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ABSTRACT

The role of rewards for maintaining performance incentives in multi-

stage, sequential games of survival is studied. The sequential structure is a

statistical design—of—experiments for selecting and ranking contestants. It

promotes survival of the fittest and saves sampling costs by early elimination

of weaker contenders. Analysis begins with the case where competitors'

talents are common knowledge and is extended to cases where talents are

unknown. It is shown that extra weight must be placed on top ranking prizes

to maintain performance incentives of survivors at all stages of the game.

The extra weight at the top induces competitors to aspire to higher goals

independent of past achievements. In career games workers have many rungs in

the hierarchical ladder to aspire to in the early stages of their careers, and

this plays an important role in maintaining their enthusiasm for continuing.

But the further one has climbed, the fewer the rungs left to attain. If top

prizes are not large enough, those who have succeeded in attaining higher

ranks rest on their laurels and slack off in their attempts to climb higher.

Elevating the top prizes makes the ladder appear longer for higher ranking

contestants, and in the limit makes it appear of unbounded length: no matter

how far one has climbed, it looks as if there is always the same length to go.

Concentrating prize money on the top ranks eliminates the no—tomorrow aspects

of competition in the final stages.
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I. INTRODUCTION

Several recent papers have clarified the problem of incentives in one

shot games when competitors are paid on the basis of rank or relative performance

(Lazear and Rosen [1981], Green and Stokey [1983], Nalebuff and Stiglitz [1983],

Holmstrorn [1982], Malcomson [198L], Carmichael [1983], O'Keefe, Viscusi and

Zeckhauser [198L1). The main focus so far has been to establish the circum

stances under which such schemes are efficient, for example when measurement and

environmental factors exert common influences on outcomes. However, a longer

tradition in statistics views the relative comparisons inherent in tournaments as

a problem of experimental design for selecting and ranking contestants. These

two views are joined in this work.

In what follows, I investigate the incentive properties of prizes in

sequential elimination tournaments, where rewards are increasing in survival.

The inherent logic of these experiments is both to determine the best contestants

and promote survival of the fittest; and to maintain the "quality of play" as the

game proceeds through its stages. Athletic tournaments immediately come to mind

as examples, but much broader interest in this class of problems arises from its

application to career games, where the tournament analogy is supported (Rosenbaum

fl98)4]). Most organizations have a triangular structure (Beckmann [1968], Rosen

[1982]) and most top level managers come up through the ranks (Murphy [19814]). A

career trajectory is, in part, the outcome of competition and striving among



2

peers to attain higher ranking and more remunerative positions over the life

cycle. The structure of rewards influences the nature and quality of competition

at each stage of the game.

What needs to be explained is the marked concentration of rewards in

the top ranks. For example, Table I shows the percentage prize distribution in

men's professional tennis tournaments. The top four receive 50 percent or more

of the total prize money. Concentration is less extreme in the executive labor

market, but nonetheless, those attaining top ranking positions receive more than

proportionate shares of compensation. One piece of an explanation for this

phenomenon is provided here, where it is shown that an elimination design re

quires an extra reward for the overall winner to maintain performance incentives

throughout the game.

The economics of this is interesting and derives from the survival

aspects of the design. A competitor's performance incentives at any stage are

set by the value of continuation. This is essentially an option value. The

player is guaranteed the loser's prize at that stage, but winning gives the

option to continue on to all successive rungs in the ladder. As the game pro

ceeds, there are fewer steps remaining to be attained and the option value plays

out. The option value expires in the final mate;, where there are no further

advancements to look forward to. At that point the difference in prize money

between winning and losing is the sole instrument available for incentive main-

tenance and must incorporate the equivalent of the option value that maintained

incentives at earlier stages. The extra weight of rewards at the top is funda

mentally due to the notomorrow aspects of the game. In effect, it extends the

horizon of players surviving to the final stages. Most remarkably, It makes the

game appear of infinite length to a contestant in the limit, as if there are

always many steps to attain, independent of past achievements. In this respect
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the principle result bears a family resemblance to the role of a "pension" in a

finitely repeated principal and agent problem (Becker and Stigler [19714], Lazear

[1979]).

The next section describes the game. Section III sets forth the nature

of contestants' strategies. Sections IV and V analyze the problem when the

Inherent talents of competitors are known, while section vi analyzes the case

where talents are unknown. Conclusions are found in section VII.

II. DESIGN OF THE GAME

For analytical tractability and simplicity, the basic ideas are best

revealed by analyzing a pairwise comparison structure from the statistics litera-

ture (David [1969]). The tournament begins with players and proceeds sequen-

tially through N stages. Each stage is a set of pairwise matches, as in Figure

1. Winners survive to the next round and losers are eliminated from subsequent

play. Half of all eligible contestants at the beginning of a stage survive to

the next, where another pairing is drawn, and the other half are cut from further

consideration. Thus in a career game those eligible for promotion to some rank

have attained the rank immediately below it. Those who are passed over at any

stage are out of the running for further promotions. The top prize W1 is awarded

to the winner of the final match, who has won N matches overall. The loser of

the final match achieves second place overall and is awarded prize W2 for having

won N—i matches. Losers of the semifinals are both awarded W3, etc.

Define s as the number of stages remaining to be played. Then all

players eliminated in a match where s stages remain are awarded prize

There are 2
1

such players, so if the total purse is H the prize distribution is

constrained by
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R = + 21W51

Define the interrank spread =
W5 W51 . Then AW5 is the marginal reward for

advancing one place in the final ranking, and the total reward for achieving any

final rank is the sum of the marginal increments up to that rank plus the

lumpsum guarantee WN+l . These marginal increments play a crucial role in

determining incentives to advance through the stages. Substituting into the

budget constraint,

(1) R = 21W5 +
2NWN+l.

Prizes are nondecreasing In survival: > 0 for all s.

I am concerned in this work with studying how prizes affect perform-

ance; in particular with finding some rough characterization of the relative

reward structure that maintains incentives as the game proceeds. This is a piece

of a larger problem of the "optimal" prize structure, the study of which requires

specifying how incentives affect the social value of the game. For example, most

of the literature on this subject assumes that social value is reckoned on the

sum of individual outcomes, but the interactions among contestants are more

complex than that and not well understood. Rather than tying results to a speci

fic and arbitrary inputoutput technology, a common feature of the larger problem

obviously requires that players work at least as hard, if not harder, in the

later stages of the game as in the early stages.

Rank—order schemes are encountered when individual output is difficult

to measure on a cardinal scale, an inherent feature of managerial and many other

types of talent; or when common background noise contaminates precise individual
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assessments of value—added. In athletic games, after which the present design is

modeled, competition is inherently head—to—head and cardinality In any sense

other than probability of winning has little meaning. Those games are essen-

tially ordinal because the point scores used to calibrate performance contain

many arbitrary elements, much like a classroom test. The game of tennis, for

example, would be greatly affected by changing the height of the net and the size

of the court. Presumably the rules of the game evolve to reward those personal

dimensions of talent which have the largest social productivity. Many of these

same considerations apply to selection of managerial talents: success in a lower

ranking position serves as an indicator of expected success in a higher ranking

one.

