

∑

i,j

MT
ijΣ

−1
ǫ Mij

)−1

Then given γ, the likelihood for δ is a multivariate normal with mean µδ|γ = δ̄ +

ΩδγΩ
−1
γγ (γ − γ̄) and variance-covariance matrix Ωδ|γ = Ωδδ − ΩδγΩ

−1
γγ Ωγδ. Thus given

the a normal prior N(µδ, A
−1
δ ) for δ, we can draw δ from a normal distribution with

mean (Aδ + Ω−1
δ|γ)

−1(Aδµδ + Ω−1
δ|γµδ|γ) and variance (Aδ + Ω−1

δ|γ)
−1.

5. Σǫ|β1i, β2i, αi, γ, δ, T,X∗

The conditional draw of Σǫ follows IW (νǫ+N×J, Sǫ+S), where S =
∑

i,j

(

ǫY
ij

ǫX
ij

)

(ǫY
ij , ǫ

X
ij ).

6. τ ∗
i , τi|β1i, β2i, αi, γ, δ, Σǫ, X

∗

Given other parameters and latent data, we can calculate the vector Ri = Yi −
σ12

σ22

ǫX
i . For the ith response time τi, we have its conditional distribution given by
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multinomial (1, [pi(0), ..., pi(J − Ti0 + 1)]), where

pi(m) =
f(Ri|τi = m)p(τi = m)

∑J−Ti0+1
m′=0 f(Ri|τi = m′)p(τi = m′)

for m = 0, ..., J−Ti0+1 and f(Ri|τi = m) is a density function for MV N(Hi,m(β1i, β2i, αi)
T +

Wiγ, σ2
eIJ), σ2

e = σ11 − σ2

12

σ22

and Hi,m is:

Hi,m =

















Xi1 0 Ui1

. . ...

Xi,m+Ti0−1 0 ...

0 Xi,m+Ti0
...

. . ...

0 Xi,J UiJ

















.

The prior distribution p(τi = m) is calculated from the conditional distribution of

(τ ∗
i |β1i, β2i, αi), using the fact that τi is grouped from the underlying continuous vari-

ables τ ∗
i . Thus p(τi = m) has the following probabilities

p(τi = m) =







Φ(0|µ2|1,i, A
−1
2|1) if m = 0

Φ(m|µ2|1,i, A
−1
2|1) − Φ(m − 1|µ2|1,i, A

−1
2|1) if 0 < m < J − Ti0 + 1

1 − Φ(m − 1|µ2|1,i, A
−1
2|1) if m = J − Ti0 + 1,

where Φ(·|µ2|1,i, A
−1
2|1) is the cumulative probability function from N(µ2|1,i, A

−1
2|1) and

µ2|1,i = µ2i + Σe,21Σ
−1
e,11((β1i, β2i, αi)

T − µ1i)

A−1
2|1 = Σe,22 − Σe,21Σ

−1
e,11Σe,12,

and µ1i and µ2i are the prior means of (β1i, β2i, αi) and τ ∗
i , respectively, and (µ1i, µ2i) =

ΠZi. Given the draw of τi, we can draw τ ∗
i from a truncated normal from N(µ2|1,i, A

−1
2|1)

with the following lower, a, and upper bound, b,

(a, b) =







(− inf, 0] if m = 0
(m − 1,m] if 0 < m < J − Ti0 + 1
(m − 1, inf) if m = J − Ti0 + 1.
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7. Updating Π, Σe|β1i, β2i, αi, Zi.

Let Λ = Σ−1
e . We follow the standard approach (Gelman et al. 2004, Rossi et al. 2005)

to obtain the conditional draws as follows:

p(Λ|Θ) = W
(

νe + N,
(

Se +
N
∑

i=1

eie
′
i

)−1
)

,

where ei = βi − ΠZi, βi = (αi, β1i, β2i, τi), and

p(Θ|Λ) = N
(

ΣΠ

[

(Λ ⊗ Inz
)Hzβ + ΛΠµΠ

]

, ΣΠ

)

,

N is the number of subjects, ΣΠ =
[

(Λ ⊗ Hzz) + ΛΠ

]−1
, and

Hzz =
N
∑

i=1

ZiZ
′
i, Hzβ =











Hzβ1

Hzβ2

...
Hzβnr











,

and Hzβj
=
∑N

i=1 Ziβij, for j = 1, ..., nr.
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Table 1: Estimation Results Under RC-SEM and Reduced Models When Z Contains Only
Intercept.
Note: The table lists the posterior means and standard deviations of model parameters. log(dfph): the logarithm of deflated
authentic high-end prices in Chinese Yuan, using the Consumer Price index published in the World Bank World Development
Indicators (WDI) (Year 1995 was set as the base year in the database, i.e. CPI=100 in 1995). fksh: the quantity of counterfeit
products in the market faced by the corresponding authentic firm, divided by the sale quantity of this authentic firm. fkshST

and fkshLT refer to its short-term and long-term effects, respectively. RC-SEM: the simultaneous equation model with random
changepoints. SEM: the standard simultaneous equation model with a common response time of two years. RC: random-
changepoint model. OLS: the standard OLS model with a common response time of two years. All models use year fixed
effects. “*” indicates that 95% credible interval excludes zero.

Explanatory Variable RC-SEM SEM RC OLS
log(dfph) fksh log(dfph) fksh log(dfph) log(dfph)

CONST 1.36∗ 1.34∗ 1.41∗ 1.36∗

(0.12) (0.10) (0.11) (0.11)
fkshST -0.34∗ -0.05 -0.57∗ -0.24∗

(0.08) (0.17) (0.10) (0.07)
fkshLT 1.61∗ 1.02∗ 1.24∗ 0.75∗

(0.25) (0.24) (0.27) (0.11)
ResponseTime 1.57∗ NA 1.65∗ NA

(0.11) NA (0.13) NA
LOOSE 0.59∗ 0.53∗

(0.10) (0.09)
RELATION 0.000 0.001

(0.001) (0.001)
LOOSE*RELATION 0.003∗ 0.003∗

(0.001) (0.001)
σ11 0.01∗ 0.02∗ 0.01∗ 0.02∗

(0.001) (0.002) (0.001) (0.002)
σ12 -0.011∗ -0.008∗ NA NA

(0.002) (0.002) NA NA
σ22 0.026∗ 0.025∗ NA NA

(0.003) (0.003) NA NA
No. of Obs. 372 372 372 372
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Table 2
Definition and Summary Statistics of Marketing Variables of the Authentic Firms.

Variable Definition Mean SD

Cost Unit Product Cost of High-end Product (US $) 33.53 19.14
Mkshare Market Share (%) 2.9 3.7
BrandNo The Number of Sub-brands 1.45 0.85
Export Percentage of Sale Values for Export (%) 18.1 12.5
PatCost Patent Application Costs (US $) 2453.6 1560.1
Ads Annual Advertisement Expenditure (US $) 1,497,700 2,724,200
Employ The Number of Employees 813.7 482.6
AW Total Annual Wages (US $) 482.8 272.2
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Table 3: Estimation Results Under RC-SEM and Different Reduced Models When Z Contains Explanatory
Variables.
Note: The table lists the posterior means and standard deviations of model parameters. log(dfph): the logarithm of deflated authentic high-end prices in
Chinese Yuan, using the Consumer Price index published in the World Bank World Development Indicators (WDI) (Year 1995 was set as the base year in
the database, i.e. CPI=100 in 1995). fksh: the quantity of counterfeit products in the market faced by the corresponding authentic firm, divided by the sale
quantity of this authentic firm. fkshST and fkshLT refer to its short-term and long-term effects, respectively. RC-SEM: the simultaneous equation model
with random changepoints. SEM: the standard simultaneous equation model assuming a common response time of two years. RC: random-changepoint
model. OLS: the standard OLS model assuming a common response time of two years. “*” indicates that 95% credible interval excludes zero.