Given the rules, these complex issues may be finessed for studying the

connection between prizes and incentives by specifying how players' actions

affect the probability of winning. Let i index a player and let j index an

opponent in some match. Consider a game in which there are m types of players.

The ability type of the iplayer is indexed by I and the ability type of the

opponent j-player is indexed by J. Both I and J take on m possible values,

1,2,...,m with m < Let x and x denote the intensity of effort expended— 53. 83

by players i and j in a match when s stages remain to be played, and let and

represent their abilities or natural talents for the game. The probability

that a player of type I wins in a match against a player of type J (possibly the

same type) is denoted by P(I,J) and assumed to follow the law

Y h(x .)
(2)

P5(I,J) Y1h(x5) h(x)
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with h(x) strictly increasing in x and h(O) 0. A player increases the prob-

ability of winning the match by exerting greater effort given the talent and

effort of the opponent and own talent. To simplify a complex problem, (2)

assumes that the win technology is identical at every stage (s enters only

through the x's).

When both players exert the same level of effort the win probability

becomes + and its inverse has the natural interpretation of a book-

maker's "morning line" or "true—to—form" actuarially fair payoffs per dollar bet

on each player in this match. Notice also that (2) nicely accomodates common

environmental factors that influence the nature of play. Suppose the common

factor multiplies the terms in Yh(x) for both players. Then whether the common-

ality is match-, stage-, or tournamentspecific, it factors out of the

probability calculation and has rio effect on incentives.

The Poisson proportional hazards form of (2) has a racing game inter-

pretation that has been used to great advantage in the recent literature on

patent races [see especially Loury (1979) and references therein]. Let T be the

arrival time from the beginning of the match. Then H1 — Y1h(x1) is the probabil-

ity of "crossing the finish line" at T given that player ihas continued racing

up to t, and the unconditional duration density of finishing at t exactly is

H.t

f1N) H1e
1

• Expected finishing time for i is 1/H1. The player who arrives

first is declared winner of the match: (2) gives the probability of that event

for player i. Expected completion time of the match itself is (H1 + H) 1, so

larger values of the x's are associated with higher average quality of play,

though of course the realization of actual quality is a random variable.1 How-

ever, the description of the wintechnology In (2) stands irrespective of this
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particular interpretation: just think of it as a function of x1 and x and the

talents of the players.

III. STRATEGIES

A player's decision of how much effort to expend in any match depends

on a cost—benefit calculation. Greater effort increases the probability of

surviving to a higher rank and achieving a larger reward, but involves added

costs. There are two complications. First, the anticipated value of advancing

to the next stage depends on how the player assesses future effort expenditure

and behavior should eligibility be maintained in more advanced stages. This

forward—looking interstage linkage is solved by the usual dynamic programming

recursion, beginning with the final match and working backward to earlier stages

one step at a time. Second, current actions depend on the behavior of the cur

rent opponent and on the anticipated actions of future possible opponents. The

sequential character of the game allows this to be analyzed by adopting Nash

noncooperative strategies as the equilibrium concept at each stage. Discounting

between stages is ignored and players are assumed to be risk neutral.

Define V(I,J) as the value to a player of type I of playing a match

against an opponent of type J when s possible stages remain to be played.

Assume, for now, that all players' talents are common knowledge. Let c(x) be the

cost of effort in any match, assumed identical for all players irrespective of

type. c(x) exhibits positive and nondecreasing marginal cost: c'(x) > 0,

c"(x) > 0 and c(0) = 0. The value of the match consists of two components: One

is the prize W1 earned if the match is lost and the player is eliminated, an

event which occurs with probability 1 P(I,J). The other is the value of

achieving a final rank superior to s1 if the match is won. Let EV51(I)

represent the expected value of eligibility in the next stage. (I) is a
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weighted average over J of V51(I J), where the weights are the probabilities

that the player in question will confront an opponent of type J in the next

stage. These probabilities depend on the activities of players in other matches

at this stage and the rules for drawing opponents at each stage (random draw or

seeding). The probability of continuation is P5(I,J), and costs c(x) are

incurred for either outcome, so the fundamental equation for this problem is

(3) V(I,J) x5,EV81(fl + (1 P5(I,J))W1 c(x1)J.

The max in (3) is understood on Nash assumptions as conditioned on the given

current and expected future efforts of all other players remaining alive at s and

on the optimum actions taken by the player in question in subsequent matches.

The sequences of solutions {x1) that are simultaneously conformable with equa-

tion (3) for all players is the equilibrium (solution) of the game.

Substituting (2) into (3) and differentiating with respect to
x51

yields the first order condition

I I h.h!
(14)

2 [EV31(I)
— c 0,

(I h. + I h.)Ii Jj

where h. = h(x.), h! dh(x.)/dx. etc. The second order condition is

(5) D = cCh/h1)
—

2I1h/(Y1h1 + Ih)] c < 0.

where (5) is evaluated at the arguments that satisfy (4). Equation (5) certainly

holds if h(x) has declining marginal product, but h" > 0 is allowed so long as h"
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is riot too large. The marginal condition () indicates that effort in any match

is controlled by EV1 (I) * , the difference in value between winning arid

losing the match. This difference must be positive for the player to have an

interest in winning and maintaining eligibility into the next stage. Otherwise,

it is best to default, exert no effort, and take the loser's prize for sure.

Equation (4) defines the best response function for player i. Differ-

entiating with respect to the current opponent's effort yields (the s subscript

is suppressed but understood)

c! (h/h.)133(6) ax1iax. =
—D(Y h. + I h) (11h. Ih.).Ii Jj

Player l's best reply to the opponent's effort is increasing when the opponent is

not working too hard, but is decreasing when the opponent's effort is suffi—

ciently large. It has a turning point at 11h(x1) = Yh(x.). Beyond that point

it does not pay to keep pace with the opponent because it is too costly to do so.

The turning point occurs at x. = x. for equally talented players (i.e., I

from (6). It turns at some value x. > x. when I Is playing a weaker opponent

> and it turns at some x. < x. when the opponent is the stronger player

< Y). These differences are illustrated in Figure 2, given the same value

of EV W in each case.2
s—i s+1

IV. INCENTIVE MAINTAINING PRIZES: EQUALLY TALENTED CONTESTANTS

The complete solution to the problem is transparent when all players

are equally talented (there is only one type). Then EV1(I) in (3) is simply

V1 because every player knows for sure that an opponent of equal skill will be

confronted at every stage of the game. We also know from Figure 2 that the best
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reply function has a turning point at x1 =
x3. It is furthermore obvious, and

easily shown, that the value of eligibility at any stage is the same for all

survivors. Therefore, the best reply functions for any two opponents in any

match at any stage are mirror images of each other and the equilibrium is sym-

metric: x = x = x for all i and j; P = 1/2 in equilibrium, and each match
Si 53 5 S

is a close call in expected value. The common level of effort when s stages

remain is, from ()