Attribute Constant Cost Mkshare BrandNo Export PatCost Ads Employ AW

(1) RC-SEM

Constant (αi) 1.40∗ 0.52∗ 0.07 0.01 -0.05 0.06 -0.04 -0.13∗ -0.09∗

(0.04) (0.05) (0.06) (0.04) (0.05) (0.05) (0.06) (0.05) (0.04)
fkshST (β1i) -0.25∗ 0.14∗ 0.17 -0.01 0.02 0.02 -0.13 0.07 0.15

(0.08) (0.06) (0.10) (0.04) (0.07) (0.08) (0.15) (0.08) (0.12)
fkshLT (β2i) 1.90∗ 0.21 -0.80∗ 0.23 -0.27 0.23 0.75∗ -0.36∗ 0.29

(0.21) (0.18) (0.25) (0.17) (0.15) (0.23) (0.36) (0.17) (0.31)
ResponseTime (τ ∗

i ) 1.51∗ -0.03 -0.01 -0.15 0.41∗ -0.19 -0.06 -0.32∗ -0.26
(0.14) (0.12) (0.17) (0.12) (0.12) (0.11) (0.17) (0.13) (0.20)

(2) SEM

Constant (αi) 1.33∗ 0.54∗ 0.07 -0.00 0.02 0.06 0.06 -0.14∗ -0.10∗

(0.05) (0.05) (0.07) (0.04) (0.05) (0.07) (0.08) (0.05) (0.05)
fkshST (β1i) 0.08 0.06 0.01 0.03 -0.02 0.07 0.19 0.09 -0.15

(0.10) (0.06) (0.10) (0.06) (0.07) (0.08) (0.17) (0.07) (0.12)
fkshLT (β2i) 1.16∗ 0.05 -0.09 0.19∗ -0.08 -0.15 0.36 -0.07 0.16

(0.15) (0.11) (0.16) (0.09) (0.11) (0.15) (0.28) (0.12) (0.21)
ResponseTime (τ ∗

i ) NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA

continued on next page
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Table 3: continued

Attribute Constant Cost Mkshare BrandNo Export PatCost Ads Employ AW
(3) RC

Constant (αi) 1.45∗ 0.54∗ 0.11 0.02 -0.05 0.03 -0.06 -0.13∗ -0.11∗

(0.05) (0.05) (0.07) (0.04) (0.05) (0.07) (0.07) (0.05) (0.05)
fkshST (β1i) -0.61∗ 0.10 0.21∗ -0.04 -0.02 0.06 -0.18 0.13 0.16

(0.11) (0.07) (0.10) (0.07) (0.07) (0.09) (0.14) (0.08) (0.11)
fkshLT (β2i) 1.24∗ 0.12 -0.48∗ 0.18 -0.16 0.23 0.76∗ -0.23 0.19

(0.20) (0.15) (0.21) (0.14) (0.15) (0.19) (0.27) (0.17) (0.27)
ResponseTime (τ ∗

i ) 1.52∗ -0.12 0.03 -0.15 0.25∗ -0.15 -0.08 -0.25∗ -0.15
(0.10) (0.10) (0.12) (0.09) (0.09) (0.13) (0.15) (0.11) (0.18)

(4) OLS

Constant (αi) 1.41∗ 0.54∗ 0.08 0.01 0.02 0.05 -0.02 -0.14∗ -0.11∗

(0.05) (0.05) (0.07) (0.04) (0.05) (0.07) (0.08) (0.05) (0.05)
fkshST (β1i) -0.21∗ 0.01 0.02 0.04 -0.13 0.04 0.16 0.06 -0.12

(0.09) (0.07) (0.10) (0.06) (0.07) (0.08) (0.17) (0.07) (0.12)
fkshLT (β2i) 0.96∗ 0.04 -0.15 0.21∗ 0.02 0.04 0.44 -0.07 0.15

(0.15) (0.11) (0.16) (0.09) (0.11) (0.15) (0.31) (0.13) (0.20)
ResponseTime (τ ∗

i ) NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA
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Table 4: A simulation study on the comparison of performance of four models on estimating the dynamic entry
effects.
RC-SEM: the simultaneous equation model with random changepoints. SEM: the standard simultaneous equation model assuming a common response time
of two years. RC: random-changepoint model. OLS: the standard OLS model assuming a common response time of two years. “Bias” and “SD” in the
table are the bias and standard deviation of the estimates (posterior means), respectively, over all the replicates. “RMSE” denotes the root mean squared
error. “CR” denotes the coverage rate.