(7) (V1 W5÷1)(h'(x3)/h(x5))/ c'(x)

since h(x .) = h(x .). Define the elasticities
Si S3

n(x) xh'(x)/h(x)

(8) (x) = xc'(x)/c(x)

u(x) rl(x)/c(x)

Then (7) may be manipulated to read as

(9) (V1 W1ht(x)/14 = c(x)

in the symmetric equilibrium. Substituting (9) into (3) and using P 1/2, we

have
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(10) V (1/2)(1 i(.)/2)(V1 — W51)
+

÷(i—)wS s—i s s+1

where

(11) = (1/2)(1 —

The recursion in (10) hold•s under the assumption that (4) is a global

maximum at equilibrium. For this to be true, no player can have incentives to

default from x defined by (7), which requires from (10) that

V — (V — W ) > 0. Therefore > 0, or, from the definitions,5 s÷1 s s—i s+1 S

n(x)/2c(x) < 1. Otherwise V W51 < 0, and a player is better off taking the

sure loss. There can be rio equilibrium in this game if any player has an incen—

tive to default. For if the i—player defaults, then the j—player guarantees a

win by exerting vanishingly small effort at vanishingly small cost. But if

player j does this, then player i has incentives to put forth only a slightly

larger effort, which drives the solution toward (7). However, at that point

is less than the value of the sure loss, both players default and so it goes.

The sense of the no—default condition n(x)/c(x) < 2 is related to the

problem of an arms race. If the elasticity of response of effort is large rela-

tive to the elasticity of its cost then players' efforts to win results in a

negative sum game for which a stable equilibrium is not defined. It is not

optimal to default if the opponent does, but at the local equilibrium the costs

of contesting have been escalated so much that both want to default. It is in

fact implicit in (10), that for a given purse and distribution of prizes, players
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are better off the smaller is ii(x) when there is less scope for actions to

affect outcomes. The rules of the game must be devised to balance two conflict-

ing forces: games which greatly constrain the effect of actions on outcomes are

unproductive; whereas competition is destructive if the constraints are relaxed

too much. In athletic games this problem is solved by a supreme authority, which

reviews standards of play from time to time and which places limits on rules

changes and the use of new equipment that would otherwise lead to problems.3

Assume the no—default condition holds. Then 0 < < 1 , for all s.

Using V0 W1 as a boundary condition, the solution to (10) is

(12) V = 12 + 2• + + +

The value of maintaining eligibility at any stage is the sure prize the player

has guaranteed by surviving that long plus the discounted sum of successive

interrank rewards that may be achieved in future matches. The discount factor

defined in (11) depends on both the equilibrium probability of winning and the

equilibrium elasticity parameters. Taking (12) forward one step and subtracting

yields an expression, which, from (7) or (9), controls incentives to

perform:

(13) (V1 — W1) = + 2" + + tW.

The difference between the value of winning and losing in equilibrium is the

discounted sum of the forward interrank spreads.

What reward structure maintains incentives to perform at a common value

throughout all stages of the game? Here x x for all s and = B is a con-

stant for all s, from (11). Then (13) becomes
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(114) V1 — ? +
2w2

+ ... + w, for all

or,

(15) (V1 —
W5)

= for s = 2, 3, ..., N.

Constant performance requires that (V51 W31) is itself a constant, from

condition (6). Suppose this constant value is k, where k is determined so that

x = x solves (6). Then (15) implies

(16) k(1 — B) = LW W, for s 2, 3, ..., N

and (114) implies

(17) k = = W/(1

Condition (16) is independent of s, so the incentive—maintaining prize structure

requires a constant interrank spread from second place down. However, from (17)

it requires a larger interrank spread at the top. Prizes rise linearly in incre

ments W k(1 — ) from rank N + 1 up through rank 2, but the first place prize

takes a distinct jump out of sync with the general linear pattern below it. The

incentive—maintaining prize distribution is convex in rank order and weighs the

top prize more heavily than the rest. See figure 3.

This surprising conclusion has a nice economic interpretation. The

value of playing at any stage is essentially an option value reflecting the

probabilities of achieving all possible higher ranks. As the game proceeds, the

option value of continuation might lose value because the end draws nearer. The
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option for continuation loses all value in the finals and has to incorporate

the equivalent of the earlier stage option. Substitute (16) and (17) into (111):

(i8) (V1
—

W1) = + W(2 + + •.. + 1)

= W[(1/(1—)) + + + ... + 1]

for all s,

where the second equality follows from (17) and the last equality from

1/(1-6) 1 + + + .... The extra increment at the top converts the value of

the difference between winning and losing at each stage into a perpetuity of

constant value at all stages. It effectively extends the horizon of the players

and makes them behave as if they are in a game which continues forever. This

horizon extending feature of the top prize is one of the fundamental reasons why

rewards are concentrated toward the top ranks. It is clear by the nature of the

proof that concentrating even more of the purse on the top creates incentives for

performance to increase as the game proceeds through its stages. For example, if

the winner takes all, then every term other than the one in in (13) vanishes

and the difference in value between winning and losing increases as the game

proceeds, through the force of discounting: effort is smallest in the first

stage and largest in the finals.

The result in (16) and (17) is robust to a number of modifications:

(i) Risk Aversion. The preference structure implicit in the problem

above is strongly additive; linear in income and convex in effort. Suppose

instead that preferences take the additive form U(W) — c(x5), where c(x) is as
5
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before and U(W) is increasing, but not necessarily linear in W. Then the entire

analysis goes through by replacing with U(W) wherever it appears. Incentive

maintenance requires a constant difference in the utility of rewards

U(W1) — U(w2) in all stages prior to the finals, but still requires a jump in

the interrank difference in utility of winning the finals. If players are risk

averse then U"(W) < 0 and the incentive maintenance prize structure requires

strictly increasing interrank spreads, with an even larger increment between

first and second place. The prize structure is everywhere convex in rank order,

with greater concentration of the purse on the top prizes than when contestants

are risk neutral.

The result is related to an "income effect." When U(W) is concave, the

relevant marginal cost of effort is (roughly) the marginal rate of substitution

between W and x, or —c'(x)/U'(W). At the target level of effort c'(x*) is con-

stant, but U'(W) declines as a player continues and is guaranteed a higher and

higher rank. The relevant marginal cost of effort effectively increases in each

successive stage. Convexity of reward is required to overcome these wealth

effects and maintain a player's interest in advancing to a later stage of the

game.

(ii). Symmetric win—technologies. The proof of the proposition on

incentive—maintaining prizes among equally talented contestants rests only on

that property that P is 1/2 in equilibrium. Hence the proposition is independ-

ent of the specific form of (2) and holds for any win technology resulting in a

symmetric equilibrium. This would include, for example, specifications where the

opponent's efforts have direct effects on own—arrival time (e.g., write the

hazard for each player as h(x.,x.) with h1 > 0 and h2 < 0). Furthermore, the

result extends to more than pairwise comparisons: there might be n—way compari-

sons at each stage. In the Poisson case the probability of advancing becomes
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h(xi)/Eh(xk). Then 8 = (1/n)(1 - (n—1)(x)/n), but the logic otherwise remains

unchanged.

(iii) Stage effects. The nature of competition may vary across stages.

In particular, tne going may get tougher as the game proceeds. In a corporate

hierarchy the pass—through rate may fall at each successive rank. Similarly the

cost and elasticity of effort parameters may vary with the stage. may be

smaller in the later stages because higher ranking positions are more demanding

than lower ranking ones. In either case 8 decreases as the game proceeds. The

argument that led from (13) to (15) is easily extended: the interrank spreads

M have to be increasing all along the line to undo the incentive dilution
S

effects of greater discounting of the future, which otherwise reduce the option

value of continuation.

Analysis becomes more complicated when there are direct interstage

spillovers of effort between stages. Two effects may be distinguished: One is a

force of momentum, where effort in one round increases the probability of winning

the next, similar to the effect of learning. The other is a force of fatigue or

depreciation, where greater effort in one match decreases the possibility of

putting forth effort in the next ("burnout"). Extension of the results above at

the symmetric equilibrium are straightforward.5 The force of fatigue leads to

early round "coasting," as players hold back effort, saving energy reserves for

later stages, should they reach them, where the stakes are larger. Here the

prize structure must be less concentrated at the top to induce contestants to put

forth greater effort in the early stages. The logic is reversed in the case of

momentum and learning. Then early round effort has sustained value later by

either reducing future costs or increasing the productivity of future effort.
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This value falls as the game proceeds and the end draws near, so the prize struc-

ture has to be more concentrated at the top to maintain riondecreasing effort.

V. HETEROGENEOUS CONTESTANTS WITH KNOWN TALENTS

The importance of the result in section IV lies in the logic of an

elimination design in promoting survival of the fittest. The conditional dis—

tribution of survivors' abilities shows an increasing mean and decreasing van—

ance at each stage because there is progressive elimination of the weaker

players. If the game is sufficiently long, the contenders in the final stages

are selected among those with greater ability, and differences in their talents

are much smaller than among the initial field. Continuity of the best reply

functions of section III in the l's implies that the result in section IV holds

in the limit in the last few stages of a large—stage game. For if the variance

of talents of remaining eligibles in the final stages is small, the equilibria in

those rounds must be nearly symmetric, because EV51 approximates V5, and

survival probabilities of all players remaining in these stages are close to 1/2.

The extra increment, at the top is required to extend the horizon and maintain

performance incentives toward the end of the game.

A sequential design makes the conditional distribution of survivors

exhibit a larger mean talent as the game proceeds because the value of the con—

tinuation option is larger for stronger players than for weaker ones. The weak

are contending for the lower ranking prizes and the strong for top money. Analy-

sis is complicated by these progressive strength—of—field effects. Contestants

kno;. that they are likely to encounter a stronger opponent in a later stage.

This reduces the expected value of continuation. But they are likely to be

matched against a weaker opponent at early stages, and it is easier to win. The

analytical complexity of the problem lies in interactions among matches at any
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stage. A player is not only interested in what the immediate opponent is doing,

but also in what opponents in other matches are doing because the outcomes of

other matches determine the identities of future opponents, which in turn affect

the value of the current match. Consequently the equilibrium at each stage is a

simultaneous 2 player game. This problem cannot be solved analytically, and

must. be simulated.6 However, some progress can be made by examining the condi-

tions that characterize the solution. To simplify, assume that there are two

types of players, with type 1 stronger than type 2 > and that the hazard

and cost functions are of the constant elasticity type, so n, c and 1.1 are con

stants.

Begin with the finals. Here EV51(I) — is for all contestants

independent of type arid symmetry of condition (ii) means that the equilibrium is

symmetric irrespective of players' talents. Hence P1(I,J) = 1/(Y + 'rd) in
equilibrium. A final match involving equally talented contestants implies

greater effort than one which matches a stronger with a weaker player: see

figure L• Using the same trick that led from (7) to (9) and substituting into

(3),

(19) V1(I,J) = P1(I,J)[1
—

uP1(J,I)JW1
+ = 81(I,J)iW1 +

W1.

Here (1,1) = i(22) = (1/2)(1 — i.i/2) = , as above. But the stronger player

wins with larger probability, and (1,2) > > i(2,1), because

P1(1,2) > P1(2,1).

Semifinals

Let denote the probability that the winner of the match in question

will confront a strong player in the finals. This of course depends on the

identities and the x's chosen by players in the other match, but by the logic of
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the Nash solution these actions are taken as given (at their optimized values) by

the opponents in this match. By the definition of EV51 and the result above,

(20) EV1(I) [ir181(I,1) + (1 ir1)81(I,2)]W1 + = 8(I)Mr1 +

where

8i(I) = hni8i(I,1) + (1 i)8i(l,2)

and

(21) EV1(I) — = 81(I)W1 +
W2.

is no less for the strong contestant so (1) > (2) because

81(1,2) > 81(2,1).

Using the result in (21) to examine (Li) leads to two possibilities. If

the two contestants in the match in question are equally talented then the equi-

librium in that semifinal match is symmetric, with P2(1,1) = P2(2,2)
= 1/2. But

if the two contestants are not equally talented, the equilibrium is not symmetric

because the stronger player has a greater value of continuation (21). The strong

player exerts greater efforts to win in equilibrium and

P2(1,2) > y1/(y1 + P1(1,2): see figure 5, The usual manipulations give

(22) V2(I,J) = 2(I,J)[1(I)w1 +
W2]

+

with

82(I,J) = P2(I,J)[1 jP2(J,I)]
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Furthermore, B2(1,1) = 2(2,2) = and

(23) 2(1,2) > B1(1,2) > > 8(2,1) >

(23) implies that V2(1,2) > V2(2,1). It also implies that 2(1) > 2(2).

The general pattern is now clear. When s stages remain to be played

V(I,J) = 65(I,J)[(1(I)2(I)...51(I))w1 +

S s+1

(24)

EV5_1 W5÷1 =
1 51I))iW1 +

+ 85_1(I)W51 +

8(I) = ii(I1) + (1 —

where is the probability a strong opponent will be encountered at s. In

addition (i) > (2) for all s, which by (214) implies that the value of con-

tinuation is larger for stronger players at every stage of the game. Therefore

the second expression in (214) implies that a strong player works harder in a

strong-weak match than a weak player does, and that the weak are eliminated with

probabilities in excess of form [= i1/(i1+i2)J at every stage except the last. A

sequential design gives an added advantage to the stronger players. This also

verifies intuition that weak players are basically competing for the lower rank

ing prizes.
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Inequality (23) cannot be extended beyond the semifinals without addi-

tional structure. The ordering of these terms for s > 2 oepends on the prize

structure, the parameters ('ri, 12 , ), pairing rules, and on the initial

distribution of players by type. However, we do have the following analytical

result for the last two stages: If the prize distribution is linear at the top

= effort by both players in strong—weak matches is larger in the

semifinals than in the finals; and in matches between similar types effort is

also larger in the semis than in the finals. The first part follows from the

fact that (1) necessarily exceeds (2); while the second part follows from

section IV (and in fact holds true for all stages when the prize structure is

linear everywhere). The best reply for each player in any type of match is

larger in the semis than in the finals when AW.1 = W2. Consequently, the extra

incremental prize at the top remains necessary to extend the horizon and help

insure that the final match is the best match.