ρ RC-SEM SEM RC OLS
Bias SD RMSE CR Bias SD RMSE CR Bias SD RMSE CR Bias SD RMSE CR

Short-term effect (True value= -0.4)
0 -0.01 0.12 0.12 92% 0.16 0.14 0.21 66% -0.01 0.10 0.10 92% 0.16 0.13 0.20 72%

0.2 0.04 0.10 0.11 88% 0.22 0.13 0.25 52% 0.11 0.09 0.14 76% 0.27 0.12 0.30 32%
0.5 0.03 0.10 0.11 92% 0.25 0.15 0.29 46% 0.20 0.10 0.23 34% 0.38 0.16 0.41 18%
0.8 0.01 0.09 0.09 90% 0.25 0.14 0.27 42% 0.30 0.13 0.33 18% 0.45 0.16 0.48 8%

-0.2 0.01 0.10 0.10 98% 0.18 0.14 0.22 62% -0.05 0.09 0.11 88% 0.12 0.13 0.18 78%
-0.5 0.02 0.10 0.10 92% 0.15 0.14 0.20 70% -0.15 0.10 0.17 60% 0.03 0.14 0.15 84%
-0.8 0.00 0.09 0.09 94% 0.10 0.12 0.15 74% -0.26 0.09 0.27 16% -0.10 0.11 0.15 84%

Long-term effect (True Value=1.0)
0 -0.01 0.08 0.08 94% -0.16 0.10 0.18 54% -0.01 0.06 0.07 94% -0.17 0.09 0.18 46%

0.2 0.00 0.09 0.09 92% -0.13 0.10 0.16 66% 0.07 0.09 0.12 74% -0.07 0.10 0.12 80%
0.5 0.00 0.08 0.08 98% -0.11 0.09 0.14 80% 0.18 0.08 0.20 24% 0.03 0.10 0.10 90%
0.8 -0.01 0.09 0.09 86% -0.09 0.08 0.12 80% 0.30 0.10 0.31 4% 0.12 0.10 0.17 60%

-0.2 -0.01 0.09 0.09 92% -0.18 0.11 0.21 50% -0.09 0.07 0.12 80% -0.25 0.10 0.27 16%
-0.5 0.01 0.09 0.09 88% -0.19 0.10 0.21 46% -0.17 0.08 0.19 36% -0.33 0.10 0.34 6%
-0.8 -0.01 0.06 0.06 98% -0.24 0.08 0.25 20% -0.31 0.08 0.31 2% -0.45 0.07 0.45 0%
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Figure 1. Average log deflated authentic price versus the years relative to the counterfeit
entries. −�−: the regression coefficient estimates on a set of time dummies denoting the
number of years relative to the counterfeit entries with the log deflated price for high-end
product as the response variable. −△−: prediction based on the pre-entry price trend.
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T20 T2

τ2
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Figure 2. A graph illustrating that ignoring heterogeneity of response times can lead to
misleading estimation. The graph shows two hypothetical firms that experience a market
change (e.g. counterfeit entry) at time T10 and T20, respectively. Their latent changepoints
in marketing response outcome are T1 and T2 and the corresponding response time are τ1

and τ2. Pre-specifying a common τc ignores this heterogeneity and can lead to incorrect
analysis of the dynamic effects of the market change on the response outcome. In contrast,
the changepoint model allows for firm-specific changepoint and therefore is well suited for
studying heterogeneity of response times across study units.
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(c) Prior Distribution of ρ
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(b) Posterior Distribution of τi*
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(d) Posterior Distribution of ρ
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Figure 3. Comparison of Prior and Posterior Distributions of τ ∗
i and ρ.

47