A small simulation for a two—stage game illustrates these ideas and

shows some effects of seeding. To simplify the calculations, I chose

= = 1.0: hazard and cost functions are linear in x. Further, Y = 2 and

= 1, so the true—to—form odds in a strong—weak match are 2—to—i in favor of

type 1 . The simulation assumes that the game begins with two players of each

type. The total purse is fixed at 1000 and = 0. The parameter q refers to

the ratio 1/AW2, so the prize structure is linear when q = 1. Th results, in

Table II should be read as follows: The top numbers in each line refer to effort

expended by player type I in a match against type J. The numbers in parentheses

under the semifinals columns refers to the probability that I beats J, whereas

the numbers in parentheses under the finals columns show the probability that the

final match will be type I against type J. The "all" column under semifinals

shows total effort by all four players in the two semifinal matches; the
Ex1
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column under Finals shows the expected effort per player in the finals as viewed

from the beginning of the game, and the Expected Total column shows expected

total effort expended by all six players in all matches in the game.

The first panel shows what might happen when players are not seeded and

where the draw pulls strong-to-strong and weak—to—weak in the first round. This

guarantees that both a strong and a weak player advance to the finals (therefore

all the finals numbers in parentheses are 1.0). Equilibria in all matches are

symmetric in this case. The first line illustrates the proposition above:

efforts by players of both types are larger in the semis than in the finals when

the prize structure is linear. When the final spread is twice that of the semi-

final spread, the weaker player exerts more effort in the finals than in the

semifinals, but the strong player still exerts less in the finals. Effort is

increasing in the finals for both types when the spread ratio is 3 or more.

Final round effort is increasing in q because the value of winning the finals

increases in q. However, semifinal effort is decreasing in q. This reflects the

budget constraint (1) that with a given purse an increase in q necessarily

requires decreasing iW2, which decreases so much that the value of winning at

s = 2 falls. With this parameter configuration the decline in effort with q is

relatively small for the stronger players. Total effort in the semis falls with

q, but the increase in final round effort with q more than offsets this. Total

effort in all matches is increasing in q.

The second panel shows the effects of seeding, with first round matches

assigned strong—weak. Now there are three possible matches in the finals:

strong—strong, weak—weak, and strong—weak. The first line illustrates the propo-

sition again. With linear prizes the strong player exerts 92.7 units in the

(1,2) semifinal match and 74.1 units in the possible (1,2) final match: the weak

exert 81.6 in the (2,1) semi match and 7'4.1 in the (2,1) final match. With
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seeding this effect is eliminated by the time q is 2 or more. The probability

the strong player wins the semis increases in q and so does the probability the

final match will be strong—strong, though the rate of increase is small. Again,

semifinal effort is falling in q and final effort is rising in q. This reflects

increasing discouragement of weak players with q in the first round, because they

know they will have to work increasingly hard in the finals and still lose with

the same probability of 2/3. Discouragement of the weak means the strong don't

have to work as hard to gain the finals.

Comparing across panels, we see that seeding makes both types of

players work less hard in the semifinals than no seeding, and no less hard and

probably harder in the finals. There is less variance in semifinal effort

across player types with seeding, and the final match most probably exhibits a

larger quality of play and between higher quality opponents. Notice, however,

the surprising result that the total effort expended in all matches for a given

prize structure is larger when players are not seeded, at least with this para-

meter configuration. Seeding produces less variance in efforts in the first

round, but a lower mean in that round, and it most likely produces a better match

among more talented opponents in the finals. The final interrank spread must be

greatly elevated in the seeding game to produce a level of total effort compar-

able to the no—seeding game. This suggests that seeds are observed when the

distribution of the quality of play among players and stages, and guaranteeing

the best match at the end are important for the social productivity of the game,

not simply total effort expended.7 It justifies my reluctance to specify an

additive social value function for the purposes of calculating an "optimal" prize

structure.
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VI. HETEROGENEOUS CONTESTANTS WITH TALENTS UNKNOWN

Suppose we are interested in choosing the best out of T possible

"treatments." A round—robin design matches each treatment (player) against every

other and chooses the one with the largest overall win percentage. A sequential

or knock—out design eliminates a treatment from further consideration after it

has lost a certain number of times. The sequential design promotes the survival

of the fittest and saves sampling co5ts by eliminating likely losers early in the

game, but provides less precise information. The choice between them comes down

to comparing sampling costs with the value of more precision or the loss of

making errors. David [1960] suggests that knock out designs have advantages over

round robins in selecting the best contestant, and Gibbons, 01km and Sobel

[1977] prove this is true on the basis of sequential statistical decision theory.

There are other possibilities. For example, medical trials are crudely described

by analogy to boxing: the treatment—of—choice is "king of the hill." From time

to time contenders come along and occasionally knock off the existing champion.

Statisticians have analyzed these kirids of problems in the method of paired

comparisons (David [1969]) and there is a parallel mathematical literature from

the point of view of graph theory (Moon [1970]). However, it is not possible to

apply those results to selection in human population because no account is taken

of the strategies and incentives of the contestants to optimize against the

experimental design.

A. The Case of Symmetric Ignorance

Consider a sequential single elimination design, in which there are m

types of contestants. The distribution of types is common knowledge, and there

is no private information: all contestants share the same priors on who their

opponents might be and, equally important, are equally ignorant about their own

talent. The sequential design allows Bayesian updating of own talents and the
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strength of the field as the game proceeds. This information feeds back into

each contestant's strategy at every stage. 4hen contestants have no more infor—

mation about themselves than their surviving opponents do, it is clear that the

most interesting focus for analysis is the symmetric equilibrium. For in single

elimination events all survivors share the same information set —— the same

winning record, and therefore choose the same strategy.

Let a(I) denote the probability that a player is type I when s stages

remain to be played, and let (J) denote the player's assessment that the

current opponent is type J. Then, from Bayes' rule, the player's assessment of

himself when s—i stages remain, conditional on winning at stage s, is

(25) a1(1) = Pr(win at stage sI)a (I)/Pr(win at stage s)

= (I) (J)P (I,J)/a (I) (J)P (I,J)5 Js 5 IJs S S

where P3(I,J) is the win technology in (2); c5(J)P(I,J)is the conditional
J

probability of winning given that one is type I; and the unconditional probabil-

ity of winning at stage s is the denominator of (25). Assuming commonality of

the initial prior distribution, information is common at all s and (I) = a5(I)
at the symmetric equilibrium. Furthermore, all contestants choose the same

effort at each s, so P3(I,J) =• + i) and survival chances for each type

run true—to—form at each stage irrespective of the effort levels cnosen. Final-

ly, the unconditional symmetric equilibrium probability of winning at each s is

1/2 in paired comparisons. Substituting all this into (25) we have, in the

symmetric equilibrium
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(26) a51(I) 2a(l)a(J)[Y1/(11 + i)]

which provides a recursion for calculating the expected survival probabilities

for each type at each s, given the initial distribution of talent.

Survival probabilities are increasing for the strong players and

decreasing for the weaker players as the game proceeds. There is survival of the

fittest. To illustrate, suppose there are two types: > and let a be the

expected proportion of stronger, type—i players alive at s (so the survival

proportion for the weak is (1 — a). Some manipulation of (26) yields:

(27) a a = a (1 a )ts—i s s s

where w = (Y 12)/(Y1 + is the difference in form—win probabilities between

types. The differential equation associated with (27) is the generating function

of a logistic. The weak are eliminated at the largest rate at the "diffuse

point" where a = 1/2. They are eliminated at a slower pace when they are either

a large or small percentage of the existing population, in the latter case be-

cause the strong knock each other off with greater frequency, and in the former

case because of their large weight in the population. The rate of elimination of

the weak also depends on w. Convergence is very fast when w is large. For

example, if the initial proportion is 1/2, and w is close to unity (its maximum

possible value) over 99 percent of expected survivors are strong after three

stages. More stages are required to select the fittest members of the population

the smaller the initial values of a and w. See Figure 6.
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Now the value of survival depends on a player's assessment of own and

opponents' talents at any stage. The problem is illustrated for the case of two

types, strong and weak (Y2). We have:

(28)
V5(cx5, a8) = max{Pr(winla , a)[V8,1 (a a3,,1) — W1] c(x.)}

where the win probability is conditioned on the information available at the

beginning of stage 5:

(29) Pr(winja, a) = a [aP(i,1) + (1 a)P(1,2)J +

(1 — a )[aP(2,1) + (1 a5)P(2,2)J.

In choosing a strategy at s, the player weighs the possibilities of' own and

opponent's talent pairings by the information currently available. This informa—

tion depends on the record of the past and is exogenous data as of stage s. The

player's assessment of the future strength of an opponent depends on the

efforts of players in other matches, which is exogenous in the current match

under Nash assumptions. However, the player's assessment of his own talent in

the next match depends on today's actions and outcomes according to the Bayesian

updating formula (25) and this must be taken into account in choosing effort at

the current stage. The Bayesian link between stages s and s — 1 relates to the

value of information in dynamic programming and introduces an interstage linkage

in strategies that is not present when talents are known.

The first order condition for this problem is
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(30)
PrH

[V51(a51, W1J

+Pr(winI.)[V51(cL51, 5_i) 5_1J(5_1"3x81) — c'(x51) = 0

The derivative in the first term in (30) is calculated from (29) and cz1/ax.

in the second term is calculated from (25), both given x5.. An expression for

the value term V 1Iaa is found by applying the envelope property to (28):

(31) 3V(a, a)/cL = [V51(a51, a5_i) W1](Pr(winja, cL)/a)

since the effect of a on x and on V51 vanish by the first order condition

(30). The condition that characterizes the symmetric Nash solution is found by

evaluating (30) at a = a and x, x5,3 for all s. The interstage linkage is

provided by the second term in (30) and is the value of information.

Writing V V (a , a ) detailed calculations at the symmetric solution
5 55 5

yield the following:

av / = (V w )(w/2)s s s1 s

(32) apr(winI.)/ax. (h'/h)[(1/) a(1 - a5)(w2/2)]

I II
Ba1/9x. = a(1 — a)w{( — +

(hi+1:)2

The first condition states that the equilibrium value of continuation is increas—

ing in own assessment of talent, and that this incremental value is increasing in
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w, the difference in form probabilities between types. The value of information

is small when contestants are not very different from each other. The marginal

effect of effort on the win probability in the second condition is decreasing in

the extent of heterogeneity of the population (w) and in the degree of uncer-

tainty with which players assess themselves at each stage (ci). There is the most

uncertainty when a = 1/2. Uncertainty is a force that dampens incentives to

perform. As the uncertainty is resolved and a5 approaches unity this dampening

effect disappears. The third expression in (32) shows how x5 affects assessments

of talent if one survives to the next stage. The effect is unambiguously nega-

tive: given the equilibrium effort of the opponent, the winning contestant is

more probably of greater talent if less effort has been expended. The magnitude

of this term also depends on the extent of heterogeneity and uncertainty. It

vanishes as ci approaches zero or unity and is numerically largest somewhere in

between. The elimination design places extra value on strength, and private

incentives to experiment to discover own strength is another force tending to

make players hold back efforts at earlier stages.

Plugging (32) into marginal condition (30) converting to elasticities

and evaluating at the symmetric equilibrium, we have

(33) c(x) = [. A5](V1 — B(V2 W), for s > 2,

where

2
=

jia5(1
—

a5) —
(314)

2 1 11
1 2 12B =p—a(l—a)L( — ) +5 14 12 ( +y12
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The "law of motion" in (27) is used to calculate A and B. Condition (33) does

not hold as written for the finals (s = 1). There is no private value of experi-

mentation in the finals because additional information cannot be exploited. The

boundary condition B1 = 0 allows (33) to stand for all s. Substituting into the

value function,

(35) V = (8 — A )(V — W ) + B (V — W ) + W
S $ s—i 5+1 s s—2 s s1

Subtracting W provides a recursion for the increments V — W
s+2 s s2

(36) V — W (8 A )(V — W ) + B (V — W ) +
S s+2 s s—i si s s—2 s s+1

This may be solved with another boundary condition, really a definition, that

—
AW1.

Conditions (35) and (33) plus the boundary conditions (and the calcula-

tion of A and B from (27)) represent the complete solution of the symmetric

ignorance problem for any feasible wage structure. We notice immediately, from

(31), that this solution converges in the limit to that of equal known talents in

section IV as approaches unity. For then A5 and B5 go to zero. Hence the

extra increment in the final interrank spread is required for incentive main-

tenance in a sufficiently long game, irrespective of the initial distribution of

talents. By a similar token, the earlier result also must hold approximately

when the heterogeneity parameter is small.

In fact heterogeneity must be quite large for the value of information

to have much effect on the incentive maintaining prize structure of figure 3.

This is illustrated by the parameters of' table 2: = 2, 2 = 1 and t = 1. The
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strong type wins two—thirds of the time and 1/3, Direct calculation reveals

that B5 is of order 10 for any feasible value of and that A5 is of order

io2. Therefore the second difference effects in (33) and (36) are negligible

and the first difference effects appear much as they did in section IV. Figure 3

is a very close approximation to the incentive maintaining prize structure under

symmetric ignorance in this case. When the strong player wins three—fourths of

the time, the corresponding orders of magnitude are 10 2 for both terms, so the

approximation in Figure 3 remains very good: there are only a few minor wiggles.

Major departures occur when there are major differences between types,

but this is in large measure due to the incentive dilution effects of uncertainty

and in much lesser part due to the incentives to acquire private information.

Thus even when the strong player wins 90 percent of the time the terms in B5

remain of order 10
2

and the second difference terms are negligible. But the

terms in A show more variation with , which amounts to a variable discount5 S

factor in the value of continuation formula. ( — A) is smallest in those

stages where uncertainty is largest and the interrank spread has to be increased

in those stages to overcome larger discounting of the future. Thus consider a

tournament where the known proportion of strong players is relatively small in

the first round. Then early round incentive—maintaining prizes are approximately

linear because there is little uncertainty. As the weak players are eliminated

and rises toward 1/2, uncertainty is increasing and the interrank spread has
to increase to overcome this effect. If the game is long enough to pass over the

diffuse point (a 1/2), uncertainty is decreasing and the interrank spreads are

decreasing for incentive maintenance. They increase toward the end, due to the

horizon effects, though the final round increment is shaded by the effects of

experimentation. If the initial proportion of strength is in the neighborhood of

1/2, these resolution—of—uncertainty effects act to distribute the prize money
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more equally across the ranks and not concentrate it so heavily on the top. If

the initial proportion aN is small and the game is long the prizes redistribute

from the extremes toward the middle.

One final point can be made: the expeted selection recursions in (26)

or (27) show that the social value of information is independent of x5 in the

symmetric equilibrium: all information in selecting strong players for survival

is embedded in the elimination design itself. In this respect the incentives for

contestants to optimize against the design and produce private information come

to naught because all players consider these possibilities in their private

strategies and no one obtains an informational edge over that inherent in the

design. There is a role for the prize structure to discourage these socially

useless actions, and this requires less concentration of the prize money at the

top. However the calculations above suggest that these effects are relatively

minor unless differences in talents are enormous.

B. Private Information

The opposite extreme to the case of symmetric ignorance is when players

know their own relative talent, but are informed about opponents' talents only up

to a shared distribution of prior beliefs. Continuing with the case of two

types, each contestant knows for sure that he is either or 2 and all share

the same prior that the proportion of strong players in the game at the initial

round is a. The draws at each stage must be random in this case, so contestants

maintain the same assessments that a strong player will be drawn at a given

stage. There is no incentive to gain private own information, but each contest-

ant updates beliefs about the strength of potential future opponents through the

natural selection of the elimination design.

Analysis is conceptually straightforward, but computationafly compli-

cated because the solution does not disassemble recursively. Thus, consider
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survivors' strategies at some stage s. Suppose the probability that a strong

player will be encountered in the current match is
it5.

The ex ante value of

continuation is a probability weighted average across current opponent types, and

the ex ante strategy shares this feature: each player's best response function

is a it —weighted average of the functions in Figure 2. Thus a strong player's

best reply is a weighted average of the curve in the middle of the figure and the

one to the right. If the probability of encountering a strong player is large,

it is closer to the one in the center, and if the probability of encountering a

weak player is large it is closer to the one on the right. Similarly, a weak

player's reaction function is a weighted average of the curve on the left and the

one in the center.

Uncertainty about the current opponent's ability is resolved ex post:

either an opponent of the same type has been drawn, in which case the ex post

outcome in this match is symmetric; or an opponent of the opposite type has been

drawn, in which case the ex post equilibrium is not symmetric. The value at s is

a weighted average of these two possibilities. The equilibrium assessment of

depends on the assessment of surviving strength at the beginning of the prior

stage and on the equilibrium probability that a strong player won a strong—weak

match at s—i . Hence the value at s depends on the actions of players in other

matches in previous stages. Now in the case of known talents (section V) the

equilibrium is symmetric in any match—pair in the final round. However, the

final round equilibrium in a strong—weak match is not symmetric in this case,

except by accident. Hence the equilibrium across all matches and all stages must

be solved simultaneously.

Taking the linear prize structure as a benchmark for analyzing incen-

tive maintenance reveals two forces: First, the value of continuation is larger

for a strong player than for a weaker one, as in section V, so the best reply to
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an opponent of given skill (the functions in Figure 2) is larger for a strong

player than for a weak one. When prizes are linear, these response functions are

declining as the game proceeds through its stages, as above; and for a given

assessnent of field strength the weighted average ex ante strategy is also de-

clining across successive stages. Second, the equilibrium probability weight on

the presence of a strong opponent increases as the game proceeds. Hence a strong

player's best reply increasingly resembles the middle curve in Figure 2 and a

weak player's reply increasingly resembles the curve to the left of center in

Figure 2. The first effect is a force tending to reduce the effort of all

players as the game proceeds, while the second effect —— that a strong opponent

is more likely to be encountered in each successive match if one survives —-- is a

force that tends to increase effort of the more likely strong survivors as the

game proceeds. It is not possible to establish analytically which effect domi-

nates overall. However, we have the usual limiting result that if the initial

proportion of strong players is large enough, or if the game is sufficiently long

to ensure that most survivors of the final stages are strong, the second effect

vanishes and the top prize increment has to be large to maintain final round

incentives.

VII. CONCLUSIONS

The chief result of this analysis is in identifying a unique role for

top ranking prizes in maintaining performance incentives in career and other

games of survival. That incentive maintenance requires extra weight on top

ranking prizes rests on the plausible intuition that competitors must be induced

to aspire to higher goals independent of past achievements. Competitors have

many rungs in the ladder to aspire to in the early stages of the game, and this

plays an important role in maintaining their enthusiasm for continuing. But
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after one has climbed a fair distance there are fewer rungs left to attain, If

top prizes are not large enough, those that have succeeded in achieving higher

ranks rest on their laurels and slack off in their attempts to climb higher.

Elevating the top prizes effectively makes the ladder appear longer for higher

ranking contestants, and in the limit of making it appear of unbounded length:

no matter how far one has climbed, there is always the same length to go. Much

attention has been paid in recent years to the question of whether or not earn-

ings are proportional to marginal product. In problems of this type, the concept

of marginal productivity has to be extended to take account of the viability of

the organization in maintaining incentives and selecting the best personnel to

the various rungs, not only the output produced at each step. Payments at the

top have indirect effects of increasing productivity of competitors further down

the ladder,

Triere is another interesting class of questions in this type of compe-

tition. Smith held the opinion that there is natural tendency for competitors to

overestimate their survival chances ("overweaning conceit"), while Marshall held

the opposite opinion. This analysis shows how biased assessments of talent

affect survival chances. Analysis of the strategies in Figure 2 reveals that
there is a clear disadvantage to pessimism and underestimation of own talents.

Not only is there a direct effect of not trying hard enough because the typical

opponent appears to be relatively stronger, but the pessimist also underrates the

true value of continuation and this induces even less effort. An elimination

design is a disadvantage to the timid because they are eliminated too quickly.

The effects of overestimation and optimism are more subtle. For strong players

and among any contestants in a field of comparable types, optimism has two coun-

tervailing forces: the optimist has a tendency to slack off due to underestima-

tion of the relative strengths of the competition, but overestimates the own
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value of continuation, which induces greater effort. Optimism has no clearcut

effects on altering survival probabilities for these reasons. Still, optimism

has positive survival value for weak players in a strong field. A weaker player

who feels closer to the average field strength than is true, works harder on both

counts and is not eliminated as quickly as another weak competitor with more

accurate self—assessments.

Finally, there are incentives in rank order competition for a contest-

ant to invest in signals that mislead opponents' assessment of his strength. It

is in the interest of a strong player to make rivals think his strength is

greater than it truly is: the direct effect on the opponent's strategy works to

induce the opponent to put forth less effort, and the indirect effect is trivial.

The same is true of a weak player in a weak field. However, it is in the inter-

ests of a weak player in a strong field to give out signals that he is even

weaker than true, to induce the strong opponent to slack off. To the extent that

such investments are socially costly, there is a role for the prize structure to

reduce them. This requires weighting the top prizes less heavily than when such

effects are not present.



37

FOOTNOTES

*1 am indebted to Edward Lazear, Kevin M. Murphy, Barry Nalebuff, and

Nancy Stokey for important suggestions at various stages of development of this

work; to Gary Becker, James Friedman, Sandy Grossman and David Pierce for com-

ments on initial drafts and to Robert Tamura for research assistance. This

project was supported by the National Science Foundation.

1That (2) is the form of a logit leads to an alternative interpreta-

tion. Think of H. as an index of labor efficiency on an ordered, linear scale.

If labor efficiency is distributed as sech2 then (2) follows from the usual logit

assumptions.

2The best reply function exhibits a point of discontinuity if (5)

fails; then effort of the i—player jumps down when the opponent is working suff i-

ciently hard. This can lead to random strategies in the Nash solution (Nalebuff

and Stiglitz [1983]). The present analysis is confined to pure strategy solu-

tions, which require a strict upper bound on h"(x). Also one might expect a weak

player to employ a riskier strategy against a stronger opponent (Bronars [1985]),

but (2) is not suitably parameterized to allow for this.

3The rules of the game and procedures used to determine winners affect

the forms of c(x) and h(x): see the related discussion in O'Keeffe et al.

[1984]. In athletic games equipment producers and players have private incen-

tives to introduce new techniques and styles of play, and complementary capital

to create a winning eoge. An Authority is needed to maintain the "integrity of

the game" and prohibit those innovations which escalate the collective costs of

competition relative to social values. In the career setting these incentives

are sources of technical change. There the market disciplines "unfair" competi-

tiori because such organizations have a higher supply price of new recruits.



38

14

The purse must be large enough to support V5 > 0 for all s. It is

obvious that feasible x is bounded from above for this condition to hold.

Another upper bound is implied by contestant's outside opportunities, but is

ignored here.

5However, complete analysis is complicated because there may be asym-

metric equilibria. The best response functions may intersect more than once, and

the backward recursion breaks down at the asymmetric equilibria.

is a major league computational problem for many types and

stages. The shape of the best reply functions in figures 2, 14, and 5 shows that

the solution is not a contraction.

70f course a random draw with no seeding could produce the second panel

in the Table II, and does so twothirds of the time with two players of each

type. Nonetheless, the probability that the best players arrive at the final

match is smaller than with seeding. For example, the .53 probability of (1,1) in

the finals when q = 3 with seeding is decreased to .35 without seeding and the

.140 probability of (1,2) in the finals with seeding is increased to .60 without

seeding.

8Notice that the updating of own—assessment of talent conditional on

losing has rio value in single elimination contests because the player does not

continue. It would have value in games with double, or more eliminations.

However, the equilibrium would not be symmetric. Nor would it be symmetric, even

with single eliminations, if contestants' observed finer information on past

performances instead of only a win—loss record.
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TABLE 1

Men's Tennis: 19814 0n-Site Prize Money Distribution Formula,

Volvo Grand Prix Circuita

Rank

Percent of purseb

Grand Slam
c

Events Other
.d

Grand Prix
Singles
(128 Draw)

Doubles
(624 Draw)

Singles
(64 Draw)

Doubles
(32 Draw)

1 19.23 27.27 20.51 27.27

2 9.62 13.614 10.26 11.36

324 14.81 6.82 5.6'4 5.91

5—8 2.1424 2.95 3.08 3.18

9—16 1.241 1.36 1.92 2.10

17—32 .77 .68 1.03 1.25

3364 .245 .140 .143

65—128 .22

Notes

acovers 80 international single elimination events. On—site money does not
include contributions to end—of—season bonus pools. 62.5 percent of the
$2.LiM singles pool goes to the top 24 season ranked players and 64.2 percent
of the $.6M doubles pool goes to the top 14 teams.

bTotal tournament on—site purse split 78 percent for singles, 22 percent for
doubles. Figures refer to shares of singles and doubles components of the
total respectively. Each person in a tied rank receives the share
indicated. Weighted shares may not sum to 100 due to rounding.

cFrench Open, Wimbledon, U.S. Open and Australian Open. Draw refers to
number of players or teams. 96 draw singles events are slightly more
concentrated on top ranks.

don_site total purse of $25,000 or more.

Source: Official 198J4 Professional Tennis Yearbook of the Men's
International Professional Tennis Council. New York, 19814.
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Table II: Two—Stage, Two-Types Simulation (1 = 2; 2

q Semifinals Finals Expected
Totals

No Seeds
x2(1,1) x2(2,2)

all
x1(1,1) x2(2,2)

X1(2,1)
Ex1

X1(1,2)

1 120.3 92.6 1425.9 714.1 714.1 5714.1

(.5) (.5) (1.0)

2 118.1 76.14 388.9 111.1 111.1 611.1
(.5) (.5) (1.0)

3 116.6 60.7 366.7 133.14 133.14 633.3
(.5) (.5) (1.0)

5 115.1 55.5 3141.3 158.8 158.7 658.7
(.5) (.5) (1.0)

8 113.9 147.7 322.2 177.8 177.8 677.8
(.5) (.5) (1.0)

Seeds
x2(1,2) x2(2,1)

all
x1(1,1) x2(2,2)

X1(2,1)
Ex1

X1(1 ,2)

1 92.7 81.6 3)48.6 83.3 83.3 714.1 79.14 507.14
(.69) (.31) (.148) (.09) (.143)

2 82.6 66.7 298.6 125.0 125.0 111.1 119.3 537.2
(.71) (.29) (.51) (.08) (.141)

3 76.1 57.7 267.7 150.0 150.0 133.14 1143.3 5514.14

(.73) (.27) (.53) (.07) (.140)

5 68.3 147.1$ 231.3 178.5 178.5 158.8 171.0 573.3
(.714) (.26) (.55) (.06) (39)

8 62.0 39.6 203.2 200.0 200.0 177.8 191.8 586.9
(.76) (.214) (.57) (.06) (.37)

aNotes. q =
/W1/1W2. Purse = 1000, W3 = 0. x(I,J) is effort expended by player of type

I against opponent of type J when s stages remain. Numbers in ( ) under Semi-
finals is probability type I wins match against J. Numbers in ( ) in Finals is
the probability that a match of type (I,J) occurs. Probability that I wins final
against J is always
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Figure 1: Desigt of the Game
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Figure 2: i-p1ayers best response
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Figure 5: Equilibriuni in Semifinals: Strong vs. Weak
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